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ABSTRACT

Chain-of-Thought (CoT) prompting has become a key strategy for enhancing the
inferential abilities of large language models (LLMs) in reasoning tasks. However,
it often struggles with ensuring reasoning validity and maintaining informativeness.
This paper presents the Logic Agent (LA), a novel framework designed to boost
the validity of reasoning in LLMs through strategic logic function calls. Distinct
from traditional methods, LA converts LLMs into dynamic agents that apply
propositional logic rules, transforming natural language inputs into structured
logical forms. The agent utilizes a robust suite of predefined functions to guide
the reasoning process effectively. This approach can enhance the structured and
coherent generation of reasoning outputs, improving their interpretability and
logical consistency. Through detailed experiments, we showcase LA’s ability to
adapt across different LLM sizes, significantly enhancing the accuracy of complex
reasoning tasks across various domains.

1 INTRODUCTION

The quest for augmenting the reasoning capabilities of language models has been a focal point of
recent advancements in the evolving landscape of artificial intelligence. Chain-of-Thought (CoT)
prompting |Wei et al.| (2022); Kojima et al.| (2022); Wang et al.| (2022b); (Chu et al.| (2023) marked
a significant stride in this journey, revealing the potential of large language models (LLMs) to
mimic human-like reasoning processes. These advancements have led to remarkable achievements,
with LLMs demonstrating proficiency in a variety of competitive examinations, including those
focused on mathematics [Li et al.|(2022)); [He- Yueya et al.| (2023); Imani et al.| (2023)) and reading
comprehension Wang et al.| (2023)); Xiao et al.| (2023)).

However, despite its implications in various reasoning tasks, CoT has faced limitations, particularly
in validating reasoning and ensuring the informativeness of its outputs. [Lanham et al.|(2023) Their
performance in logical reasoning tasks, a critical component of examinations like the Law School
Admission Test (LSAT) and Chinese civil service selection exams, remains notably inferior to that of
well-trained humans [liu et al.| (2023)).

Figure [I] shows an example of such questions. Crafted by experts to challenge human logical
reasoning abilities, they require a valid and rule-bound chain of logic that is often non-trivial to
discern. Testees must engage in abstract thinking, translating contexts into logical symbols and
applying strict inference rules to form logical chains. This gap highlights a critical challenge: the
ability of LLMs to consistently follow rules and verify the validity of logic chains. As illustrated
in Figure [} a GPT-4 model struggles with the deduction of the contrapositive law, despite having
conceptual knowledge of it. One reason can be that there is no strict guarantee for a statistical system
such as LLM to ensure correct complex reasoning chains across contexts.

Inspired by the integration of the neural network with formal symbolic solvers|/Azerbayev et al.|(2023);
Jiang et al.| (2023)); Thakur et al.|(2023)), tool-use |Gao et al.[(2023); Schick et al.|(2023)); |Paranjape
et al.| (2023)), and constrained decoding |Geng et al.| (2024)), we address this issue by introducing
Logic Agent (LA), an agent-based constrained generation framework, leveraging propositional logic
and inference rules as fundamental guides to constructing logically sound inference chains. LA is
designed to steer Large Language Models (LLMs) toward a trajectory of enhanced logical coherence
and interpretability by introducing symbolic reasoning. In particular, we let an LLM serve as a
decision-making agent and make a callable symbolic reasoning agent by assembling a set of essential
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Context:

If the Moon's surface was once a magma ocean, then the distribution of many elements on
it should be continuous. The magma ocean holds the key to unlocking the mystery of the
Moon's origin. If the existence of a magma ocean is confirmed, then the 'Giant Impact
Hypothesis' becomes the most plausible explanation for the Moon's origin.

Question:

From this, we can infer:

Options:

A. If the Moon's surface was never a magma ocean, then the distribution of elements on its
surface is not continuous.

B. If the 'Giant Impact Hypothesis' is not the most plausible explanation for the Moon's
origin, then it indicates that the distribution of elements on the Moon's surface is not
continuous.

C. If the distribution of elements on the Moon's surface is not continuous, then the Moon's
surface was never a magma ocean.

D. If the distribution of elements on the Moon's surface is continuous, then the 'Giant
Impact Hypothesis' will become the most plausible.

Atoms:

P: Moon's surface was a magma ocean
Q: Continuous distribution of elements
R: the 'Giant Impact Hypothesis' isthe ~ Now, let's translate each of the given inferences:
most plausible explanation A. -P>-Q

Implies:
P->Q
P>R

This is the contrapositive of the first part of the ori
ginal statement (P-Q), so it is logically equivalent
and true. X

External guides:

av-h Cont itive L.
“R>-P ontrapositive Law

-P>-Q _ Given the original statement (P->Q), according to
-P>-R Contrapositive(P=>Q): , so the inference
in option A is invalid. v

Figure 1: An example of logical reasoning problems in competitive exams. GPT-4 can handle abstract
logical reasoning, however, it fails to conduct a valid inference chain.

formal logical rules. The LLM agent is taught to make use of the symbolic reasoning agent in its
instructions so that formal reasoning steps can be guaranteed strictly correct.

With LA, LLMs are guided towards a path of logical coherence and interpretability. We first
define the essentials of compositional logic, i.e. the logic components and syntax. This step serves
as the initial step, converting complex natural language statements into structured compositional
logic representations. Second, we define the functions for applying deduction rules, given a logic
expression, we are able to form an inference chain with implicit logic. These functions are tools for
LLMs to use. Lastly, we prompt LLMs to decide which rule to apply in different states. When LLMs
call a rule, the output of the corresponding function is guaranteed to give valid logic chains for LLMs
to make judgments on the truthfulness of the hypotheses.

In our study, we rigorously evaluated the Logic Agent (LA) framework using a mix of commercial
and open-source Large Language Models, including OpenAI’s GPT-4 and various Hugging Face
models. Our findings, across this diverse range of models, consistently highlight LA’s effectiveness in
enhancing logical reasoning in complex tasks. Alongside our experimental insights, we’re releasing
our code to contribute to ongoing research. To the best of our knowledge, this is the first initiative to
integrate propositional logic into LLMs at such a scale.
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Parsed Logic Logic rules Guided Generation
Option A

Context: Contrapositive Law i Atom(Moon's surface was once a magma ocean)),
If the Moon's surface was once a magma ocean P->Q>-Q>-P Not(Atom(the distribution of many elements on it should be
then Transitive Law continuous))

P->Q,Q>R<>P>R )

De_Morgan’s Law Given the original statement Implies(
Implies( -(PVQ)¢&>-PA-Q,-(PAQ)¢<>-PV-Q Atom(Moon's surface was once a magma ocean),
Atom(Moon's surface was once a magma ocean), Contradictory Relationships Atom(the d)istribution of many elements on it should be

tribut P continuous
Atom(the dlstr!butlon of many elements on it A&-0,06 /-.\,EH. I,16>-E ), applying Contrapositive(Atom(the distribution of many
should be continuous) Contrary Relationships (Upper Contrary) X R '
—) AS—EES-A elements on it should be continuous), Atom(Moon's surface
’ was once a magma ocean),

Implies( Subcontrary Relationships (Lower Contrary) \implies( € )
Atom(exister\ce of a magma ocear.1 is confirmed), —‘I—>O,—0—>I‘ Not(Atom(Moon's surface was once a magma ocean)),
Atom(the 'Giant Impact Hypothesis' becomes the Subalternation Not(Atom(the distribution of many elements on it should be
most plausible explanation for the Moon's origin) A-1L,E>0,-1--A,~0->-E continuous))), Option A can not be inferred from the
) contrapositive law.

Figure 2: The LA framework. Highlighted texts are the output of pre-defined functions.

2 RELATED WORK

Traditional pre-trained models have primarily tackled logical reasoning through statistical training, a
connectionist approach that often misinterprets the complexity of language. Similarly, formal sym-
bolic systems, while precise, struggle with the adaptability needed for diverse linguistic phenomena.
This backdrop sets the stage for the introduction of new approaches to complex reasoning in Large
Language Models (LLMs).

Reasoning Paradigms in Large Language Model Prompting: The development of few-shot|(Wei
et al.|(2022) and zero-shot Kojima et al.|(2022) Chain-of-Thought prompting has been instrumental
in enabling LLMs to tackle complex reasoning tasks. Subsequent developments have introduced
varied data structures, such as Tree-of-Thought |Yao et al.| (2023)), Graph-of-Thought Besta et al.
(2024), and Program-of-Thought |Chen et al.|(2022)), enhancing LLMs’ capabilities to reflect on and
evaluate their reasoning processes. Moving beyond basic prompting strategies, the ReAct model |Yao
et al.| (2022) intertwines reasoning with actionable tasks like search, while the Selection-Inference
framework (Creswell et al.| (2023)) employs a two-step process of context formation and logical
chaining. Although these approaches parallel ours in process structure, they do not incorporate explicit
logical rules, and the chaining mechanism is entirely model-dependent. The use of external tools
within prompting paradigms, particularly for tasks necessitating additional knowledge, represents
another significant advancement. In mathematical reasoning, tools such as calculators have proven
invaluable. Analogously, in our methodology, predefined functions for applying inference rules
are akin to external tools, a concept previously unexplored in this context. Another paradigm
shift in LLM prompting is the division of complex tasks into subproblems or the collaborative
engagement of diverse models. Cumulative reasoning |[Zhang et al.| (2023)) adopts a streamlined,
iterative approach utilizing distinct LLMs as Al agents; ScratchPad Nye et al.| (2021) contributes
to multi-step reasoning by revealing intermediate steps; Meta-prompting Suzgun & Kalai| (2024)
envisions LLMs as orchestrators in a collaborative environment, responsible for decomposing complex
tasks, delegating sub-tasks to specialized models, facilitating inter-model communication, and
applying critical analysis throughout. Our approach similarly harnesses the LLMs’ decision-making
capability in selecting appropriate inference rules, aligning with this broader trend of utilizing
LLMs for complex, collaborative reasoning processes. Unlike previous attempts, we leverage the
computational power and contextual understanding of LLMs to act as agents that dynamically invoke
logic rules. This integration enables the LLMs to not only process language with their inherent
sophistication but also apply logical reasoning in a structured and accurate manner, akin to utilizing a
calculator for mathematical enhancements. Apart from that, recent studies have explored instruct-
tuning Large Language Models (LLMs) with specific datasets to enhance their abstract reasoning
capabilities. LogiCoT |[Liu et al.|(2023)) fine-tunes an LLAMA-7B model using logical chaining
data, demonstrating significant improvements across various logical reasoning tasks; LogicLLM
Jiao et al.[(2023) employs a self-supervised post-training approach tailored for logical reasoning
enhancements; Symbol-LLM Xu et al.| (2023) leverages symbolic data within a two-stage tuning
framework to imbue a LLAMA-2-CHAT model with symbolic knowledge. While these approaches
underscore the potential of fine-tuning strategies in augmenting LLMs, our work distinguishes itself
as the first to specifically address and enhance logical reasoning capabilities at the decoding stage,
employing a multi-agent strategy to elevate the process.
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Formal Reasoning: Formal reasoning systems have primarily been developed to address mathe-
matical challenges. Peano |Poesia & Goodman| (2023), designed to solve educational mathematical
problems, employs dependent types to encode mathematical definitions and proofs, echoing the
structured approach in our work. Yet, our focus diverges towards logical reasoning scenarios, an area
where systems like Peano have traditionally been less potent. Addressing formal logical reasoning,
LINC Olausson et al.| (2023) leverages LLMs as FOL language translators to attain formal repre-
sentations of contextual information, complemented by traditional theorem provers for validation.
LINC’s approach, which employs a voting strategy to resolve inconsistencies in FOL language
generation, contrasts with our method which adopts a more flexible propositional logic to distill
the abstract essence of context while meticulously controlling the validity of generative reasoning.
Furthermore, the exploration of language models as theorem provers has introduced systems like
LangPro |Abzianidze| (2017), a natural language theorem prover that harnesses higher-order logic
to assess linguistic expressions’ consistency. LangPro’s reliance on CCG parsing and a dedicated
knowledge base for generating Lambda Logical Forms (LLFs) presents a contrast to our work,
which utilizes propositional logic, thereby circumventing the need for a theorem-proving knowledge
base. In parallel, semantic-constrained decoding techniques, as exemplified by NEUROLOGIC
DECODING |Lu et al.|(2020), enable language models to generate contextually coherent text while
adhering to complex lexical constraints. Our approach resonates with this paradigm, albeit with
a distinct focus on employing constrained generation paired with guided deduction rules, thereby
carving a unique niche in the landscape of formal reasoning and logical inference.

3 LOGIC AGENT

Distinctively, we encapsulate the logical reasoning process into callable function forms, packaging
logic rules as tools for LLM agents. This strategic shift in leveraging LLMs as autonomous decision-
makers, equipped with a toolkit of generalized logic reasoning functions, marks a significant departure
from existing models.

Figure 2| presents the Logic Agent (LA) framework’s architecture. Initially, natural language inputs
undergo logic parsing on the left, resulting in structured logic forms (see Section[3.1). The center
highlights the application of deduction rules for logical inference (see Section [3.2)). Finally, on the
right, the constrained generation process employs these inferences to produce contextually relevant
and logically coherent outputs, illustrating the LA’s systematic approach to enhancing reasoning
in large language models (see Section [3.3). At the heart of LA lies the meticulous definition and
utilization of compositional logic essentials, encompassing both the critical logic components and
their associated syntax. This pivotal initial step involves the intricate transformation of complex
natural language statements into structured representations of compositional logic.

3.1 LoGICAL CONSTRUCT CLASSES

Within LA, various classes of logical constructs are parsed and utilized. These include:

Variable: Represents a variable symbol in logical expressions. Atom: Denotes an atomic formula, the
fundamental unit of logical statements. Not: Embodies the negation operation in logic. And: Indicates
logical conjunction, combining multiple propositions. Or: Symbolizes logical disjunction, offering
alternative propositions. Implies: Represents the implication relationship between propositions.
Equiv: Denotes logical equivalence between statements. Exists and Forall: Represent existential
and universal quantification, respectively, allowing for the expression of propositions about ‘some’
or ‘all’ entities within a domain. Rule-based functions within LA parse these logical constructs and
quantified sentences, ensuring accurate representation and manipulation of logical expressions.

3.2 INFERENCE RULES

On this foundational layer, LA incorporates a suite of defined functions for applying various deduction
rules. These functions serve as advanced tools for LLMs, facilitating the formation of inference
chains that integrate both explicit and implicit logic elements. This enables LLMs to navigate the
complexities of logical deduction, maintaining structured and coherent reasoning throughout.

The key inference rules and their corresponding functions in LA include:
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Dataset Size Target
ReClor dev 500 4-way multi-choice
AR-LSAT test 230 5-way multi-choice
LogiQA22 1,354 | 4-way multi-choice
ConTRoL test 805 E,C,N
NaN-NLI test 259 E,C,N
RuleTaker dev 10,068 Yes, No
ProofWriter dev | 10,158 Yes, No

Table 1: The statistics of the datasets. (“E” refers to “entailment”; “C” refers to “contradiction”; “N”
refers to “neutral”.)

Contrapositive: A function applying the contrapositive law, turning implications into their logically
equivalent forms. Transitive: A function for the transitive law, linking propositions through
a common term. De_Morgans: Implements De Morgan’s laws, transforming conjunctions and
disjunctions while preserving logical equivalence.

We also integrate the foundational principles of categorical propositions, which is essential to
syllogistic logic. There are four key proposition types: SAP (A) - Universal Affirmative, SIP (I) -
Particular Affirmative, SEP (E) - Universal Negative, and SOP (0) - Particular Negative. Below are
the corresponding functions:

Contradictory: A function handling contradictory relationships, identifying mutually exclusive
propositions. Contrary: Manages contrary relationships, where two propositions cannot be true
simultaneously but can be false together. Subcontrary: Deals with subcontrary relationships, where
two propositions cannot be false simultaneously but can be true together. Subalternation_forward
and Subalternation_backward: Functions facilitating subalternation, capturing the inferential
relationships between universal and particular propositions. Through these specialized functions, LA
empowers LLMs to apply logical reasoning accurately and effectively, enhancing their capability to
tackle complex reasoning tasks with a higher degree of precision and reliability.

3.3 RULE-GUIDED GENERATION

We prompt LLMs to discern and decide upon the most appropriate rule to apply in varying states
of reasoning. This dynamic interaction empowers LLMs to judiciously invoke the corresponding
functions, each meticulously crafted to guarantee the generation of valid logic chains. Consequently,
LLMs are equipped with a powerful mechanism to scrutinize the veracity of hypotheses, making
informed judgments based on the logically consistent chains produced. We use in-context examples
to demonstrate how these functions are called in the guided generation process and leverage the
capabilities of existing LLMs developed by OpenAl and HuggingFace. These models offer a robust
starting point, owing to their advanced language understanding and processing abilities. However, our
approach goes beyond the conventional use of LLMs by optimizing each component for its specific
role in the logical reasoning process. This targeted optimization is key to transcending the current
limitations of LLMs in handling the nuanced and rule-bound nature of logical reasoning tests.

By integrating a structured, rule-guided reasoning methodology into the operational framework of
LLMs, LA aims to improve not only the logical precision of these models but also their interpretability
and coherence. The incorporation of propositional logic, deduction rules, and a strategic prompting
mechanism positions LA as an innovative approach. It seeks to bridge the current divide between the
computational efficiency of LLMs and the detailed, logical discernment typical of human reasoning.

3.4 TASKS

We consider various logical reasoning tasks, including Multi-Choice Reading Comprehension
(MCRC), Natural Language Inference (NLI), and True-or-False questions (TF).

The datasets we use are listed in Tablem ReClor|Yu et al.| (2020), AR-LSAT [Wang et al.| (2022a)),
and LogiQA22 liu et al.| (2023) are three renowned multi-choice reading comprehension datasets for
logical reasoning. ReClor and AR-LSAT are collected from verbal reasoning questions in competitive
tests like the LSAT (Law School Admission Test) exam. LogiQA22 is collected from the Chinese
Civil Service Examination in the year 2022. ConTRoL |Liu et al.|(2021)) and NaN-NLI Truong et al.
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Task MCRC NLI TF
Dataset Reclor | AR-LSAT | LogiQA22 | ConTRoL | NaN-NLI | RuleTaker | ProofWriter
Human avg. 63.00 56.00 83.00 87.00 94.00 84.00 82.00
Human Ceiling 100.00 | 91.00 99.00 94.00 100.00 95.00 93.00
GPT-3.5-Direct 56.28 51.31 41.14 57.94 56.86 55.33 54.68
GPT-3.5-CoT 56.90 51.45 42.92 58.29 55.54 55.88 53.02
GPT-3.5-LA 59.73 55.29 42.98 62.01 61.34 71.30 73.85
GPT-4-Direct 88.54 74.21 60.11 56.34 77.07 59.85 61.58
GPT-4-CoT 89.06 73.49 58.43 56.97 77.83 61.43 60.64
GPT-4-LA 89.47 77.28 60.67 58.93 80.66 65.84 68.42
Davinci-002-Direct | 20.41 13.54 11.02 8.43 10.78 25.98 22.54
Davinci-002-CoT 19.43 18.85 13.27 13.61 15.34 26.84 27.33
Davinci-002-LA 27.45 22.60 30.68 15.58 24.73 32.10 33.54
LLaMA-2-Direct 17.31 12.70 18.55 20.12 22.08 25.50 23.39
LLaMA-2-CoT 15.62 13.76 16.03 21.75 25.44 22.39 23.16
LLaMA-2-LA 23.76 21.63 30.21 25.48 22.76 28.79 25.11
Mixtral-8x7b-Direct | 48.92 41.40 38.97 50.84 50.13 46.84 44.80
Mixtral-8x7b-CoT | 49.21 44.33 40.96 50.32 53.04 48.52 45.85
Mixtral-8x7b-LA 50.58 45.95 44.92 52.25 55.96 52.53 55.68

Table 2: Main results. All results are in %.

(2022)) are two logical reasoning datasets for the natural language inference task. The task is to
decide whether a hypothesis can be logically entailed by the premises. ConTRoL features entailment
relationships for long texts, and NaN-NLI is for negations. Both datasets are three-way classification
tasks. RuleTaker Clark et al.|(2020) and ProofWriter [Tafjord et al.| (2020) are two synthetic datasets
widely used in formal logic reasoning. They take the form of yes-or-no questions, which are designed
to test the ability of models to understand and apply rules and facts stated in natural language.

The tasks are evaluated with few-shot prompting, we use three in-context examples, covering different
inference rule scenarios. For the implementation, we use a series of models from the OpenAl suite,
including DAVINCI-002, GPT-3.5-TURBO, and GPT-4. DAVINCI-002 is the GPT base model currently
supported by OpenAl APIL. GPT-3.5-TURBO and GPT-4 are two chat models available in the OpenAl
API. Furthermore, we extend our evaluation to Huggingface models like LLAMA-2-13B [Touvron
et al.| (2023) and MIXTRAL-8X7B-VO0.1 Jiang et al.|(2024), thereby encompassing a broad spectrum
of Al models. LLAMA-2-13B is a 13B open LLM developed by Meta. MIXTRAL-8X7B-V0.1
is a Mixture-of-Expert (MoE) model developed by Mistral Al This diverse selection includes both
base and instruction-tuned models, covering a range of open-source and closed-source options, to
provide a comprehensive overview of the capabilities and performance variations across different
AT architectures in logical reasoning tasks. We use the guidance library []_-] for implementing our
rule-constrained generation framework.

4 EXPERIMENTS

We use a diverse range of datasets and models to ensure a robust and thorough assessment of our
framework. We detail our experimental setup, the metrics used for evaluation, and our main findings.

4.1 EXPERIMENTAL SETUP

Baselines: Our experimental baselines comprise two distinct approaches: direct answering and
Chain-of-Thought (CoT) reasoning. To facilitate a fair comparison between base models and
instruction-tuned models, we provide three in-context examples for both the direct answering and the
CoT scenarios. This approach aids LLMs in generating answers that can be directly compared with
the gold labels.

Data preprocessing

* For the Multiple-Choice Reading Comprehension (MCRC) task, we combine the context,
question, and options to form a single input.

"https://github.com/guidance-ai/guidance
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* In Natural Language Inference tasks, premises and hypotheses are concatenated, with a
distinct identifier prefacing each segment.

* For True-or-False questions, we concatenate the context with the question to generate a
cohesive input prompt.

Metrics To assess the performance of LLMs in our experiments, we employ the exact-match metric.
This involves prompting LLMs to generate answers either as the first token (direct answer) or at the
end of the generation process (CoT and LA). The extracted answers are then compared with the gold
labels to calculate the accuracy score.

4.2 RESULTS

The primary outcomes of our experiments are summarized in Table 2] where we juxtapose the
performances of different models under various logical reasoning tasks. These tasks span multiple-
choice reading comprehension (MCRC), natural language inference (NLI), and true-or-false (TF)
questions, utilizing datasets such as ReClor, AR-LSAT, and LogiQA22 for MCRC, ConTRoL and
NaN-NLI for NLI, and RuleTaker and ProofWriter for TF tasks. The human performance benchmarks,
as referenced in the table, are sourced from prior research|Yu et al.|(2020); Wang et al.| (2022al); liu
et al.[(2023)).

Direct Answer vs. Chain-of-Thought (CoT): Our analysis reveals that, in the context of the
logical reasoning tasks tested, the few-shot CoT approach marginally outperforms the direct answer
methodology. However, this superiority is not uniform across all cases. In certain instances, the CoT
method appears to detrimentally impact the overall results, suggesting limitations in the effectiveness
of CoT prompting in some logical reasoning scenarios. This observation highlights the inherent
challenge in using CoT prompting to navigate the complexities of logical reasoning, especially in
tasks where intricate inference is required.

Performance Across Models: Our further analysis delves into the performance distinctions across
various models, highlighting the contrasts between advanced models such as GPT-4 and base models
like DAVINCI-002 and LLAMA-2-13B.

DAVINCI-002, as a base model, shows distinct performance characteristics under the LA framework.
For instance, in the MCRC task on the ReClor dataset, DAVINCI-002 under LA achieves a 27.45%
accuracy, a notable improvement from its Direct answer performance at 20.41%. This trend is
consistent across other datasets, such as in LogiQA22, where DAVINCI-002’s accuracy increases
from 11.02% (Direct) to 30.68% (LA). These results suggest that the structured reasoning provided
by LA can significantly enhance the logical reasoning abilities of even base models, enabling them to
outperform their standard configurations.

Similarly, LLAMA-2-13B, another base model, exhibits a marked performance enhancement with
the application of LA. In the TF task using the RuleTaker dataset, LLAMA-2-13B registers an
accuracy of 28.79% under LA, compared to 25.50% in the Direct answering format. In the more
challenging ProofWriter dataset, the model improves from 23.39% (Direct) to 25.11% (LA). These
improvements, while not as pronounced as those seen with advanced models like GPT-4, nonetheless
indicate that LA can elevate the performance of base models in logical reasoning tasks.

Comparatively, advanced models like GPT-4 demonstrate a more significant leap in performance
with the LA approach. This is particularly evident in datasets that require complex logical deductions,
such as ProofWriter, where GPT-4 with LA achieves a 68.42% accuracy, substantially higher than
both its Direct (61.58%) and CoT (60.64%) counterparts.

This comparative analysis across different models underscores the versatility of the LA framework.
While advanced models like GPT-4 naturally exhibit higher baseline performances, the introduction
of LA leads to substantial improvements in logical reasoning tasks across all model types, including
base models like DAVINCI-002 and LLAMA-2-13B. This suggests that LA’s structured, rule-guided
reasoning approach is universally beneficial, enhancing the logical reasoning capabilities of a wide
range of LLMs.

LA’s Efficacy: The implementation of LA consistently enhances accuracy across various datasets,
underscoring its effectiveness in logical reasoning. In the TF tasks using the RuleTaker dataset, LA
with GPT-3.5 achieves an impressive 71.30% accuracy, a substantial leap from the 55.33% in the
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Direct approach and 55.88% in the CoT approach. Similarly, in the Proof Writer dataset, GPT-3.5 with
LA reaches 73.85% accuracy, outperforming both its Direct (54.68%) and CoT (53.02%) formats.
These figures highlight LA’s capability to significantly refine the reasoning process in LLMs, enabling
them to handle complex logic with greater precision and reliability. The improvement is even more
pronounced with advanced models like GPT-4, where the accuracy in the RuleTaker dataset jumps to
65.84% under LA, compared to 59.85% (Direct) and 61.43% (CoT). This consistent pattern across
various models and datasets firmly establishes LA as a transformative approach in logical reasoning,
bridging the gap between computational Al and nuanced human-like reasoning. We present a detailed
case study in Appendix ??. This case study meticulously demonstrates how LA navigates complex
logical reasoning tasks, showcasing its capabilities and the enhancements it brings to the decoding
stage of Large Language Models (LLMs).

Task-Specific Insights: Delving into task-specific performances, we observe that LA aligns ex-
ceptionally well with the demands of MCRC and NLI tasks, as evidenced by GPT-4’s superior
performance in the ReClor and NaN-NLI datasets. The tailored application of LA’s rule-based
reasoning to each task’s unique requirements elucidates its broad applicability and effectiveness.
The differential performance uplifts across datasets highlight the adaptability of LA. For instance,
the significant accuracy increase in the ProofWriter dataset for GPT-4 underscores LA’s capacity
to handle datasets requiring complex logical deductions. This adaptability is crucial for tailoring
reasoning enhancements to specific task demands.

5 DISCUSSION

5.1 GPT-4 As LOGIC PARSER

GPT-4, despite its occasional inconsistencies in generating new logical expressions, exhibits a
noteworthy capability in parsing natural language into formal logic. This ability is particularly
relevant to our Logic Agent (LA) framework, where accurate translation of natural language into
propositional logic is crucial.

To harness GPT-4’s parsing capabilities, we crafted specific prompts aimed at guiding the model to
translate natural language statements into propositional logic forms. These forms are then seamlessly
integrated into the deduction functions of LA. A critical requirement for this integration is the
compatibility of GPT-4’s output with our framework’s syntax. Therefore, the prompts are designed
not only to elicit the correct logical structures but also to ensure that these structures adhere to the
syntax conventions of our default parser.

Dataset Default parser | GPT-4 parser
ReClor dev 59.73 60.65
AR-LSAT test 55.29 55.87
LogiQA22 42.98 44.07
ConTRoL 62.01 65.24
NaN-NLI 61.34 63.48
RuleTaker dev 71.30 71.45
ProofWriter dev 73.85 72.13

Table 3: GPT-3.5-TURBO model results with GPT-4 as the parser.
To evaluate the effectiveness of GPT-4 in this role, we conducted experiments comparing its parsing
capabilities with our default logic parser. The comparative results, as detailed in Table[3] demonstrate
a slight edge in performance when utilizing GPT-4 as a parser. This finding underscores the efficiency
and accuracy of GPT-4 in interpreting and translating complex logical statements from natural
language into formal logic constructs.

However, it’s important to consider the trade-offs involved. Utilizing GPT-4 as a parser introduces
additional computational costs, and there may be instances of variability in the parsing quality.
These factors necessitate a careful assessment of the cost-benefit ratio, especially in scenarios where
computational resources are a limiting factor or where absolute consistency in logic parsing is critical.

Our findings suggest that while GPT-4 can effectively augment our framework as a neural parser,
its integration should be strategically employed, taking into account the specific requirements and
constraints of the given logical reasoning task. The potential of GPT-4 to enhance the versatility and
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Figure 3: GPT-3.5-TURBO results on ablation test.

adaptability of logical reasoning frameworks is clear, yet its application needs to be tempered with an
understanding of its limitations and costs.

5.2 ABLATION STUDY

An essential aspect of our research was to ascertain the specific contribution of the parsed logic
within the LA method. To achieve this, we conducted an ablation study where we tested the impact
of augmenting text with parsed logic on the direct answer approach, while deliberately omitting the
constrained generation component integral to LA.

This approach allowed us to isolate and understand the effectiveness of the logic parsing process in
isolation. By comparing the performance of models using only parsed logic-augmented text for direct
answering with their performance under the full LA framework, we could assess the incremental
value added by the constrained generation aspect of LA.

We choose one dataset from each task and use GPT-3.5-TURBO as the tested model. The results
are shown in Figure [3] Across the three datasets, we observed a noticeable decrease in accuracy
when the models were deprived of the constrained generation process and relied solely on the parsed
logic-augmented text. This decline in performance underscores the significance of the constrained
generation component in the LA framework. It highlights that while the logic parsing capability is
a valuable contributor to the model’s overall performance, the full potential of LA is realized only
when it is coupled with the sophisticated generation constraints that guide the model towards more
logically coherent and accurate conclusions.

6 CONCLUSION

In this study, we present Logic Agent (LA), an innovative framework guided by logic rules to enhance
the logical reasoning capabilities of Large Language Models (LLMs). Our comprehensive experi-
ments across various models and datasets demonstrate that LA, with its integration of propositional
logic and deduction rules, consistently surpasses traditional reasoning approaches. Notably, it shows
superior performance in tasks requiring intricate logical deductions, highlighting its potential to
bridge the gap between Al computational power and human-like logical reasoning. The exploration
of GPT-4 as a neural logic parser further reveals the feasibility and challenges of incorporating
advanced LLMs within logical reasoning systems. Looking ahead, the refinement of LA for broader
applications and its scalability remain pivotal areas for future research. In sum, the LA framework
not only elevates the performance of LLMs in complex reasoning tasks but also paves the way for
more sophisticated and interpretable Al reasoning capabilities.
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