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Abstract

In recent years, transformer-based models have
revolutionized deep learning, particularly in se-
quence modeling. To better understand this phe-
nomenon, there is a growing interest in using
Markov input processes to study transformers.
However, our current understanding in this regard
remains limited with many fundamental questions
about how transformers learn Markov chains still
unanswered. In this paper, we address this by
focusing on first-order Markov chains and single-
layer transformers, providing a comprehensive
characterization of the learning dynamics in this
context. Specifically, we prove that transformer
parameters trained on next-token prediction loss
can either converge to global or local minima,
contingent on the initialization and the Markovian
data properties, and we characterize the precise
conditions under which this occurs. To the best
of our knowledge, this is the first result of its
kind highlighting the role of initialization. We
further demonstrate that our theoretical findings
are corroborated by empirical evidence. Based
on these insights, we provide guidelines for the
initilization of transformer parameters and demon-
strate their effectiveness. Finally, we outline
several open problems in this arena. Code is
available at: https://anonymous.4open.
science/r/Local-to-Global-C70B/.

1. Introduction
Transformers have been at the forefront of recent successes
across various fields including natural language processing

*Equal contribution 1School of Computer and Communi-
cation Sciences, EPFL, Lausanne, Switzerland 2Department
of Electrical and Computer Engineering, UT Austin, Austin,
TX, USA. Correspondence to: Ashok Vardhan Makkuva
<ashok.makkuva@epfl.ch>.

Work presented at TF2M workshop at ICML 2024, Vienna, Austria.
PMLR 235, 2024. Copyright 2024 by the author(s).

(Vaswani et al., 2017). To obtain insights into their
impressive sequential modeling capabilities, a notable
emerging theme among several recent works is to model
the input data as a Markov process.

Using this Markovian perspective, works such as (Nichani
et al., 2024; Edelman et al., 2024; Bietti et al., 2023), among
others, study the in-context learning capabilities of a two-
layer transformer. (Makkuva et al., 2024) analyzes the loss-
landscape for the next-token prediction task, while (Ildiz
et al., 2024) shows an equivalence between the attention
mechanism and Markov models. Although these works
reveal interesting insights about transformers and their ca-
pabilities, many fundamental questions about their learning
dynamics remain unanswered. In particular, a comprehen-
sive characterization of their training dynamics vis-á-vis the
data distributional properties and the role of initialization is
still missing.

To address this gap, in this paper, we focus on the canon-
ical setting of first-order Markov chains and single-layer
transformers and make the following contributions:

• Theoretical analysis: We precisely characterize the
loss landscape and gradient flow dynamics for single-
layer transformers with first-order Markov chains
(Secs. 3 and 4). We demonstrate that transformer pa-
rameters trained on next-token prediction loss can con-
verge to global or local minima, depending on the
initialization and the Markovian data properties, and
determine the exact conditions under which this occurs
(Thms. 2, 3, and 8). To the best of our knowledge, this
is the first result of its kind.

• Insights into initialization: Our theoretical analysis
underscores the crucial role of initialization in trans-
former parameter training. Specifically, we demon-
strate how the standard Gaussian initialization scheme
can lead the convergence to local or global minima
depending on the Markovian data properties (Thms. 2
and 8, Figs. 1 and 2).

• Guidelines: Based on these insights, we provide practi-
cal guidelines for parameter initialization, corroborated
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by empirical evidence, demonstrating their effective-
ness (§ A.3.2).

2. Problem setting
We succinctly define the problem setting for analysis of
single-layer transformers with Markovian data (§ A).

Input data. We assume that the input word sequence
{xn}Nn=1 ∼ (π,P ) is a first-order time-homogenous
Markov chain with binary state space {0, 1} and a
fixed kernel P = [1 − p, p; q, 1 − q], where p =
P 01 = P (xn+1 = 1 | xn = 0) and q = P 10 =
P (xn+1 = 0 | xn = 1) denote the switching probabilities
from the states 0 and 1 respectively. We call p+q the switch-
ing factor. π ≜ (π0, π1) = (q, p)/(p+ q) is the stationary
distribution satisfying π = πP .

Transformer architecture. We consider a single-layer
transformer with a single-head attention and ReLU non-
linearity, which for an input sequence {xn}Nn=1, performs
the following mathematical operations at each n ∈ [N ]:

xn = xn e+ pn ∈ Rd, (Embedding)

yn = xn +
∑
i∈[n]

attn,i︸ ︷︷ ︸
∈(0,1)

·W V xi ∈ Rd, (Attention)

zn = yn +W 2 ReLU(W 1 yn) ∈ Rd, (FF)

logitn = ⟨a, zn⟩+ b ∈ R, (Linear)

fθ(x
n
1 ) ≜ Pθ (xn+1 = 1 | xn

1 ) = σ(logitn). (Prediction)

Here θ ≜ (e, {pn}Nn=1, . . . ,W 1,W 2, b,a) ∈ RD denotes
the full list of the transformer parameters (§ B).

Loss and training. The transformer parameters θ are
trained using gradient-based methods to minimize the cross-
entropy loss on the next-token prediction, L, given by

L(θ) ≜ − 1

N

∑
n∈[N ]

Exn+1
1

[xn+1 · log fθ(xn
1 )

+ (1− xn+1) · log(1− fθ(x
n
1 ))].

(1)

Loss landscape. A key surprising observation in (Makkuva
et al., 2024) is that the loss function L(·) admits both global
and local minima depending on the switching factor p+q of
the Markovian data, and the weight-tying of the embedding
and linear weights (e = a) of the transformer. In view of
these results, we focus on the weight-tying scenario and
hence let e = a to be a single parameter in Rd. Thus, θ =
(e = a, {pn}Nn=1, . . . ,W 1,W 2, b). We interchangeably
refer to θ as both the transformer and the set of parameters.

Our objective. While the aforementioned results detail the
static landscape of the loss, they do not characterize the

learning dynamics on the loss surface and the effect of ini-
tialization, which plays a central role in training machine
learning models (Arora et al., 2019). In view of these short-
comings, the main objective of this paper is to address the
following question:

(Q.1): Can we explain how the initialization and
learning dynamics affect the convergence of the
transformer parameters to the local or global op-
tima?

3. Canonical low-rank parameterization
Motivation. Given the complexity of the transformer archi-
tecture and the non-convex loss function, it is challenging
to analyze the learning dynamics directly (Edelman et al.,
2024). To tackle this, we capitalize on the following empiri-
cal observation (§ A.3.1) which is the motivating idea behind
our approach: when trained by gradient-based methods, the
weight matrices (W V , . . . ,W 1,W 2) at the optima θ⋆ and
θmin exhibit rank-one structure, whose eigenvector is the
same direction in which the both the token embedding e
and the positional embeddings pn are all aligned in. Inter-
estingly, such low-rank solutions can also be shown to be
theoretically optimal (see § C). While these observations
illustrate the implicit bias towards low-rank solutions at the
final convergence, a natural question arises: if we initial-
ize with low-rank parameters, will they remain low-rank
during training? In § A.3.1, we affirmatively address this
based on a thorough empirical evaluation for single-layer
transformers and inspired by these empirical phenomena,
without loss of generality, we restrict our attention to these
low-rank manifolds to characterize the learning dynamics.

Parameterization. More specifically, we consider a special
low-rank parameterization that is empirically observed and
capitalize on it to address (Q.1). Interestingly, along this
low-rank manifold, it suffices to consider a reduced set of
parameters θ ∈ R2 or θ ∈ R3 given by:

θ = (e, w) ∈ R2, or θ = (e, w, a) ∈ R3. (2)

Here e denotes the embedding scalar, w the weight, and a the
attention parameter respectively. These parameters distill
the essential role of the embedding vectors (e, {pn}) in the
Embedding layer, the weight matrices (W 1,W 2) in the FF
layer, and the attention matrices WK,Q,V in the Attention
layer respectively. We refer to § A.1 for a more detailed
description. For the ease of exposition, here we let a = 0
and analyze the learning dynamics for θ = (e, w) ∈ R2 and
defer the general case θ ∈ R3 to § A.2.

Using this parameterization θ = (e, w) in the transformer
architecture (Sec. 2) and the equivalence between the
cross-entropy loss and the logistic loss ℓlog(z) = log(1 +
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Figure 1: Gradient flow dynamics and initialization effect for single-layer transformers. (p, q) are Markov switching proba-
bilities, and (e, w) are the embedding and weight parameters (Sec. 2). (a), (c): The flow is aligned along energy contour lines,
converging to local or global optima. (b), (d): I⋆ is the basin of convergence for global minima, Imin for the local minima, and
yellow asymptotes for the saddle point. Notice the contrasting behavior for Gaussian initialization around origin for p+q ≶ 1.

exp(−z)), z ∈ R, the loss function in Eq. (1) can be com-
pactly written as (Lemma 6):

L(θ) =
1

N

∑
n∈[N ]

E [ℓlog ((2xn+1 − 1) · logitn(θ))] ,

logitn(θ) =

(
e2(1 + 2w|w|)xn + b⋆ −

e2

2

)
,

(3)

where b⋆(θ) = argminb∈R L(θ, b) is the optimal bias mini-
mizing the loss for each θ and has a closed form expression
(Lemma 5). Empirically, this roughly translates to running
the gradient-descent for the bias for more steps at each θ.
In practice, one additional step is usually sufficient (§ A.3).

3.1. Loss landscape with canonical parameterization

With the new set of parameters θ = (e, w), we are now
ready to analyze the loss L(·) in Eq. (3). First we recall the
definition of a critical point (Lee et al., 2016). A point θ⋆ is
a critical point for L if ∇L(θ⋆) = 0. Similarly, the standard
notions of local & global minima and saddle points (§ A.1).
Equipped with these definitions, Thm. 1 below characterizes
the loss landscape in terms of these local and global optima.

Theorem 1 (All critical points). Let the input sequence
be {xn}Nn=1 ∼ (π,P ), the transformer parameters θ =
(e, w), and the next-token prediction loss L be as in Eq. (3).
Then for any (p, q) ∈ (0, 1)2 with p+ q ̸= 1 and N ∈ N,

(i) Θ⋆(p, q), the set of all global minima is given by

{(e, w) : e2(1 + 2w|w|) = log(1− p)(1− q)/pq },

(ii) Θmin(p, q), the set of all local minima is given by

{(e, w) : e = 0, (p+ q − 1)(1 + 2w|w|) > 0},

(iii) Θmax(p, q), the set of all local maxima is given by

{(e, w) : e = 0, (p+ q − 1)(1 + 2w|w|) < 0},

(iv) and Θsad(p, q), the set of all saddle points is

{(0,−1/
√
2)}.

Thus the set of all critical points is

{θ : ∇L(θ) = 0} = Θ⋆ ∪Θmin ∪Θmax ∪Θsad.

In addition, for any θ⋆ ∈ Θ⋆,θmin ∈ Θmin, θmax ∈ Θmax,
and θsad ∈ Θsad, the loss values satisfy

H(xn+1 | xn) = L(θ⋆) < L(θmin) = L(θmax)

= L(θsad) = H(xn+1).

Proof. We refer to § F.

Fig. 1 illustrates the loci of these critical points for
p + q ≶ 1. Motivated by empirical observations, while
(Makkuva et al., 2024) characterizes local minima for
p + q > 1, it is interesting to note that our Thm. 1 shows
that local minima also exist for p + q < 1 (Fig. 1a). So
why did they observe the minima only for the former? The
answer to this, and more broadly to question (Q.1) lies in
the learning dynamics for θ, influenced by initialization,
which we study in the next section.

4. Learning dynamics
Capitalizing on the loss landscape in Thm. 1, we now focus
on the convergence of gradient-based algorithms to these

3



Local to Global: Learning Dynamics and Effect of Initialization for Transformers

(a) p + q < 1: Gradient flow (b) Energy manifold and minima (c) p + q > 1: Gradient flow (d) Energy manifold and minima

Figure 2: Gradient flow dynamics for the canonical parameters θ = (e, w, a) ∈ R3 with the attention scalar a (§ A.2).
Notice the contrasting behavior for Gaussian initialization around origin for p + q smaller and greater than one. For an
enhanced view of the flow near the origin, please refer to Fig. 5.

critical points. Specifically, we focus on the gradient-flow
of the parameters, (θt)t≥0, governed by

dθt

dt
= −∇L(θt), θt = (et, wt) ∈ R2, t ≥ 0, (GF)

where θt ≜ θ(t) is a continuously differentiable curve in R2

starting with a randomly initialized θ0. To characterize these
trajectories, we define an energy function E(·, ·), which
plays a crucial in the GF dynamics. It is defined as

E(e, w) ≜ e2 − (w2 + sign(w) · log |w|), (4)

for all (e, w) ∈ R2 \ e-axis, where e-axis ≜ {(e, w = 0)}.
Figs. 1a and 1c illustrate these energy contour lines. The
utility of the energy function is captured below.

Lemma 1 (Constant energy along the flow). For any
(p, q) ∈ (0, 1)2 and initialization θ0 = (e0, w0), let (θt)t≥0

be the corresponding GF trajectory starting from θ0. If
θ0 ∈ R2 \ e-axis, the energy stays constant along the tra-
jectory, i.e. for all t ≥ 0,

E(θt) = e2t − (w2
t + sign(wt) · log |wt|) = E(θ0). (5)

On the other hand, if θ0 ∈ e-axis, we have θt ∈ e-axis for
all t ≥ 0 with wt = w0 = 0.

We are now ready to present the main results of our paper.
Specifically, Thm. 2 and Thm. 8, for p+ q ≷ 1 respectively,
highlight the role of the switching factor and the parameter
initialization, θ0, in deciding whether the GF converges to
local or global optima. First we define the energy Esad ≜
E(e = 0, w = −1/

√
2) = −(1 + log 2)/2.

Theorem 2 (GF dynamics for p + q > 1). Let (p, q) ∈
(0, 1)2 with p + q > 1, the input sequence be {xn}Nn=1 ∼
(π,P ), and (θt)t≥0 be the corresponding GF trajectory
starting from θ0. Then for all initializations θ0 ∈ R2, the

gradient flow converges to a critical point of the loss L. That
is, there exists a θlim ∈ R2 such that limt→∞ θt = θlim

and ∇L(θlim) = 0. In particular, θlim is a

(i) a local minimum if

θ0 ∈ Imin ≜ {(e, w) : w ∈ (−1/
√
2, 0),

e ∈ (−g(w), g(w)), g(w) =
√

w2 − log(−w) + Esad}
∪ {(e, w) : w ≥ 0} ,

(ii) a saddle point if θ0 ∈ Isad ≜ {(e, w) : w ∈
[−1/

√
2, 0), e = ±

√
w2 − log(−w) + Esad},

(iii) a local maximum if θ0 ∈ Imax ≜ {(e, w) : e = 0, w <
−1/

√
2},

(iv) and a global minimum if θ0 ∈ I⋆ ≜ R2 \
(Imin ∪ Isad ∪ Imax).

Consequently, when p + q > 1, if we use the standard
initialization θ0 ∼ N (0, σ2I2) with σ2 ≪ 1/

√
2, θlim will

be a local minimum with high probability. If p + q < 1,
under the same initialization scheme, θlim will be a global
minimum with high probability.

Key insights and conclusion. Together, Thms. 2 and 8 ad-
dress our motivating question (Q.1) by fully characterizing
the GF dynamics in terms of initialization and input data
properties. Specifically, our results explain the phenomenon
in (Makkuva et al., 2024) wherein they observe local min-
ima for p + q > 1 more often than for p + q < 1, owing
to standard Gaussian initialization around origin (Figs. 1b
and 1d). However, in practice, we often do not know the
input switching factor, raising a natural questions: is there a
data-agnostic initialization that always converges to global
minima? Indeed, as can be seen from Figs. 1b and 1d, there
is a common region of initialization, Icommon ≜ {(e, w) :
w < 0, |e| >

√
w2 − log(−w) + Esad}, that leads to the
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global minima convergence irrespective of the switching
(§ A.3.2). We believe our findings open interesting avenues
of future research for GF analysis with deeper architectures
and higher order Markov chains.
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A. Supporting results to the manuscript
We provide additional theoretical and empirical details for our main results in the manuscript. First we define the notation.

Notation. We denote scalars by italic lower case letters like x, y and Euclidean vectors and matrices in bold: x,y,M , etc.
∥ · ∥ denotes the ℓ2-norm for Euclidean vectors and Frobenius norm for matrices. [k] ≜ {1, . . . , k}, and for a sequence
(xn)n≥1, define xm

k ≜ (xk, . . . , xm) if k ≥ 1 and (x1, . . . , xm) otherwise. For z ∈ R, the sigmoid σ(z) ≜ 1/(1 + e−z),
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ReLU(z) ≜ max(0, z) and the convex logistic loss ℓlog(z) ≜ log (1 + exp(−z)) ∈ (0,∞). For events A and B, P (A)
denotes the probability of A whereas P (A | B) the conditional probability. Let (x, y) be a pair of discrete random variables
on [k] × [k] with the probability mass function (pmf) of x being px = (p1, . . . , pk) ∈ [0, 1]k. Then its Shannon entropy
is defined as H(x) = H(px) ≜ −

∑
i∈[k] pi log pi. The conditional entropy is defined to be H(y|x) ≜ H(x, y)−H(x).

The entropy rate of a stochastic process (xn)n≥1 is defined as limn→∞ H(xn
1 )/n. We simply write x = y to mean

P (x = y) = 1. We also use the shorthand P (y = j | x) for P (y = j | x = x) as a function of the random variable x. For
p ∈ (0, 1), the binary entropy function h(·) is defined as h(p) ≜ −p log p− (1− p) log(1− p).

A.1. Canonical low-rank parameterization

Recall from Sec. 3 that the reduced set of parameters θ ∈ R2 or θ ∈ R3 is given by:

θ = (e, w) ∈ R2, or θ = (e, w, a) ∈ R3. (Reparameterization)

Here e denotes the embedding scalar, w the weight, and a the attention parameter respectively. Now we describe the
parameterization of the transformer vis-á-vis these scalars and refer to App. D for a more detailed descripton. Let the input
{xn}Nn=1 be a first-order Markov chain as in Sec. 2 and let n ∈ [N ] be fixed. Then we have

Embedding : e = e ·α, pn =
(
−e

2

)
·α → xn = e

(
xn − 1

2

)
α, e ∈ R,α ∈ {±1}d/

√
d,

Attention : W V = αv⊤ → yn = e

(
xn − 1

2

)
α+ ⟨v,α⟩︸ ︷︷ ︸

≜a≈0

∑
i∈[n]

attn,i · e
(
xi −

1

2

)α,v ∈ Rd.

The scalar a is the product of ⟨v,α⟩ and the scaling in the attention weights attn,i, which is empirically close to zero for
first-order Markov chains. Hence for the ease of exposition, we first omit it by letting a = 0 and analyze the general case
when a ∈ R in App. A.2. We continue:

FF : W 1 =
|w|√
d
1α⊤,W 2 =

w√
d
α1⊤ → zn = e

(
xn − 1

2

)
(1 + 4w|w|xn)α, w ∈ R.

1 is the all-one vector in Rr with r = 4d typically in practice. Substituting this zn in the linear layer with e = a and bias
b ∈ R, the logits and the probabilities simplify to:

Linear : logitn(e, w, b) = e2(1 + 2w|w|)xn + b− e2

2
∈ R, (6)

Prediction : f(θ,b)(x
n
1 ) = σ (logitn) ∈ (0, 1), θ ≜ (e, w). (7)

Finally, using the equivalence between the cross-entropy loss and the logistic loss ℓlog(·), the loss function in Eq. (1) can be
compactly written as (Lemma 6):

L(θ, b) =
1

N

∑
n∈[N ]

E[ℓlog ((2xn+1 − 1) · logitn(θ))], θ ∈ R2, b ∈ R. (8)

Due to convexity of ℓlog(·), it follows that L(θ, b) is convex in the bias b for any fixed θ, whose minimizer, b⋆(θ) =
argminb∈R L(θ, b), has a closed form expression (Lemma 5). Hence, without loss of generality, we consider the loss with
this optimal bias b⋆:

L(θ) ≜ L(θ, b⋆) =
1

N

∑
n∈[N ]

E
[
ℓlog

(
(2xn+1 − 1)

(
e2(1 + 2w|w|)xn + b⋆ −

e2

2

))]
. (9)

Empirically, this roughly translates to running the gradient-based algorithm for the bias for more steps at each θ. In practice,
one additional step is usually sufficient (see App. A.3). Eq. (9) resembles the standard logistic regression loss (Soudry et al.,
2018) whose binary labels are 2xn+1 − 1 ∈ {±1} and the logits given by e2(1 + 2w|w|)xn + b⋆ − e2/2, for each n ∈ [N ].
The key difference here is that the logits are a non-linear function of the parameters (e, w) unlike in the standard setting.
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Definitions of local and global optima. For the sake of completeness, we first recall the definition of a critical point (Lee
et al., 2016). A point θ⋆ ∈ R2 is a critical or a stationary point for L if ∇L(θ⋆) = 0. A critical point θ⋆ is a local minimum
if there exists a neighborhood U around θ⋆ such that L(θ⋆) ≤ L(θ) for all θ ∈ U , and a local maximum if L(θ⋆) ≥ L(θ).
If the neighborhood U is whole of R2, it is a global minimum/maximum. On the other hand, a critical point is a saddle point
if for all neighborhoods U around θ⋆, there are θ1,θ2 ∈ U such that L(θ1) ≤ L(θ⋆) ≤ L(θ2).

A.2. Gradient flow with attention

In this section, the consider the attention scalar a ∈ R (Sec. 3) and study the gradient flow dynamics with the parameters
θ = (e, w, a) ∈ R3. The parameter a captures the overall scaling from the value, key, and query components in the
attention layer. Recall that the soft-max attention weights are given by attn,i ∝ exp(⟨qn,ki⟩/

√
d), where qn = WQxn

and ki = WKxi are the query and key embeddings for any position i ∈ [n]. Using the low-rank structure of the query and
key matrices, satisfying W⊤

QWK = (q2d)αα⊤ and the value matrix W V = αv⊤ for some q ∈ R and v ∈ Rd (App. H),
and assuming linear attention attn,i ∝ ⟨qn,ki⟩/

√
d, we define a single scalar a ≜ ⟨v,α⟩q2d5/2/4 that captures the essence

of the attention layer. We note that linear attention weights are a standard assumption in the transformer analysis literature
(Ahn et al., 2023; von Oswald et al., 2023). Using this parameterization, similar to the steps in Sec. 3, we obtain the final
loss function to be

L(θ) = E
[
ℓlog

(
(2Y − 1)

(
e2
[(

X − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b⋆

))]
,

where θ = (e, w, a) and b⋆ is the corresponding optimal bias. L recovers the loss in Eq. (9) when a = 0. In Thm. 10, we
determine the set of all critical points of L in terms of global minima and local optima in closed-form expressions, analogous
to Thm. 1. Capitalizing on this characterization, we now shift our focus to the analysis of the gradient flow in R3. To this
end, let (θt)t≥0 be a C1 (continuously differentiable) curve in R3 governed by

dθt

dt
= −∇L(θt), θt = (et, wt, at) ∈ R3, t ≥ 0, (GF-attn)

starting with a randomly initalized θ0. We define the energy function E(·, ·, ·) as

E(e, w, a) ≜ e2 − (w2 + sign(w) · log |w|)− 2a2,

∀(e, w, a) ∈ R3 \ ea-plane,
(10)

where ea-plane ≜ {(e, w = 0, a)}. It is similar to its counterpart in Eq. (4), except for the 2a2 term. Fig. 2 visualizes this
energy surface and the set of critical points, which reveal close resemblance to that of Fig. 1 in R2. Capitalizing on the
energy function, we now present our main result with the attention.

Theorem 3 (GF dynamics with attention). For any (p, q) ∈ (0, 1)2 and initialization θ0 ∈ R3, let (θt)t≥0 be the
corresponding GF-attn trajectory starting from it. Then for all θ0 ∈ R3, the gradient flow converges to a critical point of
the loss L. That is, there exists a θlim ∈ R3 such that limt→∞ θt = θlim and ∇L(θlim) = 0. Further,

(i) if θ0 ∈ R3 \ ea-plane, we have E(θlim) = E(θt) = E(θ0) for all t ≥ 0. Hence θlim is at the intersection of the energy
contour line E = E0 with that of the set of critical points.

(ii) if θ0 ∈ ea-plane, we have θt ∈ ea-plane for all t ≥ 0 and hence θlim ∈ ea-plane.

Thm. 3 shows that the learning dynamics with attention closely resemble those without it (Thms. 2 and 8). While the set of
all critical points of L, and thus the limit points of the flow, has a closed-form expression (Thm. 10), deriving the same
for the initialization sets Imin and I⋆ to determine the basin of convergence is technically challenging (see discussion in
App. H). Nonetheless, empirical observations with the standard Gaussian initialization around origin reveal a similar picture
as in the two-dimensional setting for both the p+ q < 1 and p+ q > 1 cases (Fig. 2). We believe it’s an interesting direction
of future research to theoretically characterize this, analogous to Thms. 2 and 8. We refer to App. H for additional details
and proofs.

A.3. Empirical results

We empirically validate the low-rank assumption behind our canonical parameterization and investigate our findings about
local optima and initialization in the context of the full model.
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A.3.1. LOW-RANK PARAMETERS
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Figure 3: Evolution of parameters W 1 and W V across iterations, starting from a standard gaussian initialization. At
convergence, all the parameter matrices are approximately rank-one.

Low-rank at convergence. We let the input Markov sequence to be {xn}Nn=1 ∼ (π(p, q),P (p, q)) for p = 0.2, q =
0.3, N = 1024 and consider the single-layer transformer as defined in Sec. 2 with embedding dimension d = 8. First, we
initialize the parameters θ = (e = a, {pn}Nn=1, . . . ,W 1,W 2, b) using the standard Gaussian initialization with standard
deviation 0.001 (Pagliardini, 2023) and train them using SGD on a batch size B = 16 and for t = 800 iterations. In
Fig. 3, we track the value matrix W V ∈ Rd×d and the weight matrix W 1 ∈ R4d×d across iterations. We observe that at
convergence both W V and W 1 are approximately rank-one with one of their components being same as the embedding
vector (the row in W V and column in W 1). Further, the embedding vector has all entries in {±1} up to a scaling. We
observe the same conclusion for other weight matrices WK,Q,W 2 and for all values of (p, q) ∈ (0, 1)2.
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Figure 4: Comparison between the average loss curve for the standard gaussian initialization around 0 and our initialization,
for p = 0.5 and q = 0.8. Starting from the standard initialization, the model converges to a local minimum corresponding to
the unigram model. With our initialization, it converges to the global minimum corresponding to the bigram model.

Low-rank initialization remains low-rank during training. Inpsired by the low-rank structure obtained above, we
randomly initialize the weight parameters as rank-one matrices and the embeddings on the hypercube {±1}d. After the
initialization, we train them without any low-rank restrictions, and track them during the course of training. Interestingly,
here we observe that the parameters still stay low-rank as illustrated in Fig. 6. A similar conclusion holds for the remaining
weight matrices. Together these results provide the empirical basis for our canonical parameterization analysis in Sec. 3.

A.3.2. EFFECT OF INITIALIZATION: BROADER IMPLICATIONS

Now we investigate the findings of Sec. 3 and Sec. 4, derived for the canonical low-rank model, more broadly in the
context of the general single-layer transformer in Sec. 2. In particular, as shown in Thm. 2 and Fig. 1d for p+ q > 1, any
small initialization around zero would lead a local minima convergence. To test this hypothesis, we compare the standard
initialization where all the transformer parameters θ = (e = a, {pn}Nn=1, . . . ,W 1,W 2, b) are randomly chosen around
zero with small variance σ = 0.02, with a new initialization based on our results, where we initialize the embedding
vector e such that all cordinates are equal to e = 0.5, W 1 to be constant with the scalar w1 = 1 and W 2 constant with
w2 = −1 (corresponding to I⋆ in Fig. 1d). We indeed observe that the final test loss matches the unigram loss for the
standard initialization, while it converges to the optimal bigram loss for our initialization (see Fig. 4). Together these results
indicate that though our analysis used canonical parameterization, the corresponding insights are more general and apply
more broadly to the general architecture. In a similar spirit, analysis of initialization effects for deeper architectures is an
interesting avenue of future research.

A.4. Related works

The recent success of transformer models in deep learning has sparked significant interest and active research in
understanding them (Weiss et al., 2021; Oymak et al., 2023; Fu et al., 2023; Pérez et al., 2021; Elhage et al., 2021; Wei
et al., 2022; Yun et al., 2020; Tarzanagh et al., 2023). In relation to our paper, they can be broadly classified into two
topics: (i) In-context learning (ICL): ICL refers to the ability of transformers learn and reason from information present
in their context (Chen et al., 2024; Dong et al., 2023; Akyürek et al., 2023; Von Oswald et al., 2023; Xie et al., 2021; Bai
et al., 2023; Li et al., 2023a; Garg et al., 2022). Along this thread, the works most relevant to ours are (Bietti et al., 2023;
Edelman et al., 2024; Nichani et al., 2024), which use Markovian input data to understand the ICL mechanism. (Bietti
et al., 2023; Edelman et al., 2024) heuristically show how gradient-based updates can learn an induction-head mechanism
using a simplified transformer architecture with frozen encodings, query matrices and linear activations. On the other hand,
we consider the transformer in full generality including ReLU nonlinearity, capitalizng on inherent low-rank parameters,
to provide a full characterization of the learning dynamics. (Nichani et al., 2024) demonstrates how two-layer transformers
with GD learn induction head mechanism when the input has a causal tree dependency, such as in Markov chains. In
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this work, we focus on the GF dynamics for single-layer transformers and show how they can also converge to local
optima, further highlighting the role of initialization. (ii) Training dynamics: On the other hand, numerous works have
investigated the training dynamics of transformers. For instance, (Chandra et al., 2024) examines the gradient flow in a
simplified single-layer transformer, while (Tian et al., 2023) studies the process by which self-attention integrates input
tokens, assuming the decoder learns faster than the attention layer. Unlike these settings, our focus is on understanding the
training dynamics of the full transformer model without any simplifications. Other related works include (Snell et al., 2021),
which analyzes gradient dynamics in LSTM Seq2seq models, (Jelassi et al., 2022), which shows how Vision Transformers
learn spatial structures, and (Li et al., 2023b), which demonstrates that a single-layer transformer can learn a constrained
topic model. A closely related work is (Ildiz et al., 2024), which shows that self-attention has a Markovian structure, but
our focus is on self-attention’s capability in modeling Markov chains and the associated training dynamics.
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B. Single-layer transformer: architecture and results
We first describe the transformer architecture from Sec. 2:

xn = xn e+ pn ∈ Rd, (Embedding)

yn = xn +
∑
i∈[n]

attn,i ·W V xi ∈ Rd, (Attention)

zn = yn +W 2 ReLU(W 1 yn) ∈ Rd, (Feed-forward)

logitn = ⟨a, zn⟩+ b ∈ R, (Linear)

fθ(x
n
1 ) ≜ Pθ (xn+1 = 1 | xn

1 ) = σ(logitn)︸ ︷︷ ︸
∈[0,1]

. (Prediction)

Here θ ≜ (e, {pn}Nn=1, . . . ,W 1,W 2, b,a) ∈ RD denotes the full list of the transformer parameters from the embedding
layer till the linear layer. In the attention layer, the weight assigned to each value, attn,i, is computed by a compatibility
function of the query vector qn ≜ WQ xn and the corresponding key vectors ki ≜ WK xi for all i ∈ [n]. More precisely,
attn,i ≜ softmax((⟨qn,k1⟩, . . . , ⟨qn,kn⟩)/

√
d)i. WK,Q,V ∈ Rd×d are the respective key, query, and value matrices. For

multi-headed attention, the same operation is performed on multiple parallel heads, whose outputs are additively combined.

Finally, the transformer parameters θ ≜ (e, {pn}Nn=1, . . . , b,a) are trained via the cross-entropy loss on the next-token
prediction:

L(θ) ≜ − 1

N

∑
n∈[N ]

Exn+1
1

[xn+1 · log fθ(xn
1 ) + (1− xn+1) · log(1− fθ(x

n
1 ))]. (11)

In this paper, we focus on the weight-tied scenario where e = a. Hence we let them be a single parameter with
θ = (e = a, {pn}Nn=1, . . . , b) ∈ RD, where D is the total parameter dimensionality.

B.1. Loss landscape results

Now we recall the theoretical results from (Makkuva et al., 2024) about the loss landscape of L in the form of global and
local minima.

Theorem 4 (Global minimum). Let the input sequence be {xn}Nn=1 ∼ (π(p, q),P (p, q)) for some fixed (p, q) ∈ (0, 1)2.
Then for all (p, q), there exists a θ⋆ ∈ RD with an explicit construction such that it is a global minimum for the population
loss L(·) in Eq. (11), i.e.

(i) L(θ) ≥ L(θ⋆) for all θ ∈ RD.

Further, θ⋆ satisfies:

(ii) Pθ⋆
(xn+1 = 1 | xn

1 ) = P (xn+1 = 1 | xn), the Markov kernel.
(iii) L(θ⋆) = H(xn+1|xn), the entropy rate of the Markov chain.
(iv) ∇L(θ⋆) = 0, i.e. θ⋆ is a stationary point.

Let L⋆ ≜ L(θ⋆) be the global minimal loss from Thm. 4. Now we recall the result on the bad local minimum.

Theorem 5 (Bad local minimum). Let the input sequence be {xn}Nn=1 ∼ (π(p, q),P (p, q)) for some fixed (p, q) ∈ (0, 1)2.
If p+ q > 1, there exists an explicit θmin ∈ RD such that it is a bad local minimum for the loss L(·), i.e.

(i) there exists a neighborhood B(θmin, r) with r > 0 such that L(θ) ≥ L(θmin) for all θ ∈ B(θmin, r), with L(θmin) >
L⋆.

Further, θmin satisfies:

(ii) Pθπ (xn+1 = 1 | xn
1 ) = P (xn+1 = 1) = π1, the marginal distribution.

(iii) L(θmin) = H(xn+1) = H(π), the entropy of the marginal.
(iv) ∇L(θmin) = 0, i.e. θmin is a stationary point.

14
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C. Low-rank structure of the optima
Here we recall the low-rank structure for the global minima found by SGD consistently across multiple runs when p+ q < 1
(?)Appendix C.2]makkuva2024attention. In particular, it is observed that the token and positional encodings point in the
same direction α, which is a low-rank factor for the weight matrices in the attention and the feedforward layers, which in
turn are all rank-one. Mathematically,

Embedding. The embedding vector e obeys

e = e ·α

for some e > 0 and α ∈ {±1}d. Further, the positional embeddings pn are constant across positions n pointing in the same
direction albeit with a negative scalar, i.e.

pn = −p ·α

for p > 0 and p ≈ e
2 such that e > p . Thus from Embedding layer,

xn = (exn − p) ·α, (12)

which ensures that the respective embeddings for the bit xn = 0 and xn = 1 are xn = −p ·α and xn = (e− p) ·α, which
are roughly anti-podal.

Attention. Recall from the Attention layer that the output yn is given by yn = xn +WO

∑
i∈[n] attn,i ·W V xi, where

the attention weights attn,i are computed according to attn,i = exp
(
⟨qn,ki⟩/

√
d
)
/
(∑

j∈[n] exp
(
⟨qn,kj⟩/

√
d
))

with
qn = WQ xn and ki = WK xi. Here it is observed that the matrix products are all rank-one with α being a factor, i.e.

WOW V = α · v⊤ ∈ Rd×d, for somev ∈ Rd,

W⊤
QWK = (q2d)α ·α⊤ ∈ Rd×d, for some q ∈ R.

Hence,

W V xi = ⟨v,α⟩(exi − p)α,

and

⟨qn,ki⟩√
d

=
1√
d
· x⊤

nW
⊤
QWKxn =

q2d√
d
· (x⊤

nα)(x⊤
i α)

(∥α∥2=d)
=

q2d3√
d

· (exn − p)(exi − p)

= q2d5/2 · (exn − p)(exi − p).

Thus,

yn = xn +
∑
i∈[n]

attn,i ·WOW V xi

= (exi − p)α+
∑
i∈[n]

attn,i · ⟨v,α⟩(exi − p)α

=

(exn − p) + ⟨v,α⟩
∑
i∈[n]

exp
(
q2d5/2 (exn − p)(exi − p)

)∑
j∈[n] exp

(
q2d5/2 (exn − p)(exj − p)

) · (exi − p)

α. (13)

It is further noticed that ⟨v,α⟩ ≈ 0 and hence yn = (exn − p)α = xn.

Feed-forward. For the Feed-forward layer, both the matrices W 1 ∈ Rr×d and W 2 ∈ Rd×r exhibit rank-one structure with
α being one of the factors,

W 1 = w ·w ·α⊤, for somew ∈ {±1}r, w > 0, (14)

W 2 = W⊤
1 . (15)

15
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Thus W 1yn = dw(exn − p)w. Since −p < 0 and e − p > 0, corresponding to xn = 0 and xn = 1 respectively, we
obtain ReLU(W 1yn) = dw ((1− xn)p · ReLU(−w) + xn(e− p) · ReLU(w)). Denoting the number of ones in w as β,
i.e. β =

∑r
i=1 1(wi = 1), we further simplify:

W 2ReLU(W 1yn) = W⊤
1 ReLU(W 1yn)

= w2d ((1− xn)p · ⟨w,ReLU(−w)⟩+ xn(e− p) · ⟨w,ReLU(w)⟩)α
= w2d ((1− xn)p · (β − r) + xn(e− p) · β)α
= w2d(exn − p) ((2β − r)xn + r − β)α.

Hence

zn = yn +W 2ReLU(W 1yn) = (exn − p)
(
1 + w2d ((2β − r)xn + r − β)

)
α. (16)

Linear. Using the fact that e = a = e ·α due to weight-tying, we obtain from Linear layer that

logitn = ⟨e, zn⟩+ b = ed(exn − p)
(
1 + w2d ((2β − r)xn + r − β)

)
+ b. (17)

Prediction. We finally obtain that the prediction probability

fθ(x
n
1 ) = σ(logitn) = xn · σ

(
ed(e− p)

(
1 + βw2d

)
+ b
)
+ (1− xn) · σ

(
−edp

(
1 + (r − β)w2d

)
+ b
)
.

Thus we see that the prediction probability and hence the loss function L(·) in Eq. (11) is influenced only by the scalars
e, p, w, b and β.

D. Canonical reparameterization
Building on the low-rank strucutre of the transformer parameters described above, we consider a special parameterization for
them. A key property of this parameterization is that it covers both the global and local minima from Thm. 4 and Thm. 5 for
all (p, q) ∈ (0, 1)2. Recall that Thm. 5 characterizes local minima only for p+ q > 1 whereas our special parameterization
allows to discover local minima even for p+ q < 1. Our construction follows the same outline as in Eqs. (12)-(17). First we
start with the embedding layer.

Embedding. We let e = e ·α and pn = −p ·α for all n where e > 0, p = e
2 and α ∈ {±1}d/

√
d. Thus the embedding

xn from Eq. (12) simplifies to

xn = e

(
xn − 1

2

)
α ∈ {±e

2
}α. (18)

Attention. Substituting this xn in Eq. (13), we have

yn = e

(
xn − 1

2

)
α+ ⟨v,α⟩

∑
i∈[n]

attn,i · e
(
xi −

1

2

)α, (19)

where the attention weights attn,i =
exp(e2q2d5/2 (xn− 1

2 )(xi− 1
2 ))∑

j∈[n] exp(e2q2d5/2 (xn− 1
2 )(xj− 1

2 ))
∈ (0, 1) for some q ∈ R. Since ⟨v,α⟩ ≈ 0, we let

v = 0 and obtain

yn = xn = e

(
xn − 1

2

)
α. (20)

Feed-forward. For the feed-forward layer, we observe from Eq. (14) and Eq. (16) that for any w ∈ {±1}r, only the number
of 1’s in w, β, matters for the final vector zn which further interacts with the weight scalar w. Hence without loss of
generality, we set w to be the all-ones vector: w = 1 ∈ Rr and hence β = r = 4d. While we observe from Eq. (14) that
W 2 = W⊤

1 for p+ q < 1, we observe from the proof of the Thm. 4 for p+ q > 1 in (Makkuva et al., 2024)-Appendix
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B.2 that we need W 2 = −W⊤
1 in this scenario. Hence we consider the following parameterization that covers both these

scenarios:

W 1 =
|w|√
d
1 ·α⊤ ∈ R4d×d, W 2 =

w√
d
α · 1⊤ ∈ Rd×4d.

Here w > 0 ensures W 2 = W⊤
1 whereas w < 0, W 2 = −W⊤

1 . Using this parameterization, substituting β = r = 4d and
w 7→ w

d in Eq. (16), we get

zn = e

(
xn − 1

2

)
(1 + 4w|w|xn)α. (21)

Linear. Since e = a = e ·α due to weight-tying, Eq. (17) simplifies to

logitn = ⟨e, zn⟩+ b = e2
(
xn − 1

2

)
(1 + 4w|w|xn) + b (22)

(xn=x2
n)= e2

(
xn + 4w|w|xn − 1

2
− 2w|w|xn

)
+ b (23)

= e2(1 + 2w|w|)xn + b− e2

2
. (24)

Prediction. The next-token prediction probability is

f(θ,b)(x
n
1 ) = σ

(
e2(1 + 2w|w|)xn + b− e2

2

)
, θ ≜ (e, w) ∈ R2. (25)

Loss. While we assumed e > 0 in the beginning, in view of Eq. (25) and the fact that α ∈ {±1}d/
√
d, we see that e ∈ R

gives us the same expression for probability. Thus the final probability depends on just the three scalars (e, w, b) ∈ R3.
Defining θ = (e, w) ∈ R2, we recall the cross-entropy loss L(·) from Eq. (8) in Sec. 2 for this canonical model:

L(θ, b) = − 1

N

∑
n∈[N ]

Exn+1
1

[xn+1 · log f(θ,b)(xn
1 ) + (1− xn+1) · log(1− f(θ,b)(x

n
1 ))]. (26)

It turns out that we can further remove the bias b by minimizing the loss over it which we discuss in App. F. For now in the
next section, we analyze when it’s present as in Eq. (26).
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E. Analysis of the loss with the bias, L(θ, b), in Eq. (8) and Eq. (26)

In this section, we analyze the loss function with the bias, L(θ, b), from Eq. (8) and Eq. (26), which will later be useful for
studying L(θ). First we characterize the set of its critical points in R3. To this end, we define the following sets of points

Γ⋆(p, q) ≜

{
(e, w, b) ∈ R3 : e2(1 + 2w|w|) = log

(1− p)(1− q)

pq
, b− e2

2
= log

p

1− p

}
, (27)

Γmin(p, q) ≜

{
(e, w, b) ∈ R3 : e = 0, (p+ q − 1)(1 + 2w|w|) > 0, b = log

p

q

}
, (28)

Γsad(p, q) ≜

{
(e, w, b) ∈ R3 : e = 0, (p+ q − 1)(1 + 2w|w|) ≤ 0, b = log

p

q

}
. (29)

The following result establishes that these sets exhaust all the critical points.

Theorem 6 (All critical points). Let the input sequence be {xn}Nn=1 ∼ (π,P ), the transformer parameters (θ, b) =
(e, w, b) ∈ R3, and the next-token prediction loss L(·) be as in Eq. (26). Then all the stationary points of L are either in Γ⋆,
Γmin, or Γsad, i.e. {

(θ, b) ∈ R3 : ∇L(θ, b) = 0
}
= Γ⋆ ∪ Γmin ∪ Γsad. (30)

Proof. We refer to App. I.1.

Recall the definitions of local minima & maxima, global minima, and that of all the saddle points from Sec. 3.1. We are now
ready to present the main result about the loss landscape of L(·).
Theorem 7 (Loss landscape with bias). Let the input sequence be {xn}Nn=1 ∼ (π,P ), the transformer parameters
(e, w, b) ∈ R3, and the next-token prediction loss L(·) be as in Eq. (26). Then for any (p, q) ∈ (0, 1)2 with p+ q ̸= 1 and
N ∈ N,

(i) the set of all global minima of L is given by Γ⋆(p, q),
(ii) the set of all bad local minima of L is given by Γmin(p, q),

(iii) and the set of all saddle points of L is Γsad(p, q).

Furthermore, for any γ⋆ ∈ Γ⋆,γmin ∈ Γmin, and γsad ∈ Γsad, the losses are ordered as

H(xn+1 | xn) = L(γ⋆) < L(γmin) = L(γsad) = H(xn+1).

Remark 1. Note that a bad local minimum is a local minimum whose loss value is strictly less than that of the global
minimum, as is the case here. Interestingly, Thm. 7 highlights that all local minima for the loss L are indeed bad local
minima.

Proof. We refer to App. I.2.

E.1. Technical lemmas

The proofs of both Thm. 6 and Thm. 7 rely on few key lemmas that we present below. First we start with the result that
rewrites the loss L(θ, b) from Eq. (26) in a compact manner using the logistic function ℓlog(·).
Lemma 2 (Loss as a logistic function). The next-token prediction loss L(·) in Eq. (26) can be written as

L(θ, b) =
1

N

∑
n∈[N ]

E[ℓlog ((2xn+1 − 1) · logitn)]

= EX,Y

[
ℓlog

(
(2Y − 1)

(
e2(1 + 2w|w|)X + b− e2

2

))]
,

(31)

where (X,Y ) ∈ {0, 1}2 are distributed according to (X,Y ) ∼ (π,P ), i.e. X is a Bernoulli random variable with
X ∼ π ≡ Bern(p/(p+ q)) and Y |X ∼ P (p, q), the Markov kernel.
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The following lemma establishes the gradients of the loss function with respect to the parameters e, w, and b.

Lemma 3 (Gradient computation). For any (e, w, b) ∈ R3 and the next-token prediction loss L(·) in Eq. (26), the gradients
are given by

∂L

∂e
= EX [(f1X + f2)(2X(1 + 2w|w|)− 1)] · e,

∂L

∂w
= EX [(f1X + f2)X] · 4e2|w|,

∂L

∂b
= EX [f1X + f2] ,

where X ∈ {0, 1} is a Bernoulli random variable with X ∼ Bern(p/(p + q)), f1 = σ
(
2e2w|w|+ b+ e2

2

)
+ q − 1 −

σ
(
b− e2

2

)
+ p, and f2 = σ

(
b− e2

2

)
− p.

Remark 2. It is interesting to note that the gradients for both e and w are product of an expectation term and an e factor. Also,
except for scaling factors in terms of (e, w, b), all the gradients are governed by the two expectation terms E[(f1X + f2)X]
and E[f1X + f2]. This observation plays a key role in obtaining an ordinary differential equation which yields the energy
function E , defined in Eq. (4).

Now we characterize the Hessian at both local-minima and saddle points.

Lemma 4 (Hessian at local-minima and saddle points). For the canonical parameterization γ = (b, e, w) ∈ R3 and the
next-token prediction loss L(·) in Eq. (26), the Hessian at any γmin ∈ Γmin or γsad ∈ Γsad is given by

∇2L(γ)

∣∣∣∣
γ=γmin,γsad

= π0π1

1 0 0
0 2(p+ q − 1)(1 + 2w|w|) 0
0 0 0

 ,

where π0 = q
p+q and π1 = p

p+q .

Remark 3. We note that the Hessian is computed with the parameter ordering (b, e, w).

The proofs of the lemmas are presented in App. J.
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F. Analysis of the loss without bias, L(θ), and proof of Thm. 1
The proof of Thm. 1, concerning the loss L(θ) in Eq. (9), is similar to that of Thm. 7 which studies the loss L(θ, b) with the
bias present. The main idea is to establish the analogous set of lemmas, as in App. E, when the bias is substituted with its
optimal choice. First we recall the loss function

L(θ) ≜ L(θ, b⋆) = − 1

N

∑
n∈[N ]

Exn+1
1

[xn+1 · log f(θ,b⋆)(x
n
1 ) + (1− xn+1) · log(1− f(θ,b⋆)(x

n
1 ))], (32)

b⋆ = argmin
b∈R

L(θ, b).

We start with the result that establishes a closed form expression for b⋆.

Lemma 5 (Optimal bias). For θ = (e, w) ∈ R2 and b ∈ R, let L(θ, b) be the next-token prediction loss defined in Eq. (26).
Then, for any θ ∈ R2, L(θ, b) is convex in b and the minimizer b⋆ ≜ argminb∈R L(θ, b) is given by

exp

(
b⋆ −

e2

2

)
=

1

2A

p
q
− 1 +

√(
p

q
− 1

)2

+ 4 · p
q
·A

 , A ≜ exp(e2(1 + 2w|w|)). (33)

Consequently, if e2(1 + 2w|w|) = log (1−p)(1−q)
pq , then b⋆ − e2

2 = log p
1−p . If e = 0, then b⋆ = log p

q .

Now we rewrite the loss in terms of the logistic function.

Lemma 6 (Loss as a logistic function). For any θ ∈ R2, the next-token prediction loss L(θ) in Eq. (32) can be written as

L(θ) =
1

N

∑
n∈[N ]

E[ℓlog ((2xn+1 − 1) · logitn)]

= EX,Y

[
ℓlog

(
(2Y − 1)

(
e2(1 + 2w|w|)X + b⋆ −

e2

2

))]
.

(34)

where b⋆ follows from Eq. (33), (X,Y ) ∈ {0, 1}2 are distributed according to (X,Y ) ∼ (π,P ), i.e. X is a Bernoulli
random variable with X ∼ π ≡ Bern(p/(p+ q)) and Y |X ∼ P (p, q), the Markov kernel.

The following lemma establishes the gradients of the loss.

Lemma 7 (Gradient computation). For any θ = (e, w) ∈ R2 and the next-token prediction loss L(θ) in Eq. (32), the
gradients are given by

∂L

∂e
= EX [(f1X + f2)X] · 2(1 + 2w|w|)e,

∂L

∂w
= EX [(f1X + f2)X] · 4e2|w|,

where X ∈ {0, 1} is a Bernoulli random variable with X ∼ Bern(p/(p+ q)), f1 = σ
(
2e2w|w|+ b⋆ +

e2

2

)
+ q − 1−

σ
(
b⋆ − e2

2

)
+ p, and f2 = σ

(
b⋆ − e2

2

)
− p. Further, π1f1 + f2 = 0.

Remark 4. We observe above that the gradients for both e and w are proportional to each other, except for the scaling
factors in terms of e and w. This forms the basis for the derivation of the energy function discussed in App. G.

The following lemma characterizes the Hessian.

Lemma 8 (Hessian computation). Let γ = (b,θ) ∈ R3 with θ = (e, w) ∈ R2, and L(γ) be the next-token prediction loss
in Eq. (26) and L(θ) be the one in Eq. (32). Let the Hessian of L at γ be

H(γ) ≜ ∇2
γγL =

[
Hbb Hbθ

H⊤
bθ Hθθ

]
=

[
∇2

bbL ∇2
bθL

(∇2
bθL)

⊤ ∇2
θθL

]
∈ R3×3.
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Then the Hessian of L at θ ∈ R2 is given by

H(θ) ≜ ∇2
θθL = Hθθ −H⊤

bθ ·H−1
bb ·Hbθ. (35)

Consequently, for any γ = (b, e, w) ∈ Γmin ∪ Γsad, the Hessian H(θ) at θ = (e, w) is given by

H(θ) = π0π1

[
2(p+ q − 1)(1 + 2w|w|) 0

0 0

]
, (36)

where π0 = q
p+q and π1 = p

p+q .

The proofs of the above lemmas are deferred to App. K. We are now ready to present the proof of Thm. 1.

F.1. Proof of Thm. 1

Proof. Let θ ∈ R2 and γ(θ) = (θ, b⋆(θ) ∈ R3 be its embedding in R3 with the optimal bias b⋆(θ) = argminb∈R L(θ, b)
from Lemma 5. Define the following four sets of points:

Θ⋆(p, q) ≜

{
(e, w) ∈ R2 : e2(1 + 2w|w|) = log

(1− p)(1− q)

pq

}
,

Θmin(p, q) ≜
{
(e, w) ∈ R2 : e = 0, (p+ q − 1)(1 + 2w|w|) > 0

}
,

Θmax(p, q) ≜
{
(e, w) ∈ R2 : e = 0, (p+ q − 1)(1 + 2w|w|) < 0

}
,

Θsad(p, q) ≜
{
(e, w) : e = 0, w = −1/

√
2
}
.

First we show that any critical point of L : R2 → R has to lie in one of these sets. Then we characterize that they correspond
to the set of all global minima, local minima & maxima, and saddle points respectively.

(i) Set of all critical points: Recall from Thm. 7 that for any critical point γ = (θ, b) = (e, w, b) ∈ R3 of L, γ ∈
Γ⋆ ∪ Γmin ∪ Γsad. Here the main observation is that all these critical points are of the form (θ, b⋆(θ)) where θ ∈
Θ⋆ ∪Θmin ∪Θmax ∪Θsad. To see this, let γ ∈ Γ⋆. Here we have e2(1 + 2w|w|) = log (1−p)(1−q)

pq from Eq. (27) and

hence θ ∈ Θ⋆. Further, by Lemma 5, we have that the optimal bias for this θ satisfies b⋆ − e2

2 = log p
1−p , which is

precisely the characterization of the bias b for γ = (e, w, b) in Eq. (27). Likewise, if γ ∈ Γmin ∪ Γsad, we have e = 0
and hence θ ∈ Θmin ∪ Θmax ∪ Θsad. Hence by Lemma 5, b⋆ = log p

q , matching that of Eq. (28) and Eq. (29). Thus
the set of all critical points of L in R3 are of the form (θ, b⋆(θ)) with where θ ∈ Θ⋆ ∪ Θmin ∪ Θmax ∪ Θsad. Since
Γ⋆ ∪ Γmin ∪ Γsad covers the entirety of stationary points of L in R3, it follows that the set of all stationary points in R2 is
precisely Θ⋆ ∪Θmin ∪Θmax ∪Θsad. Also, the ordering of losses directly follows from the aformentioned observation.

Now we characterize these critical points in terms of the extrema.

(ii) Set of global and local minima: From Eq. (27), for any global minimum γ⋆ = (θ⋆, b⋆(θ⋆)) of L in R3, we have
θ⋆ ∈ Θ⋆ ⊆ R2. Hence by definition, Θ⋆ is the set of all global minima in R2. A similar argument holds for Θmin, which
establishes that it is a set of all local minima.

(iii) Set of local maxima and saddle points: From Eq. (29), for any saddle point γ = (e, w, b⋆(e, w)) of L in R3, we have
that e = 0 and (p + q − 1)(1 + 2w|w|) ≤ 0. Hence θ = (e, w) ∈ Θmax ∪ Θsad. Suppose θ ∈ Θmax which implies
e = 0, (p + q − 1)(1 + 2w|w|) < 0. By Lemma 8, the Hessian at θ (upto a positive scale) is a diagonal matrix with the
entries (p + q − 1)(1 + 2w|w|) < 0 and 0, corresponding to the directions of e and w respectively. Though one of the
eigenvalue here is zero, using a continuity argument as in the proof of Thm. 7 for local minima, we can establish that θ is
indeed a local maximum. Thus Θmax is a set of local minima.

Now suppose (e, w) ∈ Θsad. Thus e = 0 and w = − 1√
2

. Since it lies at the intersection of Θmin and Θmax, using a
neighborhood argument, it’s straightforward to see that Θsad is indeed a set of saddle points.

Finally it follows that Θmin,Θmax,Θsad are the only set of local minima, maxima, and saddle points from the above fact
about the characterization of the set of all critical points in terms of these sets and Θ⋆, the ordering of the losses, and using
the same argument as in the final steps of the proof of Thm. 7 with the bias. This concludes the proof.
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G. Proofs of Thm. 2 and Thm. 8
Before we present the proofs of Thm. 2 and Thm. 8, we present few important lemmas that characterize the dynamics of the
gradient flow trajectories. Recall from Sec. 4 that the trajectory (θt)t≥0 is governed by

dθt

dt
= −∇L(θt), θt = (et, wt) ∈ R2, t ≥ 0, (GF)

starting with a randomly initalized θ0. The energy function E(·, ·) is defined as

E(e, w) ≜ e2 − (w2 + sign(w) · log |w|), ∀(e, w) ∈ R2 \ e-axis, (37)

where e-axis ≜ {(e, w = 0)} and w-axis ≜ {(e = 0, w)}. Note that Esad = E(0,− 1√
2
) = − 1+log 2

2 . We re-present the
Lemma 1 from Sec. 4 below for the sake of completeness.

Lemma 9 (Constant energy along the flow). For any (p, q) ∈ (0, 1)2 and initialization θ0 = (e0, w0) ∈ R2, let (θt)t≥0 be
the corresponding GF trajectory starting from θ0. If w0 ̸= 0, then the energy stays constant along the trajectory, i.e.

E(θt) = e2t − (w2
t + sign(wt) · log |wt|) = E(θ0), ∀t ≥ 0. (38)

On the other hand, if w0 = 0, wt = 0 for all t ≥ 0. Hence, if we initialize on e-axis the trajectory always stays on the
e-axis.

Now we establish that the GF trajectories always converge.

Lemma 10 (GF convergence). Let (θt)t≥0 be a continuously diferentiable GF trajectory starting from θ0. Then for all
initializations θ0 ∈ R2,

(i) (θt)t≥0 is bounded,
(ii) there exists a θlim ∈ R2 such that limt→∞ θt = θlim and

(iii) limt→∞ ∥∇L(θt)∥ = ∥∇L(θlim)∥ = 0.

Hence θlim is a critical point of L.

The following result characterizes the energy of the limit point.

Lemma 11 (Energy at the limit point). Consider the same setting as in Lemma 10. If θ0 ∈ R2\e-axis, then E(θlim) = E(θ0).
Hence θlim lies at the intersection of the contour line E(e, w) = E0 with the set of critical points of L in R2.

On the other hand, if θ0 ∈ e-axis, then θlim ∈ e-axis.

We now study the energy function on the w-axis which plays a key role in the GF analysis.

Lemma 12 (Analysis of the energy function). Let E(·, ·) be the energy function defined in Eq. (51) and f(w) ≜ E(e =
0, w) = −(w2 + sign(w) · log |w|) be the energy evaluated on w-axis for w ∈ R \ {0}. Then

(i) f : (−∞,−1/
√
2] → (−∞, Esad] is monotonically increasing with limw→−∞ f(w) = −∞ and the maximum being

f(−1/
√
2) = Esad,

(ii) f : [−1/
√
2, 0) → [Esad,−∞) is monotonically decreasing with limw→0− f(w) = −∞,

(iii) f ′(− 1√
2
) = 0, and

(iv) f : (0,∞) → (−∞,∞) is monotonically decreasing with limw→0+ f(w) = ∞ and limw→∞ f(w) = −∞.

We are now ready to prove Thm. 2 corresponding to p+ q > 1.

G.1. Proof of Thm. 2

Proof. Let θ0 = (e0, w0) ∈ R2 be the initialization for the GF trajectory (θt)t≥0. Recall that

Imin ≜
{
(e, w) : w ∈ (−1/

√
2, 0), e ∈ (−g(w), g(w)), g(w) =

√
w2 − log(−w) + Esad

}
∪ {(e, w) : w > 0} ∪ {(e, w) : w = 0} ,
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Isad ≜
{
(e, w) : w ∈ [−1/

√
2, 0), e = ±

√
w2 − log(−w) + Esad

}
,

Imax ≜
{
(e, w) : e = 0, w < −1/

√
2
}
,

I⋆ ≜ R2 \ (Imin ∪ Isad ∪ Imax) .

We consider the cases θ0 ∈ e-axis and θ0 ∈ R2 \ e-axis separately. First recall from Thm. 1 and Eq. (??) that for p+ q > 1,
the loci of the global minima, e2(1 + 2w|w|) = log (1−p)(1−q)

pq < 0, lies entirely in the negative half-plane corresponding to
w < − 1√

2
. On the other hand, all the local minima, maxima and the saddle points span the w-axis corresponding to e = 0.

(i) θ0 ∈ R2 \ e-axis: Let E0 = E(θ0) ∈ R. By Lemmas. (9), (10), and (11), we have that the trajectory (θt)t≥0 always
stays on the contour line E(e, w) = E0 and converges to the limit θlim which is an intersection of this contour line with
the set of critical points of L. Hence the crux of the proof is to establish where these intersections occur based on the
initialization θ0 and the initial energy E0. This gives rise to the set of initializations Imin, Imax, Isad, and I⋆ that correspond
to the limit being a local minimum/maximum, a saddle point, or a global minimum.

We characterize them individually below starting with Imin.

Initializations for local minima, Imin. For θ0 = (e0, w0) ∈ R2 \ e-axis, assume that w0 > 0. Since E0 ∈ R, there exists
an unique w⋆ > 0 such that f(w⋆) = E(0, w⋆) = E0 by Lemma 12, (iv). Further using the fact that the energy contour lines
do not cross each other (by definition of a contour line) and the fact they do not intersect the e-axis (it’s an energy barrier as
discussed in Sec. 4), it follows that the contour line E(e, w) = E0 stays entirely in the positive half-plane corresponding to
w > 0 and w⋆ > 0 is the unique (and only) intersection of this line with the w-axis, and hence the set of critical points.
Since the w-axis corresponding to w > 0 is a set of a local minima (Eq. (??)), it follows that any initialization (e0, w0) with
w0 > 0 converges to a local minimum.

Now suppose − 1√
2
< w0 < 0 and e0 ∈ (−g(w0), g(w0)), where g(w0) =

√
w2 − log(−w) + Esad. Thus |e0| < g(w0)

and hence e20 − (w2
0 − log(−w0)) = E(e0, w0) = E0 < Esad. Hence by Lemma 12, (iii), there is a unique intersection of

the contour line E(e, w) = E0 with the w-axis, which lies in the region
(
− 1√

2
, 0
)

. Further note that this contour line cannot

intersect with the global minima loci as it lies in the half-plane w < − 1√
2

, and hence its only intersection with the set of
critical points is this segment of w-axis, which is precisely the set of local minima the GF initialized on this line would
converge to.

Thus we have shown that any initialization in Imin \ ∪ {(e, w) : w = 0} converges to a local minimum, the set of which
exhausts all the set of local minima Θmin except for the origin. Below we will estbalish that any initialization on
e-axis = {(e, w) : w = 0} converges to the origin, implying Imin is the full set of initializations for which the limit is a
local minimum.

Initializations for saddle points, Isad. It’s straightforward to see that for any θ0 ∈ Isad, e20 − (w2
0 − log(−w0)) =

E(0,− 1√
2
) = Esad. Since − 1√

2
≤ w0 < 0, the point (w, e) = (− 1√

2
, 0) is the only intersection of the contour line with the

set of critical points, any initialization in Isad converges to the saddle point. On the other hand, there also exists a contour
line e20 − (w2

0 − log(−w0)) = Esad for w0 < − 1√
2

that passes through (− 1√
2
, 0) ∈ R2 and further intersecting with the

global minima loci Θ⋆. However, if we initialize on this line the flow escapes away from the saddle point and converges
instead to a global minimum. To show this, it suffices to prove that det

dt > 0 and dwt

dt < 0 if e0 > 0 and w0 < − 1√
2

, such
that (w0, e0) is close to the saddle point (− 1√

2
, 0) (the case for e0 < 0 is similar as the flow is symmetric in e ∈ R). From

Lemma 7 and the definition of the GF, we have that

det
dt

= −∂L

∂e
(e0, w0) = 2EX [(f1X + f2)X] · (1− 2w2

0))e0

dwt

dt
= −∂L

∂w
(e0, w0) = 4EX [(f1X + f2)X] · (−e20w0).

So it suffices to show that EX [(f1X + f2)X] > 0. To establish this, we have from Lemma 5 that

EX [(f1X + f2)X] = E[X](f1 + f2) = π1

(
− f2
π1

+ f2

)
= −π0 · f2.
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From the defintion of f2 and the optimal bias b⋆ in Lemma 7 and Lemma 5 respectively, we obtain

f2 = σ

(
b⋆ −

e20
2

)
− p =

(
1 + exp

(
−b⋆ +

e20
2

))−1

− p

=

1 +
2A

p
q − 1 +

√(
p
q − 1

)2
+ 4 · p

q ·A


−1

− p, A ≜ exp(e20(1− 2w2
0)).

When e0 = 0, we have A = 1 and hence

f2 =

(
1 +

q

p

)−1

− p =
p

p+ q
− p = − p

p+ q
(p+ q − 1) < 0, (39)

where we used the fact that p + q > 1. Hence by continuity of f2 in e0, for e0 sufficiently close to 0, f2 < 0 which
proves our claim about the direction of the flow close to the saddle point. By using the continuity of the flow, it follows
that GF cannot converge to saddle point when initialized on this contour line for w0 < − 1√

2
. Thus Isad is the only set of

initializations for convergence to Θsad.

Initializations for local maxima, Imax. If p + q > 1, we have from Thm. 1 that Θmax ={
(e, w) ∈ R2 : e = 0, (1 + 2w|w|) < 0

}
=
{
(e, w) ∈ R2 : e = 0, w < − 1√

2

}
. Thus for any θ0 ∈ Θmax, dθt

ddt = 0

for all t ≥ 0 and hence θlim = θ0. Further if we slightly perturb away from this set, from Eq. (39) it follows that the flow
diverges and hence it’s an unstable set of critical points (they are local maxima indeed). Thus the only set of initializations
leading to local maxima are Imax = Θmax.

Initializations for the global minima, I⋆. Since the set of all critical points of L is Θ⋆ ∪ Θmin ∪ Θmax ∪ Θsad, and
the initializations in Imin, Isad, and Imax converge to Θmin, Θsad, and Θmax respectively, it follows that the set of
initializations for which the GF converges to global minima is I⋆ = R2 \ (Imin ∪ Isad ∪ Imax).

In fact, since the loci of the global minima lies in the half-plane correspondint to w < − 1√
2

when p + q > 1, we can
precisely determine the location of the global minimum for which the intersection occurs for any θ0 ∈ I⋆. Specifically, we
can solve the pair of equations E(e, w) = e2 −w2 + log(−w) = E0 and e2(1− 2w2) = log (1−p)(1−q)

pq which has a unique
solution for w < 0 (upto a sign flip in e).

(ii) θ0 ∈ e-axis ⇒ θ0 ∈ Imin: If θ0 = (e0, w0) ∈ e-axis, we have that w0 = 0 and hence wt = 0 for all t ≥ 0 (Lemma 9).
Lemma 10-(i) also establishes that the iterates (θt = (et, 0))t≥0 stay bounded on the e-axis and monotonically decrease.
Since the origin is the only critical point of L on the e-axis, and limt→∞ θt = θlim exists, it follows that θlim = (0, 0), a
local minima. Thus θ0 ∈ Imin.

This concludes the proof for all the initializations θ0 ∈ R2.

Gaussian initialization N (0, σ2I2). When θ0 is initialized according to the standard Gaussian distribution N (0, σ2I2)

with σ2 ≪ 1√
2

, we note that θ0 lands in the set Imin with high probability. In fact, this probability can be made arbitrarily
close to 1 depending on σ2. Thus this initialization will lead to a local minimum convergence on the w-axis.

G.2. GF dynamics for p+ q < 1

Theorem 8 (GF dynamics for p + q < 1). Under the same setting as in Thm. 2 with p + q < 1, and any initialization
θ0 ∈ R2, the GF trajectory always converges to a θlim ∈ R2 which is a critical point of the loss L. More specifically, θlim is

(i) a local minimum if

θ0 ∈ Imin ≜
{
(e, w) : w < −1/

√
2, e ∈ (−g(w), g(w)), g(w) =

√
w2 − log(−w) + Esad

}
,

(ii) a saddle point if θ0 ∈ Isad ≜
{
(e, w) : w ≤ −1/

√
2, e = ±

√
w2 − log(−w) + Esad

}
,

(iii) a local maximum if θ0 ∈ Imax ≜
{
(e, w) : e = 0, w > −1/

√
2
}

,
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(iv) and a global minimum if θ0 ∈ R2 \ (Imin ∪ Isad ∪ Imax).

Consequentely, if we use the standard initialization θ0 ∼ N (0, σ2I2) with σ2 ≪ 1/
√
2, θlim will be a global minimum.

Proof. The proof for the case of p+ q < 1 essentially follows the same steps as that of p+ q > 1. If the initialization is not
on the e-axis we use the energy equation to establish the convergence to the critical point at the intersection of the energy
contour line with the critical set and if it starts on the e-axis, the only change is that it now converges to the global minimum
instead of the origin as in the earlier case. This is due to the fact that origin turns out to be a local maximum when p+ q < 1
and hence it’s an unstable critical point (which can be established as in the proof of Thm. 2 for Imax).
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H. Gradient flow analysis with attention
In this section, we analyze the learning dynamics of the transformer parameters θ ∈ R3 with the attention scalar a ∈ R, i.e.
θ = (e, w, a) ∈ R3. Similar to the analysis for θ = (e, w) ∈ R2, we first introduce the canonical parameterization including
a ∈ R, then analyze the corresponding loss function L(·) in terms of its gradients and critical points, and capitalize on it to
study the gradient flow dynamics using the energy align*. We first start with the parameterization.

H.1. Canonical parameterization with attention

Embedding. Recall from App. D that we let e = e ·α and pn = −p ·α for all n where e > 0, p = e
2 and α ∈ {±1}d/

√
d.

This results in the embedding

xn = e

(
xn − 1

2

)
α.

Attention. Similarly, we recall from Eq. (19) that the attention output yn is given by

yn = e

(
xn − 1

2

)
α+ ⟨v,α⟩

∑
i∈[n]

attn,i · e
(
xi −

1

2

)α, (40)

where

attn,i ≜ exp
(
⟨qn,ki⟩/

√
d
)
/

∑
j∈[n]

exp
(
⟨qn,kj⟩/

√
d
) , qn = WQ xn, ki = WK xi,

W⊤
QWK = (q2d)α ·α⊤ ∈ Rd×d, for some q ∈ R.

Instead of the softmax, now we assume that the attention weights are linear in the scaled dot product, i.e.

attn,i =
⟨qn,ki⟩
n
√
d

=
1√
d
· x⊤

nW
⊤
QWKxn =

q2d

n
√
d
· (x⊤

nα)(x⊤
i α)

(∥α∥2=d)
=

q2d3

n
√
d
· (exn − p)(exi − p)

=
q2d5/2

n
· (exn − p)(exi − p)

=
q2d5/2e2

n
·
(
xn − 1

2

)(
xi −

1

2

)
.

(41)

Note that the 1/n factor is to ensure normalization for the attention weights in Eq. (40). Now substituting Eq. (41) in
Eq. (40), we obtain

yn = e

(
xn − 1

2

)
α+ ⟨v,α⟩

∑
i∈[n]

attn,i · e
(
xi −

1

2

)α

=

e(xn − 1

2

)
+ ⟨v,α⟩

∑
i∈[n]

1

n
q2d5/2e2(xn − 1

2
)(xi −

1

2
)

 · e
(
xi −

1

2

)α

=

[
e

(
xn − 1

2

)(
1 + ⟨v,α⟩q2d5/2e2

(
xi −

1

2

)2
)]

α

=

e(xn − 1

2

)1 + ⟨v,α⟩q2d5/2 1
4︸ ︷︷ ︸

a

·e2·


α

= e

(
xn − 1

2

)(
1 + ae2

)
α,
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where we used the fact that (xi − 1
2 )

2 = 1
4 since xi ∈ {0, 1}, and

a ≜
⟨v,α⟩q2d5/2

4
(42)

is the attention scalar. Note that this includes the scaling ⟨v,α⟩ from the value matrix W V and q2 from the query-key dot
product. Thus we succinctly have

yn = e

(
xn − 1

2

)(
1 + ae2

)
α. (43)

Feed-forward. For the feed-forward layer, we have that W 1 = |w|√
d
1 ·α⊤ ∈ R4d×d, W 2 = w√

d
α · 1⊤ ∈ Rd×4d. Hence

Eq. (43) implies

W 1yn =
|w|√
d
1 ·α⊤

[
e

(
xn − 1

2

)(
1 + ae2

)]
α =

|w|√
d

[
e

(
xn − 1

2

)(
1 + ae2

)]
1.

Thus,

ReLU(W 1yn) =
|w|√
d
1 · ReLU

([
e

(
xn − 1

2

)(
1 + ae2

)])
=

|w|√
d
1 · eReLU

([(
xn − 1

2

)(
1 + ae2

)])
=

|w|√
d
1 · e

(
xn

2
ReLU

(
1 + ae2

)
+

1− xn

2
ReLU

(
−1− ae2

))
=

|w|
2
√
d
1 · e

(
xn

[
ReLU

(
1 + ae2

)
− ReLU

(
−1− ae2

)]
+ReLU

(
−1− ae2

))
.

Using ReLU(x)− ReLU(−x) = x above,

ReLU(W 1yn) =
|w|
2
√
d
1 · e

(
xn

(
1 + ae2

)
+ReLU

(
−1− ae2

))
.

Hence,

W 2ReLU(W 1yn) =
w√
d
α · 1⊤ |w|

2
√
d
1 · e

(
xn

(
1 + ae2

)
+ReLU

(
−1− ae2

))
= 2w|w|e

(
xn

(
1 + ae2

)
+ReLU

(
−1− ae2

))
α

= 2w|w|e

(
xn

(
1 + ae2

)
+

(
−1− ae2

)
2

+
|1 + ae2|

2

)
α

= 2w|w|e
((

xn − 1

2

)(
1 + ae2

)
+

|1 + ae2|
2

)
α.

Thus the embedding zn is given by

zn = yn +W 2ReLU(W 1yn) =

[
e

(
xn − 1

2

)(
1 + ae2

)]
α+ 2w|w|e

((
xn − 1

2

)(
1 + ae2

)
+

|1 + ae2|
2

)
α

= e

[(
xn − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
α.

Linear. Since e = a = e ·α due to weight-tying, the logits are given by

logitn(e, w, a, b) = ⟨a, zn⟩+ b = e2
[(

xn − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b.
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Loss. Denote θ ≜ (e, w, a) ∈ R3. Similar to the case without a (Eq. (11) and Lemma 2), the cross-entropy loss in our
setting can be compactly written as

L(θ, b) =
1

N

∑
n∈[N ]

E[ℓlog ((2xn+1 − 1) · logitn(θ, b))] = EX,Y [ℓlog ((2Y − 1) · logitX(θ, b))] , (44)

where logitX(θ, b) ≜ e2
[(
X − 1

2

) (
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b, (X,Y ) ∈ {0, 1}2 are distributed ac-

cording to (X,Y ) ∼ (π,P ), i.e. X is a Bernoulli random variable with X ∼ π ≡ Bern(p/(p+ q)) and Y |X ∼ P (p, q),
the Markov kernel. Further, using the convexity of b in L(·, b), we can consider the optimal bias b⋆(θ) = argminb∈R L(θ, b)
in Eq. (44) to obtain the loss L(θ):

L(θ) ≜ L(θ, b⋆) = EX,Y [ℓlog ((2Y − 1) · logitX(θ, b⋆))]

= EX,Y

[
ℓlog

(
(2Y − 1) ·

(
e2
[(

X − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b⋆

))]
.

(45)

H.2. Analysis of the loss function L(θ) from Eq. (45)

Now we establish the gradients of the loss function.

Lemma 13 (Gradient computation and optimal bias). For any θ = (e, w, a) ∈ R3 and the next-token prediction loss L(θ)
in Eq. (45), the gradients are given by

∂L

∂e
= −E

[
(f1X + f2)

(
X − 1

2

)]
· 2e

(
1 + ae2

)
(1 + 2w|w|)

− E
[
(f1X + f2)

(
X − 1

2

)]
· 2e3a (1 + 2w|w|) ,

∂L

∂w
= −E

[
(f1X + f2)

(
X − 1

2

)]
· 2e2

(
1 + ae2

)
(|w|+ sign (w)w) ,

∂L

∂a
= −E

[
(f1X + f2)

(
X − 1

2

)]
· e4 (1 + 2w|w|) ,

where X ∈ {0, 1} is a Bernoulli random variable with X ∼ Bern(p/(p+ q)), and

f1 ≜ 1− p− q − ϕ1 + ϕ0, f2 ≜ p− ϕ0,

ϕ1 ≜ σ

(
e2
(
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

)
+ b⋆

)
,

ϕ0 ≜ σ

(
e2
(
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

)
+ b⋆

)
,

where the optimal bias b⋆ is obtained by solving π1f1 + f2 = 0.

Proof. We defer to App. M.

Theorem 9 (All critical points for linear attention in R4). Let the input sequence be {xn}Nn=1 ∼ (π,P ), the transformer
parameters θ = (e, w, b, a) ∈ R4, and the next-token prediction loss L(·) be as in Eq. (44). Then for any (p, q) ∈ (0, 1)2

with p+ q ̸= 1 and N ∈ N,

(i) the set of all global minima is given by

Γ⋆(p, q) ≜ {(e, w, b, a) ∈ R4 : e2w|w(1 + ae2)|+ b =
1

2
log

p(1− q)

q(1− p)
, (46)

e2
(
1 + ae2

)
(1 + 2w|w|) = log

(1− q)(1− p)

pq
} (47)
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(ii) a set of local minima is given by

Γmin(p, q) ≜

{
γmin = (e, w, b, a) ∈ R4 : e = 0, (p+ q − 1)(1 + 2w|w|) > 0, b = log

p

q

}
,

(iii) a set of saddle points is

Γsad(p, q) ≜

{
γsad = (e, w, b, a) ∈ R4 : e = 0, (p+ q − 1)(1 + 2w|w|) ≤ 0, b = log

p

q

}
.

(iv) a set of stationary points is

Γstation(p, q) ≜

{
γstation = (e, w, b, a) ∈ R4 : e ̸= 0, 1 + ae2 = 0, 1 + 2w|w| = 0, b = log

p

q

}
,

Thus the set of all critical points is{
θ ∈ R2 : ∇L(θ) = 0

}
= Γ⋆ ∪ Γmin ∪ Γsad ∪ Γstation. (48)

In addition, for any θ⋆ ∈ Γ⋆,θmin ∈ Γmin and θsad ∈ Γsad, the loss values satisfy

H(xn+1 | xn) = L(θ⋆) < L(θmin) = L(θmax) = L(θsad) = H(xn+1).

Theorem 10 (All critical points in R3). Let the input sequence be {xn}Nn=1 ∼ (π,P ), the transformer parameters
θ = (e, w, a) ∈ R3, and the next-token prediction loss L(·) be as in Eq. (45). Then for any (p, q) ∈ (0, 1)2 with p+ q ̸= 1
and N ∈ N,

(i) the set of all global minima is given by

Θ⋆(p, q) ≜ {(e, w, a) ∈ R3 : e2
(
1 + ae2

)
(1 + 2w|w|) = log

(1− q)(1− p)

pq
} (49)

(ii) a set of local minima is given by

Θmin(p, q) ≜
{
(e, w, a) ∈ R3 : e = 0, (p+ q − 1)(1 + 2w|w|) > 0

}
,

(iii) a set of local maxima is given by

Θmin(p, q) ≜
{
(e, w, a) ∈ R3 : e = 0, (p+ q − 1)(1 + 2w|w|) < 0

}
,

(iv) a set of saddle points is

Θsad(p, q) ≜
{
(e, w, a) ∈ R3 :

(
0,−1/

√
2, a
)}

.

Defining a set of stationary points Θstation(p, q) ≜
{
(e, w, a) ∈ R3 : e ̸= 0, 1 + ae2 = 0, 1 + 2w|w| = 0

}
, the set of all

critical points is {
θ ∈ R2 : ∇L(θ) = 0

}
= Θ⋆ ∪Θmin ∪Θmax ∪Θsad ∪Θstation. (50)

In addition, for any θ⋆ ∈ Θ⋆,θmin ∈ Θmin, and θsad ∈ Θsad, the loss values satisfy

H(xn+1 | xn) = L(θ⋆) < L(θmin) = L(θmax) = L(θsad) = H(xn+1).

We defer the proofs of the theorems to App. M.2.
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H.3. Gradient flow analysis

Analogous to the gradient flow analysis for θ = (e, w) ∈ R2 in G, we now study its countepart toegether with the attention
scalar, i.e. θ = (e, w, a) ∈ R3. To this end, let (θt)t≥0 be a C1 curve in R3 governed by

dθt

dt
= −∇L(θt), θt = (et, wt, at) ∈ R3, t ≥ 0, (GF-Attention)

starting with a randomly initalized θ0. We define the energy function E(·, ·, ·) as

E(e, w, a) ≜ e2 − (w2 + sign(w) · log |w|)− 2a2, ∀(e, w, a) ∈ R3 \ ea-plane, (51)

where ea-plane ≜ {(e, w = 0, a)}. The following lemma presents the crucial result that the energy is constant along the
flow in GF-Attention.

Lemma 14 (Constant energy along the flow). For any (p, q) ∈ (0, 1)2 and initialization θ0 = (e0, w0, a0) ∈ R3, let
(θt)t≥0 be the corresponding GF-Attention trajectory starting from θ0. If w0 ̸= 0, then the energy stays constant along the
trajectory, i.e.

E(θt) = e2t − (w2
t + sign(wt) · log |wt|)− 2a2t = E(θ0), ∀t ≥ 0. (52)

On the other hand, if w0 = 0, wt = 0 for all t ≥ 0. Hence, if we initialize on ea-plane the trajectory always stays on the
ea-plane.

Now we characterize the convergence of the gradient flow.

Lemma 15 (GF convergence). Let (θt)t≥0 be a continuously diferentiable GF-Attention trajectory starting from θ0. Then
for all initializations θ0 ∈ R3,

(i) (θt)t≥0 is bounded,
(ii) there exists a θlim ∈ R3 such that limt→∞ θt = θlim and

(iii) limt→∞ ∥∇L(θt)∥ = ∥∇L(θlim)∥ = 0.

Hence θlim is a critical point of L.

The following result characterizes the energy of the limit point.

Lemma 16 (Energy at the limit point). Consider the same setting as in Lemma 15. If θ0 ∈ R3 \ ea-plane, then
E(θlim) = E(θ0). Hence θlim lies at the intersection of the contour line E(e, w) = E0 with the set of critical points of L in
R3.

On the other hand, if θ0 ∈ ea-plane, then θlim ∈ ea-plane.

We defer the proofs of the lemmas to App. M.

H.4. Role of Standard Initialization

Theorem 11 ( [Informal] Role of standard initialization for p + q − 1 > 0). If we use the standard initialization θ0 ∼
N (0, σ2I2) with σ2 ≪ 1/

√
2, θlim will be a local minimum with high probability.
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I. Proofs of theorems in App. E
I.1. Proof of Thm. 7

Proof. We characterize the set of global minima, local minima, and that of the saddle points individually.

(i) Set of all global minima. Let γ⋆ ∈ R3 be arbitrary. From (?)Lemma 1]makkuva2024attention, we have that γ⋆ is a
global minimum for the loss L(·) in Eq. (26) if and only if its prediction probability satisfies fγ⋆

(xn
1 ) = P (xn+1 = 1 | xn),

the Markov kernel. Since the input {xn}Nn=1 ∼ (π(p, q),P (p, q)), we have that

P (xn+1 = 1 | xn) = (1− xn)p+ xn(1− q) = (1− p− q)xn + p. (53)

On the other hand, by definition, from Eq. (7), fγ⋆
(xn

1 ) = σ
(
e2(1 + 2w|w|)xn + b− e2

2

)
, where γ⋆ = (e, w, b). Since

xn ∈ {0, 1}, this can be further simplified to

fγ⋆
(xn

1 ) = σ

(
e2(1 + 2w|w|)xn + b− e2

2

)
= xn · σ

(
e2(1 + 2w|w|) + b− e2

2

)
+ (1− xn) · σ

(
b− e2

2

)
= xn

(
σ

(
2e2w|w|) + b+

e2

2

)
− σ

(
b− e2

2

))
+ σ

(
b− e2

2

)
.

(54)

Since both fγ⋆
(xn

1 ) and P (xn+1 = 1 | xn) are linear functions of xn, equating them for all vallues of xn ∈ {0, 1} implies
that the respective coeffecients in these functions in Eq. (53) and Eq. (54) are also equal, i.e.

σ

(
b− e2

2

)
= p,

σ

(
2e2w|w|+ b+

e2

2

)
− σ

(
b− e2

2

)
= 1− p− q,

and hence

σ

(
b− e2

2

)
= p, σ

(
2e2w|w|) + b+

e2

2

)
= 1− q. (55)

Since σ(z) = y for y ∈ (0, 1) implies z = log y
1−y , Eq. (55) can be rewritten as

b− e2

2
= log

p

1− p
, 2e2w|w|+ b+

e2

2
= log

1− q

q
.

Using 2e2w|w|+ b+ e2

2 = e2(1 + 2w|w|) + b− e2

2 = e2(1 + 2w|w|) + log p
1−p in the second equality above, we obtain

b− e2

2
= log

p

1− p
,

e2(1 + 2w|w|) = log
1− q

q
+ log

1− p

p
= log

(1− p)(1− q)

pq
.

(56)

Thus γ⋆ ∈ R3 is a global minimum for L(·) if and only if it satisfies Eq. (56) (note that it’s already a critical point, as
established in Thm. 6). Thus, the set of all global minimum Γ⋆(p, q) is given by

Γ⋆(p, q) ≜

{
γ⋆ = (e, w, b) ∈ R3 : e2(1 + 2w|w|) = log

(1− p)(1− q)

pq
, b− e2

2
= log

p

1− p

}
.

Since the prediction fγ⋆
(·) equals the Markov kernel for any γ⋆ ∈ Γ⋆, it follows from Thm. 4 (or (?)Lemma

1]makkuva2024attention) that L(γ⋆) = H(xn+1 | xn), the entropy rate of the Markov chain.
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(ii) Set of local minima and saddle points.

Define Γmin(p, q) ⊆ R3 and Γsad ⊆ R3 as follows:

Γmin(p, q) ≜

{
γmin = (e, w, b) ∈ R3 : e = 0, (p+ q − 1)(1 + 2w|w|) > 0, b = log

p

q

}
,

Γsad(p, q) ≜

{
γsad = (e, w, b) ∈ R3 : e = 0, (p+ q − 1)(1 + 2w|w|) ≤ 0, b = log

p

q

}
.

To show that Γmin is the set of all bad local minima for L(·), we first show that any γmin ∈ Γmin is a bad local minimum
and then show that every bad local minimum should belong to Γmin. Similarly for Γsad. We start with the local minima.

Let γmin = (e, w, b) ∈ Γmin. Recall that γmin is a stationary point (Thm. 6), i.e.

∇L(γmin) = 0.

Rearragning the order of scalars and writing γmin = (b, e, w), from Lemma 4, the Hessian of the loss at γmin is

∇2L(γmin) = π0π1

1 0 0
0 2(p+ q − 1)(1 + 2w|w|) 0
0 0 0

 . (57)

By definition, γmin = (b, e, w) satisfies (p + q − 1)(1 + 2w|w|) > 0. Thus its Hessian in Eq. (57) has a block diagonal

structure of the form
[
Hb,e 0
0 0

]
where Hb,e has both the eigen values positive, and hence positive-definite. In other words,

γmin is a local minimum for L(·) in the (b, e) ∈ R2 space for any fixed w in the set. Interestingly, using the continuity
argument and the fact that L(b = log p

q , e = 0, w) is constant in w ∈ R, we can essentially follow the same steps as in
proof of Theorem 2 in (?)Appendix B.3]makkuva2024attention (Thm. 5 above) to show that γmin = (b, e, w) is a also local
minimum for L(·) in the full parameter space R3. This establishes that γmin is a local minimum for L(·).

For the saddle points, let γsad = (e, w, b) ∈ Γsad. We have that γsad is a stationary point (Thm. 6) and Lemma 4 implies its
Hessian (after rearraging the order of scalars as above with γsad = (b, e, w)) is:

∇2L(γsad) = π0π1

1 0 0
0 2(p+ q − 1)(1 + 2w|w|) 0
0 0 0

 . (58)

If w ̸= − 1√
2

, (p + q − 1)(1 + 2w|w|) < 0 for any γsad ∈ Γsad, and hence the Hessian ∇2L(γsad) in Eq. (58) as both
positive, negative, and zero eigen values. Thus γsad is a saddle point for L(·). Using a neighborhood argument, we can
similarly argue for w = 1√

2
to establish that it’s also a saddle point. Now we compute the loss value.

For any γmin = (e, w, b) ∈ Γmin or γsad = (e, w, b) ∈ Γsad, we have that e = 0 and b = log p
q . Thus for γ = γmin or

Γsad, the prediction probability in view of Eq. (7) is

Pγ(xn+1 = 1 | xn
1 ) = σ

(
e2(1 + 2w|w|)xn + b− e2

2

)
= σ(b) =

p

p+ q
= P (xn+1 = 1) ,

the marginal distribution. Substituting this equality in the definition of cross-entropy loss L(·) in Eq. (1) and the fact that
P (xn+1 = 1) = p

p+q = π1, following the same steps as in (?)Appendix B.3]makkuva2024attention, we obtain

L(γ) =− 1

N

∑
n∈[N ]

Exn+1
1

[xn+1 · log fγ(xn
1 ) + (1− xn+1) · log(1− fγ(x

n
1 ))]

= − 1

N

∑
n∈[N ]

Exn+1
1

[xn+1 · log π1 + (1− xn+1) · log π0]

=
1

N

∑
n∈[N ]

[−π1 log π1 − π0 log π0]
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= H(π) = H(xn+1).

Thus L(γmin) = L(γsad) = H(xn+1). To see that H(xn+1 | xn) = L(γ⋆) < L(γmin) = L(γsad) = H(xn+1) for any
global minimum γ⋆, observe that the gap

L(γmin)− L⋆ = H(xn+1)−H(xn+1|xn) = I(xn;xn+1) ≥ 0,

where I(xn;xn+1) is the mutual information between xn and xn+1 (Cover and Thomas, 2006). Hence the optimality
gap equals zero if and only if the mutual information equals zero, which happens when xn and xn+1 are independent, i.e.
P (xn+1 = 1 | xn) doesn’t depend on xn. Since P (xn+1 = 1 | xn) = (1− p− q)xn + p from Eq. (53), this happens only
when p+ q = 1 which contradicts the theorem assumption that p+ q ̸= 1. Hence H(xn+1 | xn) = L(γ⋆) < L(γmin) =
L(γsad) = H(xn+1).

Now we finally show that Γmin and Γsad are the only set of bad local minima and saddle points respectively. Let γ is a bad
local minimum for L(·). By definition, it’s also a critical point. Recall from Thm. 6 that any stationary point γ = (e, w, b)
for the loss L(·) satisfies that either γ ∈ Γ⋆, γ ∈ Γmin, or γ ∈ Γsad. Clearly γ ̸∈ Γ⋆, as Γ⋆ is the set of all global minima.
Similarly, γ ̸∈ Γsad as every point in Γsad is a saddle point for the loss L(·) as established above. Hence γ ∈ Γmin. Thus
every bad local minimum in R3 belongs to Γmin. This coupled with the fact above that Γmin is a set of bad local minima
implies Γmin is indeed the set of all bad local minima. The proof for Γsad is similar.

I.2. Proof of Thm. 6

Proof. Let γ = (e, w, b) ∈ R3 be such that ∇L(γ) =
(
∂L
∂e ,

∂L
∂w , ∂L

∂b

)⊤
= 0. By Lemma 3, we have

∂L

∂e
= EX [(f1X + f2)(2X(1 + 2w|w|)− 1))] · e = 0, (59)

∂L

∂w
= EX [(f1X + f2)X] · 4e2|w| = 0, (60)

∂L

∂b
= EX [f1X + f2] = 0, (61)

where X ∼ Bern(p/(p + q)), f1 = σ
(
2e2w|w|+ b+ e2

2

)
+ q − 1 − σ

(
b− e2

2

)
+ p, and f2 = σ

(
b− e2

2

)
− p. Our

goal is to now show that Eqs. (59)-(61) hold only if either (e = 0, b = log p
q ) or (f1 = 0, f2 = 0). We consider two cases

corresponding to e = 0 and e ̸= 0.

(i): e = 0. If e = 0, we readily see that ∂L
∂e = ∂L

∂e = 0. Further, f1 = p+ q− 1 and f2 = σ(b)− p. Hence, Eq. (61) implies
that

EX [f1X + f2] = (p+ q − 1)E[X] + σ(b)− p = (p+ q − 1)
p

p+ q
+ σ(b)− p = σ(b)− p

p+ q
= 0,

which implies that b = log p
q . Since w ∈ R is arbitrary, we see in this case that

γ ∈
{
(e, w, b) ∈ R3 : e = 0, (p+ q − 1)(1 + 2w|w|) > 0, b = log

p

q

}⋃
{
(e, w, b) ∈ R3 : e = 0, (p+ q − 1)(1 + 2w|w|) < 0, b = log

p

q

}
,

= Γmin ∪ Γsad.

(ii): e ̸= 0. Suppose e ̸= 0. Here we show that f1 = f2 = 0 and hence γ ∈ Γ⋆. We consider two cases corresponding to
w ̸= 0 and w = 0. Let w ̸= 0. Since both e ̸= 0 and w ̸= 0, and X = X2 in Eq. (60) with E[X] = π1 = p

p+q > 0, we
obtain that

EX [f1X
2 + f2X] = (f1 + f2)E[X] = (f1 + f2)π1 = 0,

and hence f1 + f2 = 0. Further Eq. (61) implies that f1π1 + f2 = 0. Together, this implies f1 = f2 = 0.
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Now suppose w = 0. From Eq. (61), we have that E[f1X + f2] = f1π1 + f2 = 0. Since e ̸= 0, Eq. (59) yields

EX [(f1X + f2)(2X − 1))] = 2EX [(f1X + f2)X] = 2π1(f1 + f2) = 0.

So f1 = f2 = 0 in this case too. Thus we have showed that whenever e ̸= 0, we have f1 = f2 = 0. Recalling the
expressions for f1 and f2,

f2 = σ

(
b− e2

2

)
− p = 0 ⇒ b− e2

2
= log

p

1− p
, (62)

f1 = σ

(
2e2w|w|+ b+

e2

2

)
+ q − 1− σ

(
b− e2

2

)
+ p = σ

(
2e2w|w|+ b+

e2

2

)
+ q − 1 = 0,

and hence,

2e2w|w|+ b+
e2

2
= log

1− q

q
.

Substituting b− e2

2 = log p
1−p in the above equation,

2e2w|w|+ e2 + b− e2

2
= 2e2w|w|+ e2 + log

p

1− p
= log

1− q

q
,

and thus,

e2(1 + 2w|w|) = log
(1− p)(1− q)

pq
. (63)

In view of Eq. (62) and Eq. (63), we have that γ = (e, w, b) ∈ Γ⋆.

Together, we have shown that whenever ∇L(γ) = 0, we have γ ∈ Γ⋆ ∪ Γmin ∪ Γsad. Since Γ⋆ ∪ Γmin ∪ Γsad ⊆
{γ : ∇L(γ) = 0}, we are done.

J. Proofs of technical lemmas in App. E
J.1. Proof of Lemma 2

Proof. Recall from Eq. (11) that the cross-entropy loss L(·) is defined as

L(γ) = − 1

N

∑
n∈[N ]

Exn+1
1

[xn+1 · log fγ(xn
1 ) + (1− xn+1) · log(1− fγ(x

n
1 ))], (64)

where fγ(x
n
1 ) = σ(logitn) = σ

(
e2(1 + 2w|w|)xn + b− e2

2

)
from Eq. (7). For any Y ∈ {0, 1}, Z ∈ R, using the fact

that 1− σ(Z) = σ(−Z), we have

− [Y log σ(Z) + (1− Y ) log(1− σ(Z))] = − [Y log σ(Z) + (1− Y ) log σ(−Z)]

(a)
= Y log(1 + exp(−Z)) + (1− Y ) log(1 + exp(Z))

= log (1 + exp(−(2Y − 1)Z))

(b)
= ℓlog ((2Y − 1)Z) ,

(65)

where (a) and (b) follow from the definitions of sigmoid and the logistic functions: σ(z) = 1
1+exp(−z) , ℓlog(z) =

log(1 + exp(−z)) for z ∈ R. Substituting Y = xn+1 ∈ {0, 1} and Z = logitn ∈ R in Eq. (65), Eq. (64) simplifies to

L(γ) =
1

N

∑
n∈[N ]

E[ℓlog ((2xn+1 − 1) · logitn)].
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Since logitn is only a function of xn, the above expectation is over the distribution of the pairs (xn, xn+1), which for all
n ∈ [N ] have the same law as a pair of random variables (X,Y ) with X ∼ π ≡ Bern(p/(p+ q)) and Y |X ∼ P (p, q), the
Markov kernel. Hence the above equality can be rewritten using the definition of logitn as

L(γ) =
1

N

∑
n∈[N ]

E[ℓlog ((2xn+1 − 1) · logitn)] = EX,Y

[
ℓlog

(
(2Y − 1)

(
e2(1 + 2w|w|)X + b− e2

2

))]
.

J.2. Proof of Lemma 3

Proof. With γ = (e, w, b) and θ denoting either of the scalars e, w, or b, we have from (?)Lemma 2]makkuva2024attention
that the gradient of the loss L(·) is given by

∇θL(γ) = − 1

N

∑
n∈[N ]

Exn+1
1

[(xn+1 − fθ(x
n
1 )) · ∇θ logitn] , (66)

where fγ(x
n
1 ) = σ(logitn) = σ

(
e2(1 + 2w|w|)xn + b− e2

2

)
. Using the same argument as in the proof of Lemma 6, we

can replace the expecatations in Eq. (66) with that of a pair of random variables (X,Y ) with X ∼ π ≡ Bern(p/(p+ q))
and Y |X ∼ P (p, q), the Markov kernel. That is,

∇θL(γ) = −EX,Y

[(
Y − σ

(
e2(1 + 2w|w|)X + b− e2

2

))
· ∇θ

(
e2(1 + 2w|w|)X + b− e2

2

)]
. (67)

Now we define the error term E(X,Y ) ≜ −
(
Y − σ

(
e2(1 + 2w|w|)X + b− e2

2

))
. Our goal is to show that E[E(X,Y ) |

X] = f1X + f2, where f1 ≜ σ
(
2e2w|w|+ b+ e2

2

)
+ q− 1− σ

(
b− e2

2

)
+ p, and f2 ≜ σ

(
b− e2

2

)
− p, which suffices

to prove the lemma. To this end, using the fact that X ∈ {0, 1}, we have

E(X,Y ) = −
(
Y − σ

(
e2(1 + 2w|w|)X + b− e2

2

))
= −

(
Y −X · σ

(
2e2w|w|+ b+

e2

2

)
− (1−X) · σ

(
b− e2

2

))
= −Y +X

(
σ

(
2e2w|w|+ b+

e2

2

)
− σ

(
b− e2

2

))
+ σ

(
b− e2

2

)
.

Now taking the conditional expectation with respect to X and using the fact that E[Y |X] = P (Y = 1 | X) = (1−p−q)X+p
(since Y |X ∼ P (p, q)), we have

E[E(X,Y ) | X] = −(1− p− q)X − p+X

(
σ

(
2e2w|w|+ b+

e2

2

)
− σ

(
b− e2

2

))
+ σ

(
b− e2

2

)
= X

(
σ

(
2e2w|w|+ b+

e2

2

)
+ q − 1− σ

(
b− e2

2

)
+ p

)
+ σ

(
b− e2

2

)
− p

(a)
= f1X + f2,

where (a) follows from the definition of f1 and f2 above. Thus Eq. (67) simplifies to

∇θL(γ) = EX

[
(f1X + f2) · ∇θ

(
e2(1 + 2w|w|)X + b− e2

2

)]
.

Letting θ = e, w, and b in the above equation, we finally obtain the individual gradients:

∂L

∂e
= EX [(f1X + f2)(2X(1 + 2w|w| − 1))] · e,
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∂L

∂w
= EX [(f1X + f2)X] · 4e2|w|,

∂L

∂b
= EX [f1X + f2] .

J.3. Proof of Lemma 4

Proof. Slightly changing the variable order, for any γ = (b, e, w) ∈ R3, we define

H(γ) ≜ ∇2L(γ) =


∂2L
∂b2

∂2L
∂b∂e

∂2L
∂b∂w

∂2L
∂e∂b

∂2L
∂e2

∂2L
∂e∂w

∂2L
∂w∂b

∂2L
∂w∂e

∂2L
∂w2

 ∈ R3×3. (68)

Recall that for any γmin ∈ Γmin and γsad ∈ Γsad, we have e = 0 and b = log p
q . Now we compute the second derivatives

of L with respect to any γ = (b = log p
q , e = 0, w). We start with the first derivatives. By Lemma 7, the gradients are

∂L

∂b
= EX [f1X + f2] ,

∂L

∂e
= EX [(f1X + f2)(2X(1 + 2w|w|)− 1))] · e,

∂L

∂w
= EX [(f1X + f2)X] · 4e2|w|,

(69)

where

f1 ≜ σ

(
2e2w|w|+ b+

e2

2

)
+ q − 1− σ

(
b− e2

2

)
+ p,

f2 ≜ σ

(
b− e2

2

)
− p.

From Eq. (69), we see that the second derivaties of L depend on the first-derivatives of f1 and f2, which we now compute.
Recall that the derivative of the sigmoid function obeys σ′(z) = σ(z)(1 − σ(z)) = σ(z)σ(−z) for any z ∈ R. Now the
gradients of f1 and f2 with respect to b, e, and w are

∂f1
∂b

= σ

(
2e2w|w|+ b+

e2

2

)
σ

(
−2e2w|w| − b− e2

2

)
− σ

(
b− e2

2

)
σ

(
−b+

e2

2

)
,

∂f2
∂b

= σ

(
b− e2

2

)
σ

(
−b+

e2

2

)
,

∂f1
∂e

= (4ew|w|+ e)σ

(
2e2w|w|+ b+

e2

2

)
σ

(
−2e2w|w| − b− e2

2

)
+ e σ

(
b− e2

2

)
σ

(
−b+

e2

2

)
,

∂f2
∂e

= (−e)σ

(
b− e2

2

)
σ

(
−b+

e2

2

)
,

∂f1
∂w

= (4e2 · wsign(w))σ
(
2e2w|w|+ b+

e2

2

)
σ

(
−2e2w|w| − b− e2

2

)
,

∂f2
∂w

= 0.
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Using the fact that σ
(
log p

q

)
= p

p+q = π1 and σ
(
− log p

q

)
= q

p+q = π0, the above gradients evaluated for any
γ = (b = log p

q , e = 0, w) further reduce to

∂f1
∂b

∣∣∣∣
γ

= 0,
∂f2
∂b

∣∣∣∣
γ

= π0π1,

∂f1
∂e

∣∣∣∣
γ

= 0,
∂f2
∂e

∣∣∣∣
γ

= 0,

∂f1
∂w

∣∣∣∣
γ

= 0,
∂f2
∂w

∣∣∣∣
γ

= 0.

(70)

Now substituting Eq. (70) when computing the second-derivatives of L in Eq. (69), we obtain

∂2L

∂b2

∣∣∣∣
γ

= EX

[
∂f1
∂b

∣∣∣∣
γ

X +
∂f2
∂b

∣∣∣∣
γ

]
= π0π1,

∂2L

∂b∂e

∣∣∣∣
γ

= EX

[
∂f1
∂e

∣∣∣∣
γ

X +
∂f2
∂e

∣∣∣∣
γ

]
= 0,

∂2L

∂b∂w

∣∣∣∣
γ

= EX

[
∂f1
∂w

∣∣∣∣
γ

X +
∂f2
∂w

∣∣∣∣
γ

]
= 0,

∂2L

∂e2

∣∣∣∣
γ

= EX [(f1X + f2)(2X(1 + 2w|w|)− 1))]

∣∣∣∣
γ

= EX [(2f1(1 + 2w|w|)− f1 + 2f2(1 + 2w|w|)X − f2]

∣∣∣∣
γ

= EX [(f1(1 + 4w|w|) + f2(2 + 4w|w|)X − f2]

∣∣∣∣
γ

= (f1(1 + 4w|w|) + f2(2 + 4w|w|))π1 − f2

∣∣∣∣
γ

(a)
= ((p+ q − 1)(1 + 4w|w|)− π1(p+ q − 1)(2 + 4w|w|))π1 + π1(p+ q − 1)

= π1(p+ q − 1) (1 + 4w|w| − π1(2 + 4w|w|) + 1)

(b)
= 2π1π0(p+ q − 1)(1 + 2w|w|),

(71)
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where (a) follows from the fact that f1|γ = p+ q − 1, f2|γ = σ(b)− p = p
p+q − p = −p

p+q (p+ q − 1) = −π1(p+ q − 1)

and (b) from 1− π1 = π0. Returning to the remaining second derivatives,

∂2L

∂e∂w

∣∣∣∣
γ

=
∂

∂e

(
E[(f1X + f2)X] · 4e2|w|

) ∣∣∣∣
γ

=
∂

∂e

(
E[(f1 + f2)X] · 4e2|w|

) ∣∣∣∣
γ

=
∂

∂e

(
(f1 + f2) · 4π1e

2|w|
) ∣∣∣∣

γ

=
∂

∂e

((
σ

(
2e2w|w|+ b+

e2

2

)
+ q − 1

)
· 4π1e

2|w|
) ∣∣∣∣

γ

=

(
∂

∂e
σ

(
2e2w|w|+ b+

e2

2

))
4π1e

2|w|
∣∣∣∣
γ

+

(
σ

(
2e2w|w|+ b+

e2

2

)
+ q − 1

)
· ∂

∂e
(4π1e

2|w|)
∣∣∣∣
γ

= 0,

∂2L

∂w2

∣∣∣∣
γ

=
∂

∂w

(
E[(f1X + f2)X] · 4e2|w|

)
=

(
∂

∂w
E[(f1X + f2)X] · 4|w|

)
e2
∣∣∣∣
γ

= 0.

(72)

Congregating all the second derivatives from Eq. (71) and Eq. (72) into the Hessian H(γ) in Eq. (68), we finally obtain

H(γ) = π0π1

1 0 0
0 2(p+ q − 1)(1 + 2w|w|) 0
0 0 0

 .

38



Local to Global: Learning Dynamics and Effect of Initialization for Transformers

K. Proofs of lemmas in App. F
K.1. Proof of Lemma 5

Proof. Recall from Lemma 2 that for any θ = (e, w) ∈ R2 and b ∈ R, we have

L(θ, b) = EX,Y

[
ℓlog

(
(2Y − 1)

(
e2(1 + 2w|w|)X + b− e2

2

))]
.

Since ℓlog(·) is a convex function, Y ∈ {0, 1} and thus 2Y − 1 ∈ {±1}, the convexity of L in b follows from the following
fact:

∂2L

∂b2
= EX,Y

[
ℓ′′log

(
(2Y − 1)

(
e2(1 + 2w|w|)X + b− e2

2

))]
≥ 0.

To find the optimal b⋆, we set the gradient ∂L
∂b = 0. Thus from Lemma 3, we obtain

∂L

∂b
= EX [f1X + f2] = 0,

f1 = σ

(
2e2w|w|+ b+

e2

2

)
+ q − 1− σ

(
b− e2

2

)
+ p, f2 = σ

(
b− e2

2

)
− p.

Substituting E ≜ e2(1 + 2w|w|), B ≜ b− e2

2 , and E[X] = π1 = p/(p+ q) in the above equations,

π1 (σ(E +B) + q − 1− σ(B) + p) + σ(B)− p = π1 · σ(E +B) + π0 · σ(B) +
p(p+ q − 1)

p+ q
− p = 0.

Further simplifying,

π0 · σ(B) = π1 · (1− σ(E +B)) = π1 · σ(−E −B).

In other words,

(1 + exp(−B))−1

(1 + exp(E +B))−1
=

π1

π0
=

p

q
⇒ 1 + exp(E) exp(B)

1 + exp(−B)
=

p

q
.

Defining x ≜ exp(B) and A ≜ exp(E), we thus obtain the following quadratic equation in x and its corresponding roots:

Ax2 − x

(
p

q
− 1

)
− p

q
= 0 ⇒ x =

1

2A

p
q
− 1±

√(
p

q
− 1

)2

+ 4 · p
q
·A

 .

Since x > 0, we take the root corresponding to the addition choice above and resubstituting x = exp(b − e2

2 ) and
A = exp(e2(1+2w|w|)), we obtain the final expression for b⋆. In particular, if e = 0, it is easy to see that A = 1 and hence
x = exp(b⋆) =

p
q , implying b⋆ = log p

q . Similarly, if A = (1−p)(1−q)
pq , it’s straightforward to see that exp(b⋆−e2/2) = p

1−p

and hence b⋆ − e2/2 = log p
1−p .

K.2. Proof of Lemma 6

Proof. The proof directly follows from Lemma 2 by substituting b = b⋆.

K.3. Proof of Lemma 7

Proof. By Danskin’s theorem (Danskin, 1966), it follows that for b⋆ = argminb∈R L(θ, b) and L(θ) = L(θ, b⋆), we
have ∇θL(θ) = ∇θL(θ, b⋆). Using the gradient expressions of L(θ, b) w.r.t θ from Lemma 3, and using the fact that
∂L
∂b = E[f1X + f2] at b = b⋆, the claim follows.

K.4. Proof of Lemma 8

Proof. Since L(θ) = L(θ, b⋆) where b⋆ = argminb∈R L(θ, b), the identity in Eq. (35) about the Hessian of the loss L with
respect to θ follows from the classical result of (?)Lemma 2.2]shapiro1985second about second-derivatives of extremal-value
functions. Finally Eq. (36) follows from substituting the full Hessian in R3×3 from Lemma 4 in this identity.
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L. Proofs of lemmas in App. G
L.1. Proof of Lemma 9

Proof. Denote (et, wt) = (e, w) with the dependence on time implicitly assumed. Then by the definition of GF and the
gradient expressions in Lemma 7, we have that

de

dt
= −∂L

∂e
(θt) = −2E[(f1X + f2)X] · (1 + 2w|w|)e, (73)

dw

dt
= −∂L

∂w
(θt) = −E[(f1X + f2)X] · 4e2|w|. (74)

Dividing Eq. (73) by (1 + 2w|w|)e and Eq. (74) by 4e2|w|, we have

1

1 + 2w|w|
de

dt
=

1

2e|w|
dw

dt
⇒ e

de

dt
=

(
w +

1

2|w|

)
dw

dt
.

Noting that d
dt (sign(w) · log |w|) =

1
|w|

dw
dt , the above equation can be rewritten as

d

dt

(
e2 − w2 − sign(w) · log |w|

)
= 0.

Thus defining E(e, w) = e2−w2−sign(w)·log |w| for w ̸= 0, the above equation implies E(θt) = E(θ0) for θ0 = (e0, w0)
with w0 ̸= 0. On the other hand, it’s easy to see that if w0 = 0, Eq. (74) implies dw

dt = 0 at t = 0 and hence wt = 0 for all
t ≥ 0.

L.2. Proof of Lemma 10

Proof. To prove the convergence of the trajectory (θt)t≥0, we use the classical result due to Łojasiewicz (?)Theorem
2.2]absil2005convergence which gurantees the convergence of gradient flow for real analytic functions, as long as the
trajectory is bounded. Hence we first show the boundedness of the trajectory.

(i) (θt)t≥0 is bounded.

We consider the cases θ0 ∈ e-axis and θ0 ∈ R2 \ e-axis separately.

Let’s suppose θ0 = (e0, w0) ∈ e-axis, i.e. w0 = 0. Thus it follows from Lemma 9 that wt = 0 for all t ≥ 0. That is, the
trajectory always stays on the e-axis and it suffices to track (et)t≥0 and show that they are bounded. To this end, we show
that if e0 > 0, we have de

dt < 0 and if e0 < 0, we have de
dt > 0 for all t ≥ 0, which establishes our claim. We have from the

GF and Lemma 7 that

det
dt

= −∂L

∂e
(et, wt = 0) = −2EX [(f1X + f2)X] et = −2π1(f1 + f2)et, (75)

and

f1 + f2 = − f2
π1

+ f2 = −π0

π1
f2 = −π0

π1

[
σ

(
(b⋆)t −

e2t
2

)
− p

]
= −π0

π1

[(
1 + exp

(
−(b⋆)t +

e2t
2

))−1

− p

]

= −π0

π1


1 +

2xt

p
q − 1 +

√(
p
q − 1

)2
+ 4 · p

q · xt


−1

− p

 , xt ≜ exp(e2t ). (76)

Defining

g(x) ≜
2x

p
q − 1 +

√(
p
q − 1

)2
+ 4 · p

q · x
, (77)
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and substituting Eq. (77) and Eq. (76) in Eq. (75), we obtain

det
dt

= 2π0

(
1

1 + g(xt)
− p

)
· et. (78)

Since xt = exp(e2t ) = exp(−e2t ), in view of Eq. (78), with out loss of generality, we can assume that e0 > 0 and show that
det
dt < 0 for all t ≥ 0. That is, the RHS Eq. (78) is negative. Note that xt ≥ 1 since xt = exp(e2t ) and g(xt) > 0 since the

denominator p
q − 1 +

√(
p
q − 1

)2
+ 4 · p

q · xt >
p
q − 1 + p

q + 1 = 2 · p
q > 0. Further g(1) = q

p and limx→∞ g(x) = ∞.

If we show that g(x) is increasing in x for x ≥ 1, it implies 1
1+g(x) − p < 1

1+g(1) − p = 1
1+ q

p
− p = − p

p+q (p+ q− 1) < 0.

Thus the gradient in Eq. (78) remains negative starting at t = 0 and hence the sequence (et)t≥0 will be bounded. Now it

remains to show g(·) is increasing, i.e. g′(·) > 0. Defining C =
(

p
q − 1

)
/
(
2
√

p
q

)
and D = C2, we have that g(x) upto a

postive scaling is

g(x) =
x

C +
√
x+D

.

Hence

g′(x) =
C +

√
x+D − x

2
√
x+D

(C +
√
x+D)2

.

Thus it suffices to show that h1(x) ≜ C +
√
x+D > h2(x) ≜ x

2
√
x+D

for x ≥ 1. Note that h1(1)− h2(1) is given by

h1(1)− h2(1) =

p
q − 1

2
√

p
q

+

√√√√√1 +

 p
q − 1

2
√

p
q

2

− 1

2

√
1 +

(
p
q−1

2
√

p
q

)2

=

√
p

q
−

√
p
q

1 + p
q

> 0.

Now we show that h′(x) > h′
2(x) for all x ≥ 1 which implies that h1(x) > h2(x) for all x ≥ 1, thus establishing our claim.

To this end, we have that

h′
1(x)− h′

2(x) =
1

2
√
x+D

−

√
x+D − x

2
√
x+D

2(x+D)

=
x

2
√
x+D(x+D)

> 0.

This proves our claim that g(·) is increasing and hence (et)t≥0, and consequently (θt)t≥0, is bounded when θ0 ∈ e-axis.

Now let’s assume that θ0 = (e0, w0) ∈ R2 \ e-axis. Since (θt)t≥0 ⊆ R2 \ e-axis, it follows that the loss L(·) is analytic on
the trajectory (since the logistic function is analytic), and hence by (?)Theorem 2.2]absil2005convergence, it follows that
limt→∞ ∥θt∥ exists. Now we show that limt→∞ ∥θt∥ ≠ ∞, which implies the desired result about boundedness. To show
limt→∞ ∥θt∥ ̸= ∞, we show that there exists a large B > 0 such that for any θt = (e, w) ∈ R2 with ∥(e, w)∥ ≥ B , the
velocity vector dθ

dt points inwards into the ball of radius B and thus the trajectory always stays inside this ball, and hence
bounded. To establish this, let’s denote (et, wt) = (e, w) with the dependence on time implicitly assumed. Then by the
definition of GF and the gradient expressions in Lemma 7, we have that

de

dt
= −∂L

∂e
(θt) = −2E[(f1X + f2)X] · (1 + 2w|w|)e (79)

dw

dt
= −∂L

∂w
(θt) = −E[(f1X + f2)X] · 4e2|w|, (80)
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where f1 = σ
(
2e2w|w|+ b⋆ +

e2

2

)
+ q − 1− σ

(
b⋆ − e2

2

)
+ p, and f2 = σ

(
b⋆ − e2

2

)
− p with π1f1 + f2 = 0. Given

that only de
dt flips in sign under the transformation (e, w) 7→ (−e, w), with out loss of generality we can assume e > 0. Now

let’s also assume w > 0. Thus, in view of Eq. (79) and GF, to show that the derivative points inwards, it suffices to show
that E[(f1X + f2)X] > 0 for reasonably large B with ∥(e, w)∥ = B. Similar to Eq. (76) and Eq. (77) above, using the
relation π1f1 + f2 = 0, we obtain

E[(f1X + f2)X] = π1(f1 + f2) = −π0

(
1

1 + g(x)
− p

)
, x ≜ exp(e2(1 + 2w|w|)). (81)

Using the fact that g(x) is increasing for x ≥ 1 with limx→∞ g(x) = ∞, and |w| = w > 0, we can chose a B > 0 such that
for any ∥(e, w)∥ ≥ B, in Eq. (81) we have 1/(1+ g(x)) < p and hence E[(f1X+f2)X] > 0. This finishes the proof of our
claim. The proof for w < 0 is similar, where we make use of the fact that limx→0 g(x) = 0 to show E[(f1X + f2)X] < 0
for e, w reasonably large.

(ii) limt→∞ θt = θlim. Since the logistic function ℓlog(·) is analytic, it follows from Lemma 6 that the loss L(θ) is analytic
too whenever w ̸= 0. On the other hand, when w = 0, it’s easy to see that L is an analytic function of e ∈ R. By Lemma 9,
we know that if w0 ̸= 0, wt ̸= 0 and if w0 = 0, wt = 0 for all t ≥ 0. Thus the loss is analytic on the trajectory for all t ≥ 0.
Since the trajectory is bounded, it follows from Łojasiewicz’s theorem (?)Theorem 2.2]absil2005convergence that there
exists a θlim ∈ R2 such that limt→∞ θt = θlim.

(iii) limt→∞ ∥∇L(θt)∥ = ∥∇L(θlim)∥ = 0. Since the trajectory is bounded, it follows from (?)Theorem 2]ah-
madova2023convergence that the gradient converges to zero, i.e. limt→∞ ∥∇L(θt)∥ = 0. Since ∇L(·) is a continuous
function and limt→∞ θt = θlim, we have limt→∞ ∥∇L(θt)∥ = ∥∇L(θlim)∥ = 0.

L.3. Proof of Lemma 11

Proof. Since the energy function E(·, ·) in Eq. (51) is a continuous function in R2 \ e-axis, and any trajectory (θt)t≥0 with
intialization θ ∈ R2 \ e-axis stays in R2 \ e-axis for all t ≥ 0 (Lemma 9), it follows that limt→∞ E(θt) = E(θlim) = E(θ0).
As ∇L(θlim) = 0 from Lemma 10, it follows that θlim lies at the intersection of the contour line E(e, w) = E0 with the set
of critical points of L in R2.

On the other hand, if θ0 ∈ e-axis, we have θt ∈ e-axis from Lemma 9 for all t ≥ 0. Hence θlim ∈ e-axis.

L.4. Proof of Lemma 12

Proof. Recall that f : R \ {0} → R, defined as f(w) ≜ E(e = 0, w) = −(w2 + sign(w) · log |w|). If w < 0, we have

f(w) = −(w2 − log(−w)), f ′(w) = −2w +
1

w
.

Hence f ′(w) ≥ 0 for w ∈ (−∞,−1/
√
2] and f ′(w) ≤ 0 for w ∈ [−1/

√
2, 0) with f ′(− 1√

2
) = 0. It’s also straightforward

to see that limw→−∞ f(w) = −∞, limw→0− f(w) = −∞, and f(−1/
√
2) = Esad (by the definition of f ). This establishes

(i), (ii), and (iii).

On the other hand, for w > 0, we have f(w) = −(w2 + logw) and f ′(w) = −(2w + 1/w). Hence f is monotonically
decreasing for w > 0 with limw→0+ f(w) = ∞ and limw→∞ f(w) = −∞. Note that w = 0 acts as an energy barrier
since limw→0− f(w) = −∞ whereas limw→0+ f(w) = ∞.
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M. Proofs of lemmas in App. H
M.1. Proof of Lemma 13

Proof. First we consider the loss with the bias L(θ, b) from 44:

L(θ, b) = EX,Y [ℓlog ((2Y − 1) · logitX(θ, b))]

logitX(θ, b) = e2
[(

X − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b, θ = (e, w, a).

Using the fact that ℓ′log(z) = σ(z)− 1 and 2Y − 1 ∈ {±1}, we have for any θ ∈ {e, w, a, b} that

∇θL = E [(σ((2Y − 1) · logitX)− 1) (2Y − 1) · ∇θlogitX ] = E [(σ(logitX)− Y ) · ∇θlogitX ] . (82)

Now we simplify σ(logitX) using the fact that X ∈ {0, 1}:

σ(logitX) = σ

(
e2
[(

X − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
= X σ

(
e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
︸ ︷︷ ︸

≜ϕ1

+ (1−X)σ

(
e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
︸ ︷︷ ︸

≜ϕ0

= Xϕ1 + (1−X)ϕ0

= X(ϕ1 − ϕ0) + ϕ0.

Thus the gradients in 82 are given by

∇θL = −E [(Y −X(ϕ1 − ϕ0)− ϕ0)∇θlogitX ]

= −EX

[
Exn+1

1
[(E[Y | X]−X(ϕ1 − ϕ0)− ϕ0)∇θlogitX ]

]
= −EX [((1− p− q)X + p−X(ϕ1 − ϕ0)− ϕ0)∇θlogitX ]

= −EX

1− p− q − ϕ1 + ϕ0︸ ︷︷ ︸
f1

X + p− ϕ0︸ ︷︷ ︸
f2

∇θlogitX


= −EX [(f1X + f2)∇θlogitX ] .

(83)

Now we compute the individual gradients with respect to e, w, a and b. Recall that

logitX = e2
[(

X − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b.
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Thus,

∇elogitX = 2e

[(
X − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ e2

[
2ae

(
X − 1

2

)
(1 + 2w|w|) + wsign

(
w
(
1 + ae2

))
(2ae)

]
= 2e

(
X − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + 2ew|w(1 + ae2)|

+ 2e3a

(
X − 1

2

)
(1 + 2w|w|) + 2e3awsign

(
w
(
1 + ae2

))
= 2e

(
X − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + 2e3a

(
X − 1

2

)
(1 + 2w|w|)

+ 2ew|w(1 + ae2)|+ 2e3awsign
(
w
(
1 + ae2

))
.

Substituting the above equation in Eq. (83), we obtain

∇eL = −
(
E
[
(f1X + f2)

(
X − 1

2

)])
· 2e

(
1 + ae2

)
(1 + 2w|w|)

−
(
E
[
(f1X + f2)

(
X − 1

2

)])
· 2e3a (1 + 2w|w|)

− (E [(f1X + f2)]) · 2ew|w(1 + ae2)|
− (E [(f1X + f2)]) · 2e3aw sign

(
w
(
1 + ae2

))
.

(84)

Now we compute the derivative with respect to w.

logitX = e2
[(

X − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

⇒ ∇wlogitX = 2e2
(
X − 1

2

)(
1 + ae2

)
(|w|+ sign (w)w)

+ e2
[
|w(1 + ae2)|+ w

(
1 + ae2

)
sign

(
w
(
1 + ae2

))]
⇒ ∇wL = −

(
E
[
(f1X + f2)

(
X − 1

2

)])
2e2
(
1 + ae2

)
(|w|+ sign (w)w)

− (E [(f1X + f2)]) e
2
[
|w(1 + ae2)|+ w

(
1 + ae2

)
sign

(
w
(
1 + ae2

))]
.

Similarly, for a:

logitX = e2
[(

X − 1

2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

⇒ ∇alogitX = e4
(
X − 1

2

)(
1 + ae2

)
(1 + 2w|w|)

+ e4w2sign
(
w(1 + ae2)

)
⇒ ∇aL = −

(
E
[
(f1X + f2)

(
X − 1

2

)])
e4 (1 + 2w|w|)

− (E [(f1X + f2)]) e
4w2sign

(
w(1 + ae2)

)
.

Finally, since ∇blogitX = 1, it follows from Eq. (83) that

∇bL = −E [f1X + f2] . (85)

For the optimal b⋆, we have ∇bL = 0 and hence E [f1X + f2] = 0, simplifying the expressions for the gradients of e, w,
and a above. This concludes the proof.
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M.2. Optimality conditions for linear self- attention

We prove Thm. 9 and Thm. 10 below. Note that Thm. 10 directly follows from the former by removing the bias b since for
critical points, the bias b is already the optimal one, similar to the proof of Thm. 1.

We characterize the set of global minima first.

Set of all global minima. Let γ⋆ ∈ R4 be arbitrary. From (Makkuva et al., 2024)-Lemma 1, we have that γ⋆ is a global
minimum for the loss L(·) in Eq. (26) if and only if its prediction probability satisfies fγ⋆

(xn
1 ) = P (xn+1 = 1 | xn), the

Markov kernel. Since the input {xn}Nn=1 ∼ (π(p, q),P (p, q)), we have that

P (xn+1 = 1 | xn) = (1− xn)p+ xn(1− q) = (1− p− q)xn + p. (86)

On the other hand, by definition, from Eq. (7), fγ⋆
(xn

1 ) = σ
(
e2
[(
xn − 1

2

) (
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b
)
,

where γ⋆ = (e, w, b). Since xn ∈ {0, 1}, this can be further simplified to

fγ⋆
(xn

1 ) = σ

(
e2
[(

xn − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
(87)

= xnσ

(
e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
+ (1− xn)σ

(
e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

) (88)

= xnσ

(
e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
− xnσ

(
e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
+ σ

(
e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

) (89)

Since both fγ⋆
(xn

1 ) and P (xn+1 = 1 | xn) are linear functions of xn, equating them for all vallues of xn ∈ {0, 1} implies
that the respective coeffecients in these functions in Eq. (86) and Eq. (89) are also equal, i.e.

1− p− q = σ

(
e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
− σ

(
e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
p = σ

(
e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
and hence

σ

(
e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
= 1− q

σ

(
e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
= p

(90)

Since σ(z) = y for y ∈ (0, 1) implies z = log y
1−y , Eq. (90) can be rewritten as

e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b = log

1− q

q
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e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b = log

p

1− p

Adding and subtracting the above two equations, we obtain:

e2w|w(1 + ae2)|+ b =
1

2
log

p(1− q)

q(1− p)

e2
(
1 + ae2

)
(1 + 2w|w|) = log

(1− q)(1− p)

pq

(91)

Thus γ⋆ ∈ R3 is a global minimum for L(·) if and only if it satisfies Eq. (91) (note that it’s already a critical point, as
established in Thm. 6). Thus, the set of all global minimum Γ⋆(p, q) is given by

Γ⋆(p, q) ≜ {γ⋆ = (e, w, b, a) ∈ R4 : e2w|w(1 + ae2)|+ b =
1

2
log

p(1− q)

q(1− p)
,

e2
(
1 + ae2

)
(1 + 2w|w|) = log

(1− q)(1− p)

pq
}

Since the prediction fγ⋆
(·) equals the Markov kernel for any γ⋆ ∈ Γ⋆, it follows from Thm. 4 (or (?)Lemma

1]makkuva2024attention) that L(γ⋆) = H(xn+1 | xn), the entropy rate of the Markov chain.

M.3. Stationary points

Reproducing the derivates from the previous equations (and setting them to zero)

L(θ)

∂b
= EX [f1X + f2] = 0

L(θ)

∂e
= EX

[
(f1X + f2)

(
X − 1

2

)]
2e
(
1 + ae2

)
(1 + 2w|w|)

+ EX

[
(f1X + f2)

(
X − 1

2

)]
2e3a (1 + 2w|w|) = 0

L(θ)

∂w
= EX

[
(f1X + f2)

(
X − 1

2

)]
2e2
(
1 + ae2

)
(|w|+ sign (w)w) = 0

L(θ)

∂a
= EX

[
(f1X + f2)

(
X − 1

2

)]
e4 (1 + 2w|w|) = 0

(92)

From the above equations, there are multiple regions of stationarity. Here are the following regions of stationarity:

1. EX [f1X + f2] = 0, e = 0

2. EX [f1X + f2] = 0, e ̸= 0, 1 + ae2 = 0, 1 + 2w|w| = 0

Slightly changing the variable order, for any γ = (b, e, w, a) ∈ R4, we define

H(γ) ≜ ∇2L(γ) =



∂2L
∂b2

∂2L
∂b∂e

∂2L
∂b∂w

∂2L
∂b∂a

∂2L
∂e∂b

∂2L
∂e2

∂2L
∂e∂w

∂2L
∂e∂a

∂2L
∂w∂b

∂2L
∂w∂e

∂2L
∂w2

∂2L
∂w∂a

∂2L
∂a∂b

∂2L
∂a∂e

∂2L
∂a∂w

∂2L
∂a2


∈ R4×4. (93)
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Note that:

f1 = σ

e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b︸ ︷︷ ︸

z1



− σ

e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b︸ ︷︷ ︸

z2


+ p+ q − 1

f2 = σ

e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b︸ ︷︷ ︸

z2

− p

From Eq. (92), we see that the second derivaties of L depend on the first-derivatives of f1 and f2, which we now compute.
Recall that the derivative of the sigmoid function obeys σ′(z) = σ(z)(1 − σ(z)) = σ(z)σ(−z) for any z ∈ R. Now the
gradients of f1 and f2 with respect to b, e, w and a are
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∂f1
∂b

= σ(z1)σ(−z1)− σ(z2)σ(−z2)

∂f2
∂b

= σ(z2)σ(−z2)

∂f1
∂e

= σ(z1)σ(−z1)

{
2e

[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]}
+ σ(z1)σ(−z1)

{
2ae3

[
1

2
(1 + 2w|w|) + w|w|sign(1 + 2w|w|)

]}
− σ(z2)σ(−z2)

{
2e

[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]}
− σ(z2)σ(−z2)

{
2ae3

[
−1

2
(1 + 2w|w|) + w|w|sign(1 + 2w|w|)

]}
∂f2
∂e

= σ(z2)σ(−z2)

{
2e

[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]}
+ σ(z2)σ(−z2)

{
2ae3

[
−1

2
(1 + 2w|w|) + w|w|sign(1 + 2w|w|)

]}
∂f1
∂w

= σ(z1)σ(−z1)

{
2e2
[
1

2

(
1 + ae2

)
|w|+ |w||1 + ae2|

]}
− σ(z2)σ(−z2)

{
2e2
[
−1

2

(
1 + ae2

)
|w|+ |w||1 + ae2|

]}
∂f2
∂w

=

{
2e2
[
−1

2

(
1 + ae2

)
|w|+ |w||1 + ae2|

]}
∂f1
∂a

= σ(z1)σ(−z1)

{
e4
[
1

2
(1 + 2w|w|) + w|w|sign

(
1 + ae2

)]}
− σ(z2)σ(−z2)

{
e4
[
−1

2
(1 + 2w|w|) + w|w|sign

(
1 + ae2)

)]}
∂f2
∂a

= σ(z2)σ(−z2)

{
e4
[
−1

2
(1 + 2w|w|) + w|w|sign

(
1 + ae2

)]}

(94)

M.3.1. STATIONARY POINTS WHERE EX [f1X + f2] = 0, e = 0

When e = 0 =⇒ z1 = b, z2 = b. Hence:

f1 = σ(b) + p+ q − 1− σ(b) = p+ q − 1

f2 = σ(b)− p

On computing the expectation:

EX [f1X + f2] = (p+ q − 1)EX [X] + σ(b)− p = 0

= (p+ q − 1)π1 + σ(b)− p = 0

Rearranging and simplifying:

σ(b) =
p

p+ q
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=⇒ b = log
p

q

Using the fact that σ
(
log p

q

)
= p

p+q = π1 and σ
(
− log p

q

)
= q

p+q = π0, the above gradients evaluated for any
γ = (b = log p

q , e = 0, w, a) further reduce to

∂f1
∂b

∣∣∣∣
γ

= 0,
∂f2
∂b

∣∣∣∣
γ

= π0π1,

∂f1
∂e

∣∣∣∣
γ

= 0,
∂f2
∂e

∣∣∣∣
γ

= 0,

∂f1
∂w

∣∣∣∣
γ

= 0,
∂f2
∂w

∣∣∣∣
γ

= 0.

∂f1
∂a

∣∣∣∣
γ

= 0,
∂f2
∂a

∣∣∣∣
γ

= 0.

(95)

Now substituting Eq. (95) when computing the second-derivatives of L in Eq. (92), we obtain

∂2L

∂b2

∣∣∣∣
γ

= EX

[
∂f1
∂b

∣∣∣∣
γ

X +
∂f2
∂b

∣∣∣∣
γ

]
= π0π1,

∂2L

∂b∂e

∣∣∣∣
γ

= EX

[
∂f1
∂e

∣∣∣∣
γ

X +
∂f2
∂e

∣∣∣∣
γ

]
= 0,

∂2L

∂b∂w

∣∣∣∣
γ

= EX

[
∂f1
∂w

∣∣∣∣
γ

X +
∂f2
∂w

∣∣∣∣
γ

]
= 0,

∂2L

∂b∂a

∣∣∣∣
γ

= EX

[
∂f1
∂a

∣∣∣∣
γ

X +
∂f2
∂a

∣∣∣∣
γ

]
∂2L

∂e2

∣∣∣∣
γ

= EX

[
(f1X + f2)

(
X − 1

2

)]
2
(
1 + ae2

)
(1 + 2w|w|)

∣∣∣∣
γ

+ EX

[
(f1X + f2)

(
X − 1

2

)]
4e2a (1 + 2w|w|)

∣∣∣∣
γ︸ ︷︷ ︸

0

+ EX

[(
∂f1
∂e

∣∣∣∣
γ

X +
∂f2
∂e

∣∣∣∣
γ

)(
X − 1

2

)]
2
(
1 + ae2

)
(1 + 2w|w|)︸ ︷︷ ︸

0

= EX [(2f1(1 + 2w|w|)− f1 + 2f2(1 + 2w|w|)X − f2]

∣∣∣∣
γ

= EX [(f1(1 + 4w|w|) + f2(2 + 4w|w|)X − f2]

∣∣∣∣
γ

= (f1(1 + 4w|w|) + f2(2 + 4w|w|))π1 − f2

∣∣∣∣
γ

(a)
= ((p+ q − 1)(1 + 4w|w|)− π1(p+ q − 1)(2 + 4w|w|))π1 + π1(p+ q − 1)

= π1(p+ q − 1) (1 + 4w|w| − π1(2 + 4w|w|) + 1)

(b)
= 2π1π0(p+ q − 1)(1 + 2w|w|),

(96)
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where (a) follows from the fact that f1|γ = p+ q − 1, f2|γ = σ(b)− p = p
p+q − p = −p

p+q (p+ q − 1) = −π1(p+ q − 1)

and (b) from 1− π1 = π0. Returning to the remaining second derivatives,

∂2L

∂e∂w

∣∣∣∣
γ

=
∂

∂e
EX

[
(f1X + f2)

(
X − 1

2

)]
4e2
(
1 + ae2

)
|w|
∣∣∣∣
γ

= EX

[
(f1X + f2)

(
X − 1

2

)] (
8e
(
1 + ae2

)
|w|+ 8e3a|w|

) ∣∣∣∣
γ

+ EX

[(
∂f1
∂e

∣∣∣∣
γ

X +
∂f2
∂e

∣∣∣∣
γ

)(
X − 1

2

)]
4e2
(
1 + ae2

)
(|w|)

= 0

∂2L

∂e∂a

∣∣∣∣
γ

=
∂

∂e
EX

[
(f1X + f2)

(
X − 1

2

)]
e4 (1 + 2w|w|)

∣∣∣∣
γ

= EX

[
(f1X + f2)

(
X − 1

2

)]
4e3 (1 + 2w|w|)

∣∣∣∣
γ

+ EX

[(
∂f1
∂e

∣∣∣∣
γ

X +
∂f2
∂e

∣∣∣∣
γ

)(
X − 1

2

)]
e4 (1 + 2w|w|)

= 0

∂2L

∂w2

∣∣∣∣
γ

=
∂

∂w
EX

[
(f1X + f2)

(
X − 1

2

)]
4e2
(
1 + ae2

)
|w|
∣∣∣∣
γ

= EX

[
(f1X + f2)

(
X − 1

2

)]
4e2
(
1 + ae2

)
sign(w)

+ EX

[(
∂f1
∂w

∣∣∣∣
γ

X +
∂f2
∂w

∣∣∣∣
γ

)(
X − 1

2

)]
4e2
(
1 + ae2

)
|w|

= 0

∂2L

∂w∂a

∣∣∣∣
γ

=
∂

∂w
EX

[
(f1X + f2)

(
X − 1

2

)]
e4 (1 + 2w|w|)

∣∣∣∣
γ

= EX

[
(f1X + f2)

(
X − 1

2

)]
2e4|w|

∣∣∣∣
γ

+ EX

[(
∂f1
∂w

∣∣∣∣
γ

X +
∂f2
∂w

)∣∣∣∣
γ

]
e4 (1 + 2w|w|)

= 0

∂2L

∂a2

∣∣∣∣
γ

=
∂

∂a
EX

[
(f1X + f2)

(
X − 1

2

)]
e4 (1 + 2w|w|)

∣∣∣∣
γ

= EX

[
(f1X + f2)

(
X − 1

2

)]
2e4|w|

∣∣∣∣
γ

+ EX

[(
∂f1
∂w

∣∣∣∣
γ

X +
∂f2
∂w

)∣∣∣∣
γ

]
e4 (1 + 2w|w|)

= 0

(97)
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Congregating all the second derivatives from Eq. (96) and Eq. (97) into the Hessian H(γ) in Eq. (93), we finally obtain

H(γ) = π0π1


1 0 0 0
0 2(p+ q − 1)(1 + 2w|w|) 0 0
0 0 0 0
0 0 0 0

 .

It is trivial to see that (borrowing the result proved in E)

Similar to the notation defined before Γmin(p, q) ⊆ R4 and Γsad ⊆ R4 as follows:

Γmin(p, q) ≜

{
γmin = (e, w, b, a) ∈ R4 : e = 0, (p+ q − 1)(1 + 2w|w|) > 0, b = log

p

q

}
,

Γsad(p, q) ≜

{
γsad = (e, w, b, a) ∈ R4 : e = 0, (p+ q − 1)(1 + 2w|w|) ≤ 0, b = log

p

q

}
.

M.3.2. STATIONARY POINTS WHERE EX [f1X + f2] = 0, e ̸= 0, 1 + ae2 = 0, 1 + 2w|w| = 0

For this set of points, the Hessian remains undefined because ∂f1
∂e ,

∂f2
∂e ,

∂f1
∂a , ∂f2

∂a do not exist. This non-existence arises since
sign

(
1 + ae2

)
lacks definition when 1 + ae2 = 0. However, even in this scenario,when e ̸= 0, 1 + ae2 = 0, 1 + 2w|w| =

0 =⇒ z1 = b, z2 = b. Hence:

f1 = σ(b) + p+ q − 1− σ(b) = p+ q − 1

f2 = σ(b)− p

Hence, on computing the Expectation:

EX [f1X + f2] = (p+ q − 1)EX [X] + σ(b)− p = 0

= (p+ q − 1)π1 + σ(b)− p = 0

On simplifying:

σ(b) =
p

p+ q

=⇒ b = log
p

q

We could attempt to understand the characterization of the points on this manifold through local perturbation analysis.
However, in this work, we classify them as stationary points and leave the comprehensive characterization for future research.
Therefore,

Γstation(p, q) ⊆ R4 as follows:

Γstation(p, q) ≜

{
γmin = (e, w, b, a) ∈ R4 : e ̸= 0, 1 + ae2 = 0, 1 + 2w|w| = 0, b = log

p

q

}
,

M.3.3. COMPUTING THE OPTIMAL BIAS

Redefining quantities:
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f1 = σ

e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b︸ ︷︷ ︸

z1



− σ

e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b︸ ︷︷ ︸

z2


+ p+ q − 1

f2 = σ

e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b︸ ︷︷ ︸

z2

− p

Finding the manifold of stationary points for the bias:

L(θ)

∂b
= EX [f1X + f2] = 0

= (σ(z1)− σ(z2) + p+ q − 1)EX [X] + σ(z2)− p = 0

= (σ(z1)− σ(z2) + p+ q − 1)π1 + σ(z2)− p = 0

Hence on grouping terms together and simplifying:

(σ(z1)− σ(z2) + p+ q − 1)π1 = p− σ(z2)

=⇒ (σ(z1)− 1)π1 − σ(z2)π1 + p = p− σ(z2)

=⇒ (σ(z1)− 1)π1 = σ(z2)(π1 − 1)

=⇒ σ(z2)

1− σ(z1)
=

π1

1− π1
=

p

q

On using the definition of the sigmoid function and rearranging:

1 + exp(z1)

1 + exp(−z2)
=

p

q

=⇒ exp(z1) + 1 =
p

q
(1 + exp(−z2))

=⇒ exp(2z1) + exp(z1) =
p

q
exp(z1) +

p

q
exp(z1 − z2)

=⇒ exp(z1)
2 + exp(z1)(1−

p

q
)− p

q
· exp(z1 − z2) = 0

Basis the definitions of z1 and z2, we have z1−z2 = e2(1+ae2)(1+2w|w|). We define A = exp(e2(1+ae2)(1+2w|w|)).
Hence we obtain a quadratic equations for for exp(z1):

exp(z1)
2 + exp(z1)(1−

p

q
)− p

q
·A = 0

On solving the quadratic equation for exp(z1):
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exp(z1) =
1

2

p
q
− 1 +

√(
p

q
− 1

)2

+ 4 · p
q
·A

 (98)

=⇒ z1 = log

1

2

p
q
− 1 +

√(
p

q
− 1

)2

+ 4 · p
q
·A

 (99)

=⇒ bstation = log

1

2

p
q
− 1 +

√(
p

q
− 1

)2

+ 4 · p
q
·A

 (100)

− e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
, (101)

where bstation denotes points where the bias remains a stationary quantity.

M.4. Proof of 15

Proof. Recall from Lemma 13 that for θ = (e, w, a) ∈ R3, we have

∂L

∂e
= −E

[
(f1X + f2)

(
X − 1

2

)]
· 2e

(
1 + ae2

)
(1 + 2w|w|)

− E
[
(f1X + f2)

(
X − 1

2

)]
· 2e3a (1 + 2w|w|) ,

∂L

∂w
= −E

[
(f1X + f2)

(
X − 1

2

)]
· 2e2

(
1 + ae2

)
(|w|+ sign (w)w) ,

∂L

∂a
= −E

[
(f1X + f2)

(
X − 1

2

)]
· e4 (1 + 2w|w|) ,

where X ∈ {0, 1} is a Bernoulli random variable with X ∼ Bern(p/(p+ q)), and

f1 ≜ 1− p− q − ϕ1 + ϕ0, f2 ≜ p− ϕ0,

ϕ1 ≜ σ

(
e2
(
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

)
+ b⋆

)
,

ϕ0 ≜ σ

(
e2
(
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

)
+ b⋆

)
,

where the optimal bias b⋆ is obtained by solving π1f1 + f2 = 0. Using the definition of the gradient flow that θ̇ = −∇L(θ)
for θ = θt, we have

ẇ = −L(θ)

∂w
= E

[
(f1X + f2)

(
X − 1

2

)]
· 2e2

(
1 + ae2

)
(|w|+ sign (w)w)

=⇒ ẇ

e2 (|w|+ sign (w)w)
= E

[
(f1X + f2)

(
X − 1

2

)]
2
(
1 + ae2

)
.

(102)

Similarly for a,

ȧ = −L(θ)

∂a
= E

[
(f1X + f2)

(
X − 1

2

)]
e4 (1 + 2w|w|)

=⇒ ȧ

e4
= E

[
(f1X + f2)

(
X − 1

2

)]
(1 + 2w|w|)

(103)
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Likewise, for e:

ė = −L(θ)

∂e
= E

[
(f1X + f2)

(
X − 1

2

)]
2
(
1 + ae2

)
e (1 + 2w|w|)

+ E
[
(f1X + f2)

(
X − 1

2

)]
(1 + 2w|w|) 2e3a

(104)

By substituting the expressions of 102 and 103 into 104:

ė = E
[
(f1X + f2)

(
X − 1

2

)]
2
(
1 + ae2

)
102

e (1 + 2w|w|)

+ E
[
(f1X + f2)

(
X − 1

2

)]
(1 + 2w|w|)

103

2e3a

(105)

We obtain:

ė =
ẇ

2e2 (|w|+ sign (w)w)
e (1 + 2w|w|) + ȧ

e4
2e3a (106)

On rearranging and simplifying:

eė =
ẇ

(|w|+ sign (w)w)
(1 + 2w|w|) + ȧ2a

=⇒ eė =
ẇ

2 (|w|)
(1 + 2w|w|) + 2aȧ

(107)

Integrating the above equation on both sides:

∫
eė =

∫
ẇ

4 (|w|)
(1 + 2w|w|) +

∫
2aȧ

=⇒ e2(t)

2
=

sign(w(t)) · log |w(t)|+ w(t)2

2
+ a(t)2 +

c

2

=⇒ e2(t) = sign(w(t)) · log |w(t)|+ w(t)2 + 2a(t)2 + c

(108)

Note that here c ∈ R, is a quantity that depends on the initial conditions. Thus the energy E(θt) = E(θ0) for w0 ̸= 0.

M.5. Role of Standard Initialization

Proof. [Informal] Reproducing the derivatives for θ = (e) ∈ R1, assuming optimal b:

L(θ)

∂e
= EX

[
(f1X + f2)

(
X − 1

2

)]
2e
(
1 + ae2

)
(1 + 2w|w|)

+ EX

[
(f1X + f2)

(
X − 1

2

)]
2e3a (1 + 2w|w|) = 0

(109)
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(a) Gradient flow around origin (p + q < 1) (b) Gradient flow around origin (p + q > 1)

Figure 5: Gradient flow dynamics in R3, near the origin, for the transformer parameters with attention scalar a (Sec. ??).
The local minima are repellors for p+ q < 1, while attracting for p+ q > 1.

Where:

f1 = σ

e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b︸ ︷︷ ︸

z1



− σ

e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b︸ ︷︷ ︸

z2


+ p+ q − 1

f2 = σ

e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b︸ ︷︷ ︸

z2

− p

We assume the initialization is very small, making any product of quantities in θ = (e, w, a, b) much smaller than the
individual quantities. Therefore, we can consider these products to be approximately zero. That is, ∀x, y ∈ θ, x ≥ xy &
y ≥ xy & xy ≈ 0. Hence:

z1 = σ(b)

z2 = σ(b)
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f1 = p+ q − 1

f2 = σ(b)− p

Similarly:

L(θ)

∂e
= 2EX [(f1X + f2) (X)] e (110)

Analysing EX [(f1X + f2)]:

EX [(f1X + f2)X] = (f1 + f2)π1

= f1π1 − f1π
2

= (p+ q − 1)(π1 − π2
1)

We used the fact that b is optimal in the above equations, specifically where f1π1 + f2 = 0. On computing the gradient flow:

ė = −L(θ)

∂e
= −(p+ q − 1)(π1 − π2

1)e =⇒ e = e0 exp(−(p+ q − 1)(π1 − π2
1)t)

Since (p+ q − 1)(π1 − π2
1) > 0, e → 0, which denotes it converges to the local minima.
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N. Additional empirical results
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(a) W 1 at initialization
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(b) W 1 after 50 iterations
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Figure 6: Evolution of parameters W 1 and W V across iterations, starting from a rank-one initialization. The parameters
maintain a rank-one structure across the entire training.
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O. Model architecture and hyper-parameters

Table 1: Parameters in the transformer architecture with their shape.

Parameter Matrix shape

transformer.wte 2× d
transformer.wpe N × d
transformer.h.ln_1 d× 1
transformer.h.attn.c_attn 3d× d
transformer.h.attn.c_proj d× d
transformer.h.ln_2 d× 1
transformer.h.mlp.c_fc 4d× d
transformer.h.mlp.c_proj d× 4d
transformer.ln_f d× 1

Table 2: Settings and parameters for the transformer model used in the experiments.

Dataset k-th order binary Markov source
Architecture Based on the GPT-2 architecture as implemented in (Pagliardini, 2023)

Batch size Grid-searched in {16, 50}
Accumulation steps 1

Optimizer AdamW (β1 = 0.9, β2 = 0.95)
Learning rate 0.001
Scheduler Cosine
# Iterations 8000
Weight decay 1× 10−3

Dropout 0
Sequence length Grid-searched in {512, 1024, 2048}
Embedding dimension Grid-searched in {4, 8, 16, 32, 64}
Transformer layers 1
Attention heads 1

Repetitions 3 or 5
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