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ABSTRACT

Understanding generalization is a central issue in machine learning. Recent work
has identified two key mechanisms to explain it: the strong memorization ca-
pabilities of neural networks, and the task-aligned invariants imposed by their
architecture and training procedure. Remarkably, it is possible to characterize the
output of a neural network for some classes of invariants widely used in practice.
Leveraging this characterization, we introduce the representation gap, a metric that
generalizes empirical risk and enables asymptotic analysis across three common
settings: (i) unconditional generative modeling, where we obtain a precise asymp-
totic equivalent; (ii) supervised prediction; and (iii) ambiguous prediction tasks.
A central outcome is that generalization is governed by a single parameter – the
intrinsic dimension of the task – which captures task difficulty. As a corollary, we
prove that popular strategies such as equivariant architectures improve performance
by explicitly reducing this intrinsic dimension.

1 INTRODUCTION

Implicit specification through data gives neural networks a flexibility that has been leveraged by
recent advances to achieve beyond-human performance on a wide spectrum of tasks (Jumper et al.,
2021; Ramesh et al., 2021; Silver et al., 2016). Considering unlimited access to data, such neural
networks could theoretically learn to solve any data-driven task (Hornik, 1991; Kaplan et al., 2020b).
However, apart from some specific cases (e.g., simulated environments), data is costly to gather and
process (Deng et al., 2009; Su et al., 2012) and available only in finite amounts. In order to make
the most out of available data, practitioners have proposed many techniques to introduce external
knowledge in neural network training. This includes neural network architecture with structural
invariants (Krizhevsky et al., 2017; Cohen & Welling, 2016), optimization algorithms with task-
aligned biases, latent space reparameterization (Engel et al., 2020), or explicit regularization losses
(Hoerl & Kennard, 1970; Tibshirani, 1996). A central question in machine learning is to understand
how these design choices affect the behavior of a neural network outside the training dataset. While
the full understanding of neural network generalization is still an open question, a recent work has
identified two key mechanisms to explain it. Firstly, their flexibility to fit arbitrary datasets, and
secondly the invariants that are enforced by their design choices (Hornik, 1991; Zhang et al., 2021).

On one hand, recent work on the implicit regularization of gradient descent has suggested that neural
networks act as minimal-norm interpolators of the training data (Zhang et al., 2021; Li & Wei,
2021). For instance, linear and kernel regression have been shown to converge to minimal L2 norm
interpolators (Liang & Rakhlin, 2018; Mei & Montanari, 2022; Hastie et al., 2022), while boosting
and matrix-factorization algorithm are examples for the L1 norm (Liang & Sur, 2022; Gunasekar
et al., 2018), and stochastic gradient descent favorizes the Sobolev seminorms (Ma & Ying, 2021).
This property has been used to explain the strong generalization capabilities of these algorithms
(Zhang et al., 2021), the surprising effectiveness of over-parametrization (Allen-Zhu et al., 2019;
Belkin, 2021), or the recently observed double-descent phenomenon (Belkin et al., 2019).

On the other hand, recent work on diffusion models has identified the key role played by network
architectures and their structural constraints to explain their impressive creativity. Remarkably, the
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authors of (Kamb & Ganguli, 2025) have even proposed a closed-form expression predicting with
high accuracy the output of a trained model in the setting of convolutional diffusion models.

Crucially, it is possible in both cases to characterize the output of a trained model. In particular,
we can completely describe the set Ωf of points (x, f(x)) that are reachable by a model f . Based
on this observation, we depart from the usual definition of generalization based on VC-dimension
(Vapnik & Chervonenkis, 1971) and Rademacher complexity (Bartlett & Mendelson, 2001) and
argue for a geometric perspective instead, as has also been suggested by recent empirical evidence
(Stephenson et al., 2021). More precisely, we study the discrepancy between the manifold Ω from
which training data is drawn, and its representation Ωf learned by a model f . This quantity, that we
name representation gap, is the focus of our present work. Critically, our analysis do not rely on any
assumption about the data distribution ρ, but only on the geometry of the manifold Ω on which this
distribution is supported.

We focus on the asymptotic evolution of the representation gap Rn when the size n of the training
dataset D grows to infinity. We show that this representation gap has a surprisingly simple asymptotic
evolution in n−2/d, where d is an intrinsic dimension parameter that only depends on the geometry
of the data manifold Ω and the symmetries of the model f . Remarkably, we show as a corollary
that popular techniques used by practitioners to improve model performance, such as the use of
equivariance architecture, are in fact reducing this intrinsic dimension d – thereby provably improving
performance. This provides a precise and systematic tool to characterize the impact of architecture
choice and training procedure design on model performance, data consumption, and task simplifica-
tion. We validate the predictions of our theory with extensive evaluation over synthetic data as well
as real-world data.

In the present work, we make the following contributions.

We introduce the representation gap, a generalization of the empirical risk, and analyze its
asymptotic behavior across three common settings: (i) unconditional generative modeling, where we
obtain a precise asymptotic equivalent; (ii) supervised prediction; and (iii) ambiguous prediction task.

We show that generalization is governed by the intrinsic dimension of the task, a single parameter
which captures the difficulty level of the task, and may be directly linked to the data manifold
geometry and the model invariants. In particular, we show how standard techniques to improve model
performance provably reduces this intrinsic dimension.

We provide experiments a set of synthetic datasets, which offer controlled test cases for assessing
our theoretical results, as well as on the popular MNIST dataset (Lecun et al., 1998).

2 RELATED WORK

Implicit bias of neural network. Classical analyses of neural networks relied on controlling model
complexity to derive generalization bounds (Vapnik & Chervonenkis, 1971; Bartlett & Mendelson,
2001), but such approaches failed to explain the empirical success of over-parametrized deep neural
networks. More recent work shows that standard training algorithms tend to converge towards models
with low complexity, thereby explaining their strong generalization capabilities (Belkin, 2021; Zhang
et al., 2021; Li & Wei, 2021; Allen-Zhu et al., 2019; Belkin et al., 2019). Our analysis is based
on this line of work, but we do not make any assumption about the data distribution ρ and adopt
a geometric perspective instead. This geometric point of view frees us from positing a fixed data
distribution on the manifold – an abstraction that often fail to reflect the nature of real-world data,
whether the distribution evolves over time (Kuznetsov & Mohri, 2017), samples are not i.i.d. (Mohri
& Rostamizadeh, 2008), or sampling depends on the observer (Settles, 2009). By contrast, assuming
that real-world data lie on a manifold is a mild and standard hypothesis, reflecting the structure of
many physical systems.

Geometric perspective on generalization. Building on the manifold hypothesis (Bengio et al., 2013),
several works have shown that neural networks are manifold learners (Loaiza-Ganem et al., 2024;
Schuster & Krogh, 2021), while several others have studied the hidden layers topology (Stephenson
et al., 2021). Focusing on ReLU networks, the authors of Yao et al. (2024) have derived generalization
bounds based on the data manifold characteristics – such as its dimension or Betti number. Our
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(a) Non-equivariant model (b) Equivariant model

Figure 1: Illustration of the virtual augmentation of a dataset by an equivariant diffusion model, as
well as the corresponding representation gap improvement. Plot (a) shows samples from trained
diffusion model, and plot (b) shows samples from a trained equivariant diffusion model (with
rotational invariance along axis x). In both plots, the shape Ω is indicated by a dense cloud of red
dots, the coarse dataset D by crosses, and the approximated shape Ωf by a dense cloud of blue dots
sampled from the trained diffusion model f .

work departs from these approaches by providing precise asymptotic equivalents of the models’
generalization capabilities.

Equivariant neural network. Empirical studies have shown that equivariance improve generalization
or sample efficiency (Cohen & Welling, 2016; Bulusu et al., 2022). Closest to our work, the authors
of Sannai et al. (2021) established PAC generalization bounds for equivariant and invariant neural
networks. In contrast, our analysis provides asymptotic equivalents. Finally, Kamb & Ganguli (2025)
derived a closed-form expression for the predictions of trained diffusion models; while our work
builds on theirs, we focus on generalization properties rather than generative diversity.

Scaling Laws. Our work is closely connected to the Neural Scaling Law literature (Kaplan et al.,
2020a), and in particular to recent studies on scaling laws for diffusion models (Mei et al., 2024; Li
et al., 2024a; Liang et al., 2024b). However, prior work in Scaling Laws for Diffusion models has
primarily focused on scaling with respect to compute, rather than dataset size, which is the focus of
our study. Moreover, existing efforts are largely empirical, whereas we provide provable results.

3 AN ILLUSTRATIVE EXAMPLE

Let us first introduce the main concepts of this paper with a concrete example. We consider the task
of generative modeling of 3D shapes (Yang et al., 2019). This task consists of learning to sample
an arbitrary number of points y from a surface Ω ⊂ R3 that is described by a coarse n-point cloud
D ∈ Ωn. Diffusion models have recently proven to be very effective to solve this task, due to their
expressivity and the high-quality of their output (Li et al., 2024b). We note Ωf the set of points that a
trained diffusion model f can generate – in other words, the limit points of the denoising process.

This case is illustrated by Figure 1. The shape Ω is indicated by a dense cloud of red dots, the
coarse dataset D by crosses, and the approximated shape Ωf by a dense cloud of blue dots sampled
from a trained diffusion model f . We can see in this example that the shape Ω features a rotational
symmetry, which reduces the degree of freedom of the point cloud D. If we know that the shape Ω is
symmetric, a natural idea is to leverage this symmetry by using a rotation-equivariant architecture for
the diffusion model f (Hoogeboom et al., 2022). We show the output of a non-equivariant model on
the left and of an equivariant model on the right.

We make the two following observations. First, the distribution learned by the non-equivariant neural
network converges towards the empirical distribution 1

|D|
∑

y∈D δy, so that the approximate shape
Ωf coincides with the dataset D. In other words, Ωf = D. However, the equivariant model virtually
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increases the diversity of the dataset D by the group of rotation G to which it is equivariant. Thus, we
find that Ωf = G(D) = {g(z)|z ∈ D, g ∈ G}.

It is clear from Figure 1 that the use of an equivariant network drastically improves the resolution of
the approximate shape Ωf . In order to quantify this improvement, we introduce the representation
gap

R(Ω,Ωf ) =

∫
Ω

inf
z∈Ωf

∥y − z∥22 dy , (1)

a metric that measures how well Ωf approximates the original shape Ω. It is worth noticing that
this metric is a natural generalization of the quantization error, which we recover when the set Ωf is
discrete (Graf & Luschgy, 2007).
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Figure 2: Log plot of the asymptotic evolu-
tion of the representation gap of a rotation-
equivariant model and a non-equivariant
model for a 2d-sphere surface. We ob-
serve a linear evolution, with slope −1 for
the non-equivariant model and −2 for the
equivariant model. The constant J in Eq.
2 has been fitted for the theoretical curves.

The representation gap R(Ω,Ωf ) depends on how the
dataset D has been sampled in Ω. In practice, datasets
D are collected as a best effort to cover the diversity of
the task, modulo its known invariants. Correspondingly,
we will assume that D is optimally sampled, i.e., that
it minimizes the risk in Equation 1. In this sense, our
result can be seen as best-case scenarios.

Intuitively, a non equivariant model f requires informa-
tion about all the dΩ = 2 dimensions of the shape Ω in
order to approximate it from the dataset D (as illustrated
on the left of Figure 1). On the other hand, the equivari-
ant model only needs information along the rotational
axis, with dimension 1 = dΩ−1. More generally, for an
arbitrary manifold Ω and symmetry group G, the equiv-
ariant model only needs information about the quotient
space Ω/G, with dimension dΩ/G. Indeed, the remain-
ing dimensions are implicitly recovered by the virtual
augmentation of the dataset, since Ωf = G(D).

Concretely, let us note n the size of an optimally sampled dataset D, and Rn the representation gap
of a model trained on D. Then, we observe in Figure 2 that the representation gap scales as

Rn ∼
n→+∞

J

n2/d
, (2)

where d denotes either dΩ in the case of a non-equivariant model or dΩ/G in the case of an equivariant
model. In this Equation, we can find a closed-form expression for the constant J , that depends only
on the shape Ω, the symmetry group G and the Euclidean metric ∥ · ∥22. Remarkably, the asymptotic
evolution of the representation gap Rn(Ω,Ωf ) is governed by the single parameter d, that we name
intrinsic dimension. This result characterizes precisely the advantage of the equivariant model over
the non-equivariant one.

The purpose of the next Section is to prove formally these claims, and to extend our analysis to two
more general settings – namely, supervised prediction and ambiguous prediction tasks.

4 THEORETICAL RESULTS

4.1 REPRESENTATION GAP FOR NON-CONDITIONAL DIFFUSION MODELS

We first consider the task of non-conditional diffusion models, and establish formally the claims of
Section 3. We denote Y = RdY the target space, of dimension dY . We suppose that observations y
are structured and constrained to belong to a subset Ω ⊂ Y of the ambient space. The set Ω models
the world form which we draw observations. In particular, it captures its symmetries. Typically,
we expected that these symmetries reduce the degree of freedom of the observations, so that Ω
corresponds to a low-dimensional manifold of the ambient space Y . This situation is commonly
known as the manifold hypothesis (Bengio et al., 2013). In practice, we will consider that Ω is a
Riemannian dΩ-manifold. We further suppose access to a dataset D ⊂ Ω composed of n observations
drawn from Ω. We consider neural networks fθ in a parametric family FΘ ⊂ F(Y × R,Y). When
there is no ambiguity, we will simply denote the neural networks by f .
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We will focus on Denoising Diffusion Implicit Models (DDIM) diffusion models (Song et al., 2022).
These models are trained to reverse a stochastic forward diffusion process that incrementally adds
Gaussian noise to the data distribution while shrinking data points toward the origin. Noise addition
is governed by a noise schedule αt, with t ∈ [0, T ]. At each schedule step, the noised distribution can
be written πt(y) =

∑
z∈D N (y|√αtz, (1 −

√
αt)I). In particular, π0 = 1

|D|
∑

z∈D δz recovers the
empirical data distribution and πT = N (0, I) is an isotropic Gaussian distribution. In this context,
diffusion models are trained to approximate the score function st = ∇ log πt using the loss

L(θ) = Et∼U[0,T ],y0∼π0,η∼N (0,I)∥fθ(
√
αty0 +

√
1− αtη, t)− η∥22 . (3)

At sampling time, an initial point yT ∼ N (0, I) is sampled and then updated using the deterministic
flow

ẏt = −γt(yt + st(yt)) , (4)

where t goes backward from T to 0. The output of the model corresponds to end points of this
trajectory.

It can be shown that a diffusion model finding a global minimum of their training objective L – hence
learning the true score function st –, and following Equation 4 at sampling time, generate samples
following the empirical distribution π0 = 1

|D|
∑

z∈D δz (Song & Ermon, 2019). In this case, the
world representation Ωf learned by the model f is the training dataset D itself. Therefore, Ωf = D is
a discrete approximation of the data manifold Ω.

In practice, however, the neural network family FΘ has limited expressivity, which introduces biases
when trying to estimate the score function st. Typically, the architecture of the neural network is
chosen so that fθ respects the symmetries of Ω, and has therefore higher generalization capabilities.
Remarkably, it is possible to show following Kamb & Ganguli (2025) that these architectural
constraints virtually increase the diversity of the training dataset D via the symmetry group G induced
by the architecture, so that we have in effect Ωf = G(D).
Theorem 1 (Virtual augmentation of a dataset by a symmetry group). See Proposition 3 in Appendix.
Let f denote a diffusion model equivariant under a symmetry group G and minimizing the training
objective in Equation 3 on a dataset D. Then under mild assumptions on G, Ω and D, the set of
points that can be predicted by f is Ωf = G(D).

Proof. The proof of Theorem 1 relies on the following observation: the score function st at a point
y ∈ Y can be written as an integral over the orbits G(D) of the dataset D:

st(y) = − 1

1− αt

∫
G(D)

(y −
√
αtz)Wt(z)dz , (5)

where each point z ∈ G(D) is weighted by the distribution

Wt(z) =
N

(
y|√αtz, (1− αt)I

)∫
G(D) N

(
y|√αtz′, (1− αt)I

)
dz′

. (6)

We can see that Wt(y) acts as a softmax that peaks at the minimizer y∗ = argminz∈G(D)∥y − z∥22
for small t. More precisely, we can use a Laplace approximation to show that Wt(y) concentrate the
probability mass around y∗ when t → 0.

Under the hypothesis that f minimizes the training objective in Equation 3, we can therefore write

f(yt, t) = − 1

1− αt

∫
G(D)

(yt −
√
αtz)Wt(z)dz =

1

1− αt
(yt − y∗t ) + o

(
1

1− αt

)
,

which in turns implies yt−y∗t ≈ (1−αt)f(yt, t) → 0, and therefore limt→0 yt = limt→0 y
∗
t ∈ G(D)

(by properties of G). This proves Ωf ⊂ G(D). The reverse inclusion is detailed in Appendix.

Using Theorem 1, we can characterize the asymptotic representation gap when the dataset
size n grows to infinity and D is optimally sampled. More precisely, we will note Rn =
infD⊂Ω, |D|=n R(Ω,Ωf (D)) the representation gap of an optimally sampled dataset D of size n.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Theorem 2 (Representation gap for non-conditional diffusion). See Proposition 1, Proposition 2 and
Proposition 4 in Appendix. Let f denote a diffusion model equivariant under a symmetry group G of
isometries and minimizing the training objective in Equation 3 on a optimally sampled dataset D of
size n. Suppose further that the orbits G(z) have constant volume |G| for each point z ∈ D. Then
under mild assumptions on G, D and Ω, the representation gap satisfies

Rn ∼
n→+∞

Jd|G||Ω/G|2/d

n2/d
, (7)

where Ω/G denote the quotient space of Ω by the symmetry group G, d = dΩ/G denote the dimension
of Ω/G, and Jd is a constant that depends only on the quotient metric on Ω/G and the dimension d.

Proof. We know by Theorem 1 that Ωf = G(D). The idea is to apply factorize the integration over
each orbit and recover the case of a discrete dataset D. By standard properties of the orbits (see for
instance Gallot et al. (1990)), and isometry of the elements of G

R(Ω,Ωf ) =

∫
Ω

min
z∈G(D)

ℓ(y, z)dy = |G|
∫
Ω/G

min
z∈D

ℓΩ/G(y, z)dy .

We then conclude using a powerful result from quantization, Zador theorem, that characterizes the
asymptotic behavior of the optimal quantization error (see for instance Theorem 2 in Gruber (2001)
for a result on arbitrary manifolds). More precisely, we can show using this result that∫

Ω/G

min
z∈D

ℓΩ/G(y, z)dy ∼
n→+∞

Jd|G||Ω/G|2/d

n2/d
.

We recover Equation 2 by setting J = Jd|G||Ω|2/d. Note that Theorem 2 provides an asymptotic
equivalent of the representation gap, which is remarkable since most results about the generalization
of neural network focuses on bounds (Zhang et al., 2021).

The constant Jd has a closed-form expression which is unfortunately untractable in practice (see
Theorem 8 in Appendix). However, for the Euclidean norm, it can be computed in simple cases
(J1 = 1

12 and J2 = 5
18

√
3

) and can be approximated for large d by Jd ∼ d
2πe (Newman, 1982a; Pagès

& Printems, 2003; Graf & Luschgy, 2007).

4.2 REPRESENTATION GAP FOR SUPERVISED PREDICTION

We now turn to the more general setting of supervised prediction. We denote X ⊂ RdX the input
space, of dimension dX . Both Ω and D are now subsets of X × Y . We note ΩX = {x|(x, y) ∈ Ω}
the projection of Ω to the input set X and ΩY = {y|(x, y) ∈ Ω} its projection to the target set Y
(with similar definitions for DX and DY . Likewise we note Ωx = {y|(x, y) ∈ Ω} the data manifold
conditioned by x ∈ ΩX .

We consider ambiguous tasks, where each input x ∈ ΩX can be associated with potentially many
targets y ∈ Ωx. We consider that f captures the ambiguity of the task by generating several values.
For instance, f can be a conditional diffusion model providing a distribution over Y for each input
x ∈ ΩX (Song & Ermon, 2019).

In this context the representation gap can be written

R(Ω,Ωf ) =

∫
ΩX

∫
Ωx

inf
(x,y)∈Ωf

∥yx − y∥22dxdyx .

Note that we recover the empirical risk when the task is non-ambiguous (in this case, Ωx is a singleton
for each x ∈ ΩX , f(x) takes a single value and we have R(Ω,Ωf ) =

∫
ΩX

∥yx − f(x)∥22dx).

First, we observe that Theorem 2 can be naturally extended to the setting where the input dataset
ΩX is finite and covered by the dataset DX (see Proposition 5 in Appendix). However, the general
case where ΩX is continuous requires some additional result on how the model f behaves outside the
input dataset DX .

6
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The recent literature about implicit regularization (Neyshabur et al., 2015) has shown that several
popular training algorithms converge in fact toward minimal-norm interpolator of the training data
(Zhang et al., 2021), especially in the over-parametrized regime (Allen-Zhu et al., 2019). Based
on this work, we will consider that f is a DDPM diffusion model which is smooth both regarding
the conditioning x and the noise input yt. Therefore, it tends to project an input (x, yT ) with initial
noise yT toward a neighboring dataset point (x, y) ∈ D. More precisely, we will suppose that there
is a constant L > 0 so that if z′ ∈ B(z, L) for z ∈ D, then (x′, y) ∈ Ωf . Under this assumption,
estimating the representation gap becomes close to the covering problem (i.e., finding an optimal
covering of Ω with balls of constant radius), and we can derive the following bound.
Theorem 3 (Conditional representation gap for ambiguous tasks). Under mild assumptions on Ω and
smoothness assumptions on the model f , the representation gap for a dataset D of size n satisfies

Rn(Ω,Ωf ) =
n→+∞

O

(
1

n2/dΩ

)
. (8)

Proof. Assume that D is an ε covering of Ω, for some ε > 0. Under the smoothness assumption, we
have

R(Ω,Ωf ) ≤
∫
Ω

min
z′∈D

∥z − z′∥22dz ≤ |Ω|ε2 , (9)

so that the representation gap is tightly linked to the radius ε of the covering.

Moreover, the size N(ε) of the covering set D satisfies N(ε) ≤ 3d |Ω|
|B|n (see for instance Theorem

14.2 in Wu & Yang (2016)). Letting ε = 1
n1/d , m =

⌊
3−d |Ω|

|B|

⌋
, and using that Rn is decreasing, we

can conclude with the following observation:

Rn ≤ R1/m1/d ≤ |Ω| 1

m2/d
≤ |Ω|(

3−d |Ω|
|B|n

)2/d
= O

(
1

n2/d

)
.

If we focus on non-ambiguous prediction task, the data manifold Ω becomes a surface indexed by ΩX .
Under mild assumptions on the smoothness of Ω, and assuming that f is minimal-norm interpolator
of D for the Total-Variation norm, we obtain a similar bound:

Rn(Ω,Ωf ) = O(
1

n2/d
) , (10)

where d = dΩ. This result can also be extended to equivariant model, in which case d = dΩ/G. Details
are given in the Appendix (see Proposition 6 and Proposition 7). Next, we validate experimentally
the theoretical results established in Section 4.

5 EXPERIMENTAL RESULTS

Datasets. We conduct experiments on two synthetic dataset for non-conditional generative modeling,
and one dataset for ambiguous prediction. They are illustrated in Figure 3 and Figure 1. We also use
the MNIST dataset (Lecun et al., 1998).

• Hypercube corresponds to a dΩ-dimensional hypercube Ω =
[
− c

2 ,
c
2

]dΩ of side c embedded
into a dY ambient space. This dataset features translation invariance over each of its
dimensions.

• Hypersphere corresponds to a 2-dimensional hypersphere ∂B(0, r) of radius r embedded
into a 3-dimensional ambient space. This dataset features many rotation-invariances (e.g.
along axes x, y and z).

• Wave corresponds to a 2-dimensional wave surface embedded into a 3-dimensional ambient
space. The wave shape is obtain by concatenating two half-circle (along axes x and z), and
translating this curve along the y ∈ [0, 1] segment. This dataset correspond to a conditional
prediction task, where x is the input and (y, z) is the target. This dataset features translation
invariance over the axis y.

7
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(a) Cube (b) Sphere (c) Wave

(d) Cube – equivariant (e) Sphere – equivariant (f) Wave – equivariant

Figure 3: Comparison of diffusion outputs across three datasets (cube, sphere, wave), with and
without invariance constraints.We use the same legend as in Figure 1.

• MNIST (Lecun et al., 1998) is a dataset consisting 28x28 grayscale image of digit handright-
ing. The training dataset has size 60k and the test dataset has size 10k.
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Figure 4: Log plot of the asymptotic evo-
lution of the representation gap for the
MNIST dataset.

Architecture. For the non-conditional task, we use a
three-layer MLP (Rumelhart et al., 1986) with ReLU
activation and 128 hidden units. For the conditional
task, we use a 10-layer MLP with SiLU activation (Ra-
machandran et al., 2017), 128 hidden units, residual
connections, and linear embedding for the conditioning.
Translation or rotation equivariance is added on top of
the corresponding architecture. For the MNIST experi-
ment, we use a 2D U-Net backbone, implemented using
the publicly available Hugging Face’s Diffusers library
(Von Platen et al., 2022).

Training and optimization. For the synthetic exper-
iments, we use a DDIM diffusion model (Song et al.,
2022), trained with a linear temperature schedule with
T = 100 steps. We use the L2 loss defined on the am-

bient space Y . The models are trained with the Adam optimizer (Kingma & Ba, 2017) for 50000
steps, with learning rate λ = 10−3. All synthetic experiments are performed for 5 different seeds,
and we report mean value and standard deviation. For the MNIST experiements, we use a DDPM
diffusion model (Ho et al., 2020), trained during 2000 epochs, with the original temperature schedule
and T = 1000 steps. This setup was sufficient for convergence.

Metric. In order to compute the representation gap, we sample 1000 point from the trained diffusion
model, and 1000 points from the Ω (uniformly). We then compute the average minimum distance
between these two cloud of points using Equation 1.

5.1 QUALITATIVE ANALYSIS

We can make two observations from Figure 1 and Figure 3. First, non-equivariant models converge
toward the empirical distribution, so that Ωf = D. Second, equivariant models converge towards
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(a) Cube (b) Sphere (c) Wave

Figure 5: Asymptotic behavior of the representation gap across the three datasets of Figure 3. We
plot the theoretical loss in Equation 7 (green), the representation gap Rn(Ω,D) computed from the
dataset points D (blue) and the empirical representation gap Rn(Ω,Ωf ) computed from a diffusion
model f trained on D (orange).

the empirical distribution virtually augmented by the invariance group G, so that Ωf = G(D). This
observation is confirmed across different shapes and number of points. It validates the claim of
Proposition 1. This is a remarkable result, since the models f are trained with the generic L2 loss
and have no knowledge of the structure of the data manifold Ω.

5.2 QUANTITATIVE ANALYSIS

In order to validate more precisely the formula in Proposition 2, we compute the asymptotic rep-
resentation gap for different surfaces Ω. The result of this experiment is given in Figure 5. For all
datasets, the three curves follow the same asymptotic evolution and the difference between them are
statistically insignificant. Note that conducting experiments on high dimension dΩ is challenging,
as the number of points kdΩ increases very fast and becomes quickly intractable. Moreover, using
a lower dimension dΩ is also challenging, since it makes the optimization problem harder (Hornik,
1991; Xu et al., 2025) . However it was possible to find a sweet spot between these two constraints.

5.3 MNIST EXPERIMENTS

Note that the MNIST dataset corresponds to the case where the input set ΩX is discrete, and covered
by the dataset DX . Therefore, the Proposition 5 in Appendix applies. In Figure 4, we plot the
representation gap as a function of training dataset size. From the figure, we observe that the
representation gap decreases linearly (in log-scale) as the training dataset size increases, which
confirms the result of Proposition 2. By performing a linear regression, we obtain the relationship
Rn(Ω,Ωf ) ∝ 204.46−0.07n, and can therefore deduce that this task has an intrinsic dimension of
d ≈ 14. This is compatible with the ambient dimension of 784 point, and confirm that the task is
relatively easy.

6 CONCLUSION

In the present work, we introduce a new metric – the representation gap–, that characterizes from
a geometric point of view the generalization of neural networks. We provide a detailed asymptotic
analysis of this representation gap in three important settings: non-conditional generative modeling,
supervised prediction, and ambiguous task. We show that this representation gap is governed
by a single parameter, the intrinsic dimension of the task. In particular, we show how standard
machine learning techniques such as equivariant architecture reduces this intrinsic dimension, hence
provably improving generalization. We validate our theoretical results and hypothesis on different
carefully curated synthetic data and real-world data. We believe that intrinsic dimension could be
leveraged to inform network architecture and training pipeline design in a principled manner. More
generally, we argue that our present work introduces a new avenue for research on neural network
generalization from a geometric perspective, through the lens of the representation gap. Indeed, the
representation gap characterizes how, at test time, a trained neural network projects new inputs into
the virtual manifold Ωf that it learns from the training data D and from its invariants G. We believe
this characterization could be the basis to study distribution shift at test time, novelty introduction
(especially in the context of time-series forecasting), and more generally, the limits of statistical
learning.
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A INTRODUCTION

The Appendix is structured as follows. Section B introduces our notations, Section C introduces
our main hypotheses and Section D describes main results from the literature on which our analysis
relies. Then, Section E describes our results on non-conditional generative modeling and Section F
describes our results on supervised prediction and ambiguous tasks.

B NOTATIONS

We consider supervised task, and denote X ⊂ RdX the set of input and Y ⊂ RdY the set of targets.
dX and dY corresponds to the dimensions of these respective spaces. We suppose that observations
(x, y) are structured and constrained to belong to a subset Ω ⊂ X ×Y of the possible couplings. The
set Ω models the world form which we draw observations. In particular, it captures its symmetries.
Typically, we expected that these symmetries reduce the degree of freedom of the observations, so
that Ω corresponds to a low-dimensional manifold of the ambient space X × Y . This situation is
usually referred to as the manifold hypothesis (Bengio et al., 2013). More precisely, we will consider
that Ω is a d-Riemannian manifold (see for instance Lee (2006)).

We suppose access to a dataset D ⊂ Ω composed of n observations. We note Dx = {y|(x, y) ∈ D)}
the targets’ dataset D conditioned by a given x, and we will note DX = {x|(x, y) ∈ D} (resp.
DY ) the set of inputs (resp. targets) appearing in D. We will note Ωx = y|(x, y) ∈ Ω the set of
observations conditioned by a given context x ∈ X , and note yx ∈ ΩY the target corresponding to
the input x ∈ ΩX .

We consider neural networks fθ in a parametric family FΘ ⊂ F(X ,Y). When there is no ambiguity,
we will simplify the notation and denote the neural networks by f .

If G is a group, we will denote G(y) = {g(y)|g ∈ G} the orbit of a single point y ∈ D under the
group G, and G(D) = ∪y∈DG(y) the orbit of the dataset D. A model f is said to be equivariant
under the group G if for all x ∈ X , we have g(f(x)) = f(g(x)). We will often consider that G is a
Lie group acting by isometries on the manifold Ω. In particular, we can define the quotient manifold
Ω/G, the quotient map from π : Ω → Ω/G and the quotient metric on Ω/G induced from Ω (Lee,
2006).

We denote δx the Dirac distribution centered at a point x ∈ X . We denote by Π(E,F ) the set of
joint distributions over measurable sets E and F , and we denote by π#1 and π#2 the marginals of a
distribution π ∈ Π(E,F ). Let us denote kε(a, b) = exp(− ℓ(a,b)

ε ) a Gaussian kernel. Let us denote
N (µ, σ2) the Gaussian distribution and N (y|µ, σ2) the evaluation of its density function at a point
y. Let us denote δy the Dirac distribution centered at a point y. Let us denote 1[E] the indicative
function of a set E. We denote by P a probability distribution. We denote the Total Variation (TV)
semi-norm of a model f by TV (f) =

∫
ΩX

∫
Ωx

√
∥∇f(x)∥22dxdy.

We denote |E| the cardinal of a set E when E is finite. If E is measurable, we de note |E| its measure.
If E is a set E̊ denote its interior.

We denote ℓ a metric in Y . If not indicated otherwise, ℓ will always correspond to the Euclidean
distance ℓ(a, b) = 1

2∥a− b∥22. We denote d(y,E) = min{d(y, y′)|y′ ∈ G(D)}.

For ε > 0, we call ε-covering of Ω a set of balls (Bk)k∈[[1,n]] of radius ε such that Ω ⊂
⋃

k∈[[1,n]] Bk.
We then define the covering number of Ω as the smallest integer N(ε) such that there exists an
ε-covering of Ω. Likewise, for ε > 0, we call ε-packing of Ω a set of pairwise non-intersecting balls
(Bk)k∈[[1,n]] of radius ε such that

⋃
k∈[[1,n]] Bk ⊂ Ω. We then define the packing number of Ω as the

largest integer M(ε) such that there exists an ε-packing of Ω.

The optimal quantization error, also called optimal quantization risk is defined by

Rn(P) = inf
z∈Yn

∫
Y

min
k∈[[1,n]]

∥y − zk∥2p(y)dy ,

where P is a data distribution over Y admitting a density p.
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We will focus on Denoising Diffusion Implicit Models (DDIM) diffusion models (Song et al., 2022).
These models are trained to reverse a stochastic forward diffusion process that incrementally adds
Gaussian noise to the data distribution while shrinking data points toward the origin. Noise addition
is governed by a noise schedule αt, with t ∈ [0, T ]. At each schedule step, the noised distribution can
be written πt(y) =

∑
z∈D N (y|√αtz, (1 −

√
αt)I). In particular, π0 = 1

|D|
∑

z∈D δz recovers the
empirical data distribution and πT = N (0, I) is an isotropic Gaussian distribution. In this context,
the model fθ : Y × R → Y is trained to approximate the score function st = ∇ log πt using the loss

L(θ) = Et∼U[0,T ],y0∼π0,η∼N (0,I)∥fθ(
√
αty0 +

√
1− αtη, t)− η∥22 . (11)

At sampling time, an initial point yT ∼ N (0, I) is sampled and then updated using the deterministic
flow

ẏt = −γt(yt + st(yt)) , (12)
where t goes backward from T to 0. The output of the model corresponds to end points of this
trajectory.

These equations can be generalized to the conditional case. In particular, the model fθ : X ×Y×R →
Y is trained using the loss

L(θ) = Et∼U[0,T ],(x0,y0)∼π0,η∼N (0,I)∥fθ(x,
√
αty0 +

√
1− αtη, t)− η∥22 . (13)

C HYPOTHESES

We will make repeated use of the following hypotheses.
Assumption 4 (Optimal diffusion model). The model f is DDIM diffusion model minimizing the
training objective defined in Equation 11.
Assumption 5 (Equivariance). The model f is equivariant under the group G, i.e. f(g(x)) = g(f(x))
for all g ∈ G and x ∈ X .
Assumption 6 (minimal-norm interpolator). The model f is a piecewise constant interpolator of the
training data D.
Assumption 7 (smooth covering model). There is a constant L > 0 so that if z′ ∈ B(z, L) for
z ∈ D, then (x′, y) ∈ Ωf .

Note that the minimal-norm hypothesis 6 is met if f is a minimal-norm interpolator of the training
data D for the TV seminorm (Bredies & Vicente, 2019). Regularizing total variation has proved
useful for a wide range of task, in particular in imaging applications (Huo et al., 2022; Jia et al.,
2019), and has been for instance studied by the authors of Luo et al. (2025).

Likewise, the smooth covering hypothesis 7 is met by a conditional diffusion model f if it is
sufficiently smooth with respect to both its conditioning x and its noisy input y. The smoothness of
trained diffusion model has been studied both empirically (Guo et al., 2024) and theoretically (Liang
et al., 2024a) by the recent literature, so that we believe that this hypothesis holds in practice.

D PREREQUISITE

We will use Zador’s theorem (Zador, 1982), a powerful result on the asymptotic distribution of the
centroids resulting from optimal quantization, which we recall below (see Graf et al. (2008), Equation
2.3, or Iacobelli (2016), Theorem 1.3, for a more general version).
Theorem 8 (Zador theorem). Let P = p dy be a Lebesgue-dominated probability measure on a
compact subset Y of Rd. Define the optimal quantization risk

Rn(P) = inf
z∈Yn

∫
Y

min
k∈[[1,n]]

∥y − zk∥22 p(y)dy ,

and the asymptotic risk for the uniform distribution Jd = infn n
2/dRn(U([0, 1]d). Then

lim
n→+∞

n2/dRn(P) = Jd

(∫
Y
pd/(d+2)dy

)(d+2)/d

.
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In addition, if f minimizes the risk Rn(P), then

1

n

n∑
k=1

δzk ⇀
n→∞

pd/(d+2)∫
Y pd/(d+2)(y′)dy′

dy .

The constant Jd can be computed for simple cases (J1 = 1
12 and J2 = 5

18
√
3

(Newman, 1982b)) and

can be approximated for large d by Jd ∼ d
2πe (Pagès & Printems, 2003; Graf & Luschgy, 2007).

A generalization of Zador theorem to arbitrary manifolds has been proposed in Gruber (2001), that
we report below (see Theorem 2 in this reference for a stronger result).
Theorem 9 (Zador theorem on manifold). Let ∥ · ∥ denote a norm on Ω. Then there is a constant J
depending only on ∥ · ∥ such for all J ⊂ Ω compact and measurable with |J | > 0 and all p : J → R+

continous, we have

inf
z∈Yn

∫
J

min
k∈[[1,n]]

∥y − zk∥2p(y)dy ∼
n→∞

J

(∫
J

p(u)
d

d+2

) d+2
d 1

n2/d
. (14)

E NON-CONDITIONAL TASKS

E.1 MEMORIZING NETWORKS AND REPRESENTATION GAP

Let us first consider the case of a non-conditional prediction task. This setting corresponds to
unconditional generative modeling, where the goal is to learn a probability distribution over Ω ⊂ Y
that captures its structure (e.g., the support of the distribution is included in Ω and most common
observations have higher probability).

Popular approaches for generative modeling include diffusion models (Ho et al., 2020; Song et al.,
2022), Variational Auto Encoders (VAE) (Kingma & Welling, 2022), Generative Adversarial Net-
works (GAN) (Goodfellow et al., 2014) or normalizing flows (Rezende & Mohamed, 2016). Among
them, diffusion models can be shown to converge toward the empirical distribution 1

|D|
∑

y∈D δy
when they minimize their training objective (Song & Ermon, 2019).

We will focus on this class of models hereafter. In this case, the empirical distribution corresponds to
the world representation Ωf learned by the model f , which can be seen as a discrete approximation
of Ω. We can compare this discrete word-representation Ωf to Ω using the optimal quantization error

R(Ω,Ωf ) =

∫
Ω

inf
z∈Ωf

ℓ(y, z)dy . (15)

This metric can be extended in the more general case where Ωf may be continuous. We will refer to
this distance as the representation gap. Note that quantity is notoriously difficult to study, even in
discrete case (Graf & Luschgy, 2007). However, it becomes amenable to analysis in the asymptotic
regime.

E.2 REPRESENTATION GAP IN THE GENERAL CASE

Using this representation gap, we can characterize the difficulty of a task in terms of its sample
efficiency.
Proposition 1 (Representation gap). Let us assume that Ω is Lebesgue-measurable with positive
measure. Then, the optimal representation gap a model of a diffusion model f minimizing its training
objective 3 on a training dataset of size n is

R(Ω,Ωf ) ∼
n→+∞

Jd|Ω|2/d

n2/d
. (16)

Proof. This is a corollary of Zador Theorem 8, in the particular case of a uniform distribution over
Ω.

This result is remarkable, since it provides an asymptotic equivalent of the representation gap as the
dataset size n grows to infinity. Most notably, the leading constant depends on the geometry of Ω
only via its volume |Ω|.
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E.3 REPRESENTATION GAP UNDER THE MANIFOLD HYPOTHESIS

It is possible to extend this result when Ω has null measure. This situation would typically arise
under the manifold hypothesis. This hypothesis is interesting because it captures the structure of the
observation world Ω: even though the observation could a priori be an arbitrary point of Y , it is in
effect restricted to a low dimensional subspace Ω.
Proposition 2 (Representation gap under the manifold hypothesis). Assume that Ω is a bounded
Riemannian dΩ-manifold, and that ℓ is a norm on Ω. Then the optimal representation gap of a
diffusion model f minimizing its training objective 3 on a training dataset D of size n is

R(Ω,Ωf ) ∼
n→+∞

JdΩ
|Ω|2/dΩ

n2/dΩ
. (17)

Proof. This is a corollary of Theorem 2 in Gruber (2001). We satisfy the hypothesis of this Theorem,
since the square function satisfies the growth condition and Ω is compact by hypothesis. We should
only check that JdΩ |Ω|2/dΩ corresponds to the constant J in the theorem. This is the case, since the
constant does not depend on the integration set, and we can use [0, 1]dΩ as long as it belongs to Ω (if
not we can always use a scaling and translation of it that belongs to Ω).

This asymptotic evolution is similar to the general case described in Proposition 1, but leverages the
structure of Ω via the lower dimension dΩ. Note that it is compatible with it in the case where Ω has
positive measure in Y . Again, it is remarkable that the leading constant depends on the geometry
of Ω only via its volume |Ω|. Moreover, it can be proved that the optimal data placement for D is
uniformly distributed in Ω (cf. point 2.82 in Gruber (2001)).

E.4 REPRESENTATION GAP FOR EQUIVARIANT MODELS

In practice, FΘ has limited expressivity, which introduces biases in the minimizer f =
argminθ∈ΘL(θ). Typically, the architecture of the neural network is chosen so that fθ respects
the symmetries of Ω, and has therefore higher generalization capabilities. Remarkably, the authors
of Kamb & Ganguli (2025) have shown in the context of diffusion models that these architec-
tural constraints increase the diversity of the dataset D via the symmetry group introduced by the
architecture.

The following result is an extension of Theorem B.3 in Kamb & Ganguli (2025) to general symmetry
groups G. More precisely, we will focus our attentions on Lie groups, which are a powerful way to
define a large family of invariants that appear naturally in neural networks (Bronstein et al., 2021).
They are also used in various fields such as physics, where they reflect the structure and symmetries
of many physical systems (Gilmore, 2006; Georgi, 2000). This makes them particularly relevant for
our purposes.
Proposition 3 (Virtual augmentation of a dataset by a symmetry group). Let us make the following
assumptions

(i) f is a trained diffusion model equivariant to G.

(ii) G is a Lie group acting smoothly on the Riemannian manifold Ω.

(iii) The distance d(y,G(D)) is reached at a unique point y∗ = ΠG(D)(y) ∈ G(D) for all y ∈ Y .

(iv) Let yt denote the denoising trajectory from the Gaussian distribution πT , standard reverse
diffusion process ∂tyt = −γt(yt + f(yt, t)). Assume that yt converge and ∂tyt is bounded for each
initial point yT .

Then, the denoising trajectory ends at y0 ∈ G(D).

If we further assume each dataset point z ∈ D is a fixed point of the f(·, t) for all t, then each point
z ∈ G(D) is a limit point of the reverse diffusion process.

Proposition 3 essentially states that under mild assumptions, an equivariant diffusion model f will
generate sample in the virtually augmented dataset G(D). This is because the vision of the model f
is blurred due to its equivariance to G, so that it cannot distinguish points along the orbits G(y) of
the dataset points y ∈ D.
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The hypothesis (i) states that the model f is a global minimum of its training objective L. The
hypothesis (ii) restricts our attention to Lie groups G, as discussed above. The point (iii) avoids the
degenerate case where the initial point y is equidistant to a subset of the orbit of the dataset G(D).
Finally, the point (iv) is a slightly relaxed form of a technical assumption introduced in Theorem
B.3 of Kamb & Ganguli (2025). Finally, the fixed-point hypothesis captures the fact that each point
z ∈ D is a local attractors of the score function, since the empirical distribution is discrete in our
setting.

The proof of Proposition 3 relies on the following observation: the score function can be written as
an integral over the orbits G(z) of each data point z ∈ D, where each point z is weighted by the
distribution

Wt(z) =
N

(
y|√αtz, (1− αt)I

)∫
G(D) N

(
y|√αtz′, (1− αt)I

)
dz′

. (18)

In the case where the group G is finite, we can see that Wt(z) acts as a softmax that peaks when z∗

as t → 0. In the more general case where G is not finite, we can use a Laplace approximation to
show that Wt(z) concentrate the probability mass around the minimizer z∗ when t → 0. Therefore,
the denoising trajectory is attracted toward the orbit G(D).
Lemma 1 (Laplace approximation). Let G denote a Lie group acting smoothly on Ω, αt a continuous
positive noise schedule satisfying αt →t→0 1, y ∈ Y an arbitrary point, d the dimension of G(D),
and h a bounded continuous non-negative function on G(D). Assume that y has a unique closest
point y∗ ∈ ˚G(D), the interior of the orbit. Define βt = 2 1−αt

αt
a temperature scaling. Then, we have∫

G(D)
h(z)N (y|

√
αtz, (1− αt)I) dz =

t→0
h(y∗) e−∥y∗−y∥2/βt (2πβt)

d/2 (19)

+ o
(
e−∥y∗−y∥2/βt β

d/2
t

)
.

Proof. Let us denote by I(t) =
∫
G(D) h(y)N

(
y|√αtz, (1− αt)I

)
dz the left term in Equation 19.

Informally, the proof of Lemma 1 then relies on the two following approximations:

I(t) =

∫
G(D)

h(z)e−∥z− y
αt

∥2/βtdz ≈
∫
G(D)

h(z)e∥z−y∥2/βtdz ≈ h(y∗)e−∥y∗−y∥2/βt(2πβt)
d/2 .

The first approximation comes from integrating ∥z− y
αt
∥2 = ∥z− y∥2 +O(βt) over the orbit G(D),

and the second approximation is an extension of Laplace approximation on measurable subsets of
Rd. It expresses that the Gaussian kernel e∥z−y∥2/βt concentrates mass at the minimizer y∗, with a
curvature term (2πβt)

d/2.

Let us now prove these two approximations. First observe that

∥z − y

αt
∥2 − ∥y∗ − y

αt
∥2 = ∥z − y∥2 − ∥y∗ − y∥2 + 2

√
αt − 1
√
αt

⟨z − y∗|y⟩,

so that by exponentiation and integration, we have∫
G(D)

h(z)e−∥z− y
αt

∥2/βtdz = e−∥y∗− y
αt

∥2/βt

∫
G(D)

h(z)e
√

αt
2(1+

√
αt)

⟨y∗−z|y⟩
e(∥y

∗−y∥2−∥z−y∥2)/βtdz︸ ︷︷ ︸
J(t)

.

The noise schedule αt is bounded in [0, 1], so that e−|⟨y∗−z|y⟩| ≤ e
√

αt
2(1+

√
αt)

⟨y∗−z|y⟩ ≤ e|⟨y
∗−z|y⟩|.

Let us define
J−(t) =

∫
G(D)

h(z) e−|⟨y∗−z|y⟩| e(∥y
∗−y∥2−∥z−y∥2)/βtdz ,

a lower bound of J(t).

Then we can apply Corollary 3.4 in Kirwin (2010) to J(t) in order to obtain that J−(t) =
t→0

h(y∗)(2πβt)
d/2 + o(β

d/2
t ). Indeed, the conditions of this Corollary are met (modulo a change
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of variable), since G(D) is a measurable set which contains y∗ as an interior point, z 7→ ∥y∗ − y∥2 −
∥z−y∥2 is twice differentiable and attains its unique minimum value of 0 at y∗, z 7→ h(z)e−|⟨y∗−z|y⟩|

is a continuous function on G(D) evaluating at h(y∗) on y∗, and 1/βt →
t→0

+∞.

Likewise, we can also prove that

J+(t) =

∫
G(D)

h(z) e|⟨y
∗−z|y⟩| e(∥y

∗−y∥2−∥z−y∥2)/βtdz =
t→0

h(y∗)(2πβt)
d/2 + o(β

d/2
t ) .

Therefore, we deduce by squeezing that J(t) =
t→0

h(y∗)(2πβt)
d/2 + o(β

d/2
t ), and we can conclude

I(t) = e−∥y∗− y
αt

∥2/βtJ(t) =
t→0

h(y∗) e−∥y∗−y∥2/βt (2πβt)
d/2 + o

(
e−∥y∗−y∥2/βt β

d/2
t

)
.

We can now prove Proposition 3.

Proof of Proposition 3. By theorem B.3 in Kamb & Ganguli (2025), the score function by the model
f can be written

f(yt, t) = − 1

1− αt

∫
G(D)(y −

√
αtz)N (y|√αtz, (1− αt)I)dz∫

G(D) N (y|√αtz, (1− αt)I)dz
=

1

1− αt
(yt−y∗t )+o

(
1

1− αt

)
,

(20)
where the second equality is a corollary of Lemma 1 to be justified later. Then, hypothesis (iv) implies
that γtf(yt, t) = ∂tyt + γtyt is bounded, which in turn implies yt − y∗t = (1 − αt)f(yt, t) → 0.
Since y∗t ∈ G(D), which is compact (by hypothesis (ii) and property of Lie groups), and yt converge
(by hypothesis (iv)), then y∗t converge and limt→0 yt = limt→0 y

∗
t ∈ G(D).

Therefore, we only need prove the approximation in Equation 20. Noting d the dimension of
G(D), y∗t the unique minimizer of d(yt, G(D)) (by hypothesis (iii)), and I(t) =

∫
G(D)(y −

√
αtz)N (y|√αtz, (1− αt)I)dz, we can write the following.

I(t)− (yt −
√
αty

∗
t )(2πβt)

d/2 =

∫
G(D)

(y −
√
αtz)N (y|

√
αtz, (1− αt)I)dz

−
∫
G(D)

(y −
√
αty

∗)N (y|
√
αtz, (1− αt)I)dz

=
√
αt

∫
G(D)

(y∗ − z)N (y|
√
αtz, (1− αt)I)dz

∥I(t)− (yt −
√
αty

∗
t )(2πβt)

d/2∥ ≤
√
αt

∫
G(D)

∥y∗ − z∥N (y|
√
αtz, (1− αt)I)dz

The function z 7→ ∥y∗ − z∥ is bounded, continuous and non-negative on G(D). Moreover, z so
that the conditions of Lemma 1 are met. Therefore, we deduce by bounding that I(t) − (yt −√
αty

∗
t )(2πβt)

d/2 = o(β
d/2
t ), which entails I(t) = (yt − y∗t )(2πβt)

d/2 + o(β
d/2
t ).

On the other side, we also deduce from Lemma 1 that
∫
G(D) N (y|√αtz, (1−αt)I)dz = (2πβt)

d/2+

o(β
d/2
t ). Therefore, we have

f(yt, t) =
1

1− αt

(yt − y∗t )(2πβt)
d/2 + o(β

d/2
t )

(2πβt)d/2 + o(β
d/2
t )

=
1

1− αt
(yt − y∗t ) + o

(
1

1− αt

)
.

This shows that Ωf ⊂ G(D). For the reverse inclusion, we will use the assumption that each point
z ∈ D is a fixed point of the model f . More precisely, assume that yt = g(z) ∈ D with g ∈ G and
z ∈ D. Then ∂tyt = −γt(g(z)− f(g(z), t) = −γT g(z − f(z, t)) = 0 by equivariance of f and by
the fixed point hypothesis. Therefore, a trajectory starting at yT ∈ G(D) stays at yT , which is hence
a limit point.

This establishes Ωf = G(D) and concludes the proof of Proposition 3.
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Proposition 3 established that an equivariant diffusion model f generated samples in G(D). Therefore,
we can identify its world representation Ωf with G(D). If the symmetry group G enforced by the
architecture is aligned with the symmetries of the world Ω, then we can further improve the sample
efficiency of D.
Proposition 4 (Representation gap for an equivariant function). Assume that Ω is a bounded Rieman-
nian dΩ-manifold, and f is a diffusion model minimizing its training objective 3 on a training dataset
D of size n. Assume further that f is equivariant over a Lie group G of isometries acting smoothly on
Ω, and the orbits G(y) have the same Riemannian volume |G| for each point y ∈ D. Denote dΩ/G

the dimension of the quotient space Ω/G. Then the representation gap of f is

R(Ω,Ωf ) ∼
n→+∞

JdΩ/G
|G||Ω/G|2/dΩ/G

n2/dΩ/G
, (21)

where JdΩ/G
uses the quotient metric ℓΩ/G(π(a), π(b)) and π is the quotient map from Ω to Ω/G.

Proof. The idea is to apply Fubini theorem to factorize the integration over each orbit. We have
from Proposition 3 that Ωf = G(D). Therefore, by standard properties of the orbits (see for instance
Gallot et al. (1990)) and using the isometry of the elements of G, we obtain

R(Ω,Ωf ) =

∫
Ω

min
z∈G(D)

ℓ(y, z)dy

=

∫
Ω/G

∫
π−1(y)

min
z∈G(D)

ℓΩ/G(π(y
′), π(z))dydy′

=

∫
Ω/G

∫
π−1(y)

min
z∈D

ℓΩ/G(y, z)dydy
′

= |G|
∫
Ω/G

min
z∈D

ℓΩ/G(y, z)dy .

Therefore, we are in the setting of Proposition 2, since Ω/G is a manifold and ℓΩ/G is a norm on
Ω/G and dy is a Riemannian metric on Ω/G. We can then conclude

R(Ω,Ωf ) ∼
n→+∞

JdΩ/G
|G||Ω|2/dΩ/G

n2/dΩ/G
. (22)

Proposition 4 again features an asymptotic evolution similar to the general case described in Proposi-
tion 1 and the case of a manifold structure described in Proposition 2. In particular, we recover these
formulas respectively when the group G contains only the identity, and when the observation world
Ω has positive measure.

F CONDITIONAL TASKS

F.1 DISCRETE-CLASS CONDITIONING

We now extend these results to the more general case of conditional tasks. Both Ω and D are subsets
of X × Y . Let us first focus on the case where ΩX is finite and covered by the input dataset DX . It is
clear that for each input x ∈ DX , the Propositions 1, 2 and 4 apply to the conditional dataset Dx and
the conditional manifold Ωx. We summarize this observation in the following Proposition.
Proposition 5 (Representation gap for discrete-class conditioning). Assume that ΩX is finite, that we
have DX = ΩX , and that Ωx is a bounded Riemannian dΩ-manifold for each x ∈ ΩX . Let f denote
a diffusion model minimizing its training objective 13 on a training dataset D of size n. Assume
further that f is equivariant over a Lie group G of isometries acting smoothly on Ωx for each x ∈ X ,
and the orbits G(y) have the same Riemannian volume |G| for each point (x, y) ∈ D, and that the .
Noting dΩ/G the common dimension of the quotient manifolds Ωx/G, the representation gap of f
can be written

R(Ω,Ωf ) ∼
n→+∞

|G|
∑

x∈X Jx|Ωx/G|2/dΩ/G

n2/dΩ/G
, (23)

where Jx uses the quotient metric ℓΩx/G(πx(a), πx(b)) and π is the quotient map from Ωx to Ωx/G.
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Proof. Application of Proposition 4 to each conditional dataset Dx the conditional manifold Ωx.

Note that if the conditional manifolds Ωx have different dimension dx for each x ∈ ΩX , the
representation gap is determined by the conditional manifolds with the highest dimension. In
particular, the intrinsic dimension becomes d = maxx∈ΩX dx.

F.2 NON-AMBIGUOUS TASKS AND MINIMAL-NORM INTERPOLATORS

We now turn to the case where ΩX is continuous. Clearly, we require some result on how f behaves
outside the training data DX .

We will first restrict our attention to non-ambiguous tasks: each input x ∈ ΩX is associated to a
unique target yx ∈ ΩY . Therefore, the observation world Ω can be see as a curve indexed by ΩX . In
particular, its dimension is dΩ = dΩX +1, no matter what is the dimension of Y . We further consider
that the model f generates a single output f(x) for each input x ∈ ΩX , so that its representation Ωf

can also be seen as a curve indexed by ΩX . In this context, the conditional representation gap can be
defined by

R(Ω,Ωf ) =

∫
ΩX

ℓ(yx, f(x))dx (24)

For the purpose of our analysis, we will rely on the recent literature about implicit regularization
(Neyshabur et al., 2015). Indeed, several training algorithm have been shown to converge toward
minimal-norm interpolator of the training data (Zhang et al., 2021), especially in the over-parametrized
regime (Allen-Zhu et al., 2019). Examples have been given for the L1 norm (Liang & Sur, 2022;
Gunasekar et al., 2018), the L2 norm (Liang & Rakhlin, 2018; Mei & Montanari, 2022; Hastie et al.,
2022) or the Sobolev seminorm (Ma & Ying, 2021). In the case of diffusion model, a form of mode
interpolation has been shown (Bonnaire et al., 2025).

In order to keep the problem tractable, we will focus on the total variation norm. However, For this
norm, it has been shown in some settings that minimal-norm interpolator are piecewise constant
functions (Bredies & Vicente, 2019). Basing ourselves on this observation, we will introduce the
minimal-norm assumption 6 for the remaining of this Section.

F.3 CONDITIONAL REPRESENTATION GAP UNDER THE MANIFOLD HYPOTHESIS

We now study how to generalize the result of Proposition 2 to the conditional setting. It is unclear
weather we can derive a clean asymptotic equivalent of the representation gap in this case, since
the geometry of Ω become critical due to the coupling between input and target. However, the next
Proposition introduce an upper bound that follow the form introduced in 1, 2 and 4.
Proposition 6 (Conditional representation gap under the manifold hypothesis). Assume that Ω is a
bounded Riemannian dΩ-manifold, and that ℓ is a norm on Ω. Then the representation gap of the
minimal-norm interpolator f (assumption 6) of a dataset D of size n satisfies

R(Ω,Ωf ) =
n→+∞

O

(
1

n2/(dΩ−1)

)
. (25)

Proof. Let us denote Ω = {(x, ω(x))|x ∈ ΩX }, and ∥ω∥∞ the norm of the gradient of x 7→ ω(x).
Under the assumption 6 that f is a minimal-norm interpolator, we have that f(x) = ω(zx), for
zx = argminz∈Dℓ(x, z). Therefore, we can write

R(Ω,Ωf ) =

∫
ΩX

ℓ(ω(x), f(x))dx

=

∫
ΩX

ℓ(ω(x), ω(zx))

≤ ∥ω∥∞
∫
ΩX

ℓ(x, zx)

= ∥ω∥∞
∫
ΩX

min
z∈DX

ℓ(x, z) .
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Using Proposition 4, we know that
∫
ΩX

minz∈DX ℓ(x, z) ∼
n→+∞

JdΩX
|Ω|2/dΩX

n
2/dΩX

for optimally placed

z ∈ DX . We can therefore deduce

R(Ω,Ωf ) =
n→+∞

O

(
1

n2/dΩX

)
.

F.4 CONDITIONAL REPRESENTATION GAP FOR EQUIVARIANT MODEL

It is interesting to extend the result of Proposition 6 to the case where the model f is equivariant
to a set of symmetries G. In the non-conditional case (Proposition 4), it was the target space of the
dataset DY that was virtually augmented by the group G. In this case however, it is the input space of
the dataset DX that is virtually augmented by G, as we will show below. As a consequence, we can
derive a tighter upper bound leveraging the dimension dΩX /G of the quotient space ΩX /G.
Proposition 7 (Conditional representation gap of an equivariant function). Assume that Ω is a
bounded Riemannian dΩ-manifold, and that ℓ is a norm on Ω. Let us further assume that f is
equivariant under a Lie group G acting smoothly, freely and isometrically on ΩX , and the orbits
G(y) have the same Riemannian volume |G| for each point y ∈ D. Denote by dΩX /G the dimension
of the quotient space ΩX /G. Then the representation gap of the minimal-norm interpolator f of a
dataset D of size n (assumption 6) satisfies

R(Ω,Ωf ) =
n→+∞

O

(
1

n2/dΩX /G

)
. (26)

Proof. Under the assumption that f is a minimal-norm interpolator equivariant to G (assumptions 6
and 5), we have that f(x) = ω(zGx ), for zGx = argminz∈G(DX )ℓ(x, z) (the minimum is reached by
the properties of Lie groups). We note zx = argminz∈DX

ℓ(x, z) as in the proof of Proposition 4, and
π the quotient map from ΩX to ΩX /G. By using the isometry of the elements of G, factorizing the
integration over each orbit, and noting π the quotient map from ΩX to ΩX /G, we can write

R(Ω,Ωf ) =

∫
ΩX

ℓ(ω(x), f(x))dx

=

∫
ΩX /G

∫
π−1(x)

ℓΩX /G(ω(π(x
′)), ω(π(zGx′))dxdx′

=

∫
ΩX /G

∫
π−1(x)

ℓΩX /G(ω(x), ω(zx)))dxdx
′

= |G|
∫
ΩX /G

ℓΩX /G(ω(x), ω(zx)))dx .

Then, noting ∥ω∥∞ the norm of the gradient of x 7→ ω(x) restricted to the manifold ΩX /G, we know
from the proof of Proposition 6 that∫

ΩX /G

ℓΩX /G(ω(x), ω(zx)))dx ≤ ∥ω∥∞
∫
ΩX /G

min
z∈DX

ℓΩX /G(x, z) .

Therefore, we are in the setting of Proposition 2, since ΩX /G is a manifold and ℓΩX /G is a norm on
Ω/G and dy is a Riemannian metric on ΩX /G. We can deduce∫

ΩX /G

min
z∈DX

ℓΩX /G(x, z) ∼
n→+∞

JdΩX /G
|G||ΩX |2/dΩX /G

n2/dΩX /G
. (27)

Combining these result, we deduce

R(Ω,Ωf ) =
n→+∞

O

(
1

n2/dΩX /G

)
. (28)
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F.5 DISCUSSION ABOUT AMBIGUOUS TASKS

We now turn our attention to the most general case of ambiguous conditional prediction tasks. Both
Ω and D are still subsets of X × Y . However, each input x ∈ ΩX is now associated with potentially
many targets y ∈ ΩY . As a consequence, the observation world Ω cannot be seen as curve indexed
by ΩX anymore. We will consider that f captures the ambiguity of the task by providing several
values as well. For instance, f can be a diffusion model learning a distribution over Y for each input
x ∈ ΩX , and generating sample from it.

In the following, we will be only interested in the set of values that f can take for each x ∈ ΩX .
When there is no ambiguity, we will denote z ∈ {f(x)} to say that z can be generated by f .

In this context the representation gap can be written

R(Ω,Ωf ) =

∫
ΩX

∫
Ωx

min
z∈{f(x)}

ℓ(yx, z)dxdyx .

Note that we recover the formula for non-ambiguous case when Ωx is a singleton for each x ∈ ΩX .

Using the insight from Proposition 3, we might want to assume that f(x) takes values in the set Dx

for x ∈ DX , and that Ωx is piece-wise constant outside of the training dataset.

Under this hypothesis, the model f project the input x toward the closest dataset input x∗ ∈ DX , and
then generate a sample in the dataset target Ωx∗ . More precisely, noting x∗ = argminx′∈Dℓ(x, x

′),
we have Ωf = {(x, y)|x ∈ DX , y ∈ Ωx∗}, and {f(x)} = {(x∗, y)|y ∈ Dx}.

However, we can see that such a model would have a very unstable behavior featuring many
discontinuity as the density of the dataset input DX becomes high. Indeed, a typical case for real
world datasets is that we have access to a single target yx for each covered input x ∈ DX . Therefore
the trained model f would jump between modes for neighboring input x ∈ DX in the areas where
Ωx is multi-modal. This behavior is not what we observe in practice for trained neural network, so
this hypothesis is not satisfying.

In order to escape this paradox, focusing again on diffusion models, we will consider that the f is
smooth both regarding the conditioning x and the noise input yt. It therefore project an input (x, yT )
with initial noise yT toward a neighboring dataset point (x, y) ∈ D.

We formalize this with the following hypothesis

F.6 AMBIGUOUS CONDITIONAL TASKS AND COVERING NUMBER

The next Proposition extend the upper bound in 6 to the ambiguous task setting. We will restrict our
attention to the Euclidean norm ℓ.
Proposition 8 (Conditional representation gap for ambiguous tasks). Assume that Ω is a bounded
Riemannian dΩ-manifold, that ℓ is the Euclidean norm, and that f satisfies the smooth covering
hypothesis 7. Then the representation gap of a dataset D of size n by f satisfies

R(Ω,Ωf ) =
n→+∞

O

(
1

n2/dΩ

)
. (29)

Proof. This proof is two-step. First we prove that the representation gap can be reduce to the covering
problem (i.e. finding an optimal covering of Ω′ with ball of constant radius). Second, we derive an
upper bound for this covering problem.

Let us first establish the link between the representation gap and the covering problem. Let ε > 0
and note N(ε) the corresponding covering number of Ω. For simplicity, we note Rn the minimum
representation gap for a dataset D with n points. Assume that D is an ε-covering of Ω with balls
B1, . . . , BN(ε) centered on the dataset points D.

Then, observe that under the smooth covering hypothesis 7, if ε is small enough, for all z ∈ Ω we
have y∗ ∈ {f(x)}, where z∗ = argminz∈Dℓ(z, z

′) = (x∗, y∗) is the point in the dataset D closest to
(x, y). We therefore obtain

R(Ω,Ωf ) =

∫
ΩX

∫
Ωx

min
z∈{f(x)}

ℓ(yx, z)dxdy
′ =

∫
Ω

min
z′∈D

ℓ(z, z′)dz .
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Since D is an ε-coverage of Ω, we have minz′∈D ℓ(z, z′) for all points z ∈ Ω. Therefore, RN(ε) ≤
R(Ω,Ωf ) ≤ |Ω|ε2.

Now, let us link the error ε with the covering number N(ε). It can be proved (see for instance
Theorem 14.2 in Wu & Yang (2016)) that the covering number is bounded by(

1

ε

)d |Ω|
|B|

≤ N(ε) ≤
(
3

ε

)d |Ω|
|B|

,

where we have noted d = dΩ, and |B| the volume of the balls Bk . Noting n ∈ N and ε = 1
n1/d , we

can rewrite this inequality as

|Ω|
|B|

n ≤ N

(
1

n1/d

)
≤ 3d

|Ω|
|B|

n .

Let m =
⌊
3−d |Ω|

|B|

⌋
. Then we have n ≥ 3d |Ω|

|B|m ≥ N
(

1
m1/d

)
. Since Rn is decreasing with n, we

therefore deduce

Rn ≤ R1/m1/d ≤ |Ω| 1

m2/d
≤ |Ω|(

3−d |Ω|
|B|n

)2/d
= O

(
1

n2/d

)

This concludes the proof.

F.7 MODEL INVARIANCE FOR AMBIGUOUS TASKS

We can attempt to generalize this result in the case of an equivariant model.

First note that in the case of a conditional ambiguous prediction task, both the input x ∈ DX and
the output y ∈ DY can be virtually augmented by a symmetry group. For instance, in the case of
a conditional diffusion model f , the score function is typically conditioned by the input x. As the
architecture for the conditioning model and the score function model may differ, each model may
feature different equivariants. We denote GX the symmetry group for the input x ∈ ΩX and GY the
symmetry group for the target y ∈ ΩY .

We note πX (resp. πY ) the quotient map from ΩX to ΩX /GX (resp. from ΩY to ΩY/GY ). Then the
invariance of f simplifies the set Ω into Ω′ = (π(x), π(y))|(x, y) ∈ Ω. Noting dΩ′ the dimension of
Ω′, we claim that the representation gap satisfies

R(Ω,Ωf ) = O

(
1

n2/d

)
.

However, the rigorous proof of this statement and a more fine-grained analysis of the asymptotic
behavior of the representation gap is left to future work.

LLM USAGE

In this research, LLM have been used for polishing writing, discovery of related work (in particular
for proof exploration), and code writing.

REPRODUCIBILITY STATEMENT

Being mostly theoretical in nature, the results presented here are self-contained. Nevertheless, we
provide source code to reproduce our Representation Gap implementation, along with an example
demonstrating its use on MNIST, available on the Supplementary Material.

25


	Introduction
	Related work
	An illustrative example
	Theoretical results
	Representation gap for non-conditional diffusion models
	Representation gap for supervised prediction

	Experimental results
	Qualitative analysis
	Quantitative analysis
	MNIST experiments

	Conclusion
	Introduction
	Notations
	Hypotheses
	Prerequisite
	Non-conditional tasks
	Memorizing networks and representation gap
	Representation gap in the general case
	Representation gap under the manifold hypothesis
	Representation gap for equivariant models

	Conditional tasks
	Discrete-class conditioning
	Non-ambiguous tasks and minimal-norm interpolators
	Conditional representation gap under the manifold hypothesis
	Conditional representation gap for equivariant model
	Discussion about ambiguous tasks
	Ambiguous conditional tasks and covering number
	Model invariance for ambiguous tasks


