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Abstract

Text ranking is a critical task in information001
retrieval. Recent advances in pre-trained lan-002
guage models (PLMs), especially large lan-003
guage models (LLMs), present new oppor-004
tunities for applying them to text ranking.005
While supervised fine-tuning (SFT) with rank-006
ing data has been widely explored to better007
align PLMs with text ranking goals, previous008
studies have focused primarily on encoder-only009
and encoder-decoder PLMs. Research on lever-010
aging decoder-only LLMs for text ranking re-011
mains scarce. An exception to this is Ran-012
kLLaMA (Ma et al., 2023a), which uses di-013
rect SFT to explore LLaMA’s potential for text014
ranking. In this work, we propose a two-stage015
progressive paradigm to better adapt LLMs to016
text ranking. First, we conduct continual pre-017
training (CPT) of LLMs on a large weakly-018
supervised corpus. Second, we perform SFT,019
and propose an improved optimization strategy020
building upon RankLLaMA. Our experimen-021
tal results on multiple benchmarks show that022
our approach outperforms previous methods in023
both in-domain and out-domain scenarios.024

1 Introduction025

Text ranking is to order a set of candidate docu-026

ments by their relevance to a given query. This027

process is often the second step in information028

retrieval, following the initial collection of can-029

didate documents from a large corpus by a fast030

retriever (Robertson and Zaragoza, 2009)1. Early031

work relied primarily on the handcrafted numerical032

features based on query-document pairs (Chapelle033

and Chang, 2011). Recent advances in PLMs034

such as BERT (Kenton and Toutanova, 2019),035

along with large-scale annotated datasets like MS036

MARCO (Nguyen et al., 2016), have significantly037

improved model performance in text ranking.038

1As the candidate set is usually small, while the first step
focuses on efficiently collecting candidate documents, text
ranking tends to prioritize performance over efficiency.

The farad (symbol: F) is the SI derived
unit of electrical capacitance, ...

Reference:

What is the unit of
capacitance?

How many joules per
coulomb is equal to 1 farad?

Query:

Document Unknown

Ground-Truth LLM-Generated

Figure 1: Misalignment between LLMs (LLaMA) and
text ranking objectives: Sachan et al. (2022) measures
relevance using the probability of generating a query
given the document. Unlike ground-truth queries, LLM-
generated queries could contain document-irrelevant
terms. Such misalignment would lead to suboptimal
ranking performance with out-of-the-box LLMs.

LLMs, such as LLaMA (Touvron et al., 2023a) 039

and GPT4 (OpenAI, 2023), have brought a 040

paradigm shift in natural language processing 041

through their impressive performance on various 042

tasks. This has driven growing interest in applying 043

LLMs to text ranking (Liang et al., 2022). Recent 044

works have explored prompt learning, as well as 045

pointwise (Sachan et al., 2022), pairwise (Qin et al., 046

2023) and listwise (Sun et al., 2023b) text ranking 047

schemas to enable out-of-the-box LLMs to perform 048

unsupervised ranking. With the help of LLMs, sub- 049

stantial improvements over the BERT-style PLM 050

counterparts have been achieved. 051

However, a misalignment persists between the 052

LLM pre-training and the text ranking, as shown 053

in Figure 1. Several studies address this through 054

SFT of encoder-only (Nogueira et al., 2019) and 055

encoder-decoder (Zhuang et al., 2023b) models. 056

Yet rare work has targeted decoder-only LLMs. 057

RankLLaMA (Ma et al., 2023a) might be the only 058

exceptional work exploring SFT on decoder-only 059

LLMs. While RankLLaMA shows some gains, its 060

achievements still lag behind those of previous SFT 061

studies, and the observation could be even more 062

serious when tested on the out-domain scenario. 063

In this work, we propose a two-stage training 064
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framework to adapt decoder-only LLMs to text065

ranking progressively: (1) CPT followed by (2)066

SFT. Given the broad definition of text relevance,067

e.g., reasoning and semantic similarity, we first ex-068

ploit a CPT stage to teach LLMs various cases of069

relevance. This helps the second-stage SFT more070

readily and accurately align LLMs with text rank-071

ing objectives. During CPT, we construct a large-072

scale weakly-supervised text-pair dataset, and then073

perform the next-token prediction task (NTP) (Rad-074

ford et al., 2018) on it. For SFT, we introduce a new075

optimization objective different from RankLLaMA076

to better explore the potential of LLMs.077

We demonstrate the efficacy and generalizability078

of our two-stage adaptation with extensive experi-079

ments on in-domain and out-domain datasets. We080

test our method on major decoder-only LLMs and081

various model scales, covering BLOOM 560M-082

7B (Scao et al., 2022), LLaMA-7B (Touvron et al.,083

2023b), Baichuan-7B (Yang et al., 2023), and084

Qwen-7B (Bai et al., 2023). The experimental re-085

sults show that our method substantially improves086

over its baselines, highlighting the benefits of our087

progressive paradigm for text ranking. We also088

perform in-depth analysis into how our two-stage089

adaptation bridges the gap between LLMs and the090

text ranking task2.091

2 Method092

2.1 Background093

Text ranking refers to the task of determining how094

relevant each candidate document is to a given095

query. In our work, we exploit the pointwise096

strategy for inference, where the relevance scores097

are computed explicitly for each query-document098

pair (Crammer and Singer, 2001; Nogueira et al.,099

2019). The strategy has demonstrated high effi-100

ciency in real-world deployment compared with101

pairwise and listwise approaches (Liu et al., 2009).102

Formally, given a query q and a set of candidate103

documents D = {d1, . . . , dn}, we calculate rele-104

vance score(q, di), i ∈ [1, n] first and then execute105

a sorting procedure according to the scores. We106

can directly use the scoring methods of the out-of-107

the-box LLM exploration in text ranking to obtain108

score(q, di), which has shown significant effective-109

ness (Liang et al., 2022; Zhu et al., 2023).110

Here we adopt one representative scoring strat-111

egy used in Sachan et al. (2022), treating the gen-112

2The source code and models will be publicly available at
https://github.com/xxx.
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Figure 2: Two-stage adaptation paradigm. The base
LLM Mbase turns into an intermediate model Mcpt after
CPT, and then Mcpt generates the final ranking model
Msft through SFT.

eration probability of q conditioned on di as the 113

relevance score: 114

P(di) = ‘Document: di Query:’

score(q, di) =
∏
j

p (qj | P(di), q<j) . (1) 115

Here, qj denotes the j-th token of the query q, q<j 116

represents the token sequence preceding the j-th to- 117

ken in query q, and P(di) represents the document- 118

conditioned prompt. The calculation of each token 119

generation probability can be parallelized, so the 120

time complexity of this strategy is similar to that of 121

its counterparts (Nogueira et al., 2019, 2020). 122

Although this out-of-the-box scoring method is 123

mostly reasonable for text ranking, it would lead to 124

suboptimal performance due to salient differences 125

between the goals of LLM pre-training and text 126

ranking, as illustrated in Figure 1. Previous studies 127

have shown that we can better explore PLMs by 128

adapting them with text ranking-specific training 129

objectives (Nogueira et al., 2020; Zhuang et al., 130

2023b). Building on these studies, we propose a 131

two-step training strategy, (1) CPT and (2) SFT, to 132

adapt LLMs to text ranking, as shown in Figure 2. 133

2.2 Continual Pre-training (CPT) 134

The first stage involves CPT of LLMs on a weakly 135

supervised relevance dataset that is automatically 136

collected. As originally proposed by Gururan- 137

gan et al. (2020), CPT enables task- and domain- 138

specific adaptation of LLMs for text ranking tasks. 139

A straightforward strategy of adapting LLMs 140

to text ranking tasks is to perform SFT with rank- 141

ing data, and RankLLaMA (Ma et al., 2023a) fol- 142
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Text Pair Format Source Size Query Document

(title, body) CommonCrawl 1.6M Tango helps support North Texas Food Bank.
Tango Celebrates their 2013/2014 Partnership
with the North Texas Food Bank . . .

(title, abstract) arXiv 1.5M Duality and Tameness.
We prove a duality theorem and show different kinds
of failure of tameness of local cohomology.

(citation, reference) Semantic Scholar 1.2M
Some comparative growth properties of
composite entire and meromorphic functions . . .

The aim of this paper is to prove some results
about composite entire and meromorphic functions . . .

(post, comment) Reddit 1.7M But are all evod 2 tanks glass? The evod and evod 2 tanks are plastic. The evod glass . . .
(entity, description) DBPedia 0.8M Economy of Nigeria. Nigeria is a middle income, mixed economy and . . .

(question, answer) StackExchange 1.9M How many chromosomes are in anaphase 2?
In anaphase II, the sister chromatids present at the end of
meiosis I are separated into 23 individual chromosomes.

(summary, content) CCNews 1.5M Zidane apologizes for head butt.
French soccer star Zidane apologized for head-butting
an Italian opponent . . .

Table 1: Examples of weakly supervised text pairs. Related words in queries and documents are highlighted in the
same colors, showing that queries are often closely related to document content. Therefore, CPT on these data can
help LLMs generate document-relevant queries, alleviating the misalignment shown in Figure 1.

lows this strategy. However, obtaining such large-143

scale and high-quality ranking datasets would be144

a formidable challenge. Moreover, large gaps be-145

tween LLMs and ranking tasks may limit SFT’s146

capability to fully explore the original knowledge147

in LLMs. A prospective solution is progressive148

multi-stage learning, where we first perform CPT149

to orient LLMs towards ranking goals before con-150

ducting final SFT for accurate alignment.151

Weakly Supervised Data. Text relevance in-152

volves a range of aspects, such as question answer-153

ing, semantic similarity, summarization, descrip-154

tion. While LLM pre-training incorporate some155

of these aspects, here we further emphasize them156

since they are closely-related to text ranking.157

To this end, we collect a large scale of text pairs158

covering different relevance types and domains as159

much as possible. Most text pairs are sourced from160

public web pages, mined through tailored proto-161

cols, and filtered via normalization. Concretely, we162

mine the following aspects of relevance to mock163

the query-document behaviors: (title, body), (ti-164

tle, abstract), (citation, reference), (post, comment),165

(entity, description), (question, answer) and (sum-166

mary, content). Table 1 shows details and examples167

of the weakly supervised corpus.168

Pre-training. We regard shorter texts, such as169

titles, posts, and summaries, as queries, and their170

corresponding longer texts as documents. Consis-171

tent with the typical pre-training goal of LLMs, we172

employ the NTP task on weakly supervised text173

pairs. The loss function Lntp(q, d) is as follows:174

Lntp(q, d) = −
∑
j

log p (qj | P(d), q<j) , (2)175

which is equivalent to the log-likelihood of the176

relevance score defined in Eq.1.177

2.3 Supervised Fine-tuning (SFT) 178

The second stage of our method is SFT, which 179

helps further align the LLM for text ranking. SFT 180

has been a common technique to accurately adapt 181

LLMs for specific tasks (Ma et al., 2023a). Here we 182

describe the supervised data first and then introduce 183

the objectives for effective fine-tuning. 184

Supervised Training Data. We leverage the 185

MS MARCO dataset for SFT, which comprises 186

8.8 million documents and 53,000 positive query- 187

document pairs. Almost all positive text pairs in 188

MS MARCO have been manually annotated, so 189

this dataset is often used to train ranking mod- 190

els (Nogueira et al., 2019, 2020). In our work, we 191

first employ the BGE model (Xiao et al., 2023) to 192

retrieve the top 1000 negative document candidates 193

(i.e., the most relevant documents) for each query. 194

Following this, we construct the training dataset 195

by randomly sampling corresponding positive and 196

negative documents from the retrieved candidates. 197

The Ranking Objective. As demonstrated in pre- 198

vious text ranking studies (Ma et al., 2023a; Zhuang 199

et al., 2023b), the ranking loss (Chen et al., 2020) 200

based on a query q and the associated list of positive 201

and negative documents D = {d+, d−1 , . . . , d−m} 202

can effectively align LLMs with ranking tasks. The 203

ranking loss is formulated as: 204

Lrank(q,D) = − log
exp(S(q, d+)/τ)∑
d∈D exp(S(q, d)/τ) , (3) 205

where τ denotes the temperature parameter, and 206

S(.) is the relevance scoring function. 207

Our objective differs from that of Ma et al. 208

(2023a) as we use score(.) in Eq. 1 as the scoring 209

function S(.) rather than exploiting the last-token 210

representation for relevance scoring. score(.) in- 211

corporates more scoring evidence by considering 212

all query tokens. More importantly, our objective 213
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is to directly optimize NTP probabilities, a key214

property of LLMs, to fit the ranking goal. In this215

way, we can benefit from the strong generalization216

capabilities of pre-trained LLMs.217

Auxiliary Objectives. LLMs have potential for218

better handling out-domain scenarios as they are219

pre-trained on a large and diverse corpora (OpenAI,220

2023). Yet the large-scale parameters of LLMs221

might cause overfitting to the training dataset. To222

avoid this problem, we supplement the ranking op-223

timization with two additional objectives. The first224

one is the NTP objective Lntp, which is consistent225

with CPT and utilizes positive text pairs in SFT226

data. The second one is newly designed by us,227

namely Differential Penalty (DP) as follows:228

Ldp(Mcpt,Msft) =
1

∥T∥

∥T∥∑
j

∥V ∥∑
k

KL(pj,kcpt, p
j,k

sft ), (4)229

where KL is the Kullback-Leibler (KL) diver-230

gence, V is the model vocabulary, and T is all231

query tokens. pj,kcpt and pj,ksft denote the token prob-232

abilities calculated by the model Mcpt and the233

model Msft respectively. The DP objective actu-234

ally constrains the generation difference between235

the adapted model and the initialized model.236

Overall, our mixed objective loss function during237

SFT is as follows:238

Lsft = αLrank + (1− α)(Lntp + Ldp), (5)239

where α is the trade-off hyper-parameter.240

3 Experiments241

3.1 Experimental Settings242

Test Datasets. We use the same experimental243

settings as Ma et al. (2023a), covering both in-244

domain and out-domain scenarios.245

For the in-domain scenario, we test on MS246

MARCO (Nguyen et al., 2016), DL19 (Craswell247

et al., 2020) and DL20 (Craswell et al., 2021)248

benchmarks, and construct candidate documents249

based on the top 1000 documents retrieved by250

BM25 (Robertson and Zaragoza, 2009) and the251

top 200 documents retrieved by BGE (Xiao et al.,252

2023) respectively.253

For the out-domain scenario, we test on BEIR254

benchmark (Thakur et al., 2021) and use the top255

1000 documents retrieved by BM25 as candidate256

documents. The BEIR benchmark covers a variety257

of domains and ranking tasks, and therefore could258

be used to measure the generalization ability of259

ranking models.260

Implementation Details. We train the model on 261

8 NVIDIA A100 GPUs with 80GB of memory. 262

During CPT, we train for 1 epoch on all weakly 263

supervised data. During SFT, we train for 1 epoch 264

on the MS MARCO training set. Following Eq. 3, 265

we set the number of negative examples m to 48 266

and the temperature parameter τ to 0.001. The 267

trade-off hyper-parameter α in Eq. 5 is set to 0.6. 268

Similar to previous work (Ma et al., 2023a), we 269

fine-tune the top 16 transformer layers and freeze 270

other parameters to reduce GPU memory of SFT. 271

Baselines and Metric. We compare text ranking 272

models with different structures in previous works, 273

including encoder-only MonoBERT (Nogueira 274

et al., 2019), encoder-decoder MonoT5 (Nogueira 275

et al., 2020) and RankT5 (Zhuang et al., 2023b), 276

and decoder-only RankLLaMA (Ma et al., 2023a). 277

Following standard practice, we adopt NDCG@10 278

as the evaluation metric. 279

3.2 Main Results 280

To verify the broad effectiveness of our method, 281

we compare its performance with other adaptation 282

approaches on four foundation LLMs of different 283

types and sizes: BLOOM 560M-7B (Scao et al., 284

2022), LLaMA-7B (Touvron et al., 2023b), Qwen- 285

7B (Bai et al., 2023) and Baichuan-7B (Yang et al., 286

2023). Our two-stage adaptation of LLMs for text 287

ranking is denoted as TSARankLLM. 288

In-Domain Evaluation. Table 2 summarizes the 289

in-domain performance of our models as well as 290

several previous works. We find that decoder- 291

only LLMs exhibit substantial ranking capabilities. 292

The proposed TSARankLLM models outperform 293

MonoT5 models of similar scale in almost all cases. 294

Aligning with prior works (Nogueira et al., 2020), 295

we observe ranking performance generally increase 296

with model size. For example, increasing the size 297

of BLOOM from 560M to 7B improves the average 298

NDCG@10 score by 66.3− 64.3 = 2.0. 299

Following, we look into our TSARankLLM mod- 300

els in terms of different foundation LLMs. By 301

comparing these models of the same 7B-scale pa- 302

rameter size, we can see that LLaMA-7B achieves 303

the best performance overall, surpassing BLOOM, 304

Baichuan and Qwen. While other foundation 305

LLMs occasionally surpass LLaMA-7B on certain 306

datasets (e.g. BLOOM-7B on DL19 and Qwen-7B 307

on MS MARCO), LLaMA-7B appears to be the 308

most effective foundation LLM of those examined. 309
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Method LLM Size
Sparse Retrieval - BM25 Dense Retrieval - BGE

Average
MS MARCO DL19 DL20 MS MARCO DL19 DL20

Retrieval NA NA 22.8 50.6 48.0 40.9 71.4 70.5 50.7
MonoBERT BERT 340M 44.0 72.3 70.3 44.7 72.0 70.2 62.3

MonoT5
T5 220M 43.6 71.5 69.7 43.4 69.4 65.8 60.6
T5 770M 43.4 73.2 71.2 43.5 72.0 70.1 62.2
T5 3B 44.9 72.8 74.5 45.7 72.5 74.5 64.2

RankLLaMA LLaMA 7B 46.9 74.4 76.4 47.9 74.7 76.2 66.1

TSARankLLM

BLOOM 560M 44.0 75.3 73.2 44.8 75.0 73.7 64.3
BLOOM 1B 44.5 75.6 72.3 45.4 75.4 72.9 64.4
BLOOM 3B 45.1 76.8 73.6 45.9 76.2 74.4 65.3
BLOOM 7B 46.0 77.3 74.6 47.0 77.1 75.9 66.3
LLaMA 7B 46.6 76.2 76.3 47.7 76.7 76.8 66.7

Baichuan 7B 46.6 75.9 74.3 47.7 75.2 76.2 66.0
Qwen 7B 48.0 75.8 74.3 49.0 75.5 75.0 66.3

Table 2: In-domain results of various models.

Dataset

BM25 MonoBERT MonoT5 RankT5 TSARankLLM

NA BERT T5 T5 BLOOM
NA 340M 220M 770M 3B 770M 560M 1B 3B

Arguana 39.7 51.5 13.2 30.2 28.8 33.0 53.3 55.1 55.6
Climate 16.5 24.9 24.5 25.9 28.0 21.5 22.3 23.6 27.7
DBPedia 31.8 43.5 42.0 43.5 47.8 44.2 44.5 45.4 50.0
FEVER 65.1 81.3 80.2 82.8 85.0 83.2 83.6 82.3 83.7
FiQA 23.6 36.8 41.4 44.6 51.4 44.5 40.0 42.0 44.9

HotpotQA 63.3 73.5 69.5 73.6 75.9 71.0 75.6 75.4 76.4
NFCorpus 33.8 36.9 35.7 38.4 38.4 38.1 37.3 37.9 39.4

NQ 30.6 56.8 56.7 60.8 63.3 61.4 56.1 57.6 58.7
Quora 78.9 71.5 82.3 85.4 84.1 83.1 82.9 82.3 82.9

SCIDOCS 14.9 15.7 16.5 19.1 19.7 18.1 18.1 18.7 19.2
SciFact 67.9 72.0 73.6 75.5 77.7 75.0 77.1 76.3 78.0
COVID 59.5 65.0 77.8 82.3 79.5 80.7 78.9 81.7 83.3
Touche 44.2 27.7 27.7 28.5 30.0 44.0 28.2 29.7 30.2

#Best 1 0 0 1 5 0 0 0 6
Average 48.3 50.5 49.3 53.1 54.6 53.7 53.7 54.5 56.2

Table 3: Out-domain results of 220M-3B models. The “# Best” row indicates the number of datasets on which each
model achieved the best performance.

Finally, we compare TSARankLLM and Ran-310

kLLaMA adaptations on the same LLaMA-7B311

foundation. As shown, our two-stage adapta-312

tion approach surpasses the single-stage SFT of313

RankLLaMA, yielding average improvements of314

66.7 − 66.1 = 0.6 NDCG@10. Overall, our315

TSARankLLM method can provide state-of-the-316

art performance for the in-domain setting.317

Out-Domain Evaluation. Table 3 shows the re-318

sults of models within 3B scale, while Table 4319

provides the results of 7B models. In general, out-320

domain performance significantly lags behind that321

of the in-domain, with a gap around 10 points, indi-322

cating that out-domain text ranking is challenging.323

After examining the results in Table 3, we find324

that the overall tendency is consistent with that325

of in-domain results. Increased model size gener-326

ally improves performance. Notably, our TSARan- 327

kLLM model based on BLOOM-3B outperforms 328

the monoT5-3B of the same model size, demon- 329

strating its strong text ranking capability. 330

Further, we analyze the out-domain results of 331

7B-scale models in Table 4. We can see that our 332

TSARankLLM models exhibit much better perfor- 333

mance than RankLLaMA. With the same LLaMA- 334

7B as backend, our method gets higher NDCG@10 335

scores on all the datasets, and the averaged increase 336

reaches 57.8− 52.5 = 5.3. Among the foundation 337

models, Qwen achieves the highest average score 338

with our TSARankLLM approach, while LLaMA 339

excels on most out-domain datasets. Overall, all 340

the results indicate that LLMs provide a promising 341

solution for out-domain text ranking if pre-trained 342

LLM knowledge can be effectively explored. 343
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Dataset RankLLa. TSARankLLM

LLa. BLO. LLa. Bai. Qwen

Arguana 47.0 56.1 51.2 54.1 56.8
Climate 19.1 28.1 31.6 32.2 37.2
DBPedia 48.6 47.8 49.2 50.0 48.5
FEVER 74.5 84.1 84.5 83.0 85.6
FiQA 42.2 46.4 50.2 49.4 49.6

HotpotQA 75.2 77.4 80.7 80.0 80.4
NFCorpus 35.8 39.5 40.2 39.8 40.4

NQ 62.1 60.4 63.6 63.1 62.7
Quora 80.5 83.8 85.9 85.0 82.6

SCIDOCS 19.0 20.3 19.8 20.0 19.8
SciFact 70.1 77.8 78.3 77.6 77.6
COVID 77.4 82.9 84.0 82.4 83.7
Touche 31.0 31.0 32.0 30.6 32.6

#Best 0 1 6 1 5
Average 52.5 56.6 57.8 57.5 58.3

Table 4: Out-domain results of 7B models. “RankLLa.”,
“BLO.”, “LLa.” and “Bai.” represent RankLLaMA,
BLOOM, LLaMA and Baichuan respectively.

3.3 Ablation Analysis344

In this subsection, our ablation analysis quantifies345

the contribution of each part of our two-stage adap-346

tation to the overall performance improvements of347

the TSARankLLM model.348

The Two-Stage Training. Table 5 shows the349

individual contributions of CPT and SFT based350

on BLOOM-560M and LLaMA-7B. As shown,351

both training stages exhibit significant performance352

gains, validating their importance to optimal final353

results. In particular, the influence of SFT is highly354

remarkable. This is unsurprising given its use of355

high-quality training data from MS MARCO to ac-356

curately align LLMs with ranking objectives. With-357

out both stages, our models degenerate to out-of-358

the-box LLMs with unsatisfactory ranking capabil-359

ities, whose in-domain performance can be even360

worse than direct retrieval without ranking. This361

directly indicates that the misalignment between362

out-of-the-box LLMs and text ranking objectives363

results in suboptimal performance.364

The Scale of Weakly-Supervised Data in CPT.365

During CPT, we construct a weakly-supervised366

dataset. An important question is that how the367

data scale influences our model performance. Fig-368

ure 3 shows the results of our method on LLaMA-369

7B, illustrating trends for both in-domain and out-370

domain performance. As expected, model perfor-371

mance improves with greater data scale, though372

the gains become insignificant after the data scale373

surpasses 10M. Additionally, we can see that CPT374

Method
BLOOM-560M LLaMA-7B

In. Out. In. Out.

TSARankLLM 64.3 53.7 66.7 57.8

• Two-Stage Training
- CPT 63.8 51.0 66.3 55.7
- SFT 53.6 47.8 56.3 52.6
- CPT&SFT 43.4 43.4 47.5 48.6

• Auxiliary Objectives of SFT
- Lntp 64.3 53.2 66.6 57.0
- Ldp 64.2 52.7 66.4 56.3
- Lntp&Ldp 64.2 52.0 66.4 55.5

Table 5: Ablation results of BLOOM-560M and
LLaMA-7B in in-domain (In.) and out-domain (Out.)
scenarios.
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Figure 3: Results of TSARankLLM based on LLaMA-
7B at various CPT data sizes (millions).

can benefit the out-domain performance more than 375

the in-domain setting, as evidenced by the steeper 376

curve of the out-domain case. 377

The Ranking Objective of SFT. As mentioned 378

in Section 2.3, we exploit a ranking objective dif- 379

ferent from that of RankLLaMA. Here we fairly 380

compare both ranking objectives in two settings: 381

with and without CPT. Both settings during SFT 382

only exploit the ranking objective, i.e., the auxiliary 383

objectives are removed. Figure 4 shows that our 384

ranking objective substantially outperforms that of 385

RankLLaMA in both settings in terms of either in- 386

domain or out-domain performance. The results 387

indicate that our SFT can better align LLM pre- 388

training with the ranking goal by optimizing the 389

full-query generation probabilities directly. 390

The Auxiliary Objectives of SFT. To avoid over- 391

fitting and better explore the potential of LLMs, we 392

design two auxiliary objectives (i.e., Lntp and Ldp ) 393

during SFT. Table 5 conducts ablation analysis to 394

test the effectiveness of the two objectives based 395

on BLOOM-560M and LLaMA-7B. We can see 396

that the two objectives have negligible impact on in- 397

domain performance, with a maximum drop of only 398

0.3 point when removed. As expected, they signif- 399
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(b) Out-domain52.0
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RankLLaMA LLaMA+Lrank LLaMA+CPT+Lrank

Figure 4: Model results with different ranking objec-
tives. RankLLaMA is based on the last token, while two
variants of our models are based on entire query tokens
and do not involve our two auxiliary objectives.

icantly impact the out-domain performance, de-400

creasing performance by (53.7−52.0)+(57.8−55.5)
2 =401

2.0 points on average when omitted. Notably, re-402

moving Ldp leads to a more substantial decrease,403

indicating its greater impact. Moreover, we find404

that LLaMA-7B is more sensitive to the auxiliary405

objectives than BLOOM-560M, probably because406

larger models can be more easily overfitted.407

3.4 Discussion408

In this subsection, we conduct detailed experimen-409

tal analyses to comprehensively evaluate our two-410

stage training method.411

A Comparison with More Powerful LLMs.412

Compared to the LLMs investigated in our work,413

some recent LLMs like UL2-20B (Tay et al., 2023),414

ChatGPT (OpenAI, 2022) and GPT-4 (OpenAI,415

2023) have shown more superior performance on416

many NLP tasks owing to their extremely large417

model sizes and pre-training data. We apply our418

TSARankLLM method to train the LLaMA-7B,419

and compare its performance against these LLMs.420

Due to the massive model sizes and even closed-421

source nature of these LLMs, directly training them422

is challenging. Here we apply out-of-the-box rank-423

ing strategies to them: (1) the pairwise ranking424

strategy of Qin et al. (2023) based on UL2-20B425

and (2) the listwise ranking strategy of Sun et al.426

(2023b) based on ChatGPT and GPT4. Table 6427

shows the results on five out-domain datasets se-428

lected for this comparison3. We can see that our429

method is very competitive, with an average gap of430

only 56.9− 56.7 = 0.2 point compared to GPT-4.431

Considering the higher costs of these compared sys-432

tems, our method could be preferable in practice.433

3The in-domain evaluation is unfair for out-of-the-box
ranking strategies.

Dataset
Pairwise Listwise TSARankLLM

UL2-20B ChatGPT GPT-4 LLaMA-7B

COVID 79.5 76.7 85.5 84.0
NFCorpus 36.1 35.6 38.5 40.2

Touche 37.9 36.2 38.6 32.0
DBPedia 46.5 44.5 47.1 49.2
SciFact 73.3 70.4 75.0 78.3

#Best 0 0 2 3
Average 54.7 52.7 56.9 56.7

Table 6: Comparison with more powerful LLMs. Due
to high time complexity and API call costs of pairwise
and listwise ranking strategies (Qin et al., 2023), we
only experiment with small datasets.

Method Doc-word ↑ Stop-word ↓

Base LLaMA-7B 25.1 19.7
+ CPT 27.8 16.1
+ SFT 28.3 15.7
+ CPT&SFT 31.7 14.1

GPT-4 33.6 13.6
Ground-Truth 33.3 13.3

Table 7: The proportion of document-relevant and stop
words in queries generated by various models. “Ground-
Truth” denotes manually annotated positive queries.

Quality Assessment of Query-Generation in Our 434

Two-Stage Training. Query generation is a key 435

module in our two-stage training. To understand 436

this module, we conduct a human evaluation to 437

measure the quality of query-generation directly. 438

As mentioned in Figure 1, without text-ranking- 439

oriented alignment, the out-of-the-box LLMs com- 440

monly generate queries including a large propor- 441

tion of document-irrelevant information. As such, 442

we mainly measure the quality by the percentage of 443

document-relevant semantically-equivalent words, 444

while also considering adverse stop words. Table 445

7 shows the manual evaluation results on 500 ran- 446

domly selected BEIR samples. The results of GPT4 447

and ground-truth are also provided for reference. 448

We can see that by applying CPT and SFT grad- 449

ually, the percentage of document-relevant words 450

increases while that of stop words decreases, both 451

approaching the percentages of GPT4 and ground- 452

truth. However, higher percentage of document- 453

relevant words and lower percentage of stop words 454

do not necessarily indicate better performance. 455

A Perplexity Perspective to Examine Our Two- 456

Stage Training. An optimal ranker based on 457

Eq. 1 should strongly prefer generating positive 458

over negative queries for a given document. There- 459

fore, the perplexity (denoted as PPL) difference 460
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Figure 5: The perplexity (PPL) comparison of generat-
ing positive queries for a given document. “∆” denotes
PPLneg − PPLpos, which roughly indicates the model’s
ranking capability.

between negative and positive queries can roughly461

estimate the ranking capability of our models. We462

randomly select 5,000 positive and negative text463

pairs from BEIR and test the query-generation PPL464

of various rankers, as shown in Figure 5. We ob-465

serve that in our two-stage training pipeline, CPT466

significantly reduces the PPL of positive queries467

(i.e, PPLpos), and SFT increases PPL of negative468

queries (i.e., PPLneg) remarkably. The observation469

is consistent with our initial expectation.470

4 Related Work471

Text ranking has been an active area of research472

for decades (Liu et al., 2009; Zhu et al., 2023).473

One widely-adopted strategy is to rank candidate474

documents based on the relevance score between475

a query and the document (Cossock and Zhang,476

2006). This strategy is referred to as the pointwise477

approach. Additionally, pairwise (Burges et al.,478

2005) and listwise (Xia et al., 2008) approaches,479

which consider the relative ordering of multiple480

documents in response to a query, have also gained481

great attention due to their strong performance. In482

our work, we utilize the pointwise approach for483

efficient inference and the listwise approach for484

effective training, making the best use of the both.485

The precise calculation of the query-document486

relevance scores is the key to the pointwise in-487

ference, which has been generally dominated by488

supervised techniques (Guo et al., 2016). Ini-489

tially, manually-crafted sparse features were em-490

ployed to estimate these scores (Chapelle and491

Chang, 2011). Subsequently, neural network mod-492

els marked a turning point, showcasing their sub-493

stantial promise (Pang et al., 2016). More recently,494

the progress of PLMs has led to remarkable ad- 495

vances in score calculation by using a pre-training 496

and fine-tuning framework for text ranking (Gao 497

et al., 2021; Ju et al., 2021; Pradeep et al., 2021; 498

Zhang et al., 2023b; Li et al., 2023). 499

As PLMs evolved into decoder-only LLMs, early 500

work explored out-of-the-box strategies for text 501

ranking to leverage the inherent strong reasoning 502

capabilities of LLMs (Sun et al., 2023b; Qin et al., 503

2023; Ma et al., 2023b; Cho et al., 2023). For in- 504

stance, one could simply ask LLMs to determine 505

the relevance of a query-document pair, yielding a 506

rudimentary solution (Liang et al., 2022; Zhuang 507

et al., 2023a,c). Subsequent works (Sachan et al., 508

2022; Muennighoff, 2022; Drozdov et al., 2023), 509

propose the use of query generation likelihood 510

based on a candidate document as a measure of 511

relevance. We follow this line of work for the rele- 512

vance score definition. 513

Nevertheless, these out-of-the-box strategies of- 514

ten overlook the potential misalignment between 515

LLMs and the specific requirements of text ranking 516

tasks, which is a major issue that our work aims 517

to address. Task-specific LLM training can help 518

bridge this gap (Sun et al., 2023a; Ma et al., 2023a; 519

Zhang et al., 2023a), as exemplified by RankL- 520

LaMA (Ma et al., 2023a), which uses the last token 521

as the ranking basis and trains with ranking losses. 522

While dominant LLMs typically feature a 523

decoder-only architecture, previous research on 524

adapting encoder(-decoder) PLMs to text ranking 525

remains highly pertinent (Nogueira et al., 2019, 526

2020; Zhuang et al., 2023b). The underlying prin- 527

ciples and core ideas of these studies underpin our 528

approach, and their benefits apply across diverse 529

model architectures. 530

5 Conclusion 531

In our work, we proposed a novel two-stage train- 532

ing paradigm to adapt LLMs to text ranking tasks. 533

Specifically, we first performed CPT on a large- 534

scale weakly-supervised corpus to initially align 535

LLMs with ranking objectives. This is then fol- 536

lowed by SFT on high-quality data along with full- 537

query generation optimization and auxiliary objec- 538

tives. Through this two-stage training paradigm, 539

we achieved improved ranking performance on var- 540

ious LLMs in both in-domain and out-domain ex- 541

perimental settings. The significant gains exhibited 542

by our approach highlight its effectiveness in en- 543

hancing the capabilities of LLMs for text ranking. 544
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6 Limitations545

While our two-stage adaptation can effectively en-546

hance LLMs’ text ranking capabilities, several lim-547

itations remain. First, our CPT is actually inde-548

pendent of ranking objectives. Introducing ranking549

objectives similar to SFT during CPT worths fur-550

ther exploration. Second, using a unified prompt551

for all ranking tasks might damage model general-552

ization. We generally refer to the texts of the BEIR553

benchmark as “query” and “document” in prompts,554

as shown in Eq. 1. In fact, these texts can be further555

classified. Specifically, “query” involves “title”,556

“entity”, etc, and “document” involves “argument”,557

“news”, etc. Finally, we evaluate our approach only558

on the BEIR benchmark. Testing it on diverse559

ranking tasks, such as the demonstration ranking560

of the in-context-learning scenario and knowledge561

ranking to mitigate hallucinations in LLMs, would562

better validate its broad applicability.563

7 Ethics Statement564

Text ranking is a widely studied task. The data565

and other related resources involved in our work566

are open source and are already commonly used in567

existing work. To the best of our knowledge, our568

work fully complies with the ACL Ethics Policy.569
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Figure 6: Results for various negative examples sizes m
in Eq. 5 on LLaMA-7B.
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Figure 7: The effect of α in Eq. 5 on LLaMA-7B.

A Appendix840

The Negative Examples Size. Negative example841

size m in Eq. 5 is the key to ranking loss. We test842

the impact of m on in-domain and out-domain per-843

formance in Figure 6. Overall, increasing negative844

examples enhances ranking performance, consis-845

tent with traditional conclusions (Zhuang et al.,846

2023b; Ma et al., 2023a). Moreover, we find that847

out-domain performance is more sensitive to nega-848

tive example size. Specifically, as the m increases849

from 8 to 48, the in-domain result increases by 1.3,850

while the corresponding increase in the out-domain851

result is 2.7.852

Balancing Ranking and Auxiliaries. During853

SFT, the trade-off between ranking and auxiliary854

objectives is controlled by α in Eq. 5. We analyze855

the impact of α, as shown in Figure 7. If the α is too856

low, the model would ignore the ranking objective,857

which is the key to SFT. Therefore, when the α is858

0.2, the model performs poorly in both scenarios.859

Conversely, high α values barely affect in-domain860

results. From α=0.6 to 1.0, the in-domain perfor-861

mance only decreases by 0.3. However the corre-862

sponding out-domain result drops significantly by863

2.3. This is because over-emphasis on the rank-864

ing objective leads to overfitting in the in-domain865

scenario and affects model generalization.866

Method
In-domain Out-domain

Short Long Short Long

MonoT5-3B 65.7 61.2 57.4 52.4
RankLLaMA-7B 67.3 63.5 55.1 50.4

• TSARankLLM
BLOOM-3B 66.9 64.2 57.5 55.2
LLaMA-7B 67.6 66.0 58.6 57.2

Table 8: A comparison of models on query sets of short
(≤10 words) and long (>10 words) lengths.

A fine-grained comparison of text ranking by 867

query-length. Query length is known to greatly 868

impact the ranking performance (Lupart et al., 869

2023). Table 8 provides a comparison of two 870

TSARankLLM models against two representative 871

baselines across varying query lengths. We find 872

that our TSARankLLM models excel particularly 873

on long queries, with most overall gains attributable 874

to the improvements on long queries. Notably, 875

our method exhibits little performance degradation 876

across query lengths under the out-domain setting. 877

Efficiency Analysis We analyze the number 878

of text pairs processed per second for various 879

models, as shown in Table 9. All experiments 880

are performed on 1 NVIDIA A100 GPU with 881

80GB of memory. We find that model size and 882

batch size to be the primary determinants of in- 883

ference efficiency, rather than the model structure 884

or scoring strategy investigated. Although our 885

scoring strategy is different from other models, 886

MonoBERT-340M, MonoT5-770M and TSARan- 887

kLLM BLOOM-560M achieve comparable infer- 888

ence efficiency at similar model scales. The same is 889

true for MonoT5-3B and TSARankLLM BLOOM- 890

3B. Unexpectedly, a larger batch size can signifi- 891

cantly improve the inference efficiency. 892
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Batch

MonoBERT MonoT5 TSARankLLM

BERT T5 BLOOM
340M 220M 770M 3B 560M 1B 3B 7B

1 56 57 51 30 53 48 32 21
2 108 112 95 54 100 87 56 35
4 172 175 157 86 168 139 86 53
8 263 270 231 114 256 197 116 64

Table 9: Number of text pairs processed per second by encoder-only (MonoBERT), encoder-decoder(MonoT5),
decoder-only (TSARankLLM) models.
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