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Abstract

Recently, pre-trained models with phonetic
supervision have demonstrated their advan-
tages for crosslingual speech recognition in
data efficiency and information sharing across
languages. However, a limitation is that
a pronunciation lexicon is needed for such
phoneme-based crosslingual speech recogni-
tion. In this study, we aim to eliminate the
need for pronunciation lexicons and propose
a latent variable model based method, with
phonemes being treated as discrete latent vari-
ables. The new method consists of a speech-
to-phoneme (S2P) model and a phoneme-to-
grapheme (P2G) model, and a grapheme-to-
phoneme (G2P) model is introduced as an aux-
iliary inference model. To jointly train the
three models, we utilize the joint stochastic
approximation (JSA) algorithm, which is a
stochastic extension of the EM (expectation-
maximization) algorithm and has demonstrated
superior performances particularly in estimat-
ing discrete latent variable models. Based on
the Whistle multilingual pre-trained S2P model,
crosslingual experiments on Polish (130h) and
Indonesian (20h) are conducted. With only
10 minutes of phoneme supervision, the new
method, SPG-JSA, achieves 5% error rate re-
ductions compared to the best cross-lingual
fine-tuning approach using subword or full
phoneme supervision. Furthermore, it is found
that in language domain adaptation (i.e., uti-
lizing cross-domain text-only data), SPG-JSA
outperforms the standard practice of language
model fusion via the auxiliary support of the
G2P model by 9% error rate reductions.

1 Introduction

In recent years, automatic speech recognition
(ASR) systems based on deep neural networks
(DNN5s) have made significant strides, which bene-
fit from large amounts of transcribed speech data.
Remarkably, more than 7,000 languages are spoken
worldwide (Ethnologue, 2019), and most of them

are low-resourced languages. A pressing challenge
for the speech community is to develop ASR sys-
tems for new, unsupported languages rapidly and
cost-effectively. Crosslingual ASR have been ex-
plored as a promising solution to bridge this gap
(Schultz and Waibel, 1998; Conneau et al., 2021;
Babu et al., 2021; Zhu et al., 2021).

In crosslingual speech recognition, a pre-trained
multilingual model is fine-tuned to recognize ut-
terances from a new, target language, which is un-
seen in training the multilingual model. In this
way, crosslingual speech recognition could achieve
knowledge transfer from the pre-trained multilin-
gual model to the target model, thereby reducing re-
liance on transcribed data and becoming one of the
effective solutions for low-resource speech recog-
nition. Most recent research on pre-training for
cross-lingual ASR can be classified into three cat-
egories - supervised pre-training with graphemic
transcription or phonetic transcription, and self-
supervised pre-training. The pros and cons of
the three categories have recently been discussed
in (Yusuyin et al., 2024). Under a common ex-
perimental setup with respect to pre-training data
size and neural architecture, it is further found in
(Yusuyin et al., 2024) that when crosslingual fine-
tuning data is more limited, phoneme-based super-
vised pre-training achieves the most competitive re-
sults and provides high data-efficiency. This makes
sense since phonetic units such as described in In-
ternational Phonetic Alphabet (IPA), are exactly
those sounds shared in human language through-
out the world. In contrast, the methods using
grapheme units face challenges in learning shared
crosslingual representations due to a lack of shared
graphemes among different languages.

A longstanding challenge in phoneme-based
speech recognition is that phoneme labels are
needed for each training utterance. Phoneme labels
are usually obtained by using a manually-crafted
pronunciation lexicon (PROLEXSs), which maps



every word in the vocabulary into a phoneme se-
quence. Grapheme-to-phoneme (G2P) tools have
been developed to aid this process of labeling
sentences from their graphemic transcription into
phonemes, but such tools are again created based
on PROLEXs. There are enduring efforts to com-
pile PROLEXSs and develop G2P tools (Novak et al.,
2016; Mortensen et al., 2018; Hasegawa-Johnson
et al., 2020) for different languages. Overall, the
existing approaches of phoneme-based ASR heav-
ily depend on expert labor and are not scalable to
be applied to much more low-resource languages.

In this paper we are interested in reducing the
reliance on PROLEXSs in building phoneme-based
crosslingual ASR systems, i.e., towards PROLEX
free. In recognizing speech x into text y, phonemes
arise as intermediate states. So intuitively we pro-
pose to treat phonemes as hidden variables h, and
construct a latent variable model (LVM) with pairs
of speech and text (z,y) as observed values. Ba-
sically, the whole model is a conditional genera-
tive model from Speech to Phonemes and then to
Graphemes, which is referred to as a SPG model,
denoted by py(h, y|x). SPG consists a speech-to-
phoneme (S2P) model py(h|z) and a phoneme-
to-grapheme (P2G) model py(y|h), and is thus
a two-stage model. Latent variable modeling en-
ables us to train the SPG model, without the need
to knowing h, by maximizing marginal likelhood
pe(y|z). This is different from previous two-stage
ASR model with phonemes as intermediate states,
as reviewed later in Section 2. Learning latent-
variable models usually involves introducing an
auxiliary G2P model g4 (h|y).

Method contribution. Note that phonemes take
discrete values, and recently the joint stochastic
approximation (JSA) algorithm (Xu and Ou, 2016;
Ou and Song, 2020) has emerged for learning dis-
crete latent variable models with impressive per-
formance. In this paper we propose to apply JSA
to learn the SPG model, which is called the SPG-
JSA approach. The S2P model is initialized from a
pre-trained phoneme-based multilingual S2P back-
bone, called Whistle (Yusuyin et al., 2024). In
practice, when viewing phonemes as labels, we
combine supervised learning over 10 minutes of
transcribed speech with weak phoneme labels and
unsupervised learning over a much larger dataset
without phoneme labels. Bootstrapping from a
good S2P backbone (like Whistle) and providing
few-shots samples of latent variables (such as 10
minutes of weak phoneme labels) is found to be

important to make SPG-JSA successfully work in
the challenging task of crosslingual ASR.
Experiment contribution. Crosslingual experi-
ments on Polish (130h) and Indonesian (20h) are
conducted. With only 10 minutes of phoneme su-
pervision, SPG-JSA outperforms the best crosslin-
gual fine-tuning approach using subword or full
phoneme supervision. Furthermore, it is found that
in language domain adaptation (i.e., utilizing cross-
domain text-only data), SPG-JSA significantly out-
performs the standard practice of language model
fusion via the auxiliary support of the G2P model.

2 Related Work

Crosslingual ASR. Multilingual and crosslingual
speech recognition has been studied for a long
time (Schultz and Waibel, 1998). Modern crosslin-
gual speech recognition typically fine-tunes a mul-
tilingual model pre-trained on multiple languages.
Most recent research on multilingual pre-training
can be classified into three categories - supervised
pre-training with graphemic transcription (Li et al.,
2021; Pratap et al., 2020; Tjandra et al., 2023;
Radford et al., 2023) or phonetic transcription (Li
et al., 2020; Zhu et al., 2021; Tachbelie et al.,
2022; Yusuyin et al., 2023), and self-supervised
pre-training (Conneau et al., 2021; Babu et al.,
2021; Pratap et al., 2024). It is shown in (Yusuyin
et al., 2024) that when crosslingual fine-tuning data
is more limited, phoneme-based supervised pre-
training can achieve better results compared to
subword-based supervised pre-training and self-
supervised pre-training. However, phoneme-based
crosslingual fine-tuning in (Yusuyin et al., 2024)
requires phoneme labels for every training utter-
ance from the target language, which relies on a
manually-crafted PROLEX for the target language.
The UniSpeech method (Wang et al., 2021b) com-
bines a phoneme-based supervised loss and a self-
supervised contrastive loss to improve pre-training,
and crosslingual fine-tuning still needs PROLEXs.

Two-stage ASR. The two-stage of recognizing
speech to phonemes and then to graphemes has
been studied for crosslingual ASR (Xue et al.,
2023; Lee et al., 2023). The motivation is similar
to ours that phoneme units facilitate the learning
of shared phonetic representations, making cross-
lingual transfer learning effective. However, both
studies require a PROLEX for the target language.

Discrete latent variable models. Hidden
Markov models (HMMs) are classic discrete latent
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Figure 1: Overview of the latent variable model (SPG),
consisting of speech-to-phoneme (S2P) and phoneme-
to-grapheme (P2G). Learning SPG without knowing h
involves introducing an auxiliary G2P model, denoted
by the dashed line.

variable models (LVMs) and have been applied to
ASR for a long time (Rabiner, 1989). Discrete
LVMs are seldom used in recent end-to-end ASR
systems, but has been widely used in many other
machine learning applications such as dialog sys-
tems (Kim et al., 2020; Zhang et al., 2020), pro-
gram synthesis (Chen et al., 2021), and discrete
representation learning (van den Oord et al., 2017).

3 Method: SPG-JSA

3.1 Model

Let (x,y) denote the pair of speech and text for an
utterance. Specifically, x represents the speech log-
mel spectrogram and y the graphemic transcription
of x. Let h denote the IPA phoneme sequence
representing the pronunciation of z. In recognizing
speech x into text y, we treat phonemes h as hidden
variables, and construct a latent variable model,
which can be decomposed as follows:

po(h,ylx) = po(hlz)pe(y|h)

Basically, as shown in Figure 1, the whole model
is a conditional generative model from Speech to
Phonemes and then to Graphemes, which is re-
ferred to as a SPG model. SPG consists a speech-
to-phoneme (S2P) model pg(h|x) and a phoneme-
to-grapheme (P2G) model py(y|h).

3.2 Training

Training the SPG model from complete data, i.e.,
knowing h, can be easily realized by supervised
training. To train S2P and P2G end-to-end (i.e.,
conducting unsupervised training without knowing
h), we resort to maximizing the marginal likelihood
po(y|z) and applying the JSA algorithm (Xu and
Ou, 2016; Ou and Song, 2020), which has emerged

for learning discrete latent variable models with
impressive performance.

JSA involves introducing an auxiliary inference
model to approximate the intractable posterior
po(h|x,y), which, in the ASR task considered in
this paper, is assumed to take the form of g4 (h|y),
i.e., a G2P model. We can jointly train the three
models (S2P, P2G and G2P), which is summarized
in Algorithm 1 (SPG-JSA).

The JSA algorithm can be viewed as a stochastic
extension of the well-known EM algorithm (Demp-
ster et al., 1977), which iterates Markov Chain
Monte Carlo (MCMC) sampling and parameter
updating. The sampling step in JSA stochasti-
cally fills the latent variable h (phonemes) through
sampling from the posterior py(h|x,y), which is
analogous to the E-step in EM. Particularly, using
po(h|z,y) as the target distribution and g4 (h|y) as
the proposal, we sample h through Metropolis in-
dependence sampler (MIS) (Liu, 2001) as follows:

1) Propose h ~ qg(hly);
. . . w(h)
2) Accept h with probability mm{ () }
where
_ po(hlz,y)  po(h|z)pe(y|h)
) =l h
g6 (hly) q(hly)

is the usual importance ratio between the target and
the proposal distribution and £ denotes the previous
value for h along the Markov chain. In practice,
we run MIS for several steps but for simplicity
Algorithm 1 only shows a single step of MIS, with
the chain is initialized from pg(h|x).

Once we obtain the sampled pseudo labels for
h from MIS, we can treat them as if being given
and calculate the gradients for the S2P, P2G, and
G2P models respectively and proceed with param-
eter updating, similar to the process in supervised
training. This is analogous to the M-step in EM,
but with the proposal ¢4 being adapted as well.

Semi-supervised Training. The SPG-JSA al-
gorithm is general and is in fact an unsupervised
learning over (x, y) without the need to know h. It
is challenging to run this purely unsupervised form
from scratch in the ASR task considered in this
paper, which involves very high-dimensional latent
space. Two additional techniques are incorporated
to add inductive bias into model training. First,
the S2P model is initialized from a pre-trained
phoneme-based multilingual S2P backbone, called
Whistle (Yusuyin et al., 2024), which have been
shown to have good phoneme classification abil-
ity. In our experiments, the S2P, P2G, and G2P

ey



Algorithm 1 The SPG-JSA algorithm

Input: S2P model py(h|z), P2G model py(y|h),
G2P model g4 (hly), training dataset {(z,y)}
repeat

Draw a pair of speech and text (x,y);
Initialize / by sampling from py(h|z);
Monte Carlo sampling:

Sample h from the proposal g4(h|y);

Accept h = h  with  probability

. po(hlz)pe(ylh) ,po(h|z) pe(y|h)
mm{l w7 astily) }

Parameter updating:
Updating o by
Volpo (hl2)po(yI7); )
Updating ¢ by ascending: V 4q4(h|y);
until convergence
return 6 and ¢

ascending:

models are all implemented by CTC (Graves et al.,
2006), which will be more detailed in Section 4.2.
Second, we assume that 10 minutes of transcribed
speech with phoneme labels are available, which
takes much less labor than compiling a complete
PROLEX for a target language. Thus, we combine
supervised learning over 10 minutes speech with
phoneme labels and unsupervised learning over a
much larger dataset without phoneme labels. Boot-
strapping from a good S2P backbone (Whistle) and
providing few-shots samples of latent variables (10
minutes of phoneme labels) is found to be impor-
tant to make SPG-JSA successfully work in the
challenging task of crosslingual ASR.

3.3 Decoding

In testing, the S2P model first decodes out the
phoneme sequence h using BeamSearch and se-
lects the best beam as input for the P2G model.
Then, the P2G model also employs BeamSearch
to decode the speech recognition results, which is
named as “w/o LM” result. Similar to the subword-
based Whistle model (Yusuyin et al., 2024), we
use an n-gram language model for WFST-based
decoding, which is named as “w LM” result.
Marginal likelihood scoring. Note that the
training objective of the JSA algorithm is maximiz-
ing the marginal likelihood py(y|x). The decoding
procedure in Section 3.3 is a crude approximation
to the training objective, which is referred to as
“crude decoding”. So we propose a new decoding
algorithm, called “decoding with marginal likeli-

hood scoring” (MLS). It consists of the following
steps: 1) S2P takes in the audio = and outputs the
BeamSearch best result fL; 2) P2G takes in the h
and generates an n-best list of candidates ¢ using
WEST decoding; 3) G2P takes in each candidate hy-
pothesis ¢ and propose [ samples h from g, (h|7);
4) The marginal likelihood can be estimated with
importance weights (Xu and Ou, 2016), as shown
in Eq. 1; 5) Each candidate hypothesis ¢ is rescored
using a sum of the estimated marginal likelihood
and the weighted LM score. In summary, the above
steps can be written as:

po(hilx)pe(9|hi)
y* —argmaxlog
; whld) @

+ Alog Pim(9)

where ¢ takes from the n-best list from crude de-
coding, and A is LM weight. Additionally, note
that crude decoding only uses the single best S2P
result to fed to P2G for decoding, which is easily
prone to error propagation. Decoding with MLS
overcomes this drawback by scoring with multiple
h.

Improving P2G via data augmentation. Note
that during the SPG-JSA training, as the models
gradually converge, the diversity of phoneme se-
quences sampled by MIS decreases. The P2G
model is gradually trained with less noisy input,
compared with the input fed to P2G in testing. In
order to improve the robustness of the P2G model,
we further augment the P2G model after the SPG-
JSA training. Particularly, we decode 128 best
phoneme sequences by S2P BeamSearch decod-
ing and pair them with text labels, which serve as
augmented data to further train the P2G model.

3.4 Language Domain Adaptation

Note that after SPG-JSA training, we can use the
auxiliary G2P model to generate phoneme labels
on pure text. Below, we take the language do-
main adaptation task as an example to introduce
the bonus brought by the G2P model.

Text-only data is easier to obtain than transcribed
speech data. In cross-domain ASR, a common
approach is to train external language models for
language domain adaptation. In contrast, in SPG-
JSA, we can use the G2P model to generate 64
best phoneme labels through BeamSearch decod-
ing, and then use the pairs of phonemes and text to
continue adapting the P2G model. Then, we use
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Figure 2: Illustration of decoding in SPG-JSA. (a) Decoding without LM; (b) MLS rescoring.

the original S2P, the adapted P2G, and the cross-
domain language model for speech recognition on
cross-domain audio, which is found to outperform
the standard practice of only doing language model
fusion.

4 Experiment

4.1 Datasets

Common Voice (Ardila et al., 2020) is a large mul-
tilingual speech corpus, with spoken content taken
primarily from Wikipedia articles. We conduct ex-
periments on the Common Voice dataset released at
September 2022 (v11.0). We select Polish (pl) and
Indonesian (id) for SPG-JSA experiments, which
were not used in Whistle pre-training. Polish has
130 hours of training data, while Indonesian has
20 hours, with an average sentence length of 4.3
and 4.5 seconds, respectively. We selected 100 text
sentences from the training set of each language
and converted them into phonetic annotations us-
ing a publicly available phonemizer (Novak et al.,
2016). In the SPG-JSA experiment, we utilized all
the audio data from the two language training sets
along with the corresponding text transcriptions
and 100 sentences (about 10 minutes) of phonetic
labels.

VoxPopuli (Wang et al., 2021a) is a multilingual
speech dataset of parliamentary speeches in 23 Eu-
ropean languages from the European Parliament.
The Polish training set consists of 94.5 hours (or
710,000 words) transcribed speech data, with an
average sentence length of 10 seconds. We use the

training set texts for language domain adaptation
experiments. Additionally, the Polish validation set
1s used for model selection, and the test set is used
for evaluation.

Indonesian in-house data. We conducted In-
donesian language domain adaptation experiments
using our in-house dataset (VoxPopuli does not in-
clude Indonesian). This dataset consists of 798
hours (or 6.16 M words) transcribed speech data,
with an average sentence length of 5.18 seconds.
We use the training set texts for language domain
adaptation experiments. Additionally, the valida-
tion set is used for model selection, and the test set
is used for evaluate the experimental results.

4.2 Setup

For phoneme-based models, both of the polish and
Indonesian alphabet size of phonemes is 35. For
subword-based models, both of the polish and In-
donesian alphabet size of subwords is 500. All
text normalization and phonemization strategies are
consistent with the Whistle work (Yusuyin et al.,
2024). For each language, we use its transcripts
to separately train a word-level n-gram language
model for WEST-based decoding.

In the experiments, the S2P, P2G, and G2P mod-
els are all based on CTC. The Whistle-small 90M
pre-trained model ! is used to initialize the S2P
model. Both the G2P and P2G models use 8-layer
Transformer encoders with dimension 512. We
set the self-attention layer to have 4 heads with

1https: //github.com/thu-spmi/CAT/tree/master/
egs/cv-langl1@/exp/Multilingual/Multi._phoneme_S
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512-dimension hidden states, and the feed-forward
network (FFN) dimension to 1024. In the SPG-JSA
training, for every data item, we obtain 10 samples
from G2P and run MIS for each sample. All ex-
periment are taken with the CAT toolkit (An et al.,
2020). The learning rate for SPG-JSA is set to 3e-
5, and when the validation loss does not decrease
10 epochs, the learning rate is multiplied by 0.5,
training stop until it reaches le-6. We extract 80-
dimension FBank features from audio (resampled
to 16KHz) as inputs to the S2P model. A beam size
of 16 is used for S2P and P2G decoding in testing.
We average the three best-performing checkpoints
on the validation set for testing.

5 Result and Analysis
5.1 SPG-JSA Results

Baseline results are taken from (Yusuyin et al.,
2024), including monolingual phoneme-based
training and subword-based training. The phoneme-
based training utilized full phonetic annotations
for 130 hours of Polish and 20 hours of Indone-
sian data. The phoneme-based Whistle-small pre-
trained model were further fine-tuned with either
phoneme labels or subword labels for crosslingual
speech recognition, which correspond to “Whistle
phoneme FT” and “Whistle subword FT” in Table 1
and represent the two state-of-the-art cross-lingual
fine-tuning approaches. Phoneme fine-tuning used
full phonetic annotations.

Remarkably, in Indonesian, “Whistle phoneme
FT” outperforms “Whistle subword FT”’, whereas
in Polish, the opposite is observed. As analyzed
in (Yusuyin et al., 2024), when crosslingual fine-
tuning data are more limited (Indonesian has 20
hours of data vs Polish 130 hours), phoneme-based
fine-tuning is more data-efficient and performs bet-
ter than subword fine-tuning.

In the following, we introduce the SPG crosslin-
gual ASR experiments with only 10 minutes of data
per language having phoneme annotations. The
SPG experiments have two settings — “SPG init
from G2P” and SPG-JSA, as shown in Table 1,
characterized by different initialization schemes.
In SPG-JSA, we first fine-tune the Whistle model
on 10 minutes of phoneme labels to initialize the
S2P model. Subsequently, this S2P model is uti-
lized to generate phoneme pseudo-labels on the full
training set, which are then used to train the P2G
and G2P models for initialization. Ater such a ini-
tialization, the SPG-JSA algorithm is employed to

jointly train the three models (S2P, P2G and G2P).

Alternatively, the G2P model (instead of the S2P
model) can first be fine-tuned on 10 minutes of
phoneme labels and used to generate phoneme
pseudo labels on the full training set, which are
then be used to train S2P and P2G models. The
resulting S2P, P2G and G2P model are referred to
as “SPG init from G2P”. A further application of
the SPG-JSA algorithm to jointly train the three
models is found to bring no improvement and so
we only report the result for “SPG init from G2P”.
Presumably, this is because the G2P fine-tuned in
this way is overfit to the 10 minutes of phoneme
labels, which is difficult to be further trained to be
a good proposal.

For the results in Table 1, SPG-JSA consistently
achieves 5% error rate reductions compared to the
best cross-lingual fine-tuning approach using sub-
word or full phoneme supervision (3.82 vs 3.64
for Polish, 2.43 vs 2.31 for Indonesian). Com-
pared to “Whistle phoneme FT”, the training of
the three models in SPG-JSA is trained in a more
end-to-end way by maximizing marginal likeli-
hoods over pairs of speech and text, hence obtain-
ing better performance. Full supervision of weak
phoneme labels produces worse results, presum-
ably because the full phoneme annotations may
contain errors. “Whistle subword FT” is trained in
a end-to-end way. The inferior results of “Whistle
subword FT” compared to SPG-JSA indicates the
advantage of the SPG architecture (the benefit of
explicitly modeling phonemes). The fine-tuning
of Whistle using subword labels breaks the struc-
ture imposed by SPG. Using phonemes as an in-
terface between speech and language in the SPG
architecture enforces a useful structure. A seem-
ingly problem is that the SPG pipeline contains
descretized phonemes and gradients cannot propa-
gate from P2G to S2P. However, the optimization
of SPG-JSA is actually in an end-to-end way — JSA
is powerful in learning discrete latent variable mod-
els, propagating gradients across the P2G and S2P
components, which is different from optimizing
a single neural network but turns out to be very
effective.

“SPG init from G2P” shows worse results than
SPG-JSA. Note that in decoding, it is the hypothe-
sized phonemes from S2P that are fed to P2G. But
in the training procedure in “SPG init from G2P”,
the pseudo phoneme labels used to train P2G are
from G2P. This causes some mismatch in training
and decoding, and presumably explains the worse



E Polish Indonesian

Xp.

P PER w/oLM wLM MLS | PER w/oLM wLM MLS

Monolingual phoneme | 2.82 NA 497 NA | 574 NA 328 NA

Monolingual subword NA 19.38 7.12  NA | NA 31.96 10.85 NA

Whistle phoneme FT 1.97 NA 430 NA | 479 NA 243 NA

Whistle subword FT NA 5.84 382 NA | NA 12.48 292 NA

SPG init from G2P 17.72 8.73 468 591 | 21.85 10.15 3.81  3.09
+ P2G augmentation | 17.72 5.93 497 5.88 | 21.85 6.34 344 2091

SPG-JSA 17.35 8.19 4.65 3.93 | 20.66 9.04 326 247
+ P2G augmentation | 17.35 4.64 437  3.64 | 20.66 4.55 292 231

Table 1: PERs (%) and WERs (%) for SPG-JSA experiment on Common Voice dataset. FT: fine-tuning. MLS:
marginal likelihood scoring. T denotes results from (Yusuyin et al., 2024). NA denotes not applied.

result of “SPG init from G2P”.

5.2 Language Domain Adaptation Results

As shown in Table 2, for Polish, we test our mod-
els on VoxPopuli Polish test set, while both Whis-
tle and SPG-JSA models is train on the Common
Voice dataset. The CommonVoice dataset is com-
prised of texts from Wikipedia, recorded by users
on mobile devices, while the VoxPopuli dataset
consists of audio recordings of speeches from the
European Parliament. Notably, 61.5% of the words
in the VoxPopuli Polish training set do not appear
in the CommonVoice vocabulary list, and 31.5%
of the words in the test set are also absent. This
indicates significant differences between the two
datasets in terms of linguistic context, vocabulary,
recording equipment, and average sentence length.
We only use the text from the VoxPopuli training
set and train a word-level 4-gram language model
for language model fusion.

The first row at Table 2 shows the results of test-
ing Whistle subword fine-tuning model directly
with cross-domain language model integration,
which is a common method used in cross-domain
speech recognition. We then test SPG-JSA model
directly without further training (the second row
of Table 2). Comparing the two result on Polish
reveals that the SPG-JSA model performs better
on cross-domain ASR tasks, indicating its stronger
robustness. We further apply the domain adapta-
tion method, introduced in Section 3.4, to continue
training the P2G model on VoxPopuli training text.
The result clearly demonstrates the advantage of
SPG-JSA, and its performance far exceeds that of
traditional language domain adaptation method by

9% error rate reduction (22.58 vs 20.57).

For Indonesian, our in-house Indonesian dataset
18 from audio books, which has a clear domain
difference from the Common Voice dataset. Indone-
sian experiments are taken simlarly to Polish. The
SPG-JSA model with the adapted P2G model ob-
tains the best result, significantly outperform Whis-
tle subword fine-tuning model by 9% error rate
reduction (12.39 vs 11.23) as well.

5.3 Analysis and Ablation

To provide an intuitive understanding of the SPG-
JSA training process, Figure 3 in Appendix A
shows the changes in several key indicators over the
number of training iterations. It can be seen that the
training losses of all three models and the validation
error rates gradually decrease when using the SPG-
JSA Algorithm 1, clearly showing the ability of
SPG-JSA for model optimization. Through SPG-
JSA training, compared to the model fine-tuned
with only 10 minutes of phonetic labels, which is
the initial model in the experiment, the SPG-JSA
model achieves a relative PER reduction of 45%
and a WER reduction of 48% on the validation set.

Table 3 shows ablation experiments with differ-
ent amounts of supervised phoneme data. As the
amount of supervised data increases, both PER and
WER of the SPG-JSA model significantly decrease.
Compared to 2 minutes of supervised data, with 10
minutes semi-supervised training, PER decreases
by 36% and WER by 8% in polish; Compared to
unsupervised training, PER decreases by 65% and
WER by 18%. There is also the same trend in
the semi-supervised SPG-JSA experiments of the
Indonesian.



B Polish Indonesian

Xp.

P wiolLM wLM MLS | wolM wLM MLS

Whistle subword FT on CV 33.46 22.58 NA 43.69 1239 NA

SPG-JSA on CV 35.18 29.04 26.79 39.19 16.93 14.28
+ LDA training 28.87 23.84 20.57 30.69 12.68 11.23

Table 2: WERSs (%) of cross-domain language domain adaptation (LDA) experiments from CV to VoxPopuli Polish
and in-house Indonesian datasets. The FT denotes fine-tuning. The MLS denotes marginal likelihood scoring.

. Polish Indonesian

Amount of supervised data
PER w/olLM wLM MLS| PER wolM wLM MLS
unsupervised 50.24 13.43 6.20 5.05| 3271 11.09 374  2.80
+ P2G augmentation 50.24  6.08 528 4483271 533 328 247
20 sentences (about 2 minutes) 27.35 8.25 517 4252737 9.01 339  2.66
+ P2G augmentation 2735 531 478 396 27.37 545 3.04 247
100 sentences (about 10 minutes) | 17.35 8.19 465 393 20.66 9.04 326 247
+ P2G augmentation 17.35 4.64 437 3.64| 20.66 4.55 292 231

Table 3: Performance comparison of different amounts of phoneme labels as supervised data in SPG-JSA training.

MLS: marginal likelihood scoring.

On the other hand, with reduced amounts of
phoneme supervision such as only 2 minutes or
even zero-shot, SPG-JSA obtains impressive re-
sults. Notably, the zero-shot PERs of Polish and
Indonesian by the Whistle-small model are 58%
and 46% respectively. Without any phoneme super-
vision data, unsupervised SPG-JSA training leads
to a significant reduction in PERs for both lan-
guages: a 13% decrease for Polish and a 30%
decrease for Indonesian. The MLS decoding re-
sult of Indonesian (2.47%) even surpasses that of
subword fine-tuning (2.92%) and approaches the
result of phoneme fine-tuning (2.43%). It should
be emphasized that all 35 phonemes of the Indone-
sian are present in the Whistle phoneme set. We
copy the corresponding weights for parameter ini-
tialization in the SPG-JSA training. For Polish,
31 phonemes appear in the Whistle phoneme set,
while four phonemes do not. We randomly initial-
ized the weights for the unseen phonemes. This
may account for the less-than-ideal performance
of unsupervised Polish training. However, with
the addition of 2 minutes of phoneme labels as
supervision data, the WER from Polish SPG-JSA
training (3.96%) is lower than that of 130-hour
full phoneme fine-tuning (4.30%) and close to the
result of subword fine-tuning (3.82%).

6 Conclusions

In this paper, we aim to achieve crosslingual speech
recognition based on phonemes without pronunci-
ation lexicons. By treating phonemes as discrete
latent variables, modeling S2P and P2G together
as a latent variable model (SPG), and introduc-
ing a G2P model as an auxiliary inference model,
we utilize the JSA algorithm to jointly train these
three networks. We refer to this new approach as
SPG-JSA. Particularly, the S2P model is initialized
from Whistle, a pre-trained phoneme-based mul-
tilingual S2P backbone. This paper also proposes
marginal likelihood scoring and P2G augmentation,
which further improve the performance of SPG-
JSA. In crosslingual experiments with two lan-
guages (Polish and Indonesian), SPG-JSA method
demonstrates remarkable performance. By utiliz-
ing merely 10 minutes of speech with phoneme
labels, it outperforms full data (130 and 20 hours)
phonetic supervision. This effectively eliminates
the necessity of using a PROLEX. Moreover, the
SPG-JSA method surpasses crosslingual subword
fine-tuning, and we take the language domain adap-
tation task as an example to show the bonus brought
by SPG-JSA. It is found that SPG-JSA signifi-
cantly outperforms the standard practice of lan-
guage model fusion via the auxiliary support of the
G2P model.



Limitations

This paper presents some promising results along
the SPG-JSA approach. There are some limitations
with this work. First, the SPG-JSA method can be
applied in phoneme-based pre-training to exploit a
larger amount of data from more languages, even
those languages without PROLEXs. Second, SPG-
JSA simultaneously produces S2P, P2G and G2P
models, each of which potentially can be applied
to a variety of speech processing tasks. Language
domain adaptation is only one example. G2P is
useful for text-to-speech. S2P may provide a new
way for discrete tokenization for speech. Third,
the Whistle based S2P is multilingual; this work is
limited in not building multilingual P2G and G2P.
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A The training curves of SPG-JSA

The training curves of SPG-JSA are shown in Fig
3.
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Figure 3: Plots of training and validation curves in SPG-JSA training on Common Voice polish data. (a), (b), (c)
represent the train losses of the S2P, P2G, and G2P models in the SPG-JSA training, respectively. (d) and (e) are the
error rates of S2P and P2G models in the validation set. (f) represents the ratio of the number of samples accepted
by the MIS sampler to the total number of samples proposed by G2P in one iteration.
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