
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REWARD-FREE POLICY OPTIMIZATION
WITH WORLD MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

As AI capabilities advance, their rapid progress is not keeping pace with the need
for safe and value-aligned algorithms, raising concerns about autonomous systems.
E.g., maximizing expected return in reinforcement learning can lead to unintended
and potentially harmful consequences. This work introduces Reward-free Policy
Optimization (RFPO), a method that prioritizes goal-oriented policy learning over
reward maximization by eliminating rewards as the agent’s learning signal. Our
approach learns a world model that simulates backward in time, and then uses it
to construct a directed graph for planning, and finally learning a goal-conditioned
policy from the graph. The algorithm has two requirements: (1) the goal has to be
defined, and (2) the agent needs sufficient world knowledge, enabling it to plan.
This method removes the risks associated with reward hacking and discourages
unintended behaviors by allowing for human oversight. Additionally, it provides
a framework for humans to build transparent and high-level algorithms by using
the (low-level) learned policies. We demonstrate the effectiveness of RFPO on
maze environments with pixel observations, where the agent successfully reaches
arbitrarily selected goals and follows human-designed algorithms. In conclusion,
RFPO enables agents to learn policies without rewards and provides a framework
for creating high-level behaviors.

Keywords: Reward-free, Goal-conditioned, World Models, Planning

1 MOTIVATION

In recent years, the rapid advancement of artificial intelligence (AI) capabilities has brought great
opportunities for innovation (Schrittwieser et al., 2020; Brown & Sandholm, 2019; Brown et al.,
2020; Radford et al., 2021) and the potential to revolutionize various industries (Levine et al., 2018;
Andrychowicz et al., 2020; Kalashnikov et al., 2018). However, the deployment of capable and
autonomous AI systems has raised significant concerns (Goodall, 2014; Bostrom & Yudkowsky, 2018;
Amodei et al., 2016) about safety (Bengio et al., 2023), unintended emerging behavior (Russell, 2019)
and misalignment with human values (Christiano et al., 2017; Hadfield-Menell et al., 2016). Currently,
many AI systems are trained using Reinforcement Learning (RL) (Ye et al., 2021) or, in the case of
large language models (LLMs), through Reinforcement Learning with Human Feedback (RLHF)
(Ouyang et al., 2022). While these methods have led to considerable successes, they fundamentally
rely on reward functions for behavior optimization. A major concern lies in the fact that a reward
function, which is designed to guide the learning process, may not always align with human values.
In some cases, the agent may find hidden loopholes to maximize the reward signal in a way that is
not intended by its designers (Leike et al., 2017; Baker et al., 2019).

A famous example of such misalignment is Nick Bostrom’s paperclip maximizer scenario (Bostrom,
2017) in which a super-intelligent AI system is tasked to maximize paperclip production. It eventually
leads to an astronomical number of paper clips, but resulting in catastrophic outcomes to the ecosystem
and society. A game, inspired by this idea, can be played online1 to understand the full scope of
this issue. This thought experiment highlights an important problem: rewards usually represent
a proxy target for an underlying objective that is hidden and difficult to formalize (Leike et al.,
2017). For example, while the fundamental biological objective (Dawkins, 2016; Williams, 2018)

1https://www.decisionproblem.com/paperclips/

1

https://www.decisionproblem.com/paperclips/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Visualization of the planning process. The left side shows a backward world model that
creates simulations from a goal state (blue) and predicts the next state s′, but backward in time.
The right side visualizes the construction of a goal graph where each simulated transition creates
a directed edge. When the graph is completed, the shortest path estimator (SPE) is calculated by
estimating the shortest distances to the goal which concludes the planning process. The SPE decides
for every simulated transition if it is beneficial for policy optimization or if it should be ignored.

for many organisms is to maximize evolutionary fitness, evolution through natural selection was
not able to directly encode this goal into organisms (Mayr, 1982; Dennett, 1995). Instead, from
this process emerged reward-bounded proxies like hunger or the need for social interaction which
indirectly contribute to the overarching goal of survival and reproduction. Similarly, as AI systems
get optimized on abstract objectives (Bach, 2011), relying on rewards as proxy (Baker et al., 2019;
Silver et al., 2021) can lead to misalignment, as these might not fully capture or misrepresent the true
goal. Therefore, we should try to set up AI systems correctly from the start, as corrections may be
impossible later on (Yudkowsky et al., 2008). We realize that rewards also have their downsides, so it
is worth the effort to explore ways to learn policies without them, which is the goal of this paper.

We believe, as AI becomes increasingly competent and autonomous, it is essential to develop
methods that prioritize goal-oriented learning over raw reward maximization that might lead to
unintended behavior. This requires a shift from maximizing expected return to achieving desired state
configurations that are aligned with human preferences. On top of that, we need interpretable but
also hierarchical agent behavior that can be created and modified by humans. Although RFPO won’t
solve all problems entirely, we strongly believe that it provides new ideas to enable more transparent
and controllable AI systems and hope it will inspire further research in this area.

Our contributions:

1. Reward-free Learning: RFPO learns complex behaviors without using rewards for op-
timization. Neither a value or an action value function is required, nor is it necessary to
calculate the return.

2. Graph-Based Planning: Our approach learns a world model to generate simulated data
and directed graphs which allow to plan and thereby collect optimal transitions for policy
optimization.

3. Multi-Goal Conditioning: RFPO introduces the capability to condition a policy on either a
single goal or multiple goals simultaneously.

4. Human-Centric Behavior Framework: Our approach offers a programming framework
that enables humans to create and modify high-level behavioral algorithms by leveraging
the (low level) learned policies.

We mention in passing that our algorithm includes characteristics of Kahnemann’s System 1 and 2
(Kahneman, 2011): the learned goal policy corresponds to intuitive and the planning (and human
framework) to analytical thought processes (System 1 and 2).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 METHOD

We consider reward-free Markov decision processes (MDP) with discrete time steps t ∈ N, states st ∈
S, and discrete actions at ∈ A = {1, . . . ,m}, which come from a policy at ∼ π(at | st). Episodes
terminate based on a boolean variable dt ∈ {0, 1} and the transitions of states and termination
indicators follow the environment dynamics (st+1, dt) ∼ p(st+1, dt | st, at). Finally, the objective
on the reward-free MDP is to derive a policy π that maximizes the probability of reaching one of the
defined goal states s∗ ∈ S∗ ⊂ S. A normal MDP can be viewed as a reward-free MDP by ignoring
the reward function and adding a set S∗ of goal states.

In the following, we introduce Reward-free Policy Optimization (RFPO) which is a goal-driven
approach that eliminates rewards as the learning signal. This method is based on the idea to plan
backwards in time from goal states to as many previous states as possible. To facilitate the planning
we discretize the observed states st.

2.1 MODEL ARCHITECTURE

Discretization. A key component is the discretization of the state space by using discrete outputs for
the representation and world model. In the continuous setting, even small prediction errors from the
world model can lead to a fuzzy projection area around the correct target state. Such errors make it
challenging to construct accurate graphs for planning, as for each simulation step we face the problem
of deciding to which state the prediction ŝt belongs to. Formally, it can be described as

st = argmin
s∈S
∥s− ŝt∥, (1)

where S is the set of all possible states. Note, that this formulation might not be feasible or might not
represent a good solution as the variance of predition errors can differ locally. We avoid these issues
by discretizing the state space S into distinct latent codes Z , hereby ensuring convergence to valid
representations. The discretization leads to partially overlapping simulation trajectories, that enable
us to construct robust graphs for planning. The discrete representation is learned with an encoder that
performs this mapping, which is described in the following section.

Representation model. In our theory, the encoder is an bijective function that maps the set of states
S = {s1, s2, . . . , sn} to a latent set Z = {z1, z2, . . . , zn}. We implement this representation model
as an Encoder-Decoder architecture (Ballard, 1987) that uses the categorical latent representation of
DreamerV2/V3 (Hafner et al., 2023; 2020) with so-called straight-through gradients. Specifically, we
represent it probabilistically as

zt ∼ qθ(zt | st), (2)
where θ is the parameter vector. In this formulation each state st induces a probability distribution
over the latent states. In order to get a deterministic (i.e., approximately bijective) mapping, we
additionally minimize the entropy H(qθ(zt|st)) towards the end of the optimization.

The second component is a decoder that deterministically maps elements of the latent space back to
the states, which we write probabilistically as,

st ∼ pθ(st | zt), (3)

even though the mapping is deterministic. Following DreamerV2, the mapping is a transposed CNN.
The vector θ collects the parameters of the encoder and decoder.

The representation loss is

LRepr(θ) = Eqθ(zt|st)

[
− log pθ(st|zt)︸ ︷︷ ︸

reconstruction loss

+β ·max
(
H(qθ(zt|st)), τ

)︸ ︷︷ ︸
entropy loss

]
(4)

and consists of two objectives: The first component describes the classic reconstruction loss to
minimize the decoder’s image reconstruction error using a binary cross entropy loss. The second part
adds the entropy loss term with a threshold τ = 0.05 and loss weight β that increases linearly over
time. The schedule of β is based on the current training epoch counter ec and terminal training epoch
eT as follows

β =

{
0 if ec < 0.9 · eT ,
ec−0.9·eT
0.1·eT · 5× 10−6 otherwise,

(5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

such that the entropy H(qθ(zt|st)) decreases to a minimum in the end. This ensures that the encoder
becomes bijective since each state should be represented by one latent zt in order to build robust
graphs without facing node ambiguity for each state. For the latent states, we build a backward world
model.

Backward world models. In principle, a backward world model could be directly defined for the
observed states st. However, for the subsequent graph construction, discrete latent representations
are necessary. For that reason we define the backward world model on the level of the latent states zt.
Since we go backward in time, we predict the latent state zt from the next latent state zt+1 and
action at. Formally, we write it as a probability distribution

zt ∼ pθ(zt | zt+1, at), (6)
where pθ(zt | zt+1, at) is implemented as a neural network and θ is the parameter vector. The
network employs a Multi-Layer Perceptron (MLP) (Rosenblatt, 1958). Each of the three layers
has 2048 units and uses SiLU non-linearity (Elfwing et al., 2018) with layer normalization (Ba
et al., 2016). By using a backward world model, we reverse the conventional forward predictions
in model-based reinforcement learning (MBRL) (Robine et al., 2023; Ha & Schmidhuber, 2018;
Hafner et al., 2019; Moerland et al., 2023; Hafner et al., 2023) to ensure the generation of trajectories
that always reach a specified goal. The latent representation of goal states s∗ is written as z∗. By
simulating backwards from z∗, RFPO synthesizes trajectories [z∗, at, zt, at−1, zt−1, . . . , at−k, zt−k]
that are reversed to obtain goal-reaching forward trajectories [zt−k, at−k, . . . , zt−1, at−1, zt, at, z

∗].

The world model loss minimizes the discrete Kullback–Leibler divergence between the encoder and
backward world model distribution,

LWM(θ) = Et

[
DKL

(
qθ(zt|st) || pθ(zt|zt+1, at)

)]
. (7)

The expectation sub-indexed by t means that we take the expectation over tuples (st, at, st+1)
sampled from the environment and then sample zt+1 ∼ qθ(zt+1|st+1).

Both models are trained jointly to enable gradient flow back into the encoder parameters, allowing
the world model to influence the encoding structure in the latent space. The overall loss function
includes both models and is

L(θ) = LRepr(θ) + wwm · LWM(θ), (8)
where the loss weight for the world model is set to wwm = 0.0025 throughout all experiments.

2.2 GRAPH CONSTRUCTION AND PLANNING

Given a backward world model, we next describe how to construct a graph for planning (also see
Figure 1), that helps later to select good transitions for policy learning. Since the whole planning
process takes place in the latent space, we will call the latent states in the following simply states.
Algorithm 1 illustrates the planning process: initially, we generate numerous simulations from a
given goal state z∗ using the backward world model. These simulations serve as the foundation for
constructing a graph and then for identifying sub-goals to start further exploration. By continuously
generating new simulations based on these sub-goals and iteratively updating the graph, the algorithm
incrementally creates a map of the (latent) state space. Eventually, the planning results in a shortest
path estimator called SPE. More details for each step follow in the next paragraphs.

Simulations. Each simulation starts at a goal state z∗ (or at a selected sub-goal) and unrolls it
into the past to create trajectories [z∗, at, zt, at−1, zt−1, . . . , at−k, zt−k] of the environment. These
simulations use random actions to avoid any selection bias. After completion, each sequence is split
into single-step transitions (z∗, at, zt), (zt, at−1, zt−1), . . . , (zt−k+1, at−k, zt−k).

Graph. The single-step transitions create a directed graph G = (V,E). Every node nzt ∈ V
represents a state zt and each edge nzt → nzt−1 represents a transition, but backward in time. For
graph construction, we consider each single-step transition (zt, at−1, zt−1) and add nodes nzt , nzt−1

and edge nzt → nzt−1 if they do not yet exist. The actions are not assigned to an edge or added to
the graph. They will be used later in the policy learning process. Furthermore, each node nzt has a
visit counter v(nzt) ∈ N, which is incremented with each occurrence of zt in the simulations.

Sub-goal selection. The expansion of the graph by sub-goal simulations is an important component.
This process allows RFPO to iteratively explore the state space and extend the goal reachability as far

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 World Model Planning Algorithm

1: Given: goal z∗
2: procedure PLAN(z∗)
3: D ← SIMULATEBACKWARDS(z∗) ▷ Generate initial simulations
4: G← CONSTRUCTGRAPH(D) ▷ Build graph from simulations
5: while computing time available do
6: S ← SELECTSUBGOALS(G) ▷ Select sub-goals
7: D ← SIMULATEBACKWARDS(S) ▷ Generate new simulations
8: G← UPDATEGRAPH(G,D) ▷ Expand graph with new simulations
9: end while

10: SPE← DIJKSTRA(G, z∗) ▷ Calculate shortest path estimator (SPE) for z∗
11: return SPE
12: end procedure

as possible. The selection mechanism is inspired by the inverse visit frequency, following the return
strategy from the exploration-based algorithm Go-Explore (Ecoffet et al., 2021): we calculate the
weight for each node as

wzt =

{
1√

v(nzt)+1
if v(nzt) ≥ δ,

0 otherwise.
(9)

Here, v(nzt) is the visit counter, and δ = 15 is a threshold for the minimum number of visits
required to be considered a sub-goal candidate. This weighting ensures that nodes with fewer visits
are more likely to be selected. The sub-goals are randomly sampled proportional to these weights.
Once sub-goals are selected, backward simulations are started again to update the graph and its visit
statistics.

Shortest path estimator (SPE). Given the directed graph, we apply Dijkstra’s shortest path algorithm
(Dijkstra, 1959) to determine the shortest paths from all nodes to the goal, resulting in the shortest
path estimator

SPE(nzt) := "shortest distance from node nzt to goal nz∗". (10)

For the goal node itself, we get SPE(nz∗) = 0.

Later on, the SPE acts as a filter on the simulations to remove bad artifacts, such as loops or inefficient
action selection. These naturally occur due to non-optimal policies, such as the random policy, that is
used for the backward simulations. The SPE represents the result of our planning effort and will be
used in Section 2.3 to guide the policy optimization.

Conditioning on multiple goals. It is feasible to simultaneously plan and condition a policy on
multiple goals. This process begins with backward simulations from each intended goal [z∗1 , . . . , z

∗
m],

which are then integrated into a single graph. When applying Dijkstra’s algorithm for the SPE, all
goal nodes are considered as starting points, with their distances set to zero. This ensures that a policy
considers all goals as its targets and acts according to goal reachability. The SPE will guide the policy
to reach the closest goal. In this context, note that these directed graphs do not need to be weakly
connected or have any other special property.

2.3 POLICY OPTIMIZATION

In principle, the raw forward trajectories [zt−k, at−k, . . . , zt−1, at−1, zt, at, z
∗] generated by the

backward world model seem to be ideal for training a policy via imitation learning, because each
sequence reaches the goal state. However, these simulations cannot be carelessly used for optimization
due to potential problems such as loops and sub-optimal action selection. This issue has been
extensively investigated in the literature (Wu et al., 2019; Wang et al., 2021b), highlighting the need
for careful data curation to exclude problematic state-action pairs. By leveraging the shortest path
estimator (SPE) derived from the graph, we can evaluate the world model simulations and decide
whether a generated state-action pair (zt, at) should be used for policy learning or not. This process
essentially transforms randomly generated simulations into useful artificial expert demonstrations to
learn from. For each pair (zt, at), we look at its forward transition (zt, at, zt+1) and check with the
shortest path estimator whether zt+1 gets the agent closer to the goal. If so, the transition is added to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Maze (15×15) observation. (b) Maze (20×20) observation. (c) Maze (25×25) observation.

Figure 2: Maze environment: Panel (a) shows an observation with four overlayed goal positions in
each corner (marked as orange, cyan, yellow, violet). Panel (b) and (c) show the raw observation for
different maze sizes with agent position in light-green.

the policy dataset D which is used to train the policy. Formally, this selection can be described as

SPE(nzt+1
) < SPE(nzt)⇒ (zt, at) ∈ D. (11)

Note, that this dataset has no loops and contains only paths that directly lead to the goal according to
the world model. In fact, it uses the best possible path that was found by integrating the results over
all simulations.

Finally, we learn a policy πν(at|zt) using the classic imitation learning objective, that maximizes the
log-probability for the selected state-action pairs (zt, at):

Lpolicy(ν) = Et [− log(πν(at|zt)) + c1S[πν](zt)] with (zt, at) ∈ D. (12)

We add a small action space entropy bonus S with weight c1 following PPO (Schulman et al., 2017).
The entropy bonus is helpful if D contains sub-optimal samples. Again, the expectation sub-indexed
by t means that we take the expectation over tuples (zt, at) sampled from D.

2.4 HIGH-LEVEL BEHAVIOR ALGORITHMS BY HUMAN DESIGN

In this paper, we draw inspiration from the concepts of Marvin Minsky’s “Society of Minds” (Minsky,
1988), which suggests that intelligent behavior arises from the interactions among numerous simpler
processes, similar to how a society functions through the contributions of its individuals. By leveraging
the SPE as a critic (as defined in Society of Minds), our method allows human or human-aligned
LLM involvement (Ahn et al., 2024) for goal formulation and more importantly for programming
of high-level behaviors using the learned low-level policies. In our case, this translates to multiple
policies (or “minds”) working collaboratively yet independently. For instance, a recovery policy can
be activated when the currently active policy fails, which is evaluated by the critic. In the experimental
section we develop some high-level behavior algorithms and apply them.

Automatic progress tracking. Each learned policy memorizes its assigned goal and can continuously
evaluate progress towards this target through the shortest path estimator, which should be stored
along the corresponding policy. This allows high-level algorithms to monitor the distance to the goal
and possibly switch policies once a goal is reached or no reasonable progress is made.

3 EXPERIMENTS

3.1 QUANTITATIVE EVALUATION ON MAZE ENVIRONMENTS

To evaluate our method, we start by conducting a series of experiments within maze environments of
different sizes (15× 15, 20× 20, 25× 25). In this environment, the agent has five actions (left, right,
up, down, hold) and receives observations as 64× 64 pixel images in RGB with a bird’s-eye view of
the entire maze (see Fig. 2). This setup is chosen to select goals based on visual inputs and intuitive
human oversight. Since this is a reward-free MDP, there is no reward function.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Quantitative evaluation on different maze sizes with 10 runs for each result. Each policy is
conditioned on one goal, which is a maze corner. Meanwhile for each column, a different number
of sub-goal iterations is considered in order to build the graph. Each sub-goal iteration selects 250
sub-goals from the graph and creates simulations with 100 timesteps each. By increasing the number
of iterations, the policies are able to return to their goal from more distant locations.

Maze size Goal Return positions (with different sub-goal iterations)
Iterations: 0 Iterations: 1 Iterations: 3 Iterations: 5

Orange 89.4 (70%) 119.7 (94%) 123.0 (97%) 124.9 (98%)
15 × 15 Cyan 80.6 (63%) 114.0 (90%) 124.7 (98%) 124.7 (98%)
Fields: 127 Yellow 53.5 (42%) 114.6 (90%) 124.3 (98%) 126.3 (99%)

Violet 41.7 (33%) 89.6 (70%) 125.2 (98%) 125.1 (98%)
Orange 77.4 (33%) 133.0 (56%) 205.5 (87%) 223.5 (95%)

20 × 20 Cyan 74.3 (32%) 147.9 (63%) 219.8 (93%) 227.6 (97%)
Fields: 235 Yellow 81.8 (35%) 141.7 (60%) 217.7 (93%) 228.2 (97%)

Violet 97.7 (42%) 163.6 (70%) 211.4 (90%) 231.1 (98%)
Orange 80.2 (23%) 161.2 (46%) 274.6 (78%) 326.5 (93%)

25 × 25 Cyan 95.9 (27%) 172.0 (49%) 257.2 (73%) 306.4 (87%)
Fields: 350 Yellow 52.3 (15%) 110.7 (32%) 181.5 (52%) 252.9 (72%)

Violet 63.1 (18%) 123.0 (35%) 234.7 (67%) 299.7 (86%)

Maze size Return positions Went to closest goal
15 × 15 124.7 (98%) 124.7 (100%)
20 × 20 221.9 (95%) 219.9 (99%)
25 × 25 335.6 (96%) 334.5 (99%)

Table 2: From how many locations do we reach the
goal (middle column) or even reach the closest goal
(right column)?

Figure 3: Reachability (left) for single goal
(only white spots do not reach the goal), and
(right) for multi-goal policy.

In this experiment, we selected the four corners of each maze as goal locations, illustrated for the
15× 15 maze in Figure 2a. To test our approach we trained five policies: four single-goal policies
for each corner and one four-goal policy that has all four corners as its goal. Note that integrating
multiple goals into a single policy involves minimal modifications to the graph which are described
in Section 2.2.

We start by training the backward world model on random trajectories. Depending on the chosen goal
set, the graph and the SPE is computed. After that the corresponding policy is trained using imitation
learning. For testing a policy, we place the agent at all possible locations throughout the maze. Each
position is tested three times to see if the policy could consistently reaches its designated goal. To
ensure that successes are not happening by chance, we require for success that the goal is reached
within 1.5 times the shortest possible distance to the goal. The left panel of Figure 3 visualizes the
success probabilities for a single-goal policy (goal is bottom left): the green locations in the maze all
reached the goal fast enough. The light green spots did not always reach the goal in time. From the
white locations the agents was not able to reach the goal. The colors in the right panel of Figure 3
show which goal the four-goal policy successfully goes to.

The quantitative results are shown in Table 1 for the single-goal policies and in Table 2 for the
four-goal policy. Both experiments validate that the learned policies reach their goals from almost
any position within the maze, even from distances as far as 40 steps in the case of our large 25× 25
maze. These experiments demonstrate that, even in the absence of rewards, it is possible to effectively
learn complex policies.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Method BlockBadBehaviorEnv
No wall Barrier 1 Barrier 1 & 2

PPO (Schulman et al., 2017) 100% 0% 0%
DQN(Mnih et al., 2013) 100% 0% 0%

Goal policy (Table 1) 100% 0% 0%
HL-RND 100% 53% 8%
HL-ADV 100% 100% 100%

Table 3: Goal reachability of different methods. All methods
are trained without barriers, but during evaluation they are
activated. Human-designed high-level algorithms can detect
with their SPEs if they get stuck and adapt their behavior.
Model-free algorithms (PPO & DQN) receive a reward of +1
when the goal is reached, otherwise zero.

Figure 4: BlockBadBehav-
iorEnv: start observation with
invisible barriers overlayed in
red and invisible goal in blue.

For training, the trajectories are collected by acting randomly in the environment. The complete
algorithm takes about 30 minutes on one A100 GPU, including the steps for planning and policy
training.

3.2 HIGH-LEVEL ALGORITHMS BY HUMAN DESIGN

To demonstrate how RFPO helps humans to transparently control AI systems, we consider two
scenarios: (i) the BlockBadBehaviorEnv environment, and (ii) SimonEnv environment. In general,
programming agents resembles the job of a conductor in an orchestra: While the low-level policies
(learned by RFPO) act on their goals, the high-level human-made algorithm supervises them and
intervenes when a correction is needed. Hereby, we are able to create novel behaviors that are
currently difficult to achieve in the reward-based reinforcement learning setting. The complete Python
implementation for each algorithm can be found in Appendix A.

BlockBadBehaviorEnv. This environment (see Fig. 4) initially allows certain shortcut solutions,
which are blocked during evaluation time, e.g., due to the emergence of unintended behavior. A
prominent example occurs in OpenAI’s “Hide and Seek” publication (Baker et al., 2019) where the
unintended emerging behavior is called “box surfing”. BlockBadBehaviorEnv simulates a similar
situation by placing hidden walls in the environment during testing. In the case of “Hide and Seek”,
this corresponds to changing the environment physics or developing other prevention mechanisms.
We compare two high-level algorithms based on low-level RFPO policies with PPO and DQN (results
are shown in Table 3):

• HL-RND. This algorithm (High Level - RaNdoM) aims to maintain progress towards a
goal by dynamically adjusting its actions. It monitors the estimated distance to the goal via
SPE and, if progress stops for any reason, switches to random actions temporarily. After a
short period of random actions, the algorithm resumes using the goal policy and monitors
the SPE progress again.

• HL-ADV. The algorithm (High Level - ADVanced) extends HL-RND by allowing an
additional helper policy, that is trained separately using a human-selected goal state. In our
case, this policy is conditioned on a state along the top pathway to improve adaptability
at reaching the real goal. The idea is that a supervisor or teacher (e.g. human or LLM) is
stepping in and informally expressing: "RFPO, if you get stuck using your preferred strategy,
you can also follow the longer path to reach your goal.". HL-ADV primarily uses the goal
policy to monitor the estimated distance to the goal via SPE. If progress stops, it temporarily
switches to random actions. But should the random action intervention repeatedly not
result in progress, the helper policy is activated. Once the helper policy reaches its goal
(SPE(nz) = 0, a position in the middle of the top pathway), the algorithm switches back to
the goal policy and resumes monitoring the SPE progress.

SimonEnv. Inspired by the popular game Simon, we created an environment based on the maze
from Fig. 2a. The agent is given a list of goals which have to be reached in the correct order to solve
the task. The goals are the four maze corners which can appear repeatedly on the list. The task is

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

challenging because the list can quite long (in the experiments 10, 25, 50) and there is no feedback
during the process. The following algorithm perfectly solves the task:

• HL-Simon. The HL-Simon algorithm changes slightly the concept of HL-ADV by incorpo-
rating four different policies. Its purpose is to follow a sequence of goals, always switching
to the correct policy. For the currently active goal, it monitors the estimated distance via
SPE. When the estimated distance reaches zero, the algorithm automatically selects the next
goal in the sequence and switches to the appropriate policy.

4 RELATED WORK

AI safety. In the reinforcement learning literature various ideas how to align AI behavior with human
values have been proposed: Deep Reinforcement Learning from Human Preferences (Christiano et al.,
2017) integrates human feedback into the training loop, enabling the agent to learn human-aligned
behaviors. Leike et al. (2018) propose Value Alignment through Reward Modeling (Leike et al.,
1811) to design scalable models that align agent behavior with human values via reward modeling,
and Learning from Human Preferences in Reinforcement Learning (Ibarz et al., 2018) combines
human feedback and demonstrations to refine agent behavior, even in complex environments like
Atari games. In a similar spirit, our work also proposes an approach for value alignment. However, it
is purely goal-driven without referring to rewards.

Goal-conditioning. Reaching goals has been widely used in combination with reinforcement
learning: Schaul et al. (2015) pioneered Universal Value Function Approximators (UVFAs) (Schaul
et al., 2015), which extend traditional value functions to incorporate goals as additional inputs,
enabling the agent to generalize across different tasks. Florensa et al. (2018) introduced automatic
goal generation for RL agents (Florensa et al., 2018), and Nasiriany et al. (2019) presented goal-
conditioned imitation learning combined with planning (Nasiriany et al., 2019). Kidambi et al. (2020)
develop MOReL(Kidambi et al., 2020), an offline MBRL approach to learn a pessimistic estimate of
the underlying MDP and optimize a policy while minimizing the model bias. Chebotar et al. (2021)
learn a goal-conditioned Q-function on offline data where they use sub-sequences and relabeling
techniques (Chebotar et al., 2021). Reaching goals is also the central idea of our work, however, we
differ in the fact that we base the policy learning purely on reaching predefined goals along shortest
paths on backward graphs and not by using any reward signal.

Backward world models. Unrolling backwards in time is an idea that has been rarely used in
reinforcement learning. There are only a few examples, that use backward world models to improve
policy learning, including Goyal et al. (2018); Edwards et al. (2018); Lai et al. (2020); Wang et al.
(2021a); Chelu et al. (2020). Most similar to our work is Pan et al. (2022), who combine imitation
learning with backward world models (Pan & Lin, 2022) where backward simulations are treated
as sub-optimal expert demonstrations to improve the expected return of a forward policy. However,
none of these papers are fully reward-free and use the backward models for graph construction and
for generating goal-reaching trajectories.

5 LIMITATIONS

Reward-free Policy Optimization (RFPO) introduces a method to learn policies without rewards, but it
has limitations. First, the algorithm requires that the latent trajectory representations overlap in order
to construct robust graph structures. If trajectories do not overlap sufficiently, the resulting graph may
be sparse and less useful for planning, degrading policy performance. Second, the goals in RFPO
must be explicitly identified by humans beforehand, which limits the system’s autonomy and requires
human intervention for setting up the initial goals. This could be problematic in environments where
goals are dynamic or not easily defined. Lastly, RFPO depends on a well-trained world model to
generate accurate backward simulations. Inaccuracies in the world model can lead to faulty graph
construction and sub-optimal policy learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 CONCLUSION

In this paper, we explore a novel approach for reward-free policy learning which we call Reward-free
Policy Optimization (RFPO). Using a backward world model and graph search, RFPO directly
conditions policies on desired states, eliminating rewards as the optimization signal. This approach
can help alleviating issues like reward hacking and unintended behaviors, promoting safer autonomous
systems. A key component, the shortest path estimator (SPE), refines sub-optimal simulations into
high-quality training data, effectively creating artificial expert demonstrations. Our framework
enhances human oversight and control, facilitating transparent, high-level algorithms with learned
low-level policies. Experiments in maze environments demonstrate that RFPO enables agents to
achieve and monitor via SPE multiple goals that can be employed in sophisticated human-designed
algorithms. By going backwards in time from human-aligned goals, instead of carelessly searching
for rewards, this work aims to provide a safer approach for learning challenging tasks while obeying
to intended behaviors.

ACKNOWLEDGMENTS

This research has been funded/supported by

REFERENCES

Michael Ahn, Debidatta Dwibedi, Chelsea Finn, Montse Gonzalez Arenas, Keerthana Gopalakrishnan,
Karol Hausman, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, et al. Autort: Embodied
foundation models for large scale orchestration of robotic agents. arXiv preprint arXiv:2401.12963,
2024.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Joscha Bach. A motivational system for cognitive ai. In Artificial General Intelligence: 4th
International Conference, AGI 2011, Mountain View, CA, USA, August 3-6, 2011. Proceedings 4,
pp. 232–242. Springer, 2011.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
Mordatch. Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528,
2019.

Dana H Ballard. Modular learning in neural networks. In Proceedings of the sixth National Conference
on artificial intelligence-volume 1, pp. 279–284, 1987.

Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In Large Scale Kernel
Machines. MIT Press, 2007.

Yoshua Bengio, Geoffrey Hinton, Andrew Yao, Dawn Song, Pieter Abbeel, Yuval Noah Harari,
Ya-Qin Zhang, Lan Xue, Shai Shalev-Shwartz, Gillian Hadfield, et al. Managing ai risks in an era
of rapid progress. arXiv preprint arXiv:2310.17688, 2023.

Nick Bostrom. Superintelligence. Dunod, 2017.

Nick Bostrom and Eliezer Yudkowsky. The ethics of artificial intelligence. In Artificial intelligence
safety and security, pp. 57–69. Chapman and Hall/CRC, 2018.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):
885–890, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake Varley, Alex Irpan,
Benjamin Eysenbach, Ryan Julian, Chelsea Finn, et al. Actionable models: Unsupervised offline
reinforcement learning of robotic skills. arXiv preprint arXiv:2104.07749, 2021.

Veronica Chelu, Doina Precup, and Hado P van Hasselt. Forethought and hindsight in credit
assignment. Advances in Neural Information Processing Systems, 33:2270–2281, 2020.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Richard Dawkins. The selfish gene. Oxford university press, 2016.

Daniel C Dennett. Darwin’s dangerous idea. The Sciences, 35(3):34–40, 1995.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1
(1):269–271, 1959.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580–586, 2021.

Ashley D Edwards, Laura Downs, and James C Davidson. Forward-backward reinforcement learning.
arXiv preprint arXiv:1803.10227, 2018.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In International conference on machine learning, pp. 1515–1528.
PMLR, 2018.

Noah J Goodall. Machine ethics and automated vehicles. Road vehicle automation, pp. 93–102,
2014.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Anirudh Goyal, Philemon Brakel, William Fedus, Soumye Singhal, Timothy Lillicrap, Sergey
Levine, Hugo Larochelle, and Yoshua Bengio. Recall traces: Backtracking models for efficient
reinforcement learning. arXiv preprint arXiv:1804.00379, 2018.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative inverse
reinforcement learning. Advances in neural information processing systems, 29, 2016.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554, 2006.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. Advances in neural information
processing systems, 31, 2018.

Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, 2011.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforcement
learning for vision-based robotic manipulation. In Conference on robot learning, pp. 651–673.
PMLR, 2018.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810–21823, 2020.

Hang Lai, Jian Shen, Weinan Zhang, and Yong Yu. Bidirectional model-based policy optimization.
In International Conference on Machine Learning, pp. 5618–5627. PMLR, 2020.

Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable agent
alignment via reward modeling: A research direction. arxiv 2018. arXiv preprint arXiv:1811.07871,
1811.

Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A Ortega, Tom Everitt, Andrew Lefrancq, Laurent
Orseau, and Shane Legg. Ai safety gridworlds. arXiv preprint arXiv:1711.09883, 2017.

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. Learning hand-
eye coordination for robotic grasping with deep learning and large-scale data collection. The
International journal of robotics research, 37(4-5):421–436, 2018.

Ernst Mayr. The growth of biological thought: Diversity, evolution, and inheritance. Harvard
University Press, 1982.

Marvin Minsky. Society of mind. Simon and Schuster, 1988.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based rein-
forcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118,
2023.

Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned
policies. Advances in Neural Information Processing Systems, 32, 2019.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Yuxin Pan and Fangzhen Lin. Backward imitation and forward reinforcement learning via bi-
directional model rollouts. In 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 9040–9047. IEEE, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world models
are happy with 100k interactions. arXiv preprint arXiv:2303.07109, 2023.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in
the brain. Psychological review, 65(6):386, 1958.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Stuart Russell. Human compatible: AI and the problem of control. Penguin Uk, 2019.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In International conference on machine learning, pp. 1312–1320. PMLR, 2015.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. Reward is enough. Artificial
Intelligence, 299:103535, 2021.

Jianhao Wang, Wenzhe Li, Haozhe Jiang, Guangxiang Zhu, Siyuan Li, and Chongjie Zhang. Offline
reinforcement learning with reverse model-based imagination. Advances in Neural Information
Processing Systems, 34:29420–29432, 2021a.

Yunke Wang, Chang Xu, Bo Du, and Honglak Lee. Learning to weight imperfect demonstrations. In
International Conference on Machine Learning, pp. 10961–10970. PMLR, 2021b.

George Christopher Williams. Adaptation and natural selection: A critique of some current evolu-
tionary thought, volume 61. Princeton university press, 2018.

Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi Sugiyama. Imita-
tion learning from imperfect demonstration. In International Conference on Machine Learning, pp.
6818–6827. PMLR, 2019.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in neural information processing systems, 34:25476–25488, 2021.

Eliezer Yudkowsky et al. Artificial intelligence as a positive and negative factor in global risk. Global
catastrophic risks, 1(303):184, 2008.

A APPENDIX

1 class HL_RND():
2 def __init__(self, policy, env, time_window=5, decrease_threshold=3, random_action_duration=12):
3 """
4 Initialize HL_RND class.
5
6 :param policy: Primary policy.
7 :param env: Environment.
8 :param time_window: Window for tracking distances.
9 :param decrease_threshold: Minimum decrease to continue primary policy.

10 :param random_action_duration: Duration of random actions.
11 """
12 self.policy = policy
13 self.env = env
14 self.time_window = time_window
15 self.decrease_threshold = decrease_threshold
16 self.random_action_duration = random_action_duration
17
18 self.estimated_distances = [] # Track estimated distances
19 self.random_action_counter = 0 # Counter for random actions
20
21 def reset(self):
22 """Reset internal state."""
23 self.estimated_distances = [] # Clear distance history
24 self.random_action_counter = 0 # Reset random action counter
25
26 def act(self, obs):
27 """Select action based on observation."""
28 if self.random_action_counter > 0:
29 self.random_action_counter -= 1
30 action = self.random_action()
31
32 if self.random_action_counter == 0:
33 self.estimated_distances = [] # Clear distance history after random actions
34 else:
35 action, estimated_distance = self.policy.act_and_track(obs)
36 self.estimated_distances.append(estimated_distance)
37

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

38 if len(self.estimated_distances) > self.time_window:
39 self.estimated_distances.pop(0)
40
41 if not self.has_decreased_sufficiently():
42 self.random_action_counter = self.random_action_duration
43 action = self.random_action()
44
45 return action
46
47 def has_decreased_sufficiently(self):
48 """Check if distance decreased sufficiently within time window."""
49 initial_distance = self.estimated_distances[0]
50 current_distance = self.estimated_distances[-1]
51 return (initial_distance - current_distance) >= self.decrease_threshold
52
53 def random_action(self):
54 """Select random action from environment’s action space."""
55 return self.env.action_space.sample()

Listing 1: HL_RND algorithm

1 class HL_ADV():
2 def __init__(self, primary_policy, secondary_policy, env, time_window=5, decrease_threshold=3,

random_action_duration=8, max_random_tries=3):
3 """
4 Initialize HL_ADV with primary and secondary policies and related parameters.
5
6 :param primary_policy: The main policy for the agent.
7 :param secondary_policy: The fallback policy.
8 :param env: The environment.
9 :param time_window: Number of recent distance estimates to track.

10 :param decrease_threshold: Required decrease in distance.
11 :param random_action_duration: Duration of random actions if progress stalls.
12 :param max_random_tries: Max attempts of random actions before switching to the secondary policy.
13 """
14 self.primary_policy = primary_policy
15 self.secondary_policy = secondary_policy
16 self.env = env
17 self.time_window = time_window
18 self.decrease_threshold = decrease_threshold
19 self.random_action_duration = random_action_duration
20 self.max_random_tries = max_random_tries
21
22 self.estimated_distances = [] # Track distance estimates
23 self.random_action_counter = 0 # Random action counter
24 self.random_tries = 0 # Random action attempt counter
25 self.use_secondary_policy = False # Flag to switch to secondary policy
26
27 def reset(self):
28 """Reset the algorithm’s state."""
29 self.estimated_distances = []
30 self.random_action_counter = 0
31 self.random_tries = 0
32 self.use_secondary_policy = False
33
34 def act(self, obs):
35 """Select an action based on the current observation."""
36 if self.use_secondary_policy:
37 action, estimated_distance = self.secondary_policy.act_and_track(obs)
38 if estimated_distance == 0:
39 self.use_secondary_policy = False
40 self.reset() # Reset for a fresh start with the primary policy
41 elif self.random_action_counter > 0:
42 # Take random actions during random action period
43 self.random_action_counter -= 1
44 action = self.random_action()
45
46 if self.random_action_counter == 0:
47 self.estimated_distances = []
48 self.random_tries += 1
49
50 # Switch to secondary policy if max random tries exceeded
51 if self.random_tries >= self.max_random_tries:
52 self.use_secondary_policy = True
53 self.random_tries = 0
54 else:
55 # Use primary policy for action and distance estimate
56 action, estimated_distance = self.primary_policy.act_and_track(obs)
57 self.estimated_distances.append(estimated_distance)
58
59 if len(self.estimated_distances) > self.time_window:
60 self.estimated_distances.pop(0)
61
62 # Enter random action period if progress is insufficient
63 if not self.has_decreased_sufficiently():
64 self.random_action_counter = self.random_action_duration
65 action = self.random_action()
66
67 return action
68
69 def has_decreased_sufficiently(self):

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

70 """Check if the distance has decreased sufficiently."""
71 initial_distance = self.estimated_distances[0]
72 current_distance = self.estimated_distances[-1]
73 return (initial_distance - current_distance) >= self.decrease_threshold
74
75 def random_action(self):
76 """Return a random action from the environment’s action space."""
77 return self.env.action_space.sample()

Listing 2: HL_ADV algorithm

1 class HL_Simon:
2 def __init__(self, policies, goal_sequence):
3 """
4 Initialize with a list of policies and the environment.
5
6 :param policies: List of policies [policy0, policy1, policy2, policy3]
7 :param goal_sequence: List of goals to reach sequentially
8 """
9 self.policies = policies

10 self.goal_sequence = goal_sequence
11 self.current_goal_index = 0
12 self.current_policy_index = 0
13
14 def reset(self):
15 """
16 Reset the state of the algorithm to start over.
17 """
18 self.current_goal_index = 0
19 self.current_policy_index = 0
20
21 def act(self, obs):
22 """
23 Decide on the action based on the current policy and goal.
24
25 :param obs: The current observation
26 :return: The selected action
27 """
28 current_goal = self.goal_sequence[self.current_goal_index]
29 policy = self.policies[current_goal]
30
31 action, estimated_distance = policy.act_and_track(obs)
32
33 if estimated_distance == 0:
34 self.current_goal_index += 1
35 if self.current_goal_index >= len(self.goal_sequence):
36 self.current_goal_index = 0 # Loop back to the beginning if needed
37
38 current_goal = self.goal_sequence[self.current_goal_index]
39 self.current_policy_index = current_goal
40
41 return action

Listing 3: HL_Simon algorithm

B BROADER IMPACT

The development of methods that are not using rewards for optimization offer potentially advance-
ments in AI safety, alignment, and transparency. By enabling clearer decision-making processes and
incorporating human oversight, algorithms such as RFPO support a collaborative human-in-the-loop
approach that could lead to safer and more ethical AI outcomes. Such an approach is particularly
relevant for applications in fields like healthcare and education, where ethical considerations and
predictable behavior are crucial components. Ensuring that AI goals are comprehensive and aligned
with societal values is essential to avoid unintended consequences.

15

	Motivation
	Method
	Model architecture
	Graph construction and planning
	Policy optimization
	High-level behavior algorithms by human design

	Experiments
	Quantitative evaluation on maze environments
	High-level algorithms by human design

	Related Work
	Limitations
	Conclusion
	Appendix
	Broader impact

