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ABSTRACT

Hierarchical reinforcement learning (HRL) has the potential to solve complex long
horizon tasks using temporal abstraction and increased exploration. However, hi-
erarchical agents are difficult to train due to inherent non-stationarity. We present
primitive enabled adaptive relabeling (PEAR), a two-phase approach where we
first perform adaptive relabeling on a few expert demonstrations to generate ef-
ficient subgoal supervision, and then jointly optimize HRL agents by employing
reinforcement learning (RL) and imitation learning (IL). We perform theoretical
analysis to (i) bound the sub-optimality of our approach, and (ii) derive a gen-
eralized plug-and-play framework for joint optimization using RL and IL. PEAR
uses a handful of expert demonstrations and makes minimal limiting assumptions
on the task structure. Additionally, it can be easily integrated with typical model
free RL algorithms to produce a practical HRL algorithm. We perform experi-
ments on challenging robotic environments and show that PEAR is able to solve
tasks that require long term decision making. We empirically show that PEAR ex-
hibits improved performance and sample efficiency over previous hierarchical and
non-hierarchical approaches. We also perform real world robotic experiments on
complex tasks and demonstrate that PEAR consistently outperforms the baselines.

1 INTRODUCTION

Recently, reinforcement learning has been successfully applied to a number of short-horizon robotic
manipulation tasks (Rajeswaran et al., 2017; Kalashnikov et al., 2018; Gu et al., 2016; Levine et al.,
2015). However, long horizon tasks require long-term planning and are harder to solve (Gupta et al.,
2019b) due to inherent issues like credit assignment and ineffective exploration. Consequently, such
tasks require large number of environment interactions for learning, especially in sparse reward
scenarios (Andrychowicz et al., 2017). Hierarchical reinforcement learning (HRL) (Sutton et al.,
1999; Dayan & Hinton, 1993; Vezhnevets et al., 2017; Klissarov et al., 2017; Bacon et al., 2016)
holds the promise of solving complex tasks by employing temporal abstraction and improved ex-
ploration (Nachum et al., 2019). In goal-conditioned feudal architecture (Dayan & Hinton, 1993;
Vezhnevets et al., 2017), higher level policy predicts subgoals for the lower primitive, which in turn
tries to achieve them by executing primitive actions directly on the environment. Unfortunately,
HRL suffers from non-stationarity(Nachum et al., 2018; Levy et al., 2017) when multiple levels are
trained simultaneously. Due to continuously changing policies, previously collected off-policy ex-
perience is rendered obsolete, leading to unstable higher level state transition and reward functions.

A particular class of hierarchical approaches (Gupta et al., 2019a; Fox et al., 2017; Krishnan et al.,
2019) segment expert demonstrations into subgoal transition dataset, and consequently leverage the
subgoal dataset to bootstrap learning. Ideally, the segmentation process should produce subgoals
at appropriate level of difficulty for the lower primitive, in order to properly balance the task split
between hierarchical levels. One possible approach of task segmentation is to perform fixed window
based relabeling (Gupta et al., 2019a) on expert demonstrations. Despite being simple, this approach
is effectively a brute force segmentation approach which may generate subgoals that are either too
easy or too hard with respect to the current goal achieving ability of the continuously changing
lower primitive, thus leading to degenerate solutions. This leads to the following question: can we
do better than fixed relabeling and devise a HRL approach for efficient task segmentation?
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Figure 1: Adaptive Relabeling Overview: We segment expert
demonstrations by consecutively passing demonstration states as sub-
goals (for i = 1 to 7) to lower primitive, and finding the state where
QπL (s, si, ai) < Qthresh (here si = s4). Since s3 was the last
reachable subgoal, it is selected as subgoal for initial state s0. The
transition is added toDg , and s3 is selected as the new initial state.

(a) Maze (b) Pick (c) Bin (d) Hollow (e) Rope

Figure 2: Subgoal evolution: With training, as lower primitive im-
proves, higher level subgoal predictions (blue spheres) become better
and harder, while always being achievable by lower primitive. Row 1
depicts initial training, Row 2 depicts mid-way through training, and
Row 3 depicts end of training. This generates a curriculum of achiev-
able subgoals for lower primitive (red spheres represent final goal).

As Greek philosopher Heraclitus said: there is nothing permanent except change. Hence, our idea
considers the changing lower primitive and dynamically generates efficient subgoals in consonance
with the current goal achieving capability of the lower primitive. In our approach, the action value
function of lower primitive is used to perform adaptive relabeling on expert demonstrations to
dynamically generate a curriculum of achievable subgoals for the lower primitive. This subgoal
dataset is then used to train an imitation learning based regularizer, which is used to jointly optimize
off-policy RL objective with IL regularization. Our approach thus combines HRL with primitive
enabled imitation learning regularization to devise an elegant HRL algorithm that ameliorates non-
stationarity. We call our approach: primitive enabled adaptive relabeling (PEAR) for boosting HRL.

Our major contributions are as follows: (i) our adaptive relabeling based approach generates ef-
ficient higher level subgoal supervision considering the current goal achieving capability of lower
primitive, (ii) we propose a generalized plug-and-play framework for joint optimization using RL
and IL, (iii) we derive sub-optimality bounds to theoretically justify the benefits of periodic re-
population using adaptive relabeling, thus devising a practical HRL algorithm, (iv) we perform
extensive experimentation on complex robotic tasks: maze navigation, pick and place, bin, hollow,
rope manipulation and franka kitchen to empirically demonstrate better performance and sample
efficiency over prior hierarchical and non-hierarchical baselines on all tasks, and (v) we perform
real world experiments on robotic pick and place, bin and rope manipulation tasks in Section 5 to
show that PEAR shows impressive generalization in complex real world scenarios. In summary, we
propose a theoretically justified practical HRL algorithm for solving complex long horizon tasks.

2 RELATED WORK

Hierarchical reinforcement learning (HRL) framework (Barto & Mahadevan, 2003; Sutton et al.,
1999; Parr & Russell, 1998; Dietterich, 1999) promises the advantages of temporal abstraction and
increased exploration (Nachum et al., 2019). The options architecture (Sutton et al., 1999; Ba-
con et al., 2016; Harutyunyan et al., 2017; Harb et al., 2017; Harutyunyan et al., 2019; Klissarov
et al., 2017) learns temporally extended macro actions and termination function to propose an ele-
gant hierarchical framework. However, such approaches may produce degenerate solutions in the
absence of proper regularization. Some typical approaches restrict the problem search space by
greedily solving for specific goals (Kaelbling, 1993; Foster & Dayan, 2002), which has also been
extended to hierarchical RL (Wulfmeier et al., 2019; 2020; Ding et al., 2019). In goal-conditioned
hierarchical feudal learning (Dayan & Hinton, 1993; Vezhnevets et al., 2017), the higher level agent
produces subgoals for the lower primitive, which in turn executes atomic actions on the environ-
ment. However, off-policy feudal HRL approaches are cursed by non-stationarity issue. Some prior
approaches (Nachum et al., 2018; Levy et al., 2017) deal with the non-stationarity by relabeling
previously collected transitions for training goal-conditioned policies. In contrast, our proposed
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approach deals with non-stationarity by leveraging adaptive relabeling for periodically producing
achievable subgoals, and subsequently using an imitation learning based regularizer in our joint op-
timization based approach. We empirically show in section 5 that our regularization based approach
outperforms relabeling based hierarchical approaches on a number of complex long horizon tasks.

Prior methods (Rajeswaran et al., 2017; Nair et al., 2017; Hester et al., 2017) leverage expert demon-
strations to improve sample efficiency and accelerate learning. Prior work uses imitation learning to
bootstrap learning (Shiarlis et al., 2018; Krishnan et al., 2017; 2019; Kipf et al., 2019). Other ap-
proaches use fixed relabeling (Gupta et al., 2019a) for performing task segmentation. However, such
approaches may cause unbalanced task split between hierarchical levels. In contrast, our approach
sidesteps this limitation by segmenting expert demonstration trajectories according to current lower
primitive. Intuitively, this enables balanced task split, thereby avoiding degenerate solutions. Recent
approaches restrict subgoal space using adjacency constraints (Zhang et al., 2020), employ graph
based approaches for decoupling task horizon (Lee et al., 2022), or incorporate imagined subgoals
combined with KL-constrained policy iteration scheme (Chane-Sane et al., 2021). However, such
approaches assume additional environment constraints and only work on relatively shorter horizon
tasks with limited complexity. (Kreidieh et al., 2019) is an inter-level cooperation based approach for
generating achievable subgoals, However, the approach requires extensive exploration for selecting
good subgoals, whereas our approach rapidly enables effective subgoal generation using primitive
enabled adaptive relabeling. In order to accelerate RL, recent work firstly learns behavior skill pri-
ors (Pertsch et al., 2020; Singh et al., 2020) from expert data or pre-trains policies over a related
task, and then later fine-tunes using RL. Such approaches largely depend on policies learnt during
pre-training, and are hard to train when the source and target task distributions are dis-similar. Some
hierarchical approaches hand-design action primitives (Dalal et al., 2021; Nasiriany et al., 2021), and
then predict arguments for selecting from among the primitives. While this makes the task easier
for higher level policy, explicitly designing action primitives can be tedious for hard tasks, or lead to
sub-optimal policies. Since PEAR learns multi-level policies in parallel, the lower level policies can
learn the required optimal behavior, thus avoiding the issues inherent with previous approaches.

3 BACKGROUND

Off-policy Reinforcement Learning We define our goal-conditioned off-policy RL setup as fol-
lows: Universal Markov Decision Process (UMDP) (Schaul et al., 2015) are markov decision pro-
cesses augmented with the goal space G, where M = (S,A, P,R, γ,G). Here, S is state space, A
is action space, P (s

′ |s, a) is the state transition probability function, R is reward function, and γ
is discount factor. π(a|s, g) represents the goal-conditioned policy which predicts the probability
of taking action a when the state is s and goal is g. The overall objective is to maximize expected
future discounted reward distribution: J = (1− γ)−1Es∼dπ,a∼π(a|s,g),g∼G [r(st, at, g)].

Hierarchical Reinforcement Learning In our goal-conditioned HRL setup, the overall policy π
is divided into multi-level policies. We consider bi-level scheme, where the higher level policy
πH(sg|s, g) predicts subgoals sg for the lower primitive, and lower primitive πL(a|s, sg) executes
primitive actions a on the environment. πH generates subgoals sg after every c timesteps and πL

tries to achieve sg within c timesteps. πH gets sparse extrinsic reward rex from the environment,
whereas πL gets sparse intrinsic reward rin from πH . πL gets rewarded with reward 0 if the agent
reaches within δL distance of the predicted subgoal sg , and −1 otherwise: rin = −1(∥st − sg∥2 >
δL). Similarly, πH gets extrinsic reward 0 if the achieved goal is within δH distance of the final goal
g, and −1 otherwise: rex = −1(∥st − g∥2 > δH). We assume access to a small number of directed
expert demonstrations states D = {ei}Ni=1, where ei = (se0, s

e
1, . . . , s

e
T−1).

4 METHODOLOGY

Here, we explain our proposed primitive enabled adaptive relabeling PEAR approach, which lever-
ages a handful of expert demonstrations D to solve long horizon tasks. We propose a two step
approach: (i) the current lower primitive πL is used to adaptively relabel expert demonstrations
to generate efficient subgoal supervision Dg , and (ii) typical reinforcement learning objective is
jointly optimized with additional imitation learning based regularization objective using Dg . We
perform theoretical analysis to (i) bound the sub-optimality of our approach, and (ii) propose a
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practical plug-and-play based framework for joint optimization using RL and IL, where we can plug
in typical off-policy RL and IL algorithms to generate novel joint optimization based algorithms.

Algorithm 1 Adaptive Relabeling

1: Initialize Dg = {}
2: for each e = (se0, s

e
1, . . . , s

e
T−1) in D do

3: Initial state index init← 0
4: Subgoal transitions De

g = {}
5: for i = 1 to T − 1 do
6: # FindQπL values for demo subgoals
7: Compute QπL(seinit, s

e
i , ai)

8: where ai = πL(sei−1, s
e
i )

9: # Find first subgoal s.t. QπL < Qth
10: if QπL(seinit, s

e
i , ai) < Qth then

11: for j = init to i− 1 do
12: for k = (init+ 1) to i− 1 do
13: # Add the transition toDe

g

14: Add (sj , si−1, sk) to De
g

15: Initial state index init← (i− 1)

16: # Add selected transitions to Dg

17: Dg ← Dg ∪De
g

Algorithm 2 PEAR

1: Initialize Dg = {}
2: for i = 1 . . . N do
3: if i%p == 0 then
4: Clear Dg

5: Populate Dg via adaptive relabeling
6: Collect experience using πH and πL
7: Update lower primitive via SAC and IL
8: regularizer using D (Eq 6 or Eq 8)
9: Sample transitions from Dg

10: Update higher policy via SAC and IL
11: regularizer using Dg (Eq 5 or Eq 7)

4.1 PRIMITIVE ENABLED ADAPTIVE RELABELING

PEAR uses the lower primitive’s action value function QπL(s, sei , ai) to parse the expert demonstra-
tion trajectoriesD and generate efficient subgoal transition datasetDg . In a typical goal-conditioned
RL setting, QπL(s, sei , ai) describes the expected cumulative reward when the input starting state
and subgoal are s and sei , and the lower primitive takes action ai while following policy πL in the
episode. The expert demonstrations states sei are passed as subgoals, and QπL(s, sei , ai) computes
the expected cumulative reward when start state is s, subgoal is sei and the next primitive action
is ai. Intuitively, a high value of QπL(s, sei , ai) implies that the current lower primitive considers
sei to be a good (highly rewarding and achievable) subgoal from current state s, since it expects to
achieve a high intrinsic reward for this subgoal from the higher policy. Conversely, a low value of
QπL(s, sei , ai) implies that the lower primitive considers sei to be a bad (low rewarding or unachiev-
able) subgoal, since it expects to achieve a low intrinsic reward for sei from current state s. Hence,
QπL(s, sei , ai) considers goal achieving capability of current lower primitive for populating Dg . We
depict a single pass of adaptive relabeling in Figure 1 and explain the procedure in detail below.

Consider the expert demonstration dataset D = {ej}Ni=1, where each trajectory ej =
(se0, s

e
1, . . . , s

e
T−1). Let the initial state be se0. In the adaptive relabeling procedure, we incrementally

provide demonstration states sei for i = 1 to T−1 as subgoals to lower primitive’s action value func-
tion QπL(se0, s

e
i , ai), where ai = πL(s = sei−1, g = sei ). At every step, we compare QπL(se0, s

e
i , ai)

to the environment specific Qthresh value. If QπL(se0, s
e
i , ai) >= Qthresh, we move on to next ex-

pert demonstration state sei+1. Otherwise if QπL(se0, s
e
i , ai) < Qthresh, we consider sei−1 as a good

subgoal for initial state (since it was the last subgoal with QπL(se0, s
e
i−1, ai) >= Qthresh), and use

it to compute subgoal transitions for populating Dg . Subsequently, we repeat the same procedure
with sei−1 as the new initial state, until the episode terminates. This is also depicted in Algorithm 1.

HRL approaches suffer from non-stationarity due to unstable higher level station transition and re-
ward functions. In off-policy RL, this occurs as the previously collected experience is rendered obso-
lete due to continuously changing lower primitive. Similarly, the subgoal transitions in Dg collected
using adaptive relabeling also become outdated with changing lower primitive and QπL(se0, s

e
i , ai).

We propose to mitigate this non-stationarity by periodically re-populating subgoal transition dataset
Dg after every p timesteps according to the goal achieving capability of the current lower primitive.
Since the lower primitive continuously improves with training and gets better at achieving harder
subgoals, QπL always picks reachable subgoals of appropriate difficulty, according to the current
goal reaching ability of the lower primitive. This generates a natural curriculum of subgoals for
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lower primitive. Intuitively, Dg always contains achievable subgoals for the current lower primitive,
thereby mitigating the non-stationarity issue. The pseudocode for PEAR is given in Algorithm 2.
Figure 2 shows the qualitative evolution of subgoals during training in our experiments.

Our adaptive relabeling procedure uses QπL(se0, s
e
i , ai) to select efficient subgoals when the expert

state sei is within the training distribution of states used to train the lower primitive. However, if the
expert states are outside the training distribution,QπL

might erroneously over-estimate the values on
out-of-distribution states, which might result in poor subgoal selection. In order to address this over-
estimation issue, we employ an additional margin classification objective(Piot et al., 2014), where
along with the standard QSAC objective, we also use an additional margin classification objective
to yield the following optimization objective Q̄πL = QSAC+
argmin

QπL

max
πL

(E(se0,·,·)∼Dg,sei∼πH ,ai∼πL [QπL(se0, s
e
i , ai)]− E(se0,s

e
i ,·)∼Dg,ai∼πL [QπL(se0, s

e
i , ai)])

This surrogate objective prevents over-estimation of Q̄πL by penalizing states that are out of the
expert state distribution. We found this objective to improve performance and stabilize learning.
Next, we explain the details and rationale behind our joint optimization objective.

4.2 JOINT OPTIMIZATION

In this section, we explain our joint optimization objective comprising RL objective with IL based
regularization. We consider both behavior cloning (BC) and inverse reinforcement learning (IRL)
regularization. Henceforth, PEAR-IRL will represent PEAR with IRL regularization and PEAR-BC
will represent PEAR with BC regularization. We first explain BC regularization objective, and then
explain IRL regularization objectives for both hierarchical levels.

For the BC objective, let (se, seg, s
e
next) ∼ Dg represent a higher level subgoal transition from Dg

where se is current state, senext is next state, ge is final goal and seg is subgoal supervision. Let
sg be the subgoal predicted by the high level policy πHθH (·|se, ge) with parameters θH . The BC
regularization objective for higher level is as follows:

min
θH

JHBC(θH) = min
θH

E(se,seg,s
e
next)∼Dg,sg∼πH

θH
(·|se,ge)||seg − sg||2 (1)

Similarly, let (sf , af , sfnext) ∼ DL
g represent lower level expert transition where sf is current state,

sfnext is next state, gf is goal and a is the primitive action predicted by πLθL(·|s
f , seg) with parameters

θL. The lower level BC regularization objective is as follows:

min
θL

JLBC(θL) = min
θL

E(sf ,af ,sfnext)∼DL
g ,a∼πL

θL
(·|sf ,seg)

||af − a||2 (2)

We now consider the IRL objective, which is implemented as a GAIL (Ho & Ermon, 2016) objective
implemented using LSGAN (Mao et al., 2016). Let DHϵ be the higher level discriminator with
parameters ϵH . Let JHD represent higher level IRL objective, which depends on parameters (θH , ϵH).
The higher level IRL regularization objective is as follows:

max
θH

min
ϵH

JHD (θH , ϵH) = max
θH

min
ϵH

1

2
E(se,·,·)∼Dg,sg∼πθH

(·|se,ge)[DHϵH (πHθH (·|se, ge))− 0]2

+
1

2
E(se,seg,·)∼Dg

[DHϵH (seg)− 1]2
(3)

Similarly, for lower level primitive, let DLϵL be the lower level discriminator with parameters ϵL. Let
JLD represent lower level IRL objective, which depends on parameters (θL, ϵL). The lower level IRL
regularization objective is as follows:

max
θL

min
ϵL

JLD(θL, ϵL) = max
θL

min
ϵL

1

2
E(sf ,·,·)∼DL

g ,a∼πL
θL

(·|sf ,seg)[D
L
ϵL(π

L
θL(·|s

f , seg))− 0]2

+
1

2
E(sf ,af ,·)∼DL

g
[DLϵL(a

f )− 1]2
(4)

Finally, we describe our joint optimization objective for hierarchical policies. Let the off-policy RL
objective be JHθH and JLθL for higher and lower policies. The joint optimization objectives using BC
regularization for higher and lower policies are provided in Equations 5 and 6.

max
θH

(JHθH − ψ ∗ J
H
BC(θH)) (5)
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max
θL

(JLθL − ψ ∗ J
L
BC(θL)) (6)

The joint optimization objectives using IRL regularization for higher and lower policies are provided
in Equations 7 and 8.

min
ϵH

max
θH

(JHθH + ψ ∗ JHD (θH , ϵH)) (7)

min
ϵL

max
θL

(JLθL + ψ ∗ JLD(θL, ϵL)) (8)

Here, ψ is regularization weight hyper-parameter. We perform experiments to choose ψ in Section 5.

4.3 SUBOPTIMALITY ANALYSIS AND PLUG-AND-PLAY FRAMEWORK FOR JOINT
OPTIMIZATION

In this section, we perform theoretical analysis to (i) derive sub-optimality bounds for our proposed
joint optimization objective and show how our periodic re-population based approach affects per-
formance, and (ii) propose a generalized plug-and-play framework for joint optimization using RL
and IL. Let π∗ and π∗∗ be unknown higher level and lower level optimal policies. Let πHθH be our
high level policy and πLθL be our lower primitive policy, where θH and θL are trainable parameters.
DTV (π1, π2) denotes total variation divergence between probability distributions π1 and π2. Let κ
be an unknown distribution over states and actions, G be goal space, s be current state, and g the
final episodic goal. We will use κ in an importance sampling ratio later to avoid sampling from the
unknown optimal policy. The higher level policy predicts subgoals sg for the lower primitive which
executes for c timesteps to yield sub-trajectories τ . Let ΠHD and ΠLD be some unknown higher and
lower level probability distributions over policies from which we can sample policies πHD and πLD.
Let us assume that policies πHD and πLD represent the policies from higher and lower level datasets
DH and DL respectively. Although DH and DL may represent any datasets, in our discussion, we
use them to represent higher and lower level expert demonstration datasets. Firstly, we extend the
ϕD-common definition from (Ajay et al., 2020) to goal-conditioned policies:
Definition 1. π∗ is ϕD-common in ΠHD , if Es∼κ,πH

D∼ΠH
D ,g∼G[DTV (π

∗(τ |s, g)||πHD (τ |s, g))] ≤ ϕD

Now, we define the suboptimality of policy π with respect to optimal policy π∗ as:

Subopt(θ) = |J(π∗)− J(π)| (9)

Theorem 1. Assuming optimal policy π∗ is ϕD common in ΠHD , the suboptimality of higher policy
πHθH , over c length sub-trajectories τ sampled from dπ

∗

c can be bounded as:

|J(π∗)− J(πHθH )| ≤ λH ∗ ϕD + λH ∗ Es∼κ,πH
D∼ΠH

D ,g∼G[DTV (π
H
D (τ |s, g)||πHθH (τ |s, g))] (10)

where λH = 2
(1−γ)(1−γc)Rmax∥

dπ
∗

c

κ ∥∞

Similarly, the suboptimality of lower primitive πLθL can be bounded as:

|J(π∗∗)− J(πLθL)| ≤ λL ∗ ϕD + λL ∗ Es∼κ,πL
D∼ΠL

D,sg∼πH
θH

[DTV (π
L
D(τ |s, sg)||πLθL(τ |s, sg))]

(11)

where λL = 2
(1−γ)2Rmax∥

dπ
∗∗

c

κ ∥∞

The proofs for Equations 10 and 11 are provided in Appendix A.1. In Equation 10, the suboptimality
of πHθH is bounded by the two terms on RHS, which we discuss in detail below.

We firstly focus on the first term in which is dependent on ϕD. In our discussion D is replaced by
dataset Dg populated using the current lower primitive, hence ϕD becomes ϕDg

. In Theorem 1, we
assume the optimal policy π∗ to be ϕDg common in ΠHD . Since ϕDg denotes the upper bound on the
expected TV divergence between π∗ and πHD , ϕDg

provides a quality measure of the subgoal dataset
Dg populated using adaptive relabeling. A lower value of ϕDg

implies that the optimal policy π∗

is closely represented by Dg , or in other words, the samples from Dg are near optimal. Intuitively,
since the lower primitive improves with training and is able to achieve harder subgoals, and since

6



Under review as a conference paper at ICLR 2024

Dg is re-populated using the improved lower primitive after every p timesteps, πDg
continually gets

closer to π∗, resulting in decrease in value of ϕD. This implies that the suboptimality bound in
Equation 10 gets tighter, and consequently J(πHθH ) gets closer to optimal J(π∗) objective. Hence,
our periodic re-population based approach generates a natural curriculum of achievable subgoals for
the lower primitive, which continuously improves the performance by tightening the upper bound.

Now, we focus on the second term in Equation 10, which is TV divergence between πHD (τ |s, g) and
πHθH (τ |s, g) with expectation over s ∼ κ, πHD ∼ ΠHD , g ∼ G. As before,D is replaced by datasetDg .
This term can be viewed as imitation learning (IL) objective between expert demonstration policy
πHDg

and current policy πHθH , where TV divergence is the distance measure. Due to this IL regular-
ization objective, as policy πHθH gets closer to expert distribution policy πHDg

with training, the LHS
sub-optimality bounds get tighter. Thus, our proposed periodic re-population and IL regularization
tighten the sub-optimality bounds in Equation 10 with training, thus improving performance.

We now derive our generalized plug-and-play framework for the joint optimization objective, where
we can plug in off the shelf RL and IL methods to yield a generally applicable practical HRL
algorithm. Considering the idea that sub-optimality is positive, we can derive the following equation:

J(π∗) ≥ J(πHθH )− λH ∗ ϕD − λH ∗ Es∼κ,πH
D∼ΠH

D ,g∼G[d(π
H
D (τ |s, g)||πHθH (τ |s, g))] (12)

where (considering πHD (τ |s, g) as πA and πHθH (τ |s, g)) as πB , d(πA||πB) = DTV (πA||πB)
Notably, the second term λH ∗ ϕD in RHS of Equation 12 is constant for a given dataset Dg .
Equation 12 can be perceived as a minorize maximize algorithm which intuitively means: the overall
objective can be optimized by (i) maximizing the objective J(πHθH ) via RL, and (ii) minimizing the
distance measure d between πHD and πHθH . This formulation serves as a plug-and-play framework
where we can plug in RL algorithm of choice for our off-policy RL objective J(πHθH ), and distance
function of choice for distance measure d to yield various joint optimization objectives.

In our setup, we plug in entropy regularized Soft Actor Critic (Haarnoja et al., 2018a) to maximize
J(πHθH ). Notably, different parameterizations of d yield different imitation learning regularizers.
When d is formulated as Kullback–Leibler divergence, the IL regularizer takes the form of behavior
cloning (BC) objective (Nair et al., 2017) (which results in PEAR-BC), and when d is formulated
as Jensen-Shannon divergence, the imitation learning objective takes the form of inverse reinforce-
ment learning (IRL) objective (which results in PEAR-IRL). We consider both these objectives in
Section 5 and explicitly provide empirical performance results.

5 EXPERIMENTS

In this section, we empirically answer the following questions: (i) does adaptive relabeling approach
outperform fixed relabeling based approaches? (ii) is PEAR able to mitigate non-stationarity? and
(iii) does IL regularization boost performance in solving complex long horizon tasks. We accord-
ingly perform experiments on six Mujoco (Todorov et al., 2012) environments: (i) maze navigation,
(ii) pick and place, (iii) bin, (iv) hollow, (v) rope manipulation, and (vi) franka kitchen, and
demonstrate that our approach consistently outperforms the baselines.

Environment details: We provide extensive environment and implementation details in the Ap-
pendix A.3, where we provide the details of all the tasks and final goal configurations. The maxi-
mum task horizon T is kept at 225, 50, 60, 100 25, and 280 timesteps, and the lower primitive is
allowed to execute for c timesteps, ie 15, 7, 6, 10, 5,and 17 for the maze, pick and place, bin, hollow,
rope and kitchen respectively. We use 28 expert demos for franks kitchen task and 100 demos in all
other tasks, and provide the procedures for collecting expert demos for all tasks in Appendix A.2.

Implementation details: In our experiments, we use off-policy Soft Actor Critic (Haarnoja et al.,
2018b) for optimizing RL objective, using Adam (Kingma & Ba, 2014) optimizer. The actor, critic
and discriminator networks are formulated as 3 layer fully connected neural networks with 512 neu-
rons in each layer. When calculating p, we normalize QπL values of a trajectory before comparing
with Qthresh: ((QπL(se0, s

e
i , ai)−min value)/max value) ∗ 100 for i = 1 to T − 1.

Evaluation and results: In Table 1, we report the success rate performance of our method and other
baselines averaged over 5 seeds, and evaluated over N = 100 random episodic rollouts. Firstly, we
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Table 1: Success rate comparison

Maze Pick Place Bin Hollow Rope Kitchen
PEAR-IRL 0.84 ± 0.04 0.92 ± 0.02 0.79 ± 0.05 0.78 ± 0.27 0.33 ± 0.04 0.89 ± 0.06
PEAR-BC 0.67 ± 0.07 0.48 ± 0.3 0.38 ± 0.19 0.33 ± 0.03 0.32 ± 0.04 1.0 ± 0.0

RPL 0.58 ± 0.09 0.28 ± 0.17 0.0 ± 0.0 0.0 ± 0.0 0.13 ± 0.07 0.08 ± 0.1
HAC 0.6 ± 0.23 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.02 ± 0.01 0.0 ± 0.0
RAPS 0.81 ± 0.06 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 - 0.0 ± 0.0

HIER-NEG 0.01 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.01 ± 0.0 0.0 ± 0.0
HIER 0.02 ± 0.02 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.01 ± 0.0 0.0 ± 0.0
DAC 0.02 ± 0.02 0.21 ± 0.06 0.14 ± 0.09 0.0 ± 0.0 0.03 ± 0.01 0.0 ± 0.0
FLAT 0.01 ± 0.01 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.03 ± 0.01 0.0 ± 0.0

BC 0.0 0.0 0.0 0.0 0.15 0.0
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Figure 3: Success rate comparison in various environments vs number of timesteps over 5 seeds.

compare our method with Relay Policy Learning (RPL) to demonstrate that adaptive relabeling out-
performs fixed relabeling. RPL (Gupta et al., 2019a) uses supervised pre-training followed by relay
fine tuning. In order to ascertain fair comparisons, we use an ablation of RPL by removing super-
vised pre-training. Hierarchical actor critic (HAC) (Levy et al., 2017) deals with non-stationarity
by relabeling transitions assuming an optimal lower primitive. We empirically found PEAR to con-
sistently outperform HAC on all tasks, which shows that adaptive relabeling and IL regularization
mitigate non-stationarity. We also consider RAPS (Dalal et al., 2021) baseline, which uses hand
designed action primitives at the lower level. We do not evaluate RAPS in rope environment since
hand designing action primitives is hard. The performance of RAPS depends on the quality of action
primitives. We found that except maze navigation, PEAR significantly outperforms RAPS. PEAR
outperforms hierarchical (HIER) baseline, and HIER-NEG baseline, which is a hierarchical baseline
where the upper level is negatively rewarded if the lower primitive fails to achieve the subgoal. This
demonstrates the importance of efficient subgoals supervision and subsequent IL regularization. We
perform comparisons with Discriminator Actor Critic (DAC) (Kostrikov et al., 2018), which is a flat
(single level) approach that leverages expert demos using a learned discriminator. We also compute
a FLAT baseline that does not use expert demos. Our approach outperforms both these single level
baselines by a significant margin, demonstrating the efficacy of our hierarchical approach with IL
regularization. Finally, we also include a BC baseline and compare success rate performance. The
training plots for the six environments are provided in Figure 3. In all experiments, PEAR exhibits
faster convergence and consistently outperforms the baselines.

Real world experiments: We perform experiments on real world robotic pick and place, bin and
rope environments (Fig 11). PEAR-IRL achieves accuracy of 0.8, 0.6, and 0.3, whereas PEAR-BC

8
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Figure 4: Ablation experiments in various environments: (i) comparison between PEAR-IRL, PEAR-BC, PEAR-IRL-No-Margin and PEAR-
BC-No-Margin with margin surrogate objective, (ii) Row 2: Dthresh hyper-parameter, and (iii) Row 3: p hyperparameter.

achieves accuracy of 0.8, 0, 0.3 on pick and place, bin and rope environments. We also evaluate the
next best performing RPL baseline, but it fails to achieve success in any of the tasks.

Ablative analysis: In order to analyse various design choices, first we compare PEAR-IRL and
PEAR-BC (with margin classification objectives), with PEAR-IRL-No-Margin and PEAR-BC-No-
Margin (without margin objectives) in Figure 4. PEAR-IRL and PEAR-BC almost always outper-
form PEAR-IRL-No-Margin and PEAR-BC-No-Margin, which shows that this objective is crucial
for stable learning. We also analyse how varying Qthresh affects performance in Appendix A.4 Fig-
ure 9, and empirically find that even a low value of 0 is sufficient for selecting good subgoals. Fur-
thermore, when analyzing p hyperparameter, we found that large values of p are unable to generate
good curriculum of subgoals (Appendix A.4 Figure 10), whereas small values of p lead to frequent
subgoal dataset re-population, impeding stable learning. We empirically choose optimal window
size hyperparameter k for RPL in Appendix A.4 Figure 5. We also evaluate optimal learning rate ψ
in Appendix A.4 Figure 6. If ψ is too small, PEAR is unable to utilize IL regularization, whereas
conversely if ψ is too large, the learned policy might overfit. In order to verify the importance of
adaptive relabeling, we replace it in PEAR-IRL by fixed window relabeling as in RPL (Gupta et al.,
2019b), and call it PEAR-RPL. As shown in Appendix A.4 Figure 7, PEAR-IRL and PEAR-BC
consistently outperform PEAR-RPL on all tasks. Furthermore, we perform ablations to deduce the
optimal number of expert demos required for each task in Appendix A.4 Figure 8. We also provide
qualitative visualizations in simulation in Appendix A.5.

6 DISCUSSION

Limitations In this work, we assume availability of directed expert demonstrations. While we do
not consider undirected demonstrations in this work, we plan to explore this avenue in future. In our
approach,Dg is periodically re-populated, which is an additional overhead and might be a bottleneck
in tasks where relabeling cost is high. Notably, in our setup, adaptive relabeling causes negligible
overhead, as we pass the whole expert trajectory as a mini-batch for a single forward pass through
lower primitive. Nevertheless, we plan to devise solutions to resolve this issue in future work.

Conclusion and future work We propose primitive enabled adaptive relabeling (PEAR), a HRL and
IL based approach that performs adaptive relabeling on a handful of expert demonstrations to solve
complex long horizon tasks. We perform comparisons with a various basselines and demonstrate
that PEAR shows strong results in simulation and real world robotic tasks. In future work, we plan
to address even harder sequential decision making tasks, and plan to analyse generalization beyond
expert demonstrations. We hope that PEAR encourages future research in the area of adaptive
relabeling and leads to efficient approaches for solving long horizon tasks.
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A APPENDIX

A.1 SUB-OPTIMALITY ANALYSIS

Here, we present the proofs for Theorem 1 for higher and lower level policies, which provide sub-
optimality bounds on the optimization objectives.

A.1.1 SUB-OPTIMALITY PROOF FOR HIGHER LEVEL POLICY

The sub-optimality of upper policy πHθH , over c length sub-trajectories τ sampled from dπ
∗

c can be
bounded as:
|J(π∗)− J(πHθH )| ≤ λH ∗ ϕD + λH ∗ Es∼κ,πH

D∼ΠH
D ,g∼G[DTV (π

H
D (τ |s, g)||πHθH (τ |s, g))]] (13)

where λH = 2
(1−γ)(1−γc)Rmax∥

dπ
∗

c

κ ∥∞

Proof. We extend the suboptimality bound from (Ajay et al., 2020) between goal conditioned poli-
cies π∗ and πHθH as follows:

|J(π∗)− J(πHθH )| ≤ 2

(1− γ)(1− γc)
RmaxEs∼dπ∗

c ,g∼G[DTV (π
∗(τ |s, g)||πHθH (τ |s, g))] (14)

By applying triangle inequality:
DTV (π

∗(τ |s, g)||πHθH (τ |s, g)) ≤ DTV (π
∗(τ |s, g)||πHD (τ |s, g)) +DTV (π

H
D (τ |s, g)||πHθH (τ |s, g))

(15)

Taking expectation wrt s ∼ κ, g ∼ G and πHD ∼ ΠHD ,

Es∼κ,g∼G[DTV (π
∗(τ |s, g)||πHθH (τ |s, g))] ≤ Es∼κ,πH

D∼ΠH
D ,g∼G[DTV (π

∗(τ |s, g)||πHD (τ |s, g))]+

Es∼κ,πH
D∼ΠH

D ,g∼G[DTV (π
H
D (τ |s, g)||πHθH (τ |s, g))]

(16)

Since π∗ is ϕD common in ΠHD , we can write 16 as:

Es∼κ,g∼G[DTV (π
∗(τ |s, g)||πHθH (τ |s, g))] ≤

ϕD + Es∼κ,πH
D∼ΠH

D ,g∼G[DTV (π
H
D (τ |s, g)||πHθH (τ |s, g))]

(17)

Substituting the result from Equation 17 in Equation 14, we get
|J(π∗)− J(πHθH )| ≤ λH ∗ ϕD + λH ∗ Es∼κ,πH

D∼ΠH
D ,g∼G[DTV (π

H
D (τ |s, g)||πHθH (τ |s, g))]] (18)

where λH = 2
(1−γ)(1−γc)Rmax∥

dπ
∗

c

κ ∥∞
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A.1.2 SUB-OPTIMALITY PROOF FOR LOWER LEVEL POLICY

Let the optimal lower level policy be π∗∗. The suboptimality of lower primitive πLθL can be bounded
as follows:

|J(π∗∗)− J(πLθL)| ≤ λL ∗ ϕD + λL ∗ Es∼κ,πL
D∼ΠL

D,sg∼πH
θH

[DTV (π
L
D(τ |s, sg)||πLθL(τ |s, sg))]]

(19)

where λL = 2
(1−γ)2Rmax∥

dπ
∗∗

c

κ ∥∞

Proof. We extend the suboptimality bound from (Ajay et al., 2020) between goal conditioned poli-
cies π∗∗ and πLθL as follows:

|J(π∗∗)− J(πLθL)| ≤
2

(1− γ)2
RmaxEs∼dπ∗∗

c ,sg∼πH
θH

[DTV (π
∗∗(τ |s, sg)||πLθL(τ |s, sg))] (20)

By applying triangle inequality:

DTV (π
∗∗(τ |s, sg)||πLθL(τ |s, sg)) ≤ DTV (π

∗∗(τ |s, sg)||πLD(τ |s, sg))+
DTV (π

L
D(τ |s, sg)||πLθL(τ |s, sg))

(21)

Taking expectation wrt s ∼ κ, sg ∼ πHθH and πLD ∼ ΠLD,

Es∼κ,sg∼πH
θH

[DTV (π
∗∗(τ |s, sg)||πLθL(τ |s, sg))] ≤

Es∼κ,πL
D∼ΠL

D,sg∼πH
θH

[DTV (π
∗∗(τ |s, sg)||πLD(τ |s, sg))]+

Es∼κ,πL
D∼ΠL

D,sg∼πH
θH

[DTV (π
L
D(τ |s, sg)||πLθL(τ |s, sg))]

(22)

Since π∗∗ is ϕD common in ΠLD, we can write 22 as:

Es∼κ,sg∼πH
θH

[DTV (π
∗∗(τ |s, sg)||πLθL(τ |s, sg))] ≤

ϕD + Es∼κ,πL
D∼ΠL

D,sg∼πH
θH

[DTV (π
L
D(τ |s, sg)||πLθL(τ |s, sg))]

(23)

Substituting the result from Equation 23 in Equation 20, we get

|J(π∗∗)− J(πLθL)| ≤ λL ∗ ϕD + λL ∗ Es∼κ,πL
D∼ΠL

D,sg∼πH
θH

[DTV (π
L
D(τ |s, sg)||πLθL(τ |s, sg))]]

(24)

where λL = 2
(1−γ)2Rmax∥

dπ
∗∗

c

κ ∥∞

A.2 GENERATING EXPERT DEMONSTRATIONS

For maze navigation, we use path planning RRT (Lavalle, 1998) algorithm to generate expert demon-
stration trajectories. For pick and place, we hard coded an optimal trajectory generation policy for
generating demonstrations, although they can also be generated using Mujoco VR (Todorov et al.,
2012). For kitchen task, the expert demonstrations are collected using Puppet Mujoco VR sys-
tem (Fu et al., 2020). In rope manipulation task, expert demonstrations are generated by repeatedly
finding the closest corresponding rope elements from the current rope configuration and final goal
rope configuration, and performing consecutive pokes of a fixed small length on the rope element in
the direction of the goal configuration element. The detailed procedure are as follows:

A.2.1 MAZE NAVIGATION TASK

We use the path planning RRT (Lavalle, 1998) algorithm to generate optimal paths P =
(pt, pt+1, pt+2, ...pn) from the current state to the goal state. RRT has privileged information about
the obstacle position which is provided to the methods through state. Using these expert paths, we
generate state-action expert demonstration dataset for the lower level policy.

14
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A.2.2 PICK AND PLACE TASK

In order to generate expert demonstrations, we can either use a human expert to perform the pick and
place task in virtual reality based Mujoco simulation, or hard code a control policy. We hard-coded
the expert demonstrations in our setup. In this task, the robot firstly picks up the block using robotic
gripper, and then takes it to the target goal position. Using these expert trajectories, we generate
expert demonstration dataset for the lower level policy.

A.2.3 BIN TASK

In order to generate expert demonstrations, we can either use a human expert to perform the bin task
in virtual reality based Mujoco simulation, or hard code a control policy. We hard-coded the expert
demonstrations in our setup. In this task, the robot firstly picks up the block using robotic gripper,
and then places it in the target bin. Using these expert trajectories, we generate expert demonstration
dataset for the lower level policy.

A.2.4 HOLLOW TASK

In order to generate expert demonstrations, we can either use a human expert to perform the hollow
task in virtual reality based Mujoco simulation, or hard code a control policy. We hard-coded the
expert demonstrations in our setup. In this task, the robotic gripper has to pick up the square hollow
block and place it such that a vertical structure on the table goes through the hollow block. Using
these expert trajectories, we generate expert demonstration dataset for the lower level policy.

A.2.5 ROPE MANIPULATION ENVIRONMENT

We hand coded an expert policy to automatically generate expert demonstrations e =
(se0, s

e
1, . . . , s

e
T−1), where sei are demonstration states. The states sei here are rope configuration

vectors. The expert policy is explained below.

Let the starting and goal rope configurations be sc and gc. We find the cylinder position pair
(scm, gcm) where m ∈ [1, n], such that scm and gcm are farthest from each other among all other
cylinder pairs. Then, we perform a poke (x, y, θ) to drag scm towards gcm. The (x, y) position of
the poke is kept close to scm, and poke direction θ is the direction from scm towards gcm. After the
poke execution, the next pair of farthest cylinder pair is again selected and another poke is executed.
This is repeatedly done for k pokes, until either the rope configuration sc comes within δ distance
of goal gc, or we reach maximum episode horizon T . Although, this policy is not the perfect policy
for goal based rope manipulation, but it still is a good expert policy for collecting demonstrations
D. Moreover, as our method requires states and not primitive actions (pokes), we can use these
demonstrations D to collect good higher level subgoal dataset Dg using primitive parsing.

A.3 ENVIRONMENT IMPLEMENTATION DETAILS

Here, we provide extensive environment and implementation details for various environments. The
experiments are run for 4.73e5, 1.1e5, 1.32E5, 1.8E5, 1.58e6, and 5.32e5 timesteps in maze, pick
and place, bin, hollow, rope and kitchen respectively. The regularization weight hyper-parameter Ψ
is set at 0.001, 0.005, 0.005, 0.005, 0.005, and 0.005, the population hyper-parameter p is set to be
1.1e4, 2500, 2500, 2500, 3.9e5, and 1.4e4, and distance threshold hyper-parameter Qthresh is set
at 10, 0, 0, 0, 0, and 0 for maze, pick and place, bin, hollow, rope and kitchen tasks respectively.
In maze navigation, a 7-DOF robotic arm navigates across randomly generated four room mazes,
where the closed gripper (fixed at table height) has to navigate across the maze to the goal position.
In pick and place task, the 7-DOF robotic arm gripper has to navigate to the square block, pick it up
and bring it to the goal position. In bin task, the 7-DOF robotic arm gripper has to pick the square
block and place the block inside the bin. In hollow task, the 7-DOF robotic arm gripper has to
pick a square hollow block and place it such that a fixed vertical structure on the table goes through
the hollow block. In rope manipulation task, a deformable soft rope is kept on the table and the
7-DoF robotic arm performs pokes to nudge the rope towards the desired goal rope configuration.
The rope manipulation task involves learning challenging dynamics and goes beyond prior work
on navigation-like tasks where the goal space is limited. In the kitchen task, the 9-DoF franka
robot has to perform a complex multi-stage task in order to achieve the final goal. Although many
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such permutations can be chosen, we formulate the following task: the robot has to first open the
microwave door, then switch on the specific gas knob where the kettle is placed.

In maze navigation, upper level predicts a subgoal, and the lower level primitive travels in a straight
line towards the predicted goal. In pick and place, bin and hollow tasks, we design three primi-
tives, gripper-reach: where the gripper goes to given position (xi, yi, zi), gripper-open: opens the
gripper, and gripper-close: closes the gripper. In kitchen environment, we use the action primitives
implemented in RAPS (Dalal et al., 2021). While using RAPS baseline, we hand designed action
primitives, which we provide in detail in Section A.3.

A.3.1 MAZE NAVIGATION TASK

In this environment, a 7-DOF robotic arm gripper navigates across random four room mazes. The
gripper arm is kept closed and the positions of walls and gates are randomly generated. The table is
discretized into a rectangularW ∗H grid, and the vertical and horizontal wall positionsWP andHP

are randomly picked from (1,W − 2) and (1, H − 2) respectively. In the four room environment
thus constructed, the four gate positions are randomly picked from (1,WP − 1), (WP + 1,W − 2),
(1, HP − 1) and (HP + 1, H − 2). The height of gripper is kept fixed at table height, and it has to
navigate across the maze to the goal position(shown as red sphere).

The following implementation details refer to both the higher and lower level polices, unless oth-
erwise explicitly stated. The state and action spaces in the environment are continuous. The state
is represented as the vector [p,M], where p is current gripper position andM is the sparse maze
array. The higher level policy input is thus a concatenated vector [p,M, g], where g is the target
goal position, whereas the lower level policy input is concatenated vector [p,M, sg], where sg is
the sub-goal provided by the higher level policy. The current position of the gripper is the current
achieved goal. The sparse maze arrayM is a discrete 2D one-hot vector array, where 1 represents
presence of a wall block, and 0 absence. In our experiments, the size of p andM are kept to be 3
and 110 respectively. The upper level predicts subgoal sg , hence the higher level policy action space
dimension is the same as the dimension of goal space of lower primitive. The lower primitive action
a which is directly executed on the environment, is a 4 dimensional vector with every dimension
ai ∈ [0, 1]. The first 3 dimensions provide offsets to be scaled and added to gripper position for
moving it to the intended position. The last dimension provides gripper control(0 implies a fully
closed gripper, 0.5 implies a half closed gripper and 1 implies a fully open gripper). We select 100
randomly generated mazes each for training, testing and validation. For selecting train, test and
validation mazes, we first randomly generate 300 distinct mazes, and then randomly divide them
into 100 train, test and validation mazes each. We use off-policy Soft Actor Critic (Haarnoja et al.,
2018b) algorithm for optimizing RL objective in our experiments.

A.3.2 PICK AND PLACE, BIN AND HOLLOW ENVIRONMENTS

In the pick and place environment, a 7-DOF robotic arm gripper has to pick a square block and
bring/place it to a goal position. We set the goal position slightly higher than table height. In this
complex task, the gripper has to navigate to the block, close the gripper to hold the block, and then
bring the block to the desired goal position. In the bin environment, the 7-DOF robotic arm gripper
has to pick a square block and place it inside a fixed bin. In the hollow environment, the 7-DOF
robotic arm gripper has to pick a hollow plate from the table and place it on the table such that its
hollow center goes through a fixed vertical pole placed on the table. In all the three environments, the
state is represented as the vector [p, o, q, e], where p is current gripper position, o is the position of
the block object placed on the table, q is the relative position of the block with respect to the gripper,
and e consists of linear and angular velocities of the gripper and the block object. The higher level
policy input is thus a concatenated vector [p, o, q, e, g], where g is the target goal position. The
lower level policy input is concatenated vector [p, o, q, e, sg], where sg is the sub-goal provided by
the higher level policy. The current position of the block object is the current achieved goal. In our
experiments, the sizes of p, o, q, e are kept to be 3, 3, 3 and 11 respectively. The upper level predicts
subgoal sg , hence the higher level policy action space and goal space have the same dimension.
The lower primitive action a is a 4 dimensional vector with every dimension ai ∈ [0, 1]. The first
3 dimensions provide gripper position offsets, and the last dimension provides gripper control (0
means closed gripper and 1 means open gripper). While training, the position of block object and
goal are randomly generated (block is always initialized on the table, and goal is always above the
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table at a fixed height). We select 100 random each for training, testing and validation. For selecting
train, test and validation mazes, we first randomly generate 300 distinct environments with different
block and target goal positions, and then randomly divide them into 100 train, test and validation
mazes each. We use off-policy Soft Actor Critic (Haarnoja et al., 2018b) algorithm for the RL
objective in our experiments.

A.3.3 ROPE MANIPULATION ENVIRONMENT

In the robotic rope manipulation task, a deformable rope is kept on the table and the robotic arm
performs pokes to nudge the rope towards the desired goal rope configuration. The task horizon is
fixed at 25 pokes. The deformable rope is formed from 15 constituent cylinders joined together. The
following implementation details refer to both the higher and lower level polices, unless otherwise
explicitly stated. The state and action spaces in the environment are continuous. The state space
for the rope manipulation environment is a vector formed by concatenation of the intermediate joint
positions. The upper level predicts subgoal sg for the lower primitive. The action space of the
poke is (x, y, η), where (x, y) is the initial position of the poke, and η is the angle describing the
direction of the poke. We fix the poke length to be 0.08. While training our hierarchical approach,
we select 100 randomly generated initial and final rope configurations each for training, testing and
validation. For selecting train, test and validation configurations, we first randomly generate 300
distinct configurations, and then randomly divide them into 100 train, test and validation mazes
each. We use off-policy Soft Actor Critic (Haarnoja et al., 2018b) algorithm for optimizing RL
objective in our experiments.

A.4 ABLATION EXPERIMENTS

Here, we present the ablation experiments in all four task environments. The ablation analysis
includes experiments to choose RPL window size k hyperparameter (Figure 5), learning weight
hyperparameter ϕ (Figure 6), comparison between PEAR-IRL, PEAR-BC and PEAR-RPL ablation
(Figure 7), and comparisons with varying number of expert demonstrations used during relabeling
and training (Figure 8).
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Figure 5: The success rate plots show the performance of RPL for values of k window size parameter versus number of training epochs.

17



Under review as a conference paper at ICLR 2024

0 200k 400k
Timesteps

0.0

0.4

0.8

Su
cc

es
s R

at
e psi=0.001

psi=0.005
psi=0.01
psi=0.015

(a) Maze navigation

0 40k 80k
Timesteps

0.0

0.4

0.8

Su
cc

es
s R

at
e psi=0.001

psi=0.005
psi=0.01
psi=0.015

(b) Pick and place

0 40k 80k 120k
Timesteps

0.0

0.4

0.8

Su
cc

es
s R

at
e

psi=0.001
psi=0.01
psi=0.05

(c) Bin

0 40k 80k 120k
Timesteps

0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e psi=0.001

psi=0.005
psi=0.01
psi=0.05

(d) Hollow

0 4k 8k
Timesteps

0.0

0.2

0.2

Su
cc

es
s R

at
e psi=0.001

psi=0.005
psi=0.01
psi=0.015

(e) Rope

0 100k 200k 300k
Timesteps

0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e psi=0.001

psi=0.005
psi=0.01
psi=0.015

(f) Franka kitchen

Figure 6: The success rate plots show performance of CRISP for values of learning weight parameter ψ versus number of training timesteps.
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Figure 7: The success rate plots show success rate performance comparison between PEAR-IRL, PEAR-BC and PEAR-RPL ablation.
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Figure 8: The success rate plots show success rate performance plots of varying number of expert demonstrations versus number of training
epochs.
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Figure 9: The success rate plots show the performance of CRISP for various values ofQthresh parameter versus number of training timesteps.
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Figure 10: The success rate plots show the performance of CRISP for various values of population number p parameter versus number of
training timesteps.

A.5 QUALITATIVE VISUALIZATIONS

In this subsection, we provide visualization of successful and failure cases for some of the testing
runs for various environments in Figures 10-19:

Figure 12: Successful visualization: The visualization is a successful attempt at performing maze navigation task
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(a) Pick and place (b) Bin (c) Rope

Figure 11: Real world experiments in pick and place, bin and rope manipulation environments. Row 1 depicts initial and Row 2 depicts goal
configuration.

Figure 13: Failed visualization: The visualization is a failed attempt at performing maze navigation task

Figure 14: Successful visualization: The visualization is a successful attempt at performing pick navigation task

Figure 15: Successful visualization: The visualization is a successful attempt at performing bin task

Figure 16: Successful visualization: The visualization is a successful attempt at performing hollow task
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Figure 17: Failed visualization: The visualization is a falied attempt at performing hollow task

Figure 18: Successful visualization: The visualization is a successful attempt at performing rope navigation task

Figure 19: Failed visualization: The visualization is a failed attempt at performing rope navigation task

Figure 20: Successful visualization: The visualization is a successful attempt at performing kitchen navigation task

Figure 21: Failed visualization: The visualization is a failed attempt at performing kitchen navigation task
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