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Abstract

Reliable planning is crucial for achieving au-
tonomous driving. Rule-based planners are effi-
cient but lack generalization, while learning-based
planners excel in generalization yet have limita-
tions in real-time performance and interpretabil-
ity. In long-tail scenarios, these challenges make
planning particularly difficult. To leverage the
strengths of both rule-based and learning-based
planners, we proposed the Scenario-Aware Hy-
brid Planner (SAH-Drive) for closed-loop vehi-
cle trajectory planning. Inspired by human driv-
ing behavior, SAH-Drive combines a lightweight
rule-based planner and a comprehensive learning-
based planner, utilizing a dual-timescale decision
neuron to determine the final trajectory. To en-
hance the computational efficiency and robustness
of the hybrid planner, we also employed a diffu-
sion proposal number regulator and a trajectory fu-
sion module. The experimental results show that
the proposed method significantly improves the
generalization capability of the planning system,
achieving state-of-the-art performance in inter-
Plan, while maintaining computational efficiency
without incurring substantial additional runtime.

1. Introduction

Autonomous driving trajectory planning primarily involves
two types of algorithms: learning-based algorithms (Codev-
illa et al., 2018; 2019; Rhinehart et al., 2019; Zeng et al.,
2019; Chitta et al., 2022; Hu et al., 2023; Jiang et al., 2023;
Chen et al., 2024) and rule-based algorithms (Treiber et al.,
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Figure I: Comparison of the fast-slow hybrid and
scenario-aware hybrid planner paradigms. (a) The
learning-based planner handles low-frequency reference
trajectory planning, while the rule-based planner manages
high-frequency tracking. (b) The dual-timescale decision
neuron enables the rule-based planner to primarily handle
regular scenarios while using the learning-based planner to
focus on long-tail scenarios.

2000; Fan et al., 2018; Sadat et al., 2019; Hallgarten et al.,
2024). Rule-based algorithms, relying on human-crafted
rules, are proficient at handling scenarios within their de-
fined scope but are significantly limited in their ability to
generalize to situations outside these predefined boundaries.
Learning-based algorithms have strong generalization capa-
bilities but typically require the construction of large models
with many parameters, making real-time operation challeng-
ing and lacking interpretability. The characteristics of these
two types of planners reveal that rule-based planners are
well-suited for relatively simple, regular scenarios, as these
scenarios constitute the majority of the driving process and
can be effectively represented through predefined rules. In
contrast, learning-based planners excel in handling complex
long-tail scenarios (Cheng et al., 2024b), which are chal-
lenging to represent using rules and occur less frequently
during driving. As such, there is a clear need for a scenario-
aware hybrid planner that leverages the strengths of both
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rule-based and learning-based approaches, enabling the sys-
tem to handle different driving situations more effectively.

Scenario-Aware Hybrid Planner Paradigm: Drawing
from the analysis of human driving behavior and the dual-
system framework (Wason & Evans, 1974; Kahneman,
2011; Leonard, 2008) underlying human cognition, it can be
observed that, in regular scenarios, humans drive with little
mental effort, and their behavior can be effectively captured
by simple rules. In contrast, long-tail scenarios such as
overtaking obstacles and passing a construction zone signifi-
cantly require humans to exert more cognitive effort to iden-
tify optimal driving opportunities, requiring the sampling
and evaluation of multimodal driving behaviors to make
informed decisions (Mohammad et al., 2024). Thus, we
first proposed the scenario-aware hybrid planner paradigm
for autonomous driving trajectory planning. As shown in
Figure 1, the traditional fast-slow hybrid planner paradigm
(Tian et al., 2024) eliminates the distinction between sce-
narios to enhance the generalization ability of the planner,
where the learning-based planner serves merely as guidance.
The advantages of both the rule-based and learning-based
planners are not effectively integrated, resulting in limited
improvements in generalization. In contrast, the scenario-
aware hybrid planner paradigm comprehensively combines
both types of planners, enhancing generalization for long-
tail scenarios while maintaining high efficiency in regular
scenarios, thus offering superior performance.

In this paper, we propose the SAH-Drive based on the
scenario-aware hybrid planner paradigm, with PDM-Closed
(Dauner et al., 2023) as the rule-based planner and a diffu-
sion proposal generation model as the learning-based plan-
ner. Although PDM-Closed, the State-of-the-Art (SOTA)
rule-based planner, is highly efficient, it cannot perform
lane changes and is not well-suited for handling long-tail
scenarios (Hallgarten et al., 2024). Therefore, we train a
multimodal diffusion-based proposal generator as a ”’second
brain” to complement the rule-based planner. Additionally,
we introduce a proposal number regulator that dynamically
adjusts the number of generated proposals based on the
highest-scoring trajectory, evaluated using predefined per-
formance metrics (Dauner et al., 2023). This increases the
diversity of proposals while reducing redundancy and accel-
erating the trajectory planning process.

To mimic human decision-making behavior, a dual-
timescale decision neuron is designed to manage the tran-
sition between the two planners. Inspired by biological
neurons, it exhibits both short-term and long-term plastic-
ity: Short-term plasticity, which enables rapid responses
to environmental changes, is governed by score-based and
scenario-based rules. Long-term plasticity, which allows the
system to retain and reflect on past planner performance, is
achieved through a decision neuron based on Spike-Timing

Dependent Plasticity (STDP). This biologically inspired
mechanism is used independently, without relying on a full
spiking neural network (SNN) framework. The advantage
of this approach lies in its ability to flexibly adjust decisions
based on changes in planner performance by simulating the
mechanisms of human neurons, enabling scene-aware plan-
ning period switching. The code for this paper is available
at https://github.com/richie-live/SAH-Drive.

Our contributions are as follows:

* We proposed a scenario-aware hybrid planner
paradigm that integrates rule-based and learning-
based trajectory planning methods, and designed a
dual-timescale decision neuron which is composed
of the score-based switching rule, the scenario-based
switching rule, and the STDP-based decision neuron.

* We integrate the SOTA rule-based planner PDM-closed
and a diffusion proposal generation model into SAH-
Drive, which significantly reduces the required training
data compared to fully learning-based planners, while
maintaining strong planning performance, particularly
in long-tail scenarios.

* We employ a real-time proposal number regulator
and a trajectory fusion module to accelerate trajec-
tory planning while ensuring the safety of the learning-
based planner. The experimental results demonstrate
the efficiency and robustness of the proposed method.

2. Related Work

2.1. Rule-Based V.S. Learning-Based Trajectory
Planning Methods

Rule-based planners use a set of predefined, hard-coded
rules and heuristics to generate trajectories based on the
vehicle’s environment and constraints. A typical rule-based
planner is the Intelligent Driver Model (IDM) (Treiber et al.,
2000), which calculates the ego-vehicle’s acceleration along
a path based on its speed, the distance to the vehicle ahead,
and predefined parameters to ensure safe and efficient driv-
ing behavior. The recently proposed PDM-Closed (Dauner
et al., 2023) is an extension of IDM, which uses IDM to plan
proposals, performs simulations and scoring, and ultimately
selects the best trajectory. It achieved SOTA performance
for rule-based planners on the nuPlan dataset.

Learning-based planners leverage machine learning mod-
els, typically trained on large datasets, to predict and gener-
ate optimal trajectories based on observed patterns and past
experiences. End-to-end methods such as UniAD (Hu et al.,
2023), VAD (Jiang et al., 2023), and VAD2 (Chen et al.,
2024), as well as imitation learning-based methods like
PlanTF (Cheng et al., 2024b), Pluto (Cheng et al., 2024a),
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and BeTop (Liu et al., 2024), enhance the generalization of
planners by incorporating neural networks into either spe-
cific modules or the entire framework. Additionally, a rein-
forcement learning-based method called CarPlanner (Zhang
et al., 2025) has been recently proposed, which leverages
temporal consistency and expert-guided rewards to generate
consistent multi-modal trajectories.

Recent efforts in the autonomous driving community have
also attempted to combine the rule-based planner with the
learning-based planner, in order to create a dual planner
that maintains the efficiency of rule-based planners while
also achieving the generalization capabilities of learning-
based planners. This concept has been applied in both
DriveVLM-Dual (Tian et al., 2024) and DualAD (Wang
et al., 2024), with corresponding experimental validation.
The scenario-aware hybrid planner paradigm proposed in
this paper is also inspired by this idea.

2.2. Diffusion Model for Trajectory Generation

Diffusion models can model data distributions and generate
data similar to the training data, which have shown excep-
tional generative capabilities on various tasks, such as image
generation (Song et al., 2020) and text generation (Austin
et al., 2021). Furthermore, diffusion models can model the
distribution of trajectories and be used for trajectory genera-
tion, which has been the focus of much research recently.

Diffusion model in robotics: Diffuser (Janner et al., 2022)
first used a diffusion model to integrate the trajectory plan-
ning into the model sampling process by iteratively denois-
ing trajectories, and implemented reinforcement learning
counterparts to classifier-guided sampling and image in-
painting. Decision Diffuser (Ajay et al., 2022) proposed
modeling policies as return-conditional diffusion models
within the framework of conditional generative modeling,
further improving Diffuser’s performance.

Diffusion model in autonomous driving trajectory plan-
ning: STR (Sun et al., 2023) used a diffusion-based key
point decoder to model the multimodal distribution of fu-
ture states resulting from interactions among multiple road
users. Diffusion-ES (Yang et al., 2024) first combined the
diffusion model with an evolutionary search algorithm and
used it in the autonomous driving trajectory planning task.
The diffusion model is used to learn the diverse trajectory
distribution from the nuPlan dataset and generate similar
trajectories. These generated trajectories are then used as an
initial population for evolutionary search, iterating towards
the optimal trajectory. This method integrates multimodal
information, but due to the use of evolutionary search, it is
slower in planning and not suitable for real-time operation.
More recently, approaches like DiffusionDrive (Liao et al.,
2024) and Diffusion Planner (Zheng et al., 2025) extend dif-
fusion models for planning by introducing truncation around

anchors and flexible guidance mechanisms, respectively.

3. Method

3.1. Diffusion Proposal Generation Model

As demonstrated in the study of Diffusion-ES (Yang et al.,
2024), reducing the amount of conditioning information
broadens the distribution for trajectory sampling, thereby
enhancing generalization to out-of-distribution (OOD) tasks.
Hence, we adopt a non-conditional diffusion model, primar-
ily referencing Diffusion-ES, removing evolutionary search
and enhancing the trajectory encoder to design the proposal
generation model. The diffusion probabilistic model for
vehicle trajectory generation is detailed in Appendices A
and B, which is composed of three key stages: Feature Fu-
sion, Self-Attention Fusion, and Decoding and Denoising.

3.2. Overall Architecture of SAH-Drive

The overall architecture of SAH-Drive, as shown in Figure 2,
consists of three main components: trajectory candidates
generation, trajectory scoring, and dual planner switching.
Initially, the lane centerline from the starting point to the
endpoint is generated through Dijkstra search, followed by
the PDM proposal generator and diffusion proposal genera-
tor, which produce PDM proposals and diffusion proposals,
respectively. To satisfy the physical constraints of the tra-
jectory, these proposals are evaluated through simulation
using an LQR controller, producing PDM trajectories and
diffusion trajectories. These trajectories are then evaluated
using the widely adopted PDM score (Dauner et al., 2023),
with further details provided in Appendix D. The planner
switching is performed based on the dual-timescale decision
neuron to select the final output trajectory. The learning-
based planner operates based on a diffusion model with a
lower frequency, while the rule-based planner runs based
on PDM-Closed with a higher frequency. During each ex-
ecution of the learning-based planner, the dual-timescale
decision neuron determines the better planner.

It is worth noting that SAH-Drive uses a diffusion model
as the learning-based planner to sample multimodal pro-
posals. In fact, it can also be replaced with other exist-
ing learning-based planners such as PlanTF (Cheng et al.,
2024b) and Pluto (Cheng et al., 2024a). Following the SAH
paradigm, we integrated these planners with PDM-Closed as
well. The corresponding experimental results are provided
in Appendix F.

Proposal Number Regulator: To improve planning effi-
ciency, we implemented a dynamic proposal number regula-
tor that adaptively adjusts the number of diffusion proposals
in real-time based on the highest diffusion trajectory score.

Specifically, the number of diffusion trajectories N’ is dy-
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Figure 2: The overall architecture of SAH-Drive. (a) Given the starting point, endpoint, and map information, dynamically
generate the PDM and diffusion proposals, then convert them into trajectories. (b) Evaluate and fuse the trajectories based
on No at-fault Collisions (NC), Drivable Area Compliance (DAC), Driving Direction Compliance (DDC), Making Progress
(MP), Time to Collision (TTC), Ego Progress (EP), Speed-limit Compliance (SC), and Comfort (C). (c) Switch between the
rule-based planner and the learning-based planner based on the dual-timescale decision neuron.

namically adjusted based on the highest diffusion trajectory
score sgifr relative to a threshold 7. The trajectory count is
updated based on the highest trajectory score:

N
N =2 Sdiff > T, 1)
2N,  Sgir < T.
To regulate trajectory count, we apply:
N’ = max(Nyin, min(N’, Npax)) )

Because the rule-based planner serves as a fallback, the
reduction in the number of diffusion proposals has little
impact on the planning performance.

Trajectory Fusion for the Learning-Based Planner: To
mitigate the risk of excessively aggressive diffusion trajec-
tories, which could pose high driving risks to the ego vehi-
cle, we propose a novel fusion approach that combines the
highest-scoring diffusion trajectory with the highest-scoring
PDM trajectory. Given that the fused trajectory may not
inherently adhere to the physical constraints of the vehicle,
we first identify the proposals corresponding to the highest-
scoring diffusion and PDM trajectories. The fused proposal,

Prused, 18 then calculated through an exponential weighting
mechanism, as shown in Equation (3):

ea(SPDMfsmax)pPDM + ea(Sdifffsmax)pdiff

e (sppM—Smax) | @ Saifr— Smax)

Pfused = 3)
where pppm and pgisr represent the PDM and diffusion tra-
jectories, respectively, while sppy and sgie denote their
corresponding scores. The parameter « controls the sensi-
tivity of the weighting to the trajectory scores. The term
Smax = max(sppm, Sdir) 18 introduced to enhance numerical
stability, preventing overflow during exponential calcula-
tions. The reason for applying exponential weighting to the
trajectories is to assign significantly higher weights to the
trajectory with a higher score (Li et al., 2024).

3.3. Dual-Timescale Decision Neuron

Neurons, as the core of human intelligence, exhibit both
short-term and long-term plasticity. Short-term plasticity
refers to the transient changes in synaptic strength, enabling
neurons to quickly adjust and respond to immediate stimuli,
thereby rapidly adapting to environmental changes. Long-
term plasticity allows neurons to form lasting changes in
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Figure 3: The decision space of the dual-timescale de-
cision neuron. In the horizontal dimension, the red and
blue areas represent the score-based switching rule, the yel-
low area represents the STDP-based decision neuron that
selects the planner, and the vertical dimension represents
the scenario-based switching rule.

their connections, which is crucial for learning and memory.
Therefore, we designed the score-based switching rule and
the scenario-based switching rule as the short-term plasticity
of the dual-timescale decision neuron, enabling immediate
transitions between planners according to their performance.
Additionally, we implemented an STDP-based decision neu-
ron as the long-term plasticity of the dual-timescale decision
neuron, allowing for the memory and reflection of the plan-
ners’ performance. The three-dimensional decision space
for the dual-timescale decision neuron is shown in Figure 3,
and its algorithmic form is presented in Algorithm 1.

Score-Based Switching Rule: Let the score of the rule-
based planner be denoted as s. and the score of the learning-
based planner as s,. Based on two threshold values, s; and
s9, both s, and s,. are classified into three levels: excellent,
ordinary, and poor. When both s. and s, are poor, the
learning-based planner is selected to seek opportunities.
When one planner performs poorly while the other is at
an ordinary or excellent level, the ordinary or excellent
planner is chosen. When both s, and s, are at an ordinary or
excellent level, the STDP-based decision neuron is activated
to select the better planner.

Scenario-Based Switching Rule: The system should revert
to the rule-based planner after invoking the learning-based
planner, for the sake of efficient planning. If the best PDM
score maintains excellent for n, consecutive runs, as shown
in Figure 3, it indicates that the rule-based planner is per-
forming well in the current scenario and should be used.
During experiments, we observed that if the learning-based
planner consistently produces low scores over n,, iterations,
it tends to remain in low-scoring states in subsequent plan-

Algorithm 1 Planner Selection Using Dual-Timescale Deci-
sion Neuron

Require: Rule-based planner score s., Learning-based
planner score s,
Ensure: Selected planner
Update weights w, and w, using Equation (5)
Update consecutive counts 7, and 7,
category < decision_space(s,., S, Ne, ip)
if category = score then
planner < score_rule(s,, s.)
else if category = scenario then
planner < scenario_rule(n., n,)
else
planner < STDP_neuron(w,, w,)
end if
return planner

—_
TeYeRUn s we

ning frames. This typically occurs in scenarios where the
vehicle becomes stuck behind another vehicle and cannot
overtake, resembling a local minimum. We refer to this
state as trapped and use it as one of the entry points for
the learning-based planner, where the system continuously
searches for opportunities to escape the local minimum.

STDP-Based Decision Neuron: To facilitate memory and
reflection on the performance of the dual planner during the
planning process, we draw on the concept of synaptic plas-
ticity from neuroscience. Synaptic plasticity can be simply
understood as the process of adjusting the “bridges” be-
tween neurons. By modifying the width or strength of these
“bridges”, neural networks can autonomously regulate the
speed and efficiency of information transmission, thereby
improving learning and memory processes. Spike-Timing
Dependent Plasticity (STDP) (Markram et al., 2011) is
a typical synaptic plasticity mechanism where synaptic
weight depends on the timing of presynaptic and postsy-
naptic spikes. Specifically, if the presynaptic neuron fires a
spike before the postsynaptic neuron, the synaptic weight
will increase; if the postsynaptic neuron fires a spike before
the presynaptic neuron, the synaptic weight will decrease.
This mechanism can be mathematically described by the
following formula:

A — {A+ exp (2) ifAt>0 (LTP)

—A~ -exp (&L) ifAt<0 (LTD)
where At = tpoq — tpre is the time difference between the
firing times of the postsynaptic and presynaptic neurons,
AT and A~ are the gain factors for long-term potentiation
(LTP) and long-term depression (LTD), respectively (usu-
ally AT > A7), and 7 and 7~ are the time constants
associated with LTP and LTD, controlling the timescale of
synaptic weight changes. Specifically, for a positive time
difference (At > 0), when the presynaptic neuron fires be-
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fore the postsynaptic neuron, LTP occurs, and the synaptic
weight increases. For a negative time difference (At < 0),
when the postsynaptic neuron fires before the presynaptic
neuron, LTD occurs, and the synaptic weight decreases.
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Figure 4: Illustration graph of STDP. (a) The x-axis rep-
resents the time difference between the activation of the
two neurons, while the y-axis represents the change in the
connection weight between the two neurons. (b) The x-axis
represents the planner’s score, while the y-axis shows the
change in the connection weight between the planner and
the decision neuron.

Based on the STDP, we can design a decision neuron to
switch between the rule-based planner and the learning-
based planner. Specifically, the planners are treated as
presynaptic neurons, and a decision neuron is designed as
the postsynaptic neuron. The synaptic weights between the
presynaptic and postsynaptic neurons are updated using the
STDP mechanism. Mimicking the STDP formula, the score
of the neuron (planner) is treated as the spike time. Un-
like typical STDP, where the magnitude of synaptic weight
change increases as the absolute time difference decreases,
in score-based STDP, larger absolute score differences lead
to greater synaptic changes. Thus, we use the negative
reciprocal of the score difference as the time difference:

At = sposi’_lspm . The weight update follows the formula:
-
A = At e ““Pfﬂ‘si”»\l)” if Spost < Spre  (LTP)
— A~ . e (spre—spos) T~ if Spre < Spost (LTD)
(%)

where s is the score of the presynaptic neuron (the score
of the planner), and spo is the score of the postsynaptic
neuron, which is set as the threshold value for the excellent
score s1. The illustration graphs of the typical STDP and
the proposed score-based STDP are shown in the Figure 4.

4. Experiment

In this section, SAH-Drive is assessed within the nuPlan
benchmark (Karnchanachari et al., 2024), a well-recognized
framework that incorporates estimated perception data for
vehicles, pedestrians, lanes, and traffic signs. We aim to an-

swer the following research questions: 1) Does SAH-Drive
exhibit scenario-aware characteristics by employing the rule-
based planner in regular scenarios and the learning-based
planner in long-tail scenarios? 2) Can better planning per-
formance be achieved by combining the rule-based planner
and the learning-based planner?

4.1. Datasets and Metrics

Training dataset: The nuPlan Mini dataset is a compact
version of the full nuPlan dataset, designed for efficient ex-
perimentation in autonomous driving. Despite its reduced
size, it retains sufficient diversity for tasks like detection,
prediction, and planning, making it ideal for rapid proto-
typing and algorithm validation. Validiation dataset: We
use Vall4 (Dauner et al., 2023) and Test14-Random (Cheng
et al., 2024b) to evaluate the planner’s performance in reg-
ular scenarios and interPlan (Hallgarten et al., 2024) and
Test14-Hard (Cheng et al., 2024b) to assess its performance
in long-tail scenarios.

Metrics: As the proposed planner is not an imitation-based
method, open-loop evaluation metrics are not the main focus.
Therefore, the evaluation is conducted using the closed-
loop score reactive (CLS-R) and closed-loop score non-
Reactive (CLS-NR) metrics (Karnchanachari et al., 2024).
The baselines are listed in Appendix C.

4.2. Quantitative Results

We conducted a simulation analysis comparing the proposed
method with baselines. The planner’s performance on in-
terPlan is shown in Table 1, and its performance on four
nuPlan splits, including both regular and long-tail scenarios,
is presented in Table 2, from which we derive the following
findings:

1. PDM-Closed exhibits conservative effects, while the
diffusion proposal generator demonstrates radical effects.
PDM-Closed performs better in the jaywalker scenario but
has lower scores in the overtaking and construction zone
scenarios. On the other hand, Diffusion-ES, by continuously
seeking opportunities through the diffusion model, excels at
lane-changing, achieving good performance in overtaking
but scoring lower in the jaywalker scenario, due to collisions
with pedestrians that appear suddenly. This is consistent
with human driving experience: The jaywalking scenario
indeed requires conservative driving, while the overtaking
scenario necessitates radical driving.

2. The proposed method achieves the highest score in inter-
Plan and Test14-Hard, and delivers near SOTA performance
on Vall4 and Test14-Random, validating its effectiveness
in both regular and long-tail scenarios. Since the plan-
ner in this paper is a flexible combination of a diffusion
model and PDM-Closed, the comparison between SAH-
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Table 1: Specific comparison with SOTA planners on interPlan. interPlan includes eight types of long-tail scenarios:
construction zones, accident zones, jaywalkers, nudging, overtaking, low traffic density lane-changing, medium traffic
density lane-changing, and high traffic density lane-changing. The highest score in each scenario is indicated in bold, while
the second-highest score is underlined.

Planner Type interPlan Constr. Acc. Jayw. Nudge Overt. LTD MTD HTD

PDM-Closed (CoRL 2023) Rule 42 18 0 48 74 9 62 62 62

STR2 (arxiv 2024) Learning 46 / / / / / / / /
HybridLLMPIlanner (IROS 2024)  Hybrid 53 27 20 48 93 28 81 48 80

ﬁ Diffusion-ES (CVPR 2024) Learning 57 71 51 13 88 52 61 58 61
8 PlanTF (ICRA 2024) Learning 33 9 0 33 49 9 50 40 73
Pluto (arxiv 2024) Learning 48 54 9 56 82 17 47 47 68

Diffusion Planner (ICLR 2025)  Learning 24 17 0 7 70 15 41 22 17
SAH-Drive (Ours) Hybrid 64 72 44 47 80 78 64 63 63

Té Urban Driver (CoRL 2022) Learning 4 0 0 0 0 0 0 29 0
g GameFormer (ICCV 2023) Learning 11 0 0 48 0 0 0 20 21
2 DTPP (ICRA 2024) Learning 25 18 18 44 10 0 40 36 34
a IDM (Phys. Rev. E) Rule 31 0 0 66 0 0 61 61 61

Table 2: Comparison with SOTA planners on different splits of nuPlan. Including interPlan (long tail), Vall4 (regular),
Test14-Random (regular), Test14-Hard (long tail). The highest score is indicated in bold, while the second-highest score is
underlined.

Planner Type interPlan ~ Vall4 (R) Vall4 (NR) Testl4-Random (R) Testl4-Random (NR) Testl4-Hard (R) Testl4-Hard (NR)
PDM-Closed Rule 42 922 93 91 90 75 65
STR2 Learning 46 93 / / / / /
HybridLLMPlanner ~ Hybrid 53 / / / / / /
ﬁ Diffusion-ES Learning 57 92 / / / 77 71
3 PlanTF Learning 33 77 84 80 85 61 69
Pluto Learning 48 78 89 78 89 60 70
DiffusionPlanner ~ Learning 24 83 90 83 89 69 75
SAH-Drive Hybrid 64 90 89 87 86 83 78
Té UrbanDriver Learning 4 50 69 67 52 49 50
g GameFormer Learning 11 75 80 82 84 67 68
8 DTPP Learning 25 73 / / / / /
a IDM Rule 31 77 75 74 70 62 56

Table 3: Ablation experiments on the planner hierarchy and the dual-timescale decision neuron hierarchy. The
percentage following the score of each variant indicates the score change compared to the original SAH-Drive.

Variant interPlan Constr. Acc. Jayw. Nudge Overt. LTD MTD HTD
Original 64 72 44 47 80 78 64 63 63
Learning-Based 62(-3.13%) 79(9.72%) 44(0.00%) 44(-6.38%)  T9(-1.25%)  T4(-5.13%)  59(-7.81%)  63(0.00%) 57(-9.52%)

Rule-Based 40(-37.50%)  18(-75.00%) 0(-100.00%) 29(-38.30%) 75(-6.25%)  9(-88.46%)  62(-3.13%) 62(-1.59%)  63(0.00%)
Score Rule 58(-9.38%)  60(-16.67%) 26(-40.91%) 46(-2.13%)  80(0.00%) 67(-14.10%) 62(-3.13%) 62(-1.59%) 62(-1.59%)
Scenario Rule  43(-32.81%) 25(-65.28%)  5(-88.64%) 29(-38.30%) 75(-6.25%) 24(-69.23%) 63(-1.56%) 62(-1.59%)  63(0.00%)
Decision Neuron ~ 62(-3.13%)  62(-13.89%) 53(20.45%)  47(0.00%)  80(0.00%) 68(-12.82%) 63(-1.56%) 62(-1.59%) 63(0.00%)

Drive, PDM-Closed, and Diffusion-ES demonstrates that
SAH-Drive combines the advantages of both rule-based and
learning-based planners. This is accomplished by utilizing
a dual-timescale decision neuron, thereby achieving high
performance in both jaywalking and overtaking scenarios.

3. The use of a scenario-aware hybrid planner paradigm sig-
nificantly reduces the data requirements for the learning-

based planner and allows for the use of simpler structures.
The diffusion model in this study was trained only on the
nuPlan mini dataset, yet it outperforms models trained on
the entire nuPlan dataset, as most of the planning knowl-
edge has already been internalized by the rule-based planner.
Comparisons with the HybridLLMPlanner also suggest that
training a dedicated generative model for autonomous driv-
ing may be a better choice than enhancing traditional mo-
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‘ Starting Planning
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Returning to Rule-Based Plam>

Figure 5: Visualization of a typical long-tail overtaking scenario. The white rectangle represents the ego vehicle, while
the green rectangle indicates an illegally parked vehicle on the road. The overtaking maneuver must be completed for the

planning to be considered successful.

tion planners with LLM. To further validate this conclusion,
we analyzed the impact of model parameters and training
dataset size on the performance of SAH-Drive. Detailed
experiment analysis can be found in Appendix E.

It is worth noting that although STR2 achieves state-of-the-
art performance on Vall4 by increasing model parameters
and training data through scaling laws, its performance on
interPlan is only slightly better than PDM-Closed, due to
the lack of long-tail scenarios in nuPlan.

4.3. Qualitative Results

Figure 5 is the visualization of a typical long-tail overtaking
scenario. The ego vehicle initially adopts a conservative be-
havior and drives within the current lane. When encounter-
ing a long-tail scenario, the learning-based planner achieves
a higher score, prompting the planning system to switch
to the learning-based planner, continuously seeking oppor-
tunities to navigate through the long-tail scenario. After
passing through the long-tail scenario, due to the system’s
preference for the rule-based planner in regular scenarios,
the ego vehicle returns to the lane and adopts the conserva-
tive strategy again. More qualitative results are shown in
Appendix G.

4.4. Ablation Study

We conducted ablation experiments to analyze the roles
of the rule-based planner and the learning-based planner,
as well as the effects of the score-based switching rule, the
scenario-based switching rule, and the STDP-based decision
neuron in the dual-timescale decision neuron.

In the ablation study of the planner, the variant refers to
using only the corresponding planner instead of the com-
plete SAH-Drive. As the simulation results in Table 3 show,
the dual planner that combines the rule-based and learning-
based planners achieves superior performance compared
to using either planner alone. Specifically, the rule-based
planner underperforms in scenarios requiring opportunity-
seeking capabilities, such as overtaking (-88.46%) and acci-
dent zones (-100%), while the learning-based planner strug-
gles in safety-critical scenarios, such as those involving
jaywalkers (-6.38%). By integrating both planners, the dual
planner achieves better results in both jaywalker and acci-
dent zone scenarios.

In the ablation experiment of the dual-timescale decision
neuron, the variant refers to using only the corresponding
rule or neuron for decision switching. We observe that using
only the score-based switching rule leads to performance
degradation in accident and construction zone scenarios.
Using only the scenario-based switching rule results in a
performance drop, mainly in accident and overtaking sce-
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narios. When relying solely on the STDP-based decision
neuron for planner switching, the performance decline is
less pronounced compared to using only the score-based or
scenario-based switching rule. The performance deteriora-
tion is mainly observed in the construction and overtaking
scenarios.

4.5. Runtime Analysis

We conducted a runtime analysis of PDM-Closed and SAH-
Drive on a computer with an i7-14700KF CPU and an
RTX 4080S GPU. The computation time per frame for
PDM-Closed is approximately 0.1 seconds, whereas for
SAH-Drive, the maximum is around 1 second. In contrast,
Diffusion-ES requires about 5 seconds to plan a single tra-
jectory. For large language models, computation time varies
depending on the specific model employed. Typically, larger
models generate results more slowly and are challenging
to apply in real-time scenarios. The computation time for
SAH-Drive is acceptable compared to the increased compu-
tation time associated with using large language models or
other larger models as decision planners.

Figure 6 is the visualization of the runtime analysis. The
upper part of the figure corresponds to a regular straight-
through intersection scenario from nuPlan, with a duration
of 15 seconds, sampled at 0.1-second intervals, resulting in
150 frames (labeled by frame number in the figure). The
lower part of the figure corresponds to an overtaking sce-
nario within the interPlan simulation, with a duration of 30
seconds, also sampled at 0.1-second intervals, resulting in
300 frames. The Y-axis in the figure represents the execution
time per frame for SAH-Drive and PDM-Closed.

In the regular scenario, the total computation times of PDM-
Closed and SAH-Drive were 13.66 seconds and 16.15 sec-
onds, respectively. In the long-tail scenario, the times were
26.18 seconds and 25.17 seconds, respectively. In both
scenarios, the two methods exhibited comparable overall
computation times. This is due to the use of the diffusion
proposal number regulator and the SAH paradigm, which
means that longer planning times, such as 1 second, account
for only a small portion of the overall SAH-Drive planning
process.

4.6. Scenario-Aware Characteristics Analysis

Figure 6 also illustrates the switching process between the
rule-based planner and the learning-based planner. In the
regular scenario, the learning-based planner was active for
only 6.70% of the time. In contrast, its activation rate in-
creased to 43.33% in the long-tail scenario, highlighting the
scenario-aware nature of our method.
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Figure 6: Runtime analysis of SAH-Drive and PDM-
Closed under an overtaking scenario. The red circle
represents the planning time of SAH-Drive, while the blue
triangle indicates the planning time of PDM-Closed. The
and yellow bars denote the stages where the rule-
based and learning-based planners are used, respectively.

5. Conclusion

In this study, we proposed SAH-Drive, a planner that ex-
tends PDM-Closed by integrating a diffusion model to sam-
ple multimodal proposals. SAH-Drive used a scenario-
aware hybrid planner paradigm, which employs a dual-
timescale decision neuron, incorporating the score-based
switching rule, the scenario-based switching rule, and the
STDP-based decision neuron to enable flexible transition be-
tween the rule-based planner and the learning-based planner.
Simulations demonstrate that the proposed SAH-Drive effec-
tively combines the advantages of rule-based and learning-
based planners, improving the generalization of the planning
system without incurring substantial additional computation
time.

Limitations. The trajectories sampled by the diffusion
model do not fully conform to real-world physical dynam-
ics and can only be regarded as proposals. Future research
should focus on harnessing generative models to directly
generate trajectories that adhere to real-world physical con-
straints for autonomous driving.



SAH-Drive: A Scenario-Aware Hybrid Planner for Closed-Loop Vehicle Trajectory Generation

Acknowledgements

This work is partially supported by the National Natural
Science Foundation of China (No. 52441202), the National
Key R&D Program of China (No. 2024YFB43000303,
2023YFB4301802-02), and the Ganwei Program of Beihang
University (No. WZ2024-2-16).

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Ajay, A., Du, Y., Gupta, A., Tenenbaum, J., Jaakkola,
T., and Agrawal, P. Is conditional generative model-
ing all you need for decision-making? arXiv preprint
arXiv:2211.15657, 2022.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and Van
Den Berg, R. Structured denoising diffusion models in
discrete state-spaces. Advances in Neural Information
Processing Systems, 34:17981-17993, 2021.

Chen, S., Jiang, B., Gao, H., Liao, B., Xu, Q., Zhang, Q.,
Huang, C., Liu, W., and Wang, X. Vadv2: End-to-end
vectorized autonomous driving via probabilistic planning.
arXiv preprint arXiv:2402.13243, 2024.

Cheng, J., Chen, Y., and Chen, Q. Pluto: Pushing the
limit of imitation learning-based planning for autonomous
driving. arXiv preprint arXiv:2404.14327, 2024a.

Cheng, J., Chen, Y., Mei, X., Yang, B., Li, B, and Liu, M.
Rethinking imitation-based planners for autonomous driv-
ing. In 2024 IEEE International Conference on Robotics
and Automation (ICRA), pp. 14123-14130. IEEE, 2024b.

Chitta, K., Prakash, A., Jaeger, B., Yu, Z., Renz, K., and
Geiger, A. Transfuser: Imitation with transformer-based
sensor fusion for autonomous driving. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45(11):
12878-12895, 2022.

Codevilla, F., Miiller, M., Lépez, A., Koltun, V., and Doso-
vitskiy, A. End-to-end driving via conditional imitation
learning. In 2018 IEEE international conference on
robotics and automation (ICRA), pp. 4693-4700. IEEE,
2018.

Codevilla, F., Santana, E., Lopez, A. M., and Gaidon, A.
Exploring the limitations of behavior cloning for au-
tonomous driving. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pp. 9329-9338,
2019.

10

Dauner, D., Hallgarten, M., Geiger, A., and Chitta, K. Part-
ing with misconceptions about learning-based vehicle
motion planning. In Conference on Robot Learning, pp.
1268-1281. PMLR, 2023.

Fan, H., Zhu, F,, Liu, C., Zhang, L., Zhuang, L., Li, D., Zhu,
W., Hu, J., Li, H., and Kong, Q. Baidu apollo em motion
planner. arXiv preprint arXiv:1807.08048, 2018.

Hallgarten, M., Zapata, J., Stoll, M., Renz, K., and Zell,
A. Can vehicle motion planning generalize to realistic
long-tail scenarios? In 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp.
5388-5395, 2024.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840-6851, 2020.

Hu, Y., Yang, J., Chen, L., Li, K., Sima, C., Zhu, X., Chai,
S., Du, S., Lin, T., Wang, W., et al. Planning-oriented
autonomous driving. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 17853-17862, 2023.

Huang, Z., Liu, H., and Lv, C. Gameformer: Game-theoretic
modeling and learning of transformer-based interactive
prediction and planning for autonomous driving. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 3903-3913, 2023.

Huang, Z., Karkus, P., Ivanovic, B., Chen, Y., Pavone, M.,
and Lv, C. Dtpp: Differentiable joint conditional pre-
diction and cost evaluation for tree policy planning in
autonomous driving. In 2024 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 6806—6812.
IEEE, 2024.

Janner, M., Du, Y., Tenenbaum, J. B., and Levine, S. Plan-
ning with diffusion for flexible behavior synthesis. arXiv
preprint arXiv:2205.09991, 2022.

Jiang, B., Chen, S., Xu, Q., Liao, B., Chen, J., Zhou, H.,
Zhang, Q., Liu, W., Huang, C., and Wang, X. Vad:
Vectorized scene representation for efficient autonomous
driving. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8340-8350, 2023.

Kahneman, D. Thinking, fast and slow. Farrar, Straus and
Giroux, 2011.

Karnchanachari, N., Geromichalos, D., Tan, K. S., Li, N.,
Eriksen, C., Yaghoubi, S., Mehdipour, N., Bernasconi, G.,
Fong, W. K., Guo, Y, et al. Towards learning-based plan-
ning: The nuplan benchmark for real-world autonomous
driving. arXiv preprint arXiv:2403.04133, 2024.



SAH-Drive: A Scenario-Aware Hybrid Planner for Closed-Loop Vehicle Trajectory Generation

Leonard, T. C. Richard h. thaler, cass r. sunstein, nudge:
Improving decisions about health, wealth, and happiness:
Yale university press, 2008.

Li, C., Yao, L., and Mi, C. Fusion algorithm based on
improved a* and dwa for usv path planning. Journal of
Marine Science and Application, pp. 1-14, 2024.

Liao, B., Chen, S., Yin, H., Jiang, B., Wang, C., Yan, S.,
Zhang, X., Li, X., Zhang, Y., Zhang, Q., et al. Dif-
fusiondrive: Truncated diffusion model for end-to-end
autonomous driving. arXiv preprint arXiv:2411.15139,
2024.

Liu, H., Chen, L., Qiao, Y., Lv, C., and Li, H. Reason-
ing multi-agent behavioral topology for interactive au-
tonomous driving. arXiv preprint arXiv:2409.18031,
2024.

Markram, H., Gerstner, W., and Sjostrom, P. J. A history of
spike-timing-dependent plasticity. Frontiers in synaptic
neuroscience, 3:4,2011.

Mohammad, S. H., Farah, H., and Zgonnikov, A. In the
driver’s mind: modeling the dynamics of human overtak-
ing decisions in interactions with oncoming automated
vehicles. arXiv preprint arXiv:2403.19637, 2024.

Rhinehart, N., McAllister, R., Kitani, K., and Levine, S. Pre-
cog: Prediction conditioned on goals in visual multi-agent
settings. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 2821-2830, 2019.

Sadat, A., Ren, M., Pokrovsky, A., Lin, Y.-C., Yumer, E.,
and Urtasun, R. Jointly learnable behavior and trajectory
planning for self-driving vehicles. In 2019 IEEE/RSJ
international conference on intelligent robots and systems
(IROS), pp. 3949-3956. IEEE, 2019.

Scheel, O., Bergamini, L., Wolczyk, M., Osinski, B., and
Ondruska, P. Urban driver: Learning to drive from real-
world demonstrations using policy gradients. In Confer-
ence on Robot Learning, pp. 718-728. PMLR, 2022.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International conference on
machine learning, pp. 2256-2265. PMLR, 2015.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. arXiv preprint arXiv:2010.02502, 2020.

Sun, Q., Zhang, S., Ma, D., Shi, J., Li, D., Luo, S., Wang, Y.,
Xu, N., Cao, G., and Zhao, H. Large trajectory models are
scalable motion predictors and planners. arXiv preprint
arXiv:2310.19620, 2023.

11

Sun, Q., Wang, H., Zhan, J., Nie, F., Wen, X., Xu, L., Zhan,
K., Jia, P., Lang, X., and Zhao, H. Generalizing motion
planners with mixture of experts for autonomous driving.
arXiv preprint arXiv:2410.15774, 2024.

Tian, X., Gu, J., Li, B., Liu, Y., Wang, Y., Zhao, Z., Zhan,
K., Jia, P,, Lang, X., and Zhao, H. Drivevim: The conver-
gence of autonomous driving and large vision-language
models. arXiv preprint arXiv:2402.12289, 2024.

Treiber, M., Hennecke, A., and Helbing, D. Congested
traffic states in empirical observations and microscopic
simulations. Physical review E, 62(2):1805, 2000.

Wang, D., Kaufeld, M., and Betz, J. Dualad: Dual-layer
planning for reasoning in autonomous driving. arXiv
preprint arXiv:2409.18053, 2024.

Wason, P. C. and Evans, J. S. B. Dual processes in reason-
ing? Cognition, 3(2):141-154, 1974.

Yang, B., Su, H., Gkanatsios, N., Ke, T.-W., Jain, A., Schnei-
der, J., and Fragkiadaki, K. Diffusion-es: Gradient-
free planning with diffusion for autonomous driving
and zero-shot instruction following. arXiv preprint
arXiv:2402.06559, 2024.

Zeng, W., Luo, W., Suo, S., Sadat, A., Yang, B., Casas, S.,
and Urtasun, R. End-to-end interpretable neural motion
planner. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 8660—
8669, 2019.

Zhang, D., Liang, J., Guo, K., Lu, S., Wang, Q., Xiong,
R., Miao, Z., and Wang, Y. Carplanner: Consistent auto-
regressive trajectory planning for large-scale reinforce-
ment learning in autonomous driving. arXiv preprint
arXiv:2502.19908, 2025.

Zheng, Y., Liang, R., Zheng, K., Zheng, J., Mao, L., Li, J.,
Gu, W., Ai, R., Li, S. E., Zhan, X., et al. Diffusion-based
planning for autonomous driving with flexible guidance.
arXiv preprint arXiv:2501.15564, 2025.



SAH-Drive: A Scenario-Aware Hybrid Planner for Closed-Loop Vehicle Trajectory Generation

A. Diffusion Probabilistic Model for Vehicle Trajectory Generation
A.1. Diffusion Probabilistic Model

Diffusion probabilistic models are a class of generative models that capture the data distribution by simulating a forward
diffusion process, which gradually adds noise to the data, and then learning to reverse this process through denoising. This
method, introduced by Sohl-Dickstein et al.(Sohl-Dickstein et al., 2015) and later refined by Ho et al.(Ho et al., 2020),
represents the data generation process as a series of steps that involve the iterative removal of noise from a corrupted version
of the data.

The forward diffusion process adds Gaussian noise according to a variance schedule [3;, where the data at timestep ¢, 4, is
corrupted as:

zy = auw + V1 — age (6)

where € ~ N (0, I) is Gaussian noise, a; = H§:1 ai, a; =1 — f;and B; € (0, 1) is the predefined variance schedule.

The reverse process, denoising, is parameterized by a neural network and can be described by:

N
po() = [ o) [ po(ricalmddra @)
=1

where 7y is the original data and p(7y ) is a Gaussian prior. The pg(7;_1|7;) can be expressed as follows:

Po(Te—1|m¢) = N (Te—1; po(e, 1), Xo (72, 1)) ®)

As long as the forward process follows a normal distribution with a sufficiently small variance, 19 (7,t) and Xg (7%, t) can
be written as follows:

t) = ! t
po(Te,t) = @(Tt—ﬁﬁe(% ) ©
1—ay
So(mi,) = (s t) = = b

By minimizing the variational lower bound on the log-likelihood 6* = arg ming —E.,[log ps(70)], we can train a neural
network eg (¢, t) that predicts the added noise.

Furthermore, the framework can be extended by conditioning the reverse process on additional information c, such as labels
or context. The reverse process becomes:

Do (thl |Tt7 C) = N(thl; Heé (Tt; tv C); E(Ttv t)) (10)
The denoising network (7, t, ¢) predicts the noise conditioned on ¢, and the loss function is:

L(0) := E¢ ryng,enn [ll€ — €o(7e,t,0)||7] (11)

Following previous work(Janner et al., 2022; Yang et al., 2024), in order to use the diffusion model for autonomous vehicle
trajectory generation, we represent the trajectory of the vehicle as follows and use it as the input to the diffusion model.

o X1 ... XT
T=1| % Y1 - Yr (12)
0y 61 ... Op

Where z and y represent the longitudinal and lateral offsets, respectively, and 6 is the heading angle.

12



SAH-Drive: A Scenario-Aware Hybrid Planner for Closed-Loop Vehicle Trajectory Generation

A.2. Closed-loop Trajectory Planning

Closed-loop trajectory planning is a crucial component in the autonomous driving pipeline, ensuring that a vehicle’s path is
dynamically adjusted in real-time based on its current state, environmental conditions, and unforeseen disturbances.

Mathematically, closed-loop trajectory planning can be formulated as an optimization problem, where the objective is
to minimize a cost function while considering constraints such as vehicle dynamics, safety margins, and environmental
obstacles. The trajectory x(t) = [z(t),y(t),0(t)]T represents the state of the vehicle at time t. The control inputs
u(t) = [v(t),6(t)]T include the vehicle’s speed v(t) and steering angle J(¢). The dynamic model governing the vehicle’s
motion, typically described by a bicycle model or more advanced kinematic models, can be written as:

y(0)| = £(x(t),u(t)) (13)

where f is a nonlinear function describing the vehicle’s motion. In this paper, the dynamic model used is the bicycle
model, and the objective function is the PDM score. The PDM Score is a metric used to evaluate driving agent trajectories,
computed by aggregating subscores into a value in the range [0, 1], and is an efficient reimplementation of the nuPlan
closed-loop score metric.

B. The Detailed Design of the Diffusion Proposal Generation Model
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Figure 7: The overall architecture of the diffusion proposal generation model

1. Feature Fusion: This stage integrates inputs to construct a unified feature representation for proposal generation.
First, the historical trajectory and noised future trajectory are encoded into a history embedding and trajectory embedding,
respectively. Let the historical trajectory be represented as X, = [Xp,1,Xn2;--.,Xn71], and the noisy trajectory as
Xn = [Xn1;Xn,2; - - - Xn, 7], Where Xp, 4, Xp, 1 € R? denote the positional information at the ¢-th time step of the respective
trajectories. We then compute the first-order and second-order differences of x;, and x,,, corresponding to velocity and
acceleration, and denote them as vy, v,,, ap, and a,,, respectively. The position, velocity, and acceleration information of
the trajectories are concatenated to form feature vectors F;, = [x, vy, ap] and F,, = [x,,, vy, a,,]. These feature vectors
are then mapped to a fused representation h;, and h,, through a Multi-Layer Perceptron (MLP). Then, h;, and h,, are
concatenated along the temporal dimension and further combined with the timestep embedding along the feature dimension.
The information from the timestep is then integrated through an additional MLP.

2. Self-Attention Fusion: The feature embedding is refined using self-attention to model global spatial and temporal
dependencies. Time position embeddings are added to provide context, and the refined representation passes through eight
layers of self-attention. This process enhances contextual understanding and ensures that both spatial relationships and
temporal coherence are captured effectively.
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3. Decoding and Denoising: The final stage reconstructs the trajectory through iterative refinement. A trajectory decoder
predicts trajectory noise, which is progressively used to correct the noised future trajectory by a denoising module over
multiple diffusion steps. Although the diffusion model can effectively capture physical information, the generated trajectories
do not strictly adhere to physical constraints and serve merely as proposals that require further refinement through simulation
to ensure physical feasibility.

C. Planning Baselines
We reviewed recent outstanding baselines for closed-loop trajectory planning, as outlined below:

1. PDM-Closed (Dauner et al., 2023): a rule-based planner that borrows the concept of model predictive control (MPC),
using forecasting, proposals, simulation, scoring, and selection to get the trajectory with the highest score.

2. Diffusion-ES (Yang et al., 2024): a learning-based planner that combines a diffusion model and evolutionary search,
iteratively evolves to obtain the best trajectory.

3. STR2 (Sun et al., 2024): a scalable, MoE-based autoregressive motion planner that leverages ViT and causal transform-
ers to achieve generalization and scalability on diverse urban driving scenarios.

4. IDM (Treiber et al., 2000): a car-following model designed for safe and realistic traffic flow simulations, emphasizing
accident prevention and maintaining a safe distance to the leading vehicle by adjusting its speed.

5. Urban Driver (Scheel et al., 2022): a policy gradient method leveraging a differentiable simulator and mid-level
representations to efficiently learn and generalize imitative driving policies for complex urban scenarios from large-scale
real-world data.

6. Game Former (Huang et al., 2023): a learning-based planner that employs hierarchical game theory and a transformer-
based architecture to model interactive behaviors between traffic participants.

7. DTPP (Huang et al., 2024): a differentiable joint training framework that integrates ego-conditioned motion prediction
and learnable context-aware cost evaluation within a tree-structured policy planner.

8. HybridLLMPlanner (Hallgarten et al., 2024): a two-stage hybrid planner that combines LLM with PDM-Closed,
where LLM is used for behavior planning and the PDM-Closed is used for motion planning.

9. Diffusion Planner (Zheng et al., 2025): Utilizes a transformer-based diffusion model to produce trajectories without
rule-based heuristics by jointly handling prediction and planning, guided by a classifier for high-quality sampling.

10. PlanTF (Cheng et al., 2024b): An imitation-based planner that focuses on essential ego features and effective data
augmentations to reduce compounding errors and mitigate the imitation gap.

11. Pluto (Cheng et al., 2024a): An imitation learning planner featuring a longitudinal-lateral aware architecture, contrastive
learning, and efficient auxiliary loss.

Table 4: Closed-loop metric of the PDM score. It consists of multiplicative and weighted metrics, where curly brackets
denote discrete value sets, and square brackets represent continuous ranges.

Type Metric Weight Range

Multiplicative No at-fault Collisions (NC) Multiplier {0, 3,1}
Multiplicative Drivable Area Compliance (DAC) Multiplier {0,1}

Multiplicative  Driving Direction Compliance (DDC) Multiplier {0, %, 1}

Multiplicative Making Progress (MP) Multiplier ~ {0,1}
Weighted Time to Collision (TTC) 5 {0,1}
Weighted Ego Progress (EP) 4 [0,1]
Weighted Speed-limit Compliance (SC) 1 [0,1]
Weighted Comfort (C) 1 {0,1}

D. PDM Score

The closed-loop score consists of weighted metrics and multiplier metrics, assessing the safety, compliance, and driving
quality of an autonomous driving system, which is shown in Table 4. The weighted metrics include Time to Collision (TTC),
Ego Progress (EP), Speed-limit Compliance (SC), and Comfort (C), which evaluate collision risk, driving efficiency, speed
regulation, and driving comfort. The multiplier metrics—No at-fault Collisions (NC), Drivable Area Compliance (DAC),
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Driving Direction Compliance (DDC), and Making Progress (MP)—penalize violations such as at-fault collisions, driving
outside allowed areas, wrong-way driving, and failure to maintain reasonable progress. The scoring framework integrates
these factors to comprehensively assess the planner’s performance in autonomous driving tasks.

E. The Impact of Model Parameter Size and Training Dataset Scale

To further validate that the dual planner paradigm reduces data requirements and enables simpler structures, we scaled the
feature dimensions and adjusted the training dataset composition. The results of the impact of model parameter size are
shown in Table 5. The STR2 model has 800M parameters, with the training dataset being the entire nuPlan training dataset.
In comparison, SAH-Drive significantly reduces both model size and training dataset, while performing better in interPlan.
The interPlan score is highest when the feature dimension is 16. Both the larger and smaller feature dimensions lead to a
decrease in the interPlan score.

Table 5: The impact of model parameter size. The original SAH-Drive has a feature dimension of 16, and its model
parameter count is only 0.0355% of STR2.

Feature Dimension Model Parameters Model Occupancy interPlan Score

8 143k 0.55Mb 53

SAH-Drive 16 284k 1.08Mb 64
32 581k 2.22Mb 56

STR2 512 800m / 46

Table 6: The impact of training dataset size. The dataset sizes for nuPlan_mini, Singapore, and Boston are 7.96 GB, 32.56
GB, and 35.54 GB, respectively. The score of SAH-Drive on interPlan decreases as the dataset size increases.

Dataset Description Dataset Size  interPlan Score
nuPlan Mini 7.96Gb 65
nuPlan Mini+Singapore 40.52Gb 61
nuPlan Mini+Singapore+Boston 76.06Gb 59

As shown in Table 6, the planner’s score decreases when trained on a larger dataset. This suggests a potential mismatch
between the model capacity and the complexity of the expanded data, or that the additional data introduces distributional
challenges. This observation highlights that, within the scenario-aware hybrid planner paradigm, the learning-based planner
can be deliberately kept lightweight and trained on targeted long-tail scenarios, leaving the rule-based planner to handle
more regular cases. Nonetheless, designing a more complex learning-based planner using scaling laws and training it on
large-scale datasets remains a promising alternative.

F. Further Validation on the Effectiveness of the SAH Paradigm

Table 7: Experimental results of PDM+PlanTF and PDM+Pluto combined under the SAH paradigm. The highest
score is indicated in bold, and the percentage increase in scores of PlanTF and Pluto after combining PDM under the SAH
paradigm, compared to their original versions, is underlined.

Planner interPlan ~ Vall4 (R) Vall4 (NR) Testl4-Random (R) Testl4-Random (NR) Testl4-Hard (R) Testl4-Hard (NR)
Pluto 48 78 89 78 89 60 70
SAH (PDM-+Pluto) 492%1)  79(1%7) 89 88(13%1) 88 81(35%1) 78(11%71)
PlanTF 33 77 84 80 85 61 69
SAH (PDM+PlanTF)  4021%1) 78(1%1)  86(2%1) 86(8%1) 87(2%1) 80(31%1) 77(12%1)
SAH-Drive (Ours) 64 90 89 87 86 83 78

We use PlanTF and Pluto as learning-based planners and PDM-Closed as the rule-based planner, combining them within the
SAH paradigm for simulation experiments. The results are summarized in Table 7. As shown in the table, both PlanTF
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and Pluto achieve consistent improvements across various nuPlan splits when integrated with PDM-Closed under the SAH
paradigm, outperforming their original versions. The performance gains are particularly notable on Test14-Hard (R), with
improvements of 35% and 31%, respectively.

G. More Qualitative Results

As shown in Figure 8, SAH-Drive successfully plans in construction zones, jaywalker, nudge, and accident scenarios,
whereas PDM-Closed fails in both the construction zone and accident scenarios, as it stops behind the obstructing vehicle
and is unable to change lanes. This demonstrates that SAH-Drive has better generalization ability than PDM-Closed and is
more capable of handling planning in long-tail scenarios. The left side of the figure shows the scenario corresponding to the
visualized simulation results in the middle, while the right side indicates the planner used and whether the planning was
successful.
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Figure 8: More qualitative results of SAH-Drive and PDM-Closed
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