
Under review as a conference paper at ICLR 2023

DO SPIKING NEURAL NETWORKS LEARN SIMILAR REP-
RESENTATION WITH ARTIFICIAL NEURAL NETWORKS?
A PILOT STUDY ON SNN REPRESENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs) have recently driven much research interest
owing to their bio-plausibility and energy efficiency. The biomimicry spatial-
temporal communication and computation mechanisms are the key differences
that set SNNs apart from current Artificial Neural Networks (ANNs). However,
some essential questions exist pertaining to SNNs and yet are little studied: Do
SNNs learn similar representation with ANN? Does the time dimension in spik-
ing neurons provide additional information? In this paper, we aim to answer
these questions by conducting a representation similarity analysis between SNNs
and ANNs using Centered Kernel Alignment (CKA). We start by analyzing the
spatial dimension of the networks, including both the width and the depth. Fur-
thermore, our analysis of residual connection shows that SNN learns a periodic
pattern, which rectifies the representations in SNN to ANN-like. We addition-
ally investigate the effect of the time dimension on SNN representation, finding
that deeper layers encourage more dynamics along the time dimension. Other as-
pects like potential improvement in terms of accuracy, efficiency, and adversarial
robustness are also analyzed using CKA. We hope this work will inspire future
research to fully comprehend the representation of SNNs.

1 INTRODUCTION

Lately, Spiking Neural Networks (SNNs) (Tavanaei et al., 2019; Roy et al., 2019; Deng et al.,
2020; Panda et al., 2020; Christensen et al., 2022) have received increasing attention thanks to their
biology-inspired neuron activation and efficient neuromorphic computation. SNNs process with
binary spike representation and therefore avoid the need for multiplication operations during infer-
ence. Neuromorphic hardware such as TrueNorth (Akopyan et al., 2015) and Loihi (Davies et al.,
2018) demonstrate that SNNs can save energy by orders of magnitude compared to ANNs. Hybrid
architecture like Tianjic (Pei et al., 2019) suggests its potential power for general intelligence when
integrated with traditional artificial infrastructure.

Despite increasing interest in SNNs, there is limited understanding of how spiking neurons affect
the representation learned in SNNs beyond its efficiency and accuracy. Investigating this funda-
mental question is critical, especially with the consensus that spiking neurons learn distinct spatial-
temporal information compared to ANNs (Tavanaei et al., 2019; Ghosh-Dastidar & Adeli, 2009).
Understanding the representation learned in SNN can also promote further research developments,
e.g., designing spiking-oriented architectures (Kim et al., 2022; Na et al., 2022).

More concretely, we ask, does the leaky integrate-and-fire (LIF) neuron (Burkitt, 2006) in SNNs
learn distinct non-linear activations than the rectified linear unit (ReLU) (Krizhevsky et al., 2012)
neuron in ANNs? How do the width and the depth of the neural network affect the representation
learned in SNNs and ANNs? Does the extra temporal dimension in SNNs yields unique intermediate
features? On the neuromorphic dataset, how does the SNN process event-based data? How are
SNNs and ANNs differ in terms of robustness? In this paper, we study these core questions, through
a detailed analysis of ResNets (He et al., 2016a) and VGG-series (Simonyan & Zisserman, 2015)
models using a representation similarity analysis tool. In particular, we utilize the popular Centered
Kernel Alignment (CKA) (Kornblith et al., 2019) to measure the similarity between SNN and ANN.

1

Under review as a conference paper at ICLR 2023

Preact Feature 1

ReLU

Preact Feature 1

LIF

Preact Feature 2

Preact Feature 2

Test Images
Batch size:m

Spiking Neural Network

Artificial Neural Network

T T

ReLU

LIF
…

…

Preact Feature 3

Preact Feature 3

T

Correlation Grammatrix

m

m

m

𝐶!" =#𝑋!# ∗ 𝑋$%	
#

𝐶!" =##𝑋!#
(') ∗ 𝑋$%

(')	
#'

CKA
Similarity

Figure 1: The representation similarity analysis workflow. The test images are fed into both ANN and SNN,
then we record the intermediate feature for computing the correlation matrix, which is used for inferring the
CKA similarity (Kornblith et al., 2019).

Fig. 1 demonstrates the overall workflow of our representation similarity analysis framework. Our
analysis spans both spatial and temporal dimensions of SNN, as well as the impact of network
architecture and input data. Our contributions can be summarized as follows:

• We analyze the representation similarity between SNNs and ANNs using the centered kernel align-
ment, in order to determine whether SNNs bring distinct features and differ from ANN.

• Various aspects of representation similarity between SNNs and ANNs are examined, including
spatial and temporal dimensions, the type of input data, and network architecture.

• Our analysis of representation similarity could inspire future research directions. We also provide
two prototype methods to improve the temporal dynamics and efficiency in SNNs using CKA.

2 RELATED WORK

Spiking Neural Networks (SNNs). SNNs are recognized as a candidate for next-generation arti-
ficial intelligence. Generally, the SNN algorithms to obtain high-performance can be divided into
two categories: (1) ANN-SNN conversion (Rueckauer et al., 2016; 2017; Han et al., 2020; Sengupta
et al., 2019; Han & Roy, 2020) and (2) direct training SNN from scratch (Wu et al., 2018; 2019).
Conversion-based methods utilize the knowledge from ANN and convert the ReLU activation to a
spike activation mechanism. This type of method can produce an SNN in a short time. For exam-
ple, in Rueckauer et al. (2017), one can find the percentile number and set it as the threshold for
spiking neurons. Authors in Deng & Gu (2021) and Li et al. (2021) decompose the conversion error
to each layer and then propose to reduce the error by calibrating the parameters. However, achiev-
ing near-lossless conversion requires a considerable amount of time steps to accumulate the spikes.
Direct training from scratch allows SNNs to be operated in extremely low time steps, even less
than 5 (Zheng et al., 2020). To enable gradient-based learning, direct training leverages surrogate
gradient to compute the derivative of the discrete spiking function. This also benefits the hyperpa-
rameters’ choice in spiking neurons. Recent works (Fang et al., 2021; Rathi & Roy, 2020; Kim &
Panda) co-optimize parameters, firing threshold, and leaky factor together via gradient descent. Our
analysis is mostly based on directly trained SNN, as converted SNN contains ANN features only,
which may be misleading for representation comparison.

Representation Similarity Analysis (RSA). RSA (Kriegeskorte et al., 2008) was not originally
designed for analyzing neural networks only. Rather, it is used for representation comparison be-
tween any two computational models. Prior works like Khaligh-Razavi & Kriegeskorte (2014);
Yamins et al. (2014) use RSA to find the correlation between the visual cortex features and the
convolutional neural network features. Authors of Seminar (2016); Raghu et al. (2017); Morcos
et al. (2018); Wang et al. (2018) studied the RSA between different neural networks. However,
recent work (Kornblith et al., 2019) argues that none of the above methods for studying RSA can

2

Under review as a conference paper at ICLR 2023

yield high similarity even between two different initialization of the same architecture. They fur-
ther propose CKA which has become a powerful evaluation tool for RSA and has been successfully
applied to several studies. For example, Nguyen et al. (2020) analyzes the representation pattern in
extremely deep and wide neural networks. Raghu et al. (2021) studies the representation difference
between convolutional neural networks and vision transformers with CKA. In this work, we leverage
this tool for comparing ANN and SNN.

3 PRELIMINARY

3.1 ARTIFICIAL NEURONS AND SPIKING NEURONS

In this paper, vectors/matrices are denoted with bold italic/capital letters (e.g. x and W). Constants
are denoted by small upright letters. For non-linear activation function in artificial neurons, we use
the rectified linear unit (ReLU), given by y = max(0,Wx). As for the non-linear activation func-
tion in spiking neurons, we adopt the well-known Leaky Integrate-and-Fire (LIF) model. Formally,
given a membrane potential u(t) and a pre-synaptic input Wx(t+1) at time step t, the pre-synaptic
potential (u(t+1),pre) in LIF neuron is updated as

u(t+1),pre = τu(t) +Wx(t+1) (1)

Here, τ is a constant leak factor within (0, 1). Let vth be the firing threshold, the membrane potential
will fire a spike when it exceeds the threshold, and then, is hard-reset to 0, given by

y(t+1) =

{
1 if u(t+1),pre > vth
0 otherwise

, u(t+1) = u(t+1),pre · (1− y(t+1)) (2)

After firing, the spike output y(t+1) will propagate to the next layer and become the input x(t+1) of
the next layer. Note that here the layer index is omitted for simplicity.

3.2 CENTERED KERNEL ALIGNMENT

Let Xs ∈ Rm×Tp1 and Xa ∈ Rm×p2 contain the representation in an arbitrary layer of SNN with
p1 hidden neurons across T time steps and the representation in an arbitrary layer of ANN with p2
hidden neurons, respectively. Here m is the batch size and we concatenate features from all time
steps in the SNN altogether. We intend to use a similarity index s(Xs,Xa) to describe how similar
they are. We use the Centered Kernel Alignment (CKA) (Kornblith et al., 2019) to measure this:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
, HSIC(K,L) =

1

(m− 1)2
tr(KHLH). (3)

Here, K = XsX
⊤
s ,L = XaX

⊤
a are the Gram matrices as shown in Fig. 1. Each Gram matrix has the

shape of m×m, reflecting the similarities between a pair of examples. For example, Ki,j indicates
the similarity between the ith and jth example in the SNN feature Xs. Further measuring the simi-
larity between K and L, one can measure whether SNN has a similar inter-example similarity matrix
with ANN. Let H = I − 1

m11⊤ be the centering matrix, the Hilbert-Schmidt Independence Crite-
rion (HSIC) proposed by Gretton et al. (2005) can conduct a test statistic for determining whether
two sets of variables are independent. HSIC = 0 implies independence. The CKA further normal-
izes HSIC to produce a similarity index between 0 and 1 (the higher the CKA, the more similar
the input pair) which is invariant to isotropic scaling. In our implementation, we use the unbiased
estimator of HSIC (Song et al., 2012; Nguyen et al., 2020) to calculate it across mini-batches.

4 DO SNNS LEARN SIMILAR REPRESENTATION WITH ANNS?

In this section, we comprehensively compare the representation learned in SNNs and ANNs. Our
primary network architecture is ResNet with identity mapping block (He et al., 2016b), which is
the standard architecture in modern deep learning for image recognition. We also provide RSA on
VGG-series networks in Appendix A.1. There are two differences between our SNNs and ANNs.
First, ANNs adopt Batch Normalization layer (Ioffe & Szegedy, 2015) and SNNs use the time-
dependent Batch Normalization layer (Zheng et al., 2020) which normalizes the feature across all

3

Under review as a conference paper at ICLR 2023

0 20 40 60
Spiking ResNet-20

0

20

40

60

Ar
tif

ici
al

 R
es

Ne
t-2

0

0 50 100
Spiking ResNet-38

0

25

50

75

100

125

Ar
tif

ici
al

 R
es

Ne
t-3

8

0 50 100 150
Spiking ResNet-56

0

50

100

150

Ar
tif

ici
al

 R
es

Ne
t-5

6

0 100 200 300
Spiking ResNet-110

0

100

200

300

Ar
tif

ici
al

 R
es

Ne
t-1

10

0 200 400
Spiking ResNet-164

0

100

200

300

400

500

Ar
tif

ici
al

 R
es

Ne
t-1

64

0 20 40 60
Spiking ResNet-20

0

20

40

60

Ar
tif

ici
al

 R
es

Ne
t-2

0

0 20 40 60
Spiking ResNet-20 x2

0

20

40

60

Ar
tif

ici
al

 R
es

Ne
t-2

0
x2

0 20 40 60
Spiking ResNet-20 x4

0

20

40

60

Ar
tif

ici
al

 R
es

Ne
t-2

0
x4

0 20 40 60
Spiking ResNet-20 x8

0

20

40

60

Ar
tif

ici
al

 R
es

Ne
t-2

0
x8

0 20 40 60
Spiking ResNet-20 x16

0

20

40

60

Ar
tif

ici
al

 R
es

Ne
t-2

0
x1

6

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70
0.0
0.5
1.0

ResNet20

0 20 40 60 80 100 120 140
0.0
0.5
1.0

ResNet38

0 25 50 75 100 125 150 175 200
0.0
0.5
1.0

ResNet56

0 50 100 150 200 250 300 350 400
0.0
0.5
1.0

ResNet110

0 100 200 300 400 500 600

Layers0.0
0.5
1.0

ResNet164

0 10 20 30 40 50 60 70
Layers0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ResNet20
ResNet20 x2

ResNet20 x4
ResNet20 x8

ResNet20 x16

Si
m

ila
rit

y

Figure 2: CKA heatmap between SNNs and ANNs with different depth and width on the CIFAR-10
dataset. Top: the CKA cross-layer heatmap across different depths from 20 layers to 164 layers. Middle:
the CKA cross-layer heatmap across different widths from the original channel number to 16 times. Bottom:
visualizing only the corresponding layer, which is the diagonal of the CKA heatmap.

time steps (i.e. Xs). Second, the ANNs use ReLU activation, and SNNs leverage the LIF spiking
neurons. For default SNN training, we use direct encoding, τ = 0.5 for leaky factor, vth = 1.0 for
firing threshold, and time step T = 4, which are tuned for the best training performance on SNNs.
We train the network on CIFAR10/100 (Krizhevsky et al.), and several event-based datasets (Li et al.,
2017; Orchard et al., 2015). SNNs are trained with surrogate gradients. Detailed training setup and
codes can be found in the supplemental material.

4.1 SCALING UP WIDTH OR DEPTH

We begin our study by studying how the spatial dimension of a model architecture affects internal
representation structure in ANNs and SNNs. Specifically, we gradually scale up the depth or the
width of the network and use the CKA representation similarity metric. Starting from a ResNet-20,
we either increase its number of convolutional layers up to 164 or increase its channel number up
to 16 times as original (see detailed network configuration in Table C.1). For each network, we
compute CKA between all possible pairs of layers, including convolutional layers, normalization
layers, ReLU/LIF layers, and residual block output layers. Therefore, the total number of layers is
much greater than the stated depth of the ResNet, as the latter only accounts for the convolutional
layers in the network. Then, we visualize the result as a heatmap, with the x and y axes representing
the layers of the network, going from the input layer to the output layer. Following Nguyen et al.
(2020), our CKA heatmap is computed on 4096 images from the test dataset. We also lay out the
top-1 accuracy of each model in Table B.1.

As shown in Fig. 2, the CKA heatmap emerges as a checkerboard-like grid structure, especially
for the deeper neural network. In ResNet-20, we observe a bright block in the middle and deep
layers, indicating that ANNs and SNNs learn overlapped representation. As the network goes deep,
we find the CKA heatmap becomes darker, meaning that representations in ANNs and those in
SNNs are diverging. Notably, we find the last 2/3 layers in artificial ResNet-164 exhibit significantly
different representations than spiking ResNet-164, which demonstrates that deeper layers tend to
learn disparate features.

4

Under review as a conference paper at ICLR 2023

0 50 100 150 200 250 300 350
Layers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Si
m

ila
rit

y

64 66 68 70
0.00
0.25
0.50
0.75
1.00 10-th Residual Block

242 244 246 248
0.00
0.25
0.50
0.75
1.00 34-th Residual Block

Res. Block
LIF/ReLU
Conv
(td)BN

LIF/ReLU Conv (td)BN

Figure 3: Emergence of periodic jagged CKA curve. Left: CKA curve of ResNet-110. We subplot the 10-th
and the 34-th residual blocks in ResNet-110, which forms a periodic jagged curve. Right: The architecture
specification of the residual block we used.

In Fig. 2 middle part, we progressively enlarge the channel number of ResNet-20. In contrast to
depth, the heatmap of wider neural networks becomes brighter, which indicates the representations
in SNNs and ANNs are converging. Interestingly, although the majority of layers are learning more
similar representations between ANN and SNN in wide networks, the last several layers still learn
different representations.

We further select only the diagonal elements (i.e. the CKA between layers at the same positions)
in the heatmap and plot them in Fig. 2 bottom part. Interestingly, we observe that deeper networks
tend to derive a curve with a jagged shape. This means some layers in SNN indeed learn different
representations when compared to ANN, however, the difference is intermittently mitigated. In later
sections, we will show that the mitigation of dissimilarity is performed by residual connection. As
for width, we generally notice that CKA curves mostly become higher for wider networks, especially
when comparing ResNet-20 and ResNet-20 ×8. We additionally provide the CKA results on the
CIFAR-100 dataset in Appendix A.3.

4.2 THE EFFECT OF RESIDUAL CONNECTIONS

In Fig. 2, the CKA curves appear with a periodic jagged shape. To investigate what causes this
similarity oscillation, we investigate each layer in a residual block. In Fig. 3 left, we plot the CKA
curve of the ResNet-110 and additionally sample two residual blocks, the 10-th and the 34-th block,
whose architecture details are depicted in Fig. 3 right. Surprisingly, we find that every time when
the residual connection meets the main branch, the CKA similarity restores nearly to 1. Moreover,
every time when the activation passes a convolutional layer or an LIF layer, the similarity decreases.
The BN layers, in contrast, do not affect the similarity since it is a linear transformation. These
results substantiate that the convolutional layers and LIF layers in SNNs are able to learn different
representations than ANNs. However, the representation in the residual branch still dominates the
representation in post-residual layers and leads to the junction of ANN’s and SNN’s representation.

To further explore why residual connections can restore the representations in SNNs to ANN-like,
we conduct an ablation study. We select one of the three stages in the spiking ResNet-56 where
the residual connections are disabled selectively. In Fig. 4, we visualize the CKA heatmaps of SNN
itself, which means both x and y axes are the same layers in SNN. The first heatmap demonstrates
the full residual network, while the remaining three heatmaps show the partial residual networks,
with the 1st, 2nd, and 3rd stages disabled, respectively. Our observations can be summarized as:

(1) In terms of inter-stage similarity, residual connections can preserve the input information from
the previous stage. In the 1st and 2nd heatmaps in Fig. 4, we find residual blocks can have high
similarity with their former stage. The non-residual block, however, does not have this property. In
the 3rd and 4th heatmaps, we can see that blocks without residual connections exhibit significantly
different representations when compared to their former stage. Therefore, as long as ANN and SNN
learn similar representations in the first layer, the similarity can propagate to very deep layers due to
residual connections.

(2) In terms of intra-stage similarity, the non-residual stage’s heatmap appears with a uniform rep-
resentation across all layers, meaning that layers in this stage are similar. In contrast, residual
stages share a grid structure. In Fig. 4 bottom side, we train a linear probe (Alain & Bengio, 2016)

5

Under review as a conference paper at ICLR 2023

0 50 100 1500

50

100

150

Spiking Res56 Full Residual

0 50 100 1500

50

100

150

Spiking Res56 Partial Residual (1)

0 50 100 1500

50

100

150

Spiking Res56 Partial Residual (2)

0 50 100 1500

50

100

150

Spiking Res56 Partial Residual (3)

0 10 20
Blocks

20

40

60

80

Ac
cu

ra
cy

0 10 20
Blocks

20

40

60

80

0 10 20
Blocks

20

40

60

80

0 10 20
Blocks

20

40

60

80

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: The effect of residual connections in SNNs. We selectively disable residual connections in one of
three stages in the ResNet-56. Top: the CKA heatmap of SNN itself with different types of non-residual blocks.
Bottom: The linear probing accuracy of each block. The non-residual stage is annotated with green square □.

0 20 40 60
Spiking ResNet-20 T2

0
10
20
30
40
50
60
70

Ar
tif

ici
al

 R
es

Ne
t-2

0

0 20 40 60
Spiking ResNet-20 T4

0
10
20
30
40
50
60
70

Ar
tif

ici
al

 R
es

Ne
t-2

0

0 20 40 60
Spiking ResNet-20 T8

0
10
20
30
40
50
60
70

Ar
tif

ici
al

 R
es

Ne
t-2

0

0 20 40 60
Spiking ResNet-20 T16

0
10
20
30
40
50
60
70

Ar
tif

ici
al

 R
es

Ne
t-2

0

0 20 40 60
Spiking ResNet-20 T32

0
10
20
30
40
50
60
70

Ar
tif

ici
al

 R
es

Ne
t-2

0

0 20 40 60
Spiking ResNet-20 T64

0
10
20
30
40
50
60
70

Ar
tif

ici
al

 R
es

Ne
t-2

0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70
Layers

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Si

m
ila

rit
y

ResNet-20 T2
ResNet-20 T4
ResNet-20 T8

ResNet-20 T16
ResNet-20 T32
ResNet-20 T64

Figure 5: The effect of time steps in SNNs. Left: CKA heatmaps between ANNs and SNNs with the different
number of time steps. Right: The CKA curve of corresponding layers (diagonal values as in left).

layer after each block to investigate how these preserved representations impact task performance
throughout the network. We see a monotonic increase in accuracy throughout the blocks that have
residual connections, but not in blocks that do not have residual connections. This proves every
residual block will contribute to the final performance.

4.3 SCALING UP TIME STEPS

The results of the previous sections help characterize the effects of spatial structure on internal
representation differences between SNNs and ANNs. Next, we ask whether the time dimension
helps SNN learn some unique information. To verify this, we train several spiking ResNet-20 with
2/4/8/16/32/64 time steps and calculate the ANN-SNN CKA similarity. In Fig. 5, we envision the
CKA heatmaps and curves respectively between artificial ResNet-20 and spiking ResNet-20 with
various time steps. Notably, we cannot find significant differences among these heatmaps. Looking
at the CKA curves, we also discover that many layers are overlapped, especially when we focus
on the residual block output (the local maximums). We find the similarities between different time
steps reaching the same point, meaning that the time step variable does not show dynamics.

To figure out why the time dimension has a limited impact on the ANN-SNN similarity, we compare
the CKA among various time steps. Concretely, for any layer inside an SNN, we reshape the feature
Xs to [X(1),X(2), . . . ,X(T)] where X(i) is the i-th time step’s output. By computing the CKA
similarity between arbitrary two time steps, i.e., CKA(X(i),X(j)), we are able to construct a CKA
heatmap with x, y axes being the time dimension, which demonstrates whether the features are

6

Under review as a conference paper at ICLR 2023

0 2
0

1

2

3

s1.b0

0 2
0

1

2

3

s1.b1

0 2
0

1

2

3

s1.b2

0 2
0

1

2

3

s2.b0

0 2
0

1

2

3

s2.b1

0 2
0

1

2

3

s2.b2

0 2
0

1

2

3

s3.b0

0 2
0

1

2

3

s3.b1

0 2
0

1

2

3

s3.b2

0 5
0

2

4

6

s1.b0

0 5
0

2

4

6

s1.b1

0 5
0

2

4

6

s1.b2

0 5
0

2

4

6

s2.b0

0 5
0

2

4

6

s2.b1

0 5
0

2

4

6

s2.b2

0 5
0

2

4

6

s3.b0

0 5
0

2

4

6

s3.b1

0 5
0

2

4

6

s3.b2

0 20
0

10

20

30
s1.b0

0 20
0

10

20

30
s1.b1

0 20
0

10

20

30
s1.b2

0 20
0

10

20

30
s2.b0

0 20
0

10

20

30
s2.b1

0 20
0

10

20

30
s2.b2

0 20
0

10

20

30
s3.b0

0 20
0

10

20

30
s3.b1

0 20
0

10

20

30
s3.b2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: The similarity across times in SNN. Each heatmap shows the CKA among different time steps in
the output of the residual block. “s” means stage, and “b” means block. The top/middle/bottom rows stand for
spiking ResNet-20 with 4/8/32 time steps.

similar across different time steps. Fig. 6 illustrates such CKA heatmaps of outputs from all residual
blocks in the spiking ResNet-20, with time steps varying from 4 to 32. In general, deeper residual
block output exhibits darker CKA heatmaps and the shallower layers tend to become yellowish. In
particular, all the residual blocks from the first stage have an all-yellow CKA heatmap, indicating
extremely high similarity in these blocks. The second stage starts to produce differences across time
steps, but they still share >0.8 similarities between any pair of time steps. The last stage, especially
the last block, demonstrates around 0.5 similarities between different time steps. To summarize,
the impact of time in SNN is gradually increased as the feature propagates through the network. In
Appendix A.4, we provide the heatmap of convolutional/LIF layers and find a similar trend.

(a) Temporal Pruning.
T K Latency Acc. (before pruning) Acc. (after pruning)

4 1 ↓ 26.8% 89.63 89.20 (-0.43)
4 2 ↓ 17.8% 89.63 89.72 (+0.09)

8 2 ↓ 26.8% 90.81 90.45 (-0.36)
8 4 ↓ 17.8% 90.81 90.79 (-0.02)

(b) CKA Regularization.
T λ Acc. before reg. Acc. after reg.
4 1e− 4 89.63 90.45
4 5e− 4 89.63 89.22
8 1e− 4 90.81 91.35
16 1e− 4 91.05 91.50

4.4 IMPROVING SNN WITH CKA

Our analysis in time dimension envisions the temporal dynamics of SNNs. Here, we show that we
can leverage these novel insights to improve SNN.

Temporal Pruning. Pruning in the time dimension has been proposed in Chowdhury et al. (2021)
where the SNN is first trained with higher time steps and then fine-tuned with lower time steps.
Here, we argue that we can prune a portion of the SNN to the low time step. In Fig. 6, we find that
time has a limited effect on the first stage of the network. Here, we propose to infer the SNN using
fewer time steps in the first stage while still preserving accuracy. Specifically, we retain only the
activation of the first K time steps, stacking several duplicates of them (assume T is the multiplier of
K) to T time steps starting from the second stage, and then fine-tune the model for several epochs.
Therefore, the overall computation is roughly reduced by T−K

3T of the original computation. In
Table 1a, we give several examples of our structured temporal pruning. It can be observed that an
SNN can be pruned with 17.8% less latency without losing accuracy. If the time steps in the first
stage are reduced to its 1

4 , the SNN will drop 0.4% accuracy with 26.8% less latency.

CKA Regularization. Besides improving the efficiency of SNN, we seek to improve the task per-
formance of SNN. Here, we focus on the temporal dynamics by imposing the regularization built
from CKA. Specifically, we compute the average value of the CKA matrix, i.e., the mean values
of heatmaps shown in Fig. 6. Then, we force the network to learn more dynamic features across
different time steps by punishing the high average CKA value, given by

min
W

Lcrossentropy(x,W,y) + λCKA(x,W). (4)

7

Under review as a conference paper at ICLR 2023

0 20 40 60
Spiking ResNet-20 T10

0

10

20

30

40

50

60

70

Ar
tif

ici
al

 R
es

Ne
t-2

0

CIFAR10-DVS

0 20 40 60
Spiking ResNet-20 T10

0

10

20

30

40

50

60

70

Ar
tif

ici
al

 R
es

Ne
t-2

0

N-Caltech 101

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70

Layers

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Si
m

ila
rit

y

CIFAR10-DVS
N-Caltech 101

Figure 7: CKA Similar-
ity on Event Dataset. We
train spiking and artificial
ResNet-20 on CIFAR10-
DVS and N-Caltech 101,
respectively. Left: the
CKA heatmaps. Right:
The CKA curves of cor-
responding layers between
ANN and SNN.

We use a coefficient λ to adjust the regularization strength. The results are summarized in Table 1b.
SNNs trained with CKA regularization and an appropriate λ can improve 0.5∼0.8% accuracy, indi-
cating that appropriate temporal dynamics benefit the task performance of SNN.

4.5 CKA ON EVENT-BASED DATASET

In this section, we evaluate the CKA similarity on the event-based dataset. We choose CIFAR10-
DVS (Li et al., 2017), N-Caltech 101 (Orchard et al., 2015) and train spiking/artificial ResNet-20.
Since the ANN cannot process 4-dimensional spatial-temporal event data easily, we integrate all
events into one frame for ANN training and 10 frames for SNN training. Fig. 7 provides the CKA
heatmaps/curves on the event dataset, showing a different similarity distribution than the previous
CIFAR-10 dataset. The heatmaps have a different pattern and the curves also do not appear with
a periodic jagged shape. In addition, the similarity distribution differs at the dataset level, i.e., the
CIFAR10-DVS and N-Caltech 101 share different CKA curves and heatmaps. On N-Caltech 101,
the SNN learns different feature representations compared with ANN in shallow and deep layers,
but similar representation in intermediate layers. For CIFAR10-DVS, the similarity continues to
decrease from 0.9 to 0.5 as the layers deepen. In summary, with the event-based dataset, SNNs and
ANNs share less similarity in comparison to the natural image dataset, which implies that SNNs
may have further optimization space in this type of dataset. We put more CKA results on various
models for the CIFAR10-DVS dataset in Appendix A.2.

4.6 UNDERSTANDING ROBUSTNESS

We next study the robustness of SNN and ANN using CKA. Previous works have made explorations
towards understanding the inherent robustness of SNNs (Sharmin et al., 2020; Kundu et al., 2021;
Liang et al., 2021). However, they either evaluate on converted SNN or using rate encoded images.
Here, we test PGD attack (Madry et al., 2017) on the directly trained SNN and ANN using direct
encoding. Formally, we generate the adversarial images by restricting the L-infinity norm of the
perturbation, given by

xk+1
adv = ΠPϵ(x)(x

k
adv + αsign(∇xk

adv
L(xk

adv,w,y))), (5)

where xk
adv is the generated adversarial sample at the k-th iteration. ΠPϵ(x)(·) projects the generated

sample onto the projection space, the ϵ − L∞ neighborhood of the clean sample. α is the attack
optimization step size. With higher ϵ, the adversarial image is allowed to be perturbed in a larger
space, thus degrading task performance.

We evaluate the spiking and artificial ResNet-20 on the CIFAR-10 dataset with ϵ from
{0.001, 0.005, 0.01, 0.02, 0.05}. After generating the adversarial images, we measure the CKA
value between the clean image’s features and the adversarial corrupted image’s features. We first
test the accuracy after the adversarial attack and summarize the result in Fig. 8 left. The clean accu-
racy of ANN is higher than that of SNN, but SNN has higher robustness against adversarial attacks.
As an example, the PGD attack with 0.01 L-infinity norm perturbation reduces 43% accuracy of
ANN, but only reduces 22% accuracy of SNN. We also investigate the CKA similarity as shown in
the 2nd and 3rd subplots of Fig. 8. Intuitively, the higher the robustness against adversarial attacks,
the higher the similarity between clean and corrupted images will be. The CKA curves indeed testify
to this intuition, the SNN has a higher similarity than ANN does. We also observe several interesting
phenomena. For instance, the ANN suffers from a large decrease in the similarity of the first block,

8

Under review as a conference paper at ICLR 2023

0.0 0.001 0.005 0.01 0.02 0.05
0

20

40

60

80
Ac

cu
ra

cy
91.06

89.67

87.99
87.77

72.81

80.72

48.3

68.04

14.92

40.08

0.11

1.88

Robustness of ANN and SNN

ANN SNN

0 10 20 30 40 50 60 70
Layers

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

Similarity of ANN

=0.001
=0.005
=0.01

=0.02
=0.05

0 10 20 30 40 50 60 70
Layers

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

Similarity of SNN

=0.001
=0.005
=0.01

=0.02
=0.05

Figure 8: The robustness against adversarial attack. Left: The accuracy of SNN and ANN after attack
under different ϵ. Right: The CKA curve between clean images and adversarial images of ANN and SNN,
respectively.

i.e., the first block has below 0.7 similarities even with the ϵ = 0.001 attack. Also, if we focus on
the purple line (ϵ = 0.02), we notice ANN and SNN have similar perseverance in earlier layers, but
ANN drops much more similarity than SNN in the last block. These results provide interpretation
to model robustness and suggest SNNs have better robustness than ANN, especially in their shallow
and deep layers.

5 DISCUSSION AND CONCLUSION

Given the fact that SNNs are drawing increasing research attention due to their bio-plausibility, it is
necessary to verify if SNNs can or have the potential to truly develop desired features different from
ANNs. In this work, we conduct a pilot study to examine the internal representation of SNNs and
compare it with ANNs. At first, an analysis of scaling up the spatial dimension of both ANNs and
SNNs finds depth discourages similarity, while width encourages similarity. Next, we pinpoint the
role of the residual connection in SNNs—carrying the information from input and somehow making
SNNs’ representation like ANNs. We also investigate the unique time dimension of SNNs using
both inter-network CKA and intra-network CKA.

Unfortunately, our results may not fully support the opinion that SNNs learn highly effective and
distinct temporal representation compared to ANNs. Current SNN learning relies on the residual
connection to obtain decent task performance. However, our study suggests that this task perfor-
mance is highly credited to the similar representation with ANN brought by residual connections.
Furthermore, the time dimension brings limited effect to the SNN representation on static datasets
like CIFAR10 and CIFAR100. In particular, the first stage of ResNets results in quite similar across
time steps. Nonetheless, we should not be pessimistic about SNN. In Sec. 4.4, we discuss potential
optimizations of current SNN using temporal pruning and CKA regularization to improve efficiency
and accuracy. In Sec. 4.6, we notice better robustness in SNN against adversarial attacks. These
results suggest the probabilities to further optimize SNN and develop more effective representa-
tions or features. Here, we provide several directions worth studying in the future: a) Optimization
of deeper SNNs with better learning algorithms to avoid the usage of residual connections: Deep
SNNs evolve more distinct features but also becomes harder to be trained. Thus, a learning rule
beyond the gradient-based method could be promising. b) Exploring other neuron models in SNN:
Current LIF neurons seem to bring limited effect in the time dimension. A neuron model that can
bring effective temporal dynamics may significantly improve SNN performance. c) Understanding
the robustness of SNN: Adversarial attack is inconsequential for human visual systems, which may
be reflected in SNN as well. We believe the SNN robustness can be significantly improved and our
study on representation of SNN provides a good example.

Our analysis also has limitations. The CKA we used summarizes measurements into a single scalar.
To provide quantitative insights on representation similarity, more fine-grained methods may reveal
additional insights and variations in the representations.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla,
Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth: Design and tool
flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE transactions on
computer-aided design of integrated circuits and systems, 34(10):1537–1557, 2015.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes. arXiv preprint arXiv:1610.01644, 2016.

Anthony N Burkitt. A review of the integrate-and-fire neuron model: I. homogeneous synaptic input.
Biological cybernetics, 95(1):1–19, 2006.

Sayeed Shafayet Chowdhury, Isha Garg, and Kaushik Roy. Spatio-temporal pruning and quantiza-
tion for low-latency spiking neural networks. In 2021 International Joint Conference on Neural
Networks (IJCNN), pp. 1–9. IEEE, 2021.

Dennis Valbjørn Christensen, Regina Dittmann, Bernabé Linares-Barranco, Abu Sebastian, Manuel
Le Gallo, Andrea Redaelli, Stefan Slesazeck, Thomas Mikolajick, Sabina Spiga, Stephan Menzel,
et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorphic Computing and
Engineering, 2022.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

Lei Deng, Yujie Wu, Xing Hu, Ling Liang, Yufei Ding, Guoqi Li, Guangshe Zhao, Peng Li, and
Yuan Xie. Rethinking the performance comparison between snns and anns. Neural Networks,
121:294 – 307, 2020.

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks. arXiv preprint arXiv:2103.00476, 2021.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. In-
corporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2661–2671,
2021.

Samanwoy Ghosh-Dastidar and Hojjat Adeli. Spiking neural networks. International journal of
neural systems, 19(04):295–308, 2009.

Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical de-
pendence with hilbert-schmidt norms. In International conference on algorithmic learning theory,
pp. 63–77. Springer, 2005.

Bing Han and Kaushik Roy. Deep spiking neural network: Energy efficiency through time based
coding. In Proc. IEEE Eur. Conf. Comput. Vis.(ECCV), pp. 388–404, 2020.

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. Rmp-snn: Residual membrane potential
neuron for enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13558–13567,
2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630–645. Springer, 2016b.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. Deep supervised, but not unsupervised,
models may explain it cortical representation. PLoS computational biology, 10(11):e1003915,
2014.

10

Under review as a conference paper at ICLR 2023

Youngeun Kim and Priyadarshini Panda. Revisiting batch normalization for training low-latency
deep spiking neural networks from scratch. Frontiers in neuroscience, pp. 1638.

Youngeun Kim, Yuhang Li, Hyoungseob Park, Yeshwanth Venkatesha, and Priyadarshini Panda.
Neural architecture search for spiking neural networks. arXiv preprint arXiv:2201.10355, 2022.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International Conference on Machine Learning, pp. 3519–
3529. PMLR, 2019.

Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. Representational similarity analysis-
connecting the branches of systems neuroscience. Frontiers in systems neuroscience, 2:4, 2008.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). URL http://www.cs.toronto.edu/˜kriz/cifar.html.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Souvik Kundu, Massoud Pedram, and Peter A Beerel. Hire-snn: Harnessing the inherent robustness
of energy-efficient deep spiking neural networks by training with crafted input noise. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 5209–5218, 2021.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
dataset for object classification. Frontiers in neuroscience, 11:309, 2017.

Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from ann: Towards
efficient, accurate spiking neural networks calibration. In International Conference on Machine
Learning, pp. 6316–6325. PMLR, 2021.

Ling Liang, Xing Hu, Lei Deng, Yujie Wu, Guoqi Li, Yufei Ding, Peng Li, and Yuan Xie. Exploring
adversarial attack in spiking neural networks with spike-compatible gradient. IEEE transactions
on neural networks and learning systems, 2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. Advances in Neural Information Processing Systems, 31,
2018.

Byunggook Na, Jisoo Mok, Seongsik Park, Dongjin Lee, Hyeokjun Choe, and Sungroh Yoon. Au-
tosnn: Towards energy-efficient spiking neural networks. arXiv preprint arXiv:2201.12738, 2022.

Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks learn the same
things? uncovering how neural network representations vary with width and depth. arXiv preprint
arXiv:2010.15327, 2020.

Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image
datasets to spiking neuromorphic datasets using saccades. Frontiers in neuroscience, 9:437, 2015.

Priyadarshini Panda, Sai Aparna Aketi, and Kaushik Roy. Toward scalable, efficient, and accu-
rate deep spiking neural networks with backward residual connections, stochastic softmax, and
hybridization. Frontiers in Neuroscience, 14:653, 2020.

Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe
Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip
architecture. Nature, 572(7767):106–111, 2019.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. Advances in neural
information processing systems, 30, 2017.

11

http://www.cs.toronto.edu/~kriz/cifar.html

Under review as a conference paper at ICLR 2023

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy.
Do vision transformers see like convolutional neural networks? Advances in Neural Information
Processing Systems, 34, 2021.

Nitin Rathi and Kaushik Roy. Diet-snn: Direct input encoding with leakage and threshold optimiza-
tion in deep spiking neural networks. arXiv preprint arXiv:2008.03658, 2020.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607–617, 2019.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, and Michael Pfeiffer. Theory and
tools for the conversion of analog to spiking convolutional neural networks. arXiv preprint
arXiv:1612.04052, 2016.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Con-
version of continuous-valued deep networks to efficient event-driven networks for image classifi-
cation. Frontiers in neuroscience, 11:682, 2017.

Statistics Student Seminar. Convergent learning: Do different neural networks learn the same rep-
resentations? 2016.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking
neural networks: Vgg and residual architectures. Frontiers in neuroscience, 13:95, 2019.

Saima Sharmin, Nitin Rathi, Priyadarshini Panda, and Kaushik Roy. Inherent adversarial robustness
of deep spiking neural networks: Effects of discrete input encoding and non-linear activations. In
European Conference on Computer Vision, pp. 399–414. Springer, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Le Song, Alex Smola, Arthur Gretton, Justin Bedo, and Karsten Borgwardt. Feature selection via
dependence maximization. Journal of Machine Learning Research, 13(5), 2012.

Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masquelier, and
Anthony Maida. Deep learning in spiking neural networks. Neural networks, 111:47–63, 2019.

Liwei Wang, Lunjia Hu, Jiayuan Gu, Zhiqiang Hu, Yue Wu, Kun He, and John Hopcroft. Towards
understanding learning representations: To what extent do different neural networks learn the
same representation. Advances in neural information processing systems, 31, 2018.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
networks: Faster, larger, better. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 1311–1318, 2019.

Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren Seibert, and James J
DiCarlo. Performance-optimized hierarchical models predict neural responses in higher visual
cortex. Proceedings of the national academy of sciences, 111(23):8619–8624, 2014.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. arXiv preprint arXiv:2011.05280, 2020.

12

Under review as a conference paper at ICLR 2023

A ADDITIONAL CKA RESULTS

A.1 RESULTS ON VGG NETWORKS

0 10 20 30
Spiking VGG-13

0

10

20

30

Ar
tif

ici
al

 V
GG

-1
3

0 20 40
Spiking VGG-19

0

10

20

30

40

50

Ar
tif

ici
al

 V
GG

-1
9

0 20 40 60
Spiking VGG-25

0

20

40

60

Ar
tif

ici
al

 V
GG

-2
5

0 25 50 75
Spiking VGG-31

0

20

40

60

80

Ar
tif

ici
al

 V
GG

-3
1

0 50 100
Spiking VGG-43

0

25

50

75

100

Ar
tif

ici
al

 V
GG

-4
3

0 10 20 30
Spiking VGG-13

0

10

20

30

Ar
tif

ici
al

 V
GG

-1
3

0 10 20 30
Spiking VGG-13 x2

0

10

20

30

Ar
tif

ici
al

 V
GG

-1
3

x2

0 10 20 30
Spiking VGG-13 x4

0

10

20

30

Ar
tif

ici
al

 V
GG

-1
3

x4
0 10 20 30

Spiking VGG-13 x8
0

10

20

30

Ar
tif

ici
al

 V
GG

-1
3

x8

0 10 20 30
Spiking VGG-13 x10

0

10

20

30

Ar
tif

ici
al

 V
GG

-1
3

x1
0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30
0.0

0.5

1.0
VGG-13

0 10 20 30 40 50
0.0

0.5

1.0
VGG-19

0 10 20 30 40 50 60 70
0.0

0.5

1.0
VGG-25

0 20 40 60 80
0.0

0.5

1.0
VGG-31

0 20 40 60 80 100 120

Layers0.0

0.5

1.0
VGG-43

0 5 10 15 20 25 30
Layers0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

VGG-13
VGG-13 x2
VGG-13 x4

VGG-13 x8
VGG-13 x10

Si
m

ila
rit

y

Figure A.1: CKA heatmap between spiking VGGs and artificial VGGs with different depth and width
on CIFAR-10 dataset. Top: the CKA cross-layer heatmap across different depth from 13 layers to 43 layers.
Middle: the CKA cross-layer heatmap across different width from original channel number to 8 times. Bottom:
visualizing only the corresponding layer, which is the diagonal of the CKA heatmap.

A.1.1 SCALING UP WIDTH OR DEPTH

In this section, we study the representation similarity between ANNs and SNNs based on VGG-
series networks Simonyan & Zisserman (2015). Since VGG-Networks do not employ residual con-
nections, they may bring different representation heatmaps when compared to ResNets. We first
evaluate if the spatial scaling observation in ResNets can also be found in VGG Networks. Starting
from a VGG-13, we either increase its channel size to 10 times as before or its number of layers to
43, (detailed network configuration is provided in Table C.2). Since VGG networks do not contain
residual connections, we could scale less depth in VGG networks than ResNets.

The results are illustrated in Fig. A.1. We can find that for deeper networks, the heatmaps tend to
exhibit a hierarchical structure, which means the shallow layers and deeper layers have different rep-
resentations. Increasing the number of layers in VGG networks to 19 or 25, the shallower and deeper
layers only have 0.3 CKA similarity (purple). More seriously, when the network depth reaches 31
or 43, the similarity becomes 0.4 even across each other in deeper layers, indicating the represen-
tations are diverging. Another important discovery for deep VGG networks is the disappearance of
periodical CKA curve, which is likely due to the lack of residual connections.

As for the wider networks, the observations are consistent with ResNet families. The wider networks
have both brighter heatmaps and higher CKA curves. These results confirm the similar representa-
tion in extremely wide networks.

A.1.2 SCALING UP TIME STEPS

We next study whether the time dimension in spiking VGG networks has a similar effect to that in
spiking ResNets. As can be found in Fig. A.2, the spiking VGG-13s with 4/8/16/32 time steps do

13

Under review as a conference paper at ICLR 2023

0 10 20 30
Spiking VGG-13 T4

0

5

10

15

20

25

30

Ar
tif

ici
al

 V
GG

-1
3

0 10 20 30
Spiking VGG-13 T8

0

5

10

15

20

25

30

Ar
tif

ici
al

 V
GG

-1
3

0 10 20 30
Spiking VGG-13 T16

0

5

10

15

20

25

30

Ar
tif

ici
al

 V
GG

-1
3

0 10 20 30
Spiking VGG-13 T32

0

5

10

15

20

25

30

Ar
tif

ici
al

 V
GG

-1
3

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30
Layers

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Si
m

ila
rit

y

VGG-13 T4
VGG-13 T8

VGG-13 T16
VGG-13 T32

Figure A.2: The effect of time steps in spiking VGG networks. Left: CKA heatmaps between ANNs and
SNNs with the different number of time steps (from 4 to 32). Right: The CKA curve of corresponding layers
(diagonal values as in left).

0 2
0

1

2

3

features.0

0 2
0

1

2

3

features.3

0 2
0

1

2

3

features.7

0 2
0

1

2

3

features.10

0 2
0

1

2

3

features.14

0 2
0

1

2

3

features.17

0 2
0

1

2

3

features.21

0 2
0

1

2

3

features.24

0 2
0

1

2

3

features.27

0 5
0

2

4

6

features.0

0 5
0

2

4

6

features.3

0 5
0

2

4

6

features.7

0 5
0

2

4

6

features.10

0 5
0

2

4

6

features.14

0 5
0

2

4

6

features.17

0 5
0

2

4

6

features.21

0 5
0

2

4

6

features.24

0 5
0

2

4

6

features.27

0 20
0

10

20

30
features.0

0 20
0

10

20

30
features.3

0 20
0

10

20

30
features.7

0 20
0

10

20

30
features.10

0 20
0

10

20

30
features.14

0 20
0

10

20

30
features.17

0 20
0

10

20

30
features.21

0 20
0

10

20

30
features.24

0 20
0

10

20

30
features.27

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.3: The similarity across times in Spiking VGG-13. Each heatmap shows the CKA among different
time steps in the output of convolutional layers. The top/middle/bottom rows stand for spiking ResNet-20 with
4/8/32 time steps.

not show a significant difference in CKA heatmaps as well as CKA curves, which is the same with
Fig. 5. Fig. A.3 shows the CKA across different time steps in the spiking VGGs. In the first layer,
the convolution does not have dynamic representation through time. As the layer goes deeper, the
dissimilarity across time steps continues to increase, similar to Fig. 6.

A.2 RESULTS ON CIFAR10-DVS

In this section, we conduct a representation similarity analysis on an event-based
dataset—CIFAR10-DVS Li et al. (2017). As aforementioned in Fig. 7, the event dataset may
generate different CKA heatmaps and curves when compared to the static dataset. Here, we first
scale up the spatial dimensions in SNNs and ANNs for the CIFAR10-DVS dataset. As shown in
Fig. A.4, we gradually increase either the depth to 110 layers or the width to 8 times as before.

Increasing the depth of ResNets on CIFAR10-DVS demonstrates a similar effect when compared
to static CIFAR-10. Interestingly, the deep ResNet, for example, ResNet-110, emerges a similar
periodical pattern to that on static CIFAR-10. However, we can find the peak CKA value is only
around 0.75, (recall that the peak CKA value on the CIFAR10 dataset is nearly 0.95, cf. Fig. 2),
indicating the CIFAR10-DVS creates higher ANN-SNN difference in representations.

For the extremely wide neural network, the trend holds for ResNet-20, ResNet-20 (×2), and ResNet-
20 (×4). However, we find the ResNet-20 (×8) exhibits a significantly low CKA curve than
other models. The difference may come from the artificial ResNet-20 (×8). According to the
CKA heatmap, the 35th−60th layers in artificial ResNet-20 (×8) become much darker than other

14

Under review as a conference paper at ICLR 2023

0 20 40 60
Spiking ResNet-20

0

20

40

60

Ar
tif

ici
al

 R
es

Ne
t-2

0

0 50 100
Spiking ResNet-38

0

25

50

75

100

125

Ar
tif

ici
al

 R
es

Ne
t-3

8

0 50 100 150
Spiking ResNet-56

0

50

100

150

Ar
tif

ici
al

 R
es

Ne
t-5

6

0 100 200 300
Spiking ResNet-110

0

100

200

300

Ar
tif

ici
al

 R
es

Ne
t-1

10

0 20 40 60
Spiking ResNet-20

0

20

40

60

Ar
tif

ici
al

 R
es

Ne
t-2

0

0 20 40 60
Spiking ResNet-20 x2

0

20

40

60

Ar
tif

ici
al

 R
es

Ne
t-2

0
x2

0 20 40 60
Spiking ResNet-20 x4

0

20

40

60

Ar
tif

ici
al

 R
es

Ne
t-2

0
x4

0 20 40 60
Spiking ResNet-20 x8

0

20

40

60

Ar
tif

ici
al

 R
es

Ne
t-2

0
x8

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70
0.0

0.5

1.0
ResNet20

0 20 40 60 80 100 120 140
0.0

0.5

1.0
ResNet38

0 25 50 75 100 125 150 175 200
0.0

0.5

1.0
ResNet56

0 50 100 150 200 250 300 350 400

Layers0.0

0.5

1.0
ResNet110

0 10 20 30 40 50 60 70
Layers0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ResNet20
ResNet20 x2

ResNet20 x4
ResNet20 x8

Si
m

ila
rit

y

Figure A.4: CKA heatmap between spiking and artificial ResNets with different depth and width on
CIFAR10-DVS dataset. Top: the CKA cross-layer heatmap across different depths from 20 layers to 110
layers. Middle: the CKA cross-layer heatmap across different widths from the original channel number to 8
times. Bottom: visualizing only the corresponding layer, which is the diagonal of the CKA heatmap.

0 3 6 9
0

3

6

9
conv1

0 3 6 9
0

3

6

9
s1.b0.conv1

0 3 6 9
0

3

6

9
s1.b0.conv2

0 3 6 9
0

3

6

9
s1.b1.conv1

0 3 6 9
0

3

6

9
s1.b1.conv2

0 3 6 9
0

3

6

9
s1.b2.conv1

0 3 6 9
0

3

6

9
s1.b2.conv2

0 3 6 9
0

3

6

9
s2.b0.conv1

0 3 6 9
0

3

6

9
s2.b0.conv2

0 3 6 9
0

3

6

9
s2.b0.ds.1

0 3 6 9
0

3

6

9
s2.b1.conv1

0 3 6 9
0

3

6

9
s2.b1.conv2

0 3 6 9
0

3

6

9
s2.b2.conv1

0 3 6 9
0

3

6

9
s2.b2.conv2

0 3 6 9
0

3

6

9
s3.b0.conv1

0 3 6 9
0

3

6

9
s3.b0.conv2

0 3 6 9
0

3

6

9
s3.b0.ds.1

0 3 6 9
0

3

6

9
s3.b1.conv1

0 3 6 9
0

3

6

9
s3.b1.conv2

0 3 6 9
0

3

6

9
s3.b2.conv1

0 3 6 9
0

3

6

9
s3.b2.conv2

0 3 6 9
0

3

6

9
fc

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.5: The similarity across times in SNN on CIFAR10-DVS. Each heatmap shows the CKA among
different time steps in the output of residual block. “s” means stage, and “b” means block. The model is trained
with 10 time steps, i.e., 10 frames integrated for each CIFAR10-DVS data input.

heatmaps. We hypothesize that, with a larger capacity of the neural network on the layer dynamics
in the input data, the representation may change significantly.

We next study the internal CKA of each convolution in ResNet-20, which reveals the temporal
dynamics of each convolution. As illustrated in Fig. A.5, the first convolution demonstrates dynamic
features across 10 time steps, which shows different characteristics with static dataset (cf. Fig. A.12).
Another notable difference is that the first and the second time step show very low similarity with
other time steps. In summary, the rich temporal information dataset may increase the dynamics in
SNNs across time steps and bring more differences when compared to ANNs.

15

Under review as a conference paper at ICLR 2023

A.3 RESULTS ON CIFAR-100

The results we reported in the main context are majorly based on the CIFAR-10 dataset. Here, we
provide the visualizations on the CIFAR-100 dataset to further strengthen our findings in the main
context.

We first report the spatial dimension results, i.e., scaling up the width and depth of the network.
Starting from the ResNet-20, we either increase its width to 164 layers or increase its width to
8 times as before. The visualizations are shown below. We find extremely deep networks, e.g.,
ResNet-164, has a very dark heatmap compared to the ResNet-20 heatmap. The wider network
shows somewhat irregular results. The extremely wide network — ResNet-20×8 — yet has even
lowest similarity in the last several blocks. However, it has the highest similarity in the output layer.

0 20 40 60
Spiking ResNet-20

0

20

40

60

Ar
tif

ici
al

 R
es

Ne
t-2

0

0 50 100 150
Spiking ResNet-56

0

50

100

150

Ar
tif

ici
al

 R
es

Ne
t-5

6

0 100 200 300
Spiking ResNet-110

0

100

200

300

Ar
tif

ici
al

 R
es

Ne
t-1

10
0 200 400

Spiking ResNet-164
0

100

200

300

400

500

Ar
tif

ici
al

 R
es

Ne
t-1

64
0 20 40 60

Spiking ResNet-20
0

20

40

60

Ar
tif

ici
al

 R
es

Ne
t-2

0

0 20 40 60
Spiking ResNet-20 x2

0

20

40

60

Ar
tif

ici
al

 R
es

Ne
t-2

0
x2

0 20 40 60
Spiking ResNet-20 x4

0

20

40

60

Ar
tif

ici
al

 R
es

Ne
t-2

0
x4

0 20 40 60
Spiking ResNet-20 x8

0

20

40

60

Ar
tif

ici
al

 R
es

Ne
t-2

0
x8

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70
0.0

0.5

1.0
ResNet20

0 25 50 75 100 125 150 175 200
0.0

0.5

1.0
ResNet56

0 50 100 150 200 250 300 350 400
0.0

0.5

1.0
ResNet110

0 100 200 300 400 500 600

Layers0.0

0.5

1.0
ResNet164

0 10 20 30 40 50 60 70
Layers0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ResNet20
ResNet20 x2

ResNet20 x4
ResNet20 x8

Si
m

ila
rit

y

Figure A.6: CKA heatmap between SNNs and ANNs with different depth and width on CIFAR-100. Top:
the CKA cross-layer heatmap across different depth from 20 layers to 164 layers. Middle: the CKA cross-
layer heatmap across different width from original channel number to 16 times. Bottom: visualizing only the
corresponding layer, which is the diagonal of the CKA heatmap.

Next, we visualize the details inside a residual block. In Fig. A.7, we sub-sample the 10-th and
the 34-th residual block in a ResNet-110, which shows the same phenomenon. The LIF and con-
volutional layers cause a decrease in similarity, while the residual addition operation restores the
similarity. We also provide the CKA heatmap of the partial residual network. As done in Fig. 4,
we train 3 spiking ResNet-56 on the CIFAR-100 dataset with several blocks disabling the residual
connections. Moreover, we train a linear probing layer — the fully-connected classifier on top of
each block to see if it contributes to the overall performance of the whole network. The visualization
is shown in Fig. A.8, where we find similar observations.

We also run experiments to test the time dimension of SNNs on CIFAR-100. In Fig. A.9, we train
4 spiking ResNet-20 with 4/8/16/32 time steps and compute their representations with artificial
ResNet-20. Both the CKA heatmap and the CKA curve show little variations by changing the
number of time steps. This confirms the results on CIFAR-10. In addition, we visualize the CKA
similarities across time steps in each residual block. Fig. A.10 demonstrates that the first stage still
produces temporal static features while the last stage has lower similarity across time steps.

16

Under review as a conference paper at ICLR 2023

0 50 100 150 200 250 300 350
Layers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Si
m

ila
rit

y

64 66 68 70
0.00
0.25
0.50
0.75
1.00 10-th Residual Block

242 244 246 248
0.00
0.25
0.50
0.75
1.00 34-th Residual Block

Res. Block
LIF/ReLU
Conv
(td)BN

Figure A.7: Emergence
of periodic jagged CKA
curve on CIFAR-100. We
subplot the 10-th and the
34-th residual blocks in
ResNet-110, which forms a
periodic jagged curve.

0 50 100 1500

50

100

150

Spiking Res56 Full Residual

0 50 100 1500

50

100

150

Spiking Res56 Partial Residual (1)

0 50 100 1500

50

100

150

Spiking Res56 Partial Residual (2)

0 50 100 1500

50

100

150

Spiking Res56 Partial Residual (3)

0 10 20
Blocks

0

20

40

60

Ac
cu

ra
cy

0 10 20
Blocks

0

20

40

60

0 10 20
Blocks

0

20

40

60

0 10 20
Blocks

0

20

40

60

0.0

0.2

0.4

0.6

0.8

1.0
Figure A.8: The effect of
residual connections in
the SNN. We selectively
disable residual connec-
tions in one of three stages
in the ResNet-56. Top:
the CKA heatmap of SNN
itself, containing networks
with different types of
non-residual blocks. Bot-
tom: The linear probing
accuracy of each block.

Finally, we rerun the adversarial robustness experiments on CIFAR-100. Here, we train two ResNet-
20 with 4 times more channels and use PGD attack to measure the robustness against adversarial
attack. Also, we plot the CKA curve between the feature of clean images and the feature of corrupted
images. The results are shown in Fig. A.11.

A.4 SIMILARITY ACROSS TIME

In addition to the residual block, we also visualize the CKA heatmaps of convolutional layers
and ReLU/LIF layers by comparing the similarity among different time steps. As can be seen in
Fig. A.12, different from residual blocks, the similarity in convolutional and activation layers is
more dynamic. Even in the first stage, the convolutional layers show different outputs across dif-
ferent time steps. This result further confirms our observations in residual blocks, where we found
the convolutional and activation layers always decrease the ANN-SNN similarity while the residual
block restores the similarity. Therefore, it suggests that a more temporal dynamic CKA heatmap
may produce distinct features.

B NUMERICAL RESULTS

Here, we provide the clean accuracy of our trained models, both on CIFAR-10 and CIFAR-100.
All models are trained with 300 epochs of stochastic gradient descent. The learning rate is set
to 0.1 followed by a cosine annealing decay. The weight decay is set to 0.0001 for all models.
The original ResNet-20 is a 3-stage model, each stage contains 2 residual blocks. The first stage
contains 16 channels and the channels are doubled every time when entering the next stage. ResNet-
38/56/110/164 contains 6/9/18/27 residual blocks in each stage. The wider networks just simply
multiply all the channels by a fixed factor. We provide their top-1 accuracy in ??.

C NETWORK ARCHITECTURE DETAILS

17

Under review as a conference paper at ICLR 2023

0 20 40 60
Spiking ResNet-20 T4

0

10

20

30

40

50

60

70

Ar
tif

ici
al

 R
es

Ne
t-2

0

0 20 40 60
Spiking ResNet-20 T8

0

10

20

30

40

50

60

70

Ar
tif

ici
al

 R
es

Ne
t-2

0

0 20 40 60
Spiking ResNet-20 T16

0

10

20

30

40

50

60

70

Ar
tif

ici
al

 R
es

Ne
t-2

0

0 20 40 60
Spiking ResNet-20 T32

0

10

20

30

40

50

60

70

Ar
tif

ici
al

 R
es

Ne
t-2

0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70
Layers

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Si
m

ila
rit

y

ResNet-20 T4
ResNet-20 T8

ResNet-20 T16
ResNet-20 T32

Figure A.9: The effect of time steps in SNNs. Left: CKA heatmaps between ANNs and SNNs with the
different number of time steps. Right: The CKA curve of corresponding layers (diagonal values as in left).

0 2
0

1

2

3

s1.b0

0 2
0

1

2

3

s1.b1

0 2
0

1

2

3

s1.b2

0 2
0

1

2

3

s2.b0

0 2
0

1

2

3

s2.b1

0 2
0

1

2

3

s2.b2

0 2
0

1

2

3

s3.b0

0 2
0

1

2

3

s3.b1

0 2
0

1

2

3

s3.b2

0 5
0

2

4

6

s1.b0

0 5
0

2

4

6

s1.b1

0 5
0

2

4

6

s1.b2

0 5
0

2

4

6

s2.b0

0 5
0

2

4

6

s2.b1

0 5
0

2

4

6

s2.b2

0 5
0

2

4

6

s3.b0

0 5
0

2

4

6

s3.b1

0 5
0

2

4

6

s3.b2

0 20
0

10

20

30
s1.b0

0 20
0

10

20

30
s1.b1

0 20
0

10

20

30
s1.b2

0 20
0

10

20

30
s2.b0

0 20
0

10

20

30
s2.b1

0 20
0

10

20

30
s2.b2

0 20
0

10

20

30
s3.b0

0 20
0

10

20

30
s3.b1

0 20
0

10

20

30
s3.b2

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.10: The similarity across times in SNN on CIFAR-100. Each heatmap shows the CKA among dif-
ferent time steps in the output of residual block. “s” means stage, and “b” means block. The top/middle/bottom
rows stand for spiking ResNet-20 with 4/8/32 time steps.

0.0 0.001 0.005 0.01 0.02 0.05
0

10

20

30

40

50

60

70

Ac
cu

ra
cy

74.12
72.39

68.28

69.25

45.15

56.98

22.23

40.78

5.49

15.49

0.39

0.48

Robustness of ANN and SNN

ANN SNN

0 10 20 30 40 50 60 70
Layers

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

Similarity of ANN

=0.001
=0.005
=0.01

=0.02
=0.05

0 10 20 30 40 50 60 70
Layers

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

Similarity of SNN

=0.001
=0.005
=0.01

=0.02
=0.05

Figure A.11: The robustness against adversarial attack on CIFAR-100. Left: The accuracy of SNN and
ANN after attack under different ϵ. Right: The CKA curve between clean images and adversarial images of
ANN and SNN, respectively.

18

Under review as a conference paper at ICLR 2023

0 2
0
1
2
3

conv1

0 2
0
1
2
3

s1.b0.conv1

0 2
0
1
2
3

s1.b0.conv2

0 2
0
1
2
3

s1.b1.conv1

0 2
0
1
2
3

s1.b1.conv2

0 2
0
1
2
3

s1.b2.conv1

0 2
0
1
2
3

s1.b2.conv2

0 2
0
1
2
3

s2.b0.conv1

0 2
0
1
2
3

s2.b0.conv2

0 2
0
1
2
3

s2.b0.ds.1

0 2
0
1
2
3

s2.b1.conv1

0 2
0
1
2
3

s2.b1.conv2

0 2
0
1
2
3

s2.b2.conv1

0 2
0
1
2
3

s2.b2.conv2

0 2
0
1
2
3

s3.b0.conv1

0 2
0
1
2
3

s3.b0.conv2

0 2
0
1
2
3

s3.b0.ds.1

0 2
0
1
2
3

s3.b1.conv1

0 2
0
1
2
3

s3.b1.conv2

0 2
0
1
2
3

s3.b2.conv1

0 2
0
1
2
3

s3.b2.conv2

0 2
0
1
2
3

fc

0 5
0
2
4
6

conv1

0 5
0
2
4
6

s1.b0.conv1

0 5
0
2
4
6

s1.b0.conv2

0 5
0
2
4
6

s1.b1.conv1

0 5
0
2
4
6

s1.b1.conv2

0 5
0
2
4
6

s1.b2.conv1

0 5
0
2
4
6

s1.b2.conv2

0 5
0
2
4
6

s2.b0.conv1

0 5
0
2
4
6

s2.b0.conv2

0 5
0
2
4
6

s2.b0.ds.1

0 5
0
2
4
6

s2.b1.conv1

0 5
0
2
4
6

s2.b1.conv2

0 5
0
2
4
6

s2.b2.conv1

0 5
0
2
4
6

s2.b2.conv2

0 5
0
2
4
6

s3.b0.conv1

0 5
0
2
4
6

s3.b0.conv2

0 5
0
2
4
6

s3.b0.ds.1

0 5
0
2
4
6

s3.b1.conv1

0 5
0
2
4
6

s3.b1.conv2

0 5
0
2
4
6

s3.b2.conv1

0 5
0
2
4
6

s3.b2.conv2

0 5
0
2
4
6

fc

0 20
0

10

20

30
conv1

0 20
0

10

20

30
s1.b0.conv1

0 20
0

10

20

30
s1.b0.conv2

0 20
0

10

20

30
s1.b1.conv1

0 20
0

10

20

30
s1.b1.conv2

0 20
0

10

20

30
s1.b2.conv1

0 20
0

10

20

30
s1.b2.conv2

0 20
0

10

20

30
s2.b0.conv1

0 20
0

10

20

30
s2.b0.conv2

0 20
0

10

20

30
s2.b0.ds.1

0 20
0

10

20

30
s2.b1.conv1

0 20
0

10

20

30
s2.b1.conv2

0 20
0

10

20

30
s2.b2.conv1

0 20
0

10

20

30
s2.b2.conv2

0 20
0

10

20

30
s3.b0.conv1

0 20
0

10

20

30
s3.b0.conv2

0 20
0

10

20

30
s3.b0.ds.1

0 20
0

10

20

30
s3.b1.conv1

0 20
0

10

20

30
s3.b1.conv2

0 20
0

10

20

30
s3.b2.conv1

0 20
0

10

20

30
s3.b2.conv2

0 20
0

10

20

30
fc

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 2
0

1

2

3

s1.b0.relu1

0 2
0

1

2

3

s1.b0.relu2

0 2
0

1

2

3

s1.b1.relu1

0 2
0

1

2

3

s1.b1.relu2

0 2
0

1

2

3

s1.b2.relu1

0 2
0

1

2

3

s1.b2.relu2

0 2
0

1

2

3

s2.b0.relu1

0 2
0

1

2

3

s2.b0.relu2

0 2
0

1

2

3

s2.b1.relu1

0 2
0

1

2

3

s2.b1.relu2

0 2
0

1

2

3

s2.b2.relu1

0 2
0

1

2

3

s2.b2.relu2

0 2
0

1

2

3

s3.b0.relu1

0 2
0

1

2

3

s3.b0.relu2

0 2
0

1

2

3

s3.b1.relu1

0 2
0

1

2

3

s3.b1.relu2

0 2
0

1

2

3

s3.b2.relu1

0 2
0

1

2

3

s3.b2.relu2

0 5
0

2

4

6

s1.b0.relu1

0 5
0

2

4

6

s1.b0.relu2

0 5
0

2

4

6

s1.b1.relu1

0 5
0

2

4

6

s1.b1.relu2

0 5
0

2

4

6

s1.b2.relu1

0 5
0

2

4

6

s1.b2.relu2

0 5
0

2

4

6

s2.b0.relu1

0 5
0

2

4

6

s2.b0.relu2

0 5
0

2

4

6

s2.b1.relu1

0 5
0

2

4

6

s2.b1.relu2

0 5
0

2

4

6

s2.b2.relu1

0 5
0

2

4

6

s2.b2.relu2

0 5
0

2

4

6

s3.b0.relu1

0 5
0

2

4

6

s3.b0.relu2

0 5
0

2

4

6

s3.b1.relu1

0 5
0

2

4

6

s3.b1.relu2

0 5
0

2

4

6

s3.b2.relu1

0 5
0

2

4

6

s3.b2.relu2

0 20
0

10

20

30
s1.b0.relu1

0 20
0

10

20

30
s1.b0.relu2

0 20
0

10

20

30
s1.b1.relu1

0 20
0

10

20

30
s1.b1.relu2

0 20
0

10

20

30
s1.b2.relu1

0 20
0

10

20

30
s1.b2.relu2

0 20
0

10

20

30
s2.b0.relu1

0 20
0

10

20

30
s2.b0.relu2

0 20
0

10

20

30
s2.b1.relu1

0 20
0

10

20

30
s2.b1.relu2

0 20
0

10

20

30
s2.b2.relu1

0 20
0

10

20

30
s2.b2.relu2

0 20
0

10

20

30
s3.b0.relu1

0 20
0

10

20

30
s3.b0.relu2

0 20
0

10

20

30
s3.b1.relu1

0 20
0

10

20

30
s3.b1.relu2

0 20
0

10

20

30
s3.b2.relu1

0 20
0

10

20

30
s3.b2.relu2

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure A.12: The effect of time steps in convolutional and activation layers of SNNs.

19

Under review as a conference paper at ICLR 2023

Table B.1: The top-1 accuracy of SNNs and ANNs on CIFAR-10 (aka C10) and CIFAR-100 (aka C100)
datasets.

Layers Width Factor Time Steps ANN (C10) SNN (C10) ANN (C100) SNN (C100)

20 1 4 91.06 89.63 64.23 61.51
38 1 4 92.34 91.14 N/A N/A
56 1 4 92.98 91.94 68.39 66.63
110 1 4 92.37 91.83 69.20 66.95
164 1 4 93.00 92.05 70.27 67.09
20 2 4 93.36 92.00 70.14 68.65
20 4 4 94.52 93.96 74.12 72.39
20 8 4 94.78 94.48 76.57 75.81
20 16 4 94.78 94.73 N/A N/A
20 1 8

91.06

90.64

64.23

63.03
20 1 16 91.05 64.34
20 1 32 91.15 64.33
20 1 64 91.18 N/A

Table C.1: The architecture details of ResNets.

20 layers 38 layers 56 layers 110 layers 164 layers

conv1 3× 3, 16, s1 3× 3, 16, s1 3× 3, 16, s1 3× 3, 16, s1 3× 3, 16, s1

block1
(
3× 3, 16
3× 3, 16

)
× 3

(
3× 3, 16
3× 3, 16

)
× 6

(
3× 3, 16
3× 3, 16

)
× 9

(
3× 3, 16
3× 3, 16

)
× 18

(
3× 3, 16
3× 3, 16

)
× 27

block2
(
3× 3, 32
3× 3, 32

)
× 3

(
3× 3, 32
3× 3, 32

)
× 6

(
3× 3, 32
3× 3, 32

)
× 9

(
3× 3, 32
3× 3, 32

)
× 18

(
3× 3, 32
3× 3, 32

)
× 27

block3
(
3× 3, 64
3× 3, 64

)
× 3

(
3× 3, 64
3× 3, 64

)
× 6

(
3× 3, 64
3× 3, 64

)
× 9

(
3× 3, 64
3× 3, 64

)
× 18

(
3× 3, 64
3× 3, 64

)
× 27

pooling Global average pooling

classifier 10-d fully connected layer, softmax

Table C.2: The architecture details of VGG networks.

13 layers 19 layers 25 layers 31 layers 43 layers

block1 (3× 3, 64)× 1 (3× 3, 64)× 2 (3× 3, 64)× 2 (3× 3, 64)× 2 (3× 3, 64)× 2

pooling1 Average pooling, s2

block2 (3× 3, 128)× 1 (3× 3, 128)× 2 (3× 3, 128)× 3 (3× 3, 128)× 4 (3× 3, 128)× 5

pooling2 Average pooling, s2

block3 (3× 3, 256)× 2 (3× 3, 256)× 3 (3× 3, 256)× 4 (3× 3, 256)× 5 (3× 3, 256)× 6

pooling3 Average pooling, s2

block4 (3× 3, 512)× 4 (3× 3, 512)× 8 (3× 3, 512)× 12 (3× 3, 512)× 16 (3× 3, 512)× 24

pooling Global average pooling

classifier 10-d fully connected layer, softmax

20

	Introduction
	Related Work
	Preliminary
	Artificial Neurons and Spiking Neurons
	Centered Kernel Alignment

	Do SNNs Learn Similar Representation with ANNs?
	Scaling up Width or Depth
	The Effect of Residual Connections
	Scaling up Time Steps
	Improving SNN with CKA
	CKA on Event-based Dataset
	Understanding Robustness

	Discussion and Conclusion
	Additional CKA Results
	Results on VGG Networks
	Scaling up Width or Depth
	Scaling up Time Steps

	Results on CIFAR10-DVS
	Results on CIFAR-100
	Similarity Across Time

	Numerical Results
	Network Architecture Details

