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Abstract

In this paper, we demonstrate that the per-001
formance of natural language inference (NLI)002
models can be enhanced using a novel adver-003
sarial approach, in which large language mod-004
els (LLMs) are used to systematically address005
NLI models’ weaknesses. We first employ006
the LLMs to adversarially generate challeng-007
ing NLI examples, looking for instances that008
are misclassified by the NLI model, effectively009
creating a dataset. These examples are vali-010
dated by an ensemble of LLMs to ensure their011
correctness and are subsequently used to re-012
train the NLI model, iteratively refining its013
performance. In our evaluation, the proposed014
approach demonstrated substantial accuracy015
improvements on multiple datasets, including016
1.43% on the SNLI dataset, 2.75% on the ANLI017
dataset, and 4.29% on the MultiNLI dataset.018
Our evaluation highlights the utility of LLMs019
in adversarial model improvement, providing a020
pathway toward robust and human-independent021
enhancements for NLI systems. Additionally,022
our LLM-based approach can also be used to023
automate the creation of NLI datasets.024

1 Introduction025

A fundamental task in natural language processing026

(NLP), natural language inference (NLI) is per-027

formed to determine the relationship between two028

sentences, ascertaining whether one sentence en-029

tails, contradicts, or is neutral to the other. While030

NLI models have achieved impressive performance,031

their robustness remains a challenge (Glockner032

et al., 2018; Carmona et al., 2018). Addressing033

these weaknesses is crucial for improving the relia-034

bility of NLI systems.035

Inspired by the methodology used to create the036

adversarial NLI (ANLI) dataset (Nie et al., 2019),037

we propose a novel approach for automatically038

identifying and addressing the weaknesses of NLI039

models. Our approach leverages large language040

models (LLMs) to adversarially generate challeng- 041

ing NLI examples that aim to gather instances that 042

are misclassified by the NLI model. These exam- 043

ples are validated by an ensemble of LLMs to en- 044

sure their correctness before being used to retrain 045

the NLI model. This iterative process focuses on 046

strengthening the model’s ability to handle difficult 047

cases, ultimately improving its performance. 048

To evaluate our approach, we trained a leading 049

NLI model using our approach and another data 050

augmentation method, on the same amount of data, 051

using 10 different sets of hyper-parameters. We 052

then evaluated this model on three popular NLI 053

test-sets and observed consistent improvements. 054

The contributions of our work are as follows: (1) 055

our proposed approach systematically addresses 056

NLI model weaknesses, improving their robust- 057

ness and accuracy, as demonstrated by performance 058

improvements on the SNLI (Oana-Maria, 2018), 059

ANLI, and MultiNLI (Williams et al., 2018a) 060

datasets; (2) we introduce a fully automated dataset 061

creation process that eliminates the traditional re- 062

liance on human annotators; and (3) our approach 063

can scale to generate complete NLI datasets, en- 064

abling large-scale training of NLI models. 065

By combining automation, adversarial examples, 066

and LLMs, our approach represents a significant 067

step forward in enhancing NLI model performance 068

and reliability. Moreover, by applying our method 069

extensively to generate NLI examples, we can as- 070

semble a dataset that can be used to train NLI mod- 071

els. 072

2 Background and Related Work 073

Improving the robustness and performance of NLI 074

models remains a significant challenge in natural 075

language understanding (Glockner et al., 2018; Car- 076

mona et al., 2018). While traditional approaches 077

heavily relied on manually created datasets, such 078

as the Stanford NLI (SNLI) corpus (Oana-Maria, 079
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2018), this labor-intensive process highlighted the080

need for more efficient alternatives.081

Recent advances in LLMs have enabled their use082

in the creation of NLI datasets, offering a more083

automated and scalable alternative to current prac-084

tice. Our methodology leverages state-of-the-art085

LLMs such as Llama-3.1-70B (Touvron, 2023),086

Mistral-Large 2 (Jiang et al., 2023), and Mixtral-087

8x7B (Jiang et al., 2024) to generate and validate088

NLI examples. These models give our approach089

the ability to generate high-quality NLI examples090

and fine-tune NLI models like RoBERTa-Base (Liu091

et al., 2019), enhancing their robustness and perfor-092

mance.093

Several recent studies have explored the use of094

LLMs for data generation. For example, counter-095

factual generation (Li et al., 2023) has been used096

to improve the robustness of the model in vari-097

ous downstream tasks, while paraphrasing bridging098

and NLI (Klemen and Robnik-Šikonja, 2021) has099

facilitated the expansion of existing datasets. Tex-100

tAttack (Morris et al., 2020) is a framework for101

adversarial attacks and data augmentation, which102

has proven to be effective in enhancing models.103

In the domain of NLI datasets, ANLI (Nie et al.,104

2019) used a human-and-model-in-the-loop ap-105

proach to iteratively identify and address model106

weaknesses by manually creating challenging ex-107

amples. Similarly, SNLI, with its 570K manu-108

ally labeled sentence pairs, has become a stan-109

dard benchmark for evaluating NLI models. Build-110

ing on SNLI, the MultiGenre NLI (MultiNLI)111

dataset (Williams et al., 2018b) consists of 433K112

sentence pairs from various text genres, enhancing113

the training and evaluation of the models’ gener-114

alization capabilities and robustness in varied con-115

texts.116

3 Methodology117

In this section, we describe the four stages in our118

suggested approach for improving NLI models.119

The complete flow is presented in Figure 1.120

Automated Hypothesis Generation Our121

methodology leverages LLMs to automate hy-122

pothesis generation, thus eliminating the need to123

rely on human annotators. To create diversity in124

the hypotheses, we begin by inputting premises125

and their corresponding labels into multiple126

LLMs. These models are tasked with generating a127

hypothesis that aligns with the given premise, such128

that the given label reflects the relation between129

them. The pseudocode of the full algorithm is 130

provided in Appendix A.2. 131

Adversarial Data Filtering Once the hypothesis 132

is generated, it is sent, along with the premise, for 133

classification by a pretrained NLI model, which we 134

try to improve. If the model assigns the correct 135

label for the input pair, both the hypothesis and the 136

premise are discarded. If the model misclassifies 137

the input pair, the pair and its correct label continue 138

on to the validation stage. This is done because we 139

want to gather examples that leading NLI models 140

struggle with, in order to address their weaknesses. 141

Automated Validation The validity of a hypoth- 142

esis misclassified by the NLI model is evaluated 143

by an ensemble of three LLMs. These models act 144

as independent judges, using majority voting to 145

ensure robust, unbiased validation. 146

Iterative Refinement and Retraining If, in the 147

previous stage, the LLMs agree on the validity 148

of the misclassified example, the hypothesis and 149

premise are then used for retraining. This iterative 150

loop is aimed at refining the accuracy of the base 151

NLI model. This process also enhances the training 152

dataset by continually challenging the model and 153

increasing its exposure to complex cases, thereby 154

improving its overall robustness. 155

Start

Input Premise
& Label

Generate Hypothesis RoBERTa Eval

Prediction
Correct? Retrain Model

LLMs Agree?

Few-Shot Prompt

Discard

yes no
yes

no

Figure 1: Illustration of our approach for improving an
NLI model.

3.1 Dataset Comparison and Semantic 156

Analysis 157

To gain insights into the relation between the data 158

generated in out experiment and existing datasets, 159

we examined the 10 most common non-stopwords 160

in each dataset. We also assessed the similar- 161

ity between the datasets using the TF-IDF and 162

BERTScore F1 metrics (Zhang et al., 2019). The 163
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TF-IDF metric, employing cosine similarity, mea-164

sures lexical overlap to reveal how much vocabu-165

lary and how many syntactic patterns are shared166

between datasets. The BERTScore metric evaluates167

semantic similarity using contextual embeddings168

from transformer language models.169
3.1.1 Key Findings From the Dataset Analysis170

In the SNLI train dataset, some of the most fre-171

quent words are ’man,’ ’woman,’ and ’people,’ indi-172

cating themes of gender and social interactions. In173

contrast, the ANLI test dataset focuses on media174

and chronology with words like ’film’ and ’first,’175

while the MultiNLI test dataset uses more ab-176

stract language. The Generated dataset, contain-177

ing misclassified examples, consist mainly of spec-178

ulative and gender-focused language.179

We also analyzed the hypotheses’ length and180

word counts in the datasets. The hypotheses in181

the Generated dataset were the longest, whereas182

SNLI train and SNLI test had similar lengths,183

suggesting a consistent style. The ANLI test and184

MultiNLI test datasets had longer hypotheses,185

highlighting their complexity. A comparison of the186

text length and word counts in the hypotheses of187

the examined datasets is provided in Figure 2.188

Figure 2: Average text length and word count in the
hypothesis column for the examined datasets.

Figure 3: TF-IDF cosine similarity among NLI datasets,
including our generated dataset.

Figure 4: BERTScore F1 similarity among NLI datasets,
including our generated dataset.

As for the similarity between datasets, Figure 3 189

presents the TF-IDF cosine similarity between ev- 190

ery pair of the datasets’ test sets. As can be seen, 191

there is limited lexical overlap, with the greatest 192

expected similarity between the SNLI train and 193

SNLI test datasets and the least similarity between 194

the ANLI test and MultiNLI test datasets. Fig- 195

ure 4 presents the BERTScore similarity; as can be 196

seen, there are notable semantic alignments, par- 197

ticularly between the SNLI train and SNLI test 198

datasets. These insights provide further validation 199

of our approach, confirming that the data gener- 200

ated falls within the range of expected lexical and 201

semantic similarities of existing NLI datasets. 202

3.2 Avoiding Forgetness 203

One of the challenges of fine-tuning existing pre- 204

trained models is ‘forgetness.’ Providing a pre- 205

trained model with many new training examples 206

from a different distribution may cause the model 207

to overfit the new distribution and degrade its per- 208

formance on the original distribution on which it 209

was pretrained. To prevent this adverse effect, we 210

added several examples from the original SNLI 211

training set to the new training set we created with 212

the newly generated examples. We experimented 213

with different ratios of generated to original train- 214

ing samples and selected the ratio that maximized 215

accuracy. The different ratios and their correspond- 216

ing accuracy value are presented in Figure 5. The 217

incorporation of both original and generated train 218

samples also enhances their generalizability. This 219

diversity helps models recognize a broader spec- 220

trum of patterns and scenarios, reducing the risk of 221

overfitting and enabling more reliable performance. 222
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Figure 5: Model performance comparison across
datasets.

4 Evaluation and Results223

For this study, we used the RoBERTa-base-SNLI224

model from Hugging Face (HuggingFace, 2022)225

(125M parameters), a popular, open-source NLI226

model trained on a single dataset, to evaluate our227

approach. To evaluate our approach, we generated,228

filtered, and validated thousands of data samples,229

ending up with 2.5K high-quality samples of NLI230

data according to our approach. We used Llama-231

3.1-70B and Mistral-Large 2 (123B) for generation232

and Mistral-Large 2, Mixtral-8x7B, and Qwen-2.5-233

72B-Instruct (Qwen) for validation. Then, we fine-234

tuned the RoBERTa-base-SNLI on it, along with235

another 10K samples from the MNLI train set, to236

maintain our suggested ratio of 1:4. To fine-tune237

the NLI model, we used a single T4 GPU. We238

conducted experiments using 10 different sets of239

hyperparameters to confirm the robustness of our240

approach. This evaluation demonstrates notable im-241

provements across three different and diverse test242

sets. In the first experiment, conducted on the SNLI243

test set, the model trained on our data achieved ac-244

curacy of 90.87%, surpassing the RoBERTa-base-245

SNLI’s accuracy of 88.48%. This demonstrates that246

our approach effectively boosts performance on the247

dataset that the base model was originally trained248

on. In the second experiment, using the ANLI test249

set, our model again outperformed RoBERTa-base-250

SNLI, achieving an accuracy of 78.38% compared251

to 75.04%. This result shows that our approach252

improved the model’s ability to handle challeng-253

ing adversarial examples. Finally, on the MultiNLI254

dataset, the model trained on our data achieved an255

accuracy of 59.28%, which is significantly higher256

than RoBERTa-base-SNLI’s accuracy of 54.67%.257

This emphasizes the enhanced generalization capa-258

bilities of our approach across diverse data distri-259

butions. For comparison, we fine-tuned the same 260

model on the same amount of data taken from the 261

MNLI train set. We also performed paraphrasing to 262

transform the same amount of samples from MNLI. 263

This approach achieved moderate improvements, 264

with accuracies of 84.73% on SNLI, 72.39% on 265

ANLI, and 50.01% on MultiNLI, but remained 266

below the performance of our proposed method. 267

These results are summarized in Table 1. 268

Dataset RoBERTa
base-
SNLI

Additional
Data

Para-
phrasing

Our
Approach

SNLI 88.48% 89.42% 84.73% 90.87%
± 0.58

Adversarial
NLI

75.04% 77.07% 72.39% 78.38%
± 0.37

MultiNLI 54.67% 57.61% 50.01% 59.28%
± 0.32

Table 1: Comparison of accuracy on the examined
datasets, for RoBERTa-base-SNLI, RoBERTa-base-
SNLI fine-tuned with additional data from MNLI,
RoBERTa base-SNLI fine-tuned with additional data
generated using paraphrasing based on the SNLI train
set, and RoBERTa-base-SNLI fine-tuned with additional
data generated using our approach.

5 Discussion and Future Research 269

This study demonstrated the effectiveness of em- 270

ploying LLMs to automatically identify and ad- 271

dress NLI models’ weaknesses by generating and 272

validating challenging datasets. By targeting model 273

misclassifications, our approach systematically en- 274

hances NLI model robustness and accuracy, achiev- 275

ing significant performance improvements on di- 276

verse datasets - SNLI, ANLI, and MultiNLI. Our 277

approach represents a major step forward in au- 278

tomating model refinement, reducing reliance on 279

human annotators while preserving data quality 280

and consistency. 281

Using an ensemble of LLMs for hypothesis vali- 282

dation reduces human biases and errors while en- 283

abling a scalable, iterative process for creating com- 284

plete NLI datasets. This scalability supports both 285

retraining existing models and building comprehen- 286

sive datasets for future NLI models. 287

Future research should explore ways to further 288

diversify the data generated by LLMs, incorporat- 289

ing varied linguistic structures and content domains. 290

To explore our approach’s potential to further ad- 291

dress model weaknesses, its performance when 292

employed on a larger scale and with multiple iter- 293

ations should be explored. Additionally, applying 294

these techniques to other NLP tasks could examine 295

our approach’s utility in other domains. 296
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6 Limitations297

Our approach’s dependence on the initial quality of298

LLMs and the substantial computational resources299

required for training and deploying multiple mod-300

els simultaneously could be prohibitive for some301

applications. This research was conducted with302

low-resource computation, which imposed certain303

constraints, limiting the scale and speed of pro-304

cessing. Additionally, the use of outsourced APIs305

for model generation introduced a bottleneck, as306

API response times delayed the generation of nec-307

essary data. These limitations prevented us from308

generating data at scale and testing our approach by309

generating hundreds of thousands of examples. We310

also have not yet examined our approach cyclically,311

using the model trained with our data as a base312

model for another iteration of data generation. We313

plan to address these limitations in future research.314
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A.1 Model Prompting Procedure for 387

Validation 388

In Table 2, we present the final prompt used for 389

LLM validation of the NLI dataset. The prompt 390

asks the model if the provided label matches the 391

premise-hypothesis relationship, with the system 392

responding ’Accepted’ or ’Not Accepted.’ This pro- 393

cess is repeated with multiple LLMs to filter chal- 394

lenging and problematic examples. The prompt 395

was designed with detailed instructions, illustra- 396

tive examples, and a structured response format 397

to ensure consistency and accuracy in the valida- 398

tion process, contributing to the overall quality and 399

robustness of the dataset. 400
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Component Content
System
Prompt

You are a language expert. Your job is to
filter rows of an NLI dataset, which contain
some data that may not be good enough.
Given a premise and a hypothesis, you
should determine whether the label reflects
the relationship between them or not.

User
Prompt

This is the premise: {premise}.
This is the hypothesis: {hypothesis}.
The relationship between them is {label}.
Do you accept this relationship? Respond
only with ’Accepted’ or ’Not Accepted.’

Table 2: Prompting procedure used to validate the NLI
dataset examples.

A.2 Model Prompting Procedure for401

Generation402

The few-shot learning process used in the hypoth-403

esis generation stage of our approach is described404

in the following Algorithm 1. This process uses405

curated examples to guide the model in generat-406

ing hypotheses that align with the desired premise-407

hypothesis relationship. Leveraging these exam-408

ples, the model produces contextually appropriate409

and accurate hypotheses, ensuring efficiency and410

consistency.411

Algorithm 1 Hypothesis Generation Using Few-
Shot Learning

1: Shuffle the SNLI train dataset D
2: Randomly select n observations from D: {

(p1, h1, l1), (p2, h2, l2), . . . , (pn, hn, ln) }
3: for each (pi, hi, li), where i ∈ {1, . . . , n} do
4: Format the example as:

This is a premise: pi, this is the
hypothesis: hi, and the label between
them is li.

5: end for
6: Provide these n formatted examples as few-

shot inputs to the model
7: After providing the examples, prompt the

model with the following instruction:
You are a language expert that helps
create an NLI dataset. Given a premise
sentence p and a desired label l,
generate a one-sentence hypothesis h
such that the label is relevant to
the relation between the premise and
the generated hypothesis. Keep the
hypothesis short.

8: The model generates a one-sentence hypothe-
sis h for the given premise p and label l

9: return Generated hypothesis h

We use a few-shot learning approach for hypoth- 412

esis generation, providing the model with exam- 413

ples from the SNLI train set. This approach lever- 414

ages a high-quality examples to guide the model 415

in producing hypotheses that are both contextu- 416

ally relevant and accurate. In Table 3, we present 417

the final prompt used, which includes detailed in- 418

structions, carefully selected examples, and a struc- 419

tured response format. This design ensures that 420

the generated hypotheses align with the desired 421

premise-hypothesis relationship while maintaining 422

consistency and reducing ambiguity in the output. 423

Component Content
Few-Shot
Example

This is a premise: {premise}
This is the hypothesis: {hypothesis}.
The label between them is {label}.
(eight examples are shown to the model in this
format, randomly selected from the SNLI train
set.)

System
Prompt

You are a language expert that helps create an
NLI dataset. Given a premise and a desired label,
your job is to provide a one-sentence hypothe-
sis such that the label is relevant to the relation
between the given premise and your generated
hypothesis. Make sure to keep the hypothesis
short and no longer than a sentence.

Table 3: Prompting procedure used to generate hypothe-
ses for the NLI dataset.

This generation process helps the model create a 424

hypothesis that is aligned with a given premise and 425

label by first showing it several few-shot examples 426

from the SNLI train dataset. After being shown 427

these examples, the model is tasked with generating 428

hypotheses following the same pattern, ensuring 429

relevance and consistency. 430

A.3 Optimized Hyperparameters for 431

RoBERTa-base-SNLI Model 432

In this section, we provide the optimized hyperpa- 433

rameters for the RoBERTa-base-SNLI model. Af- 434

ter conducting 10 experiments, the best-performing 435

parameters were identified as: a learning rate of 436

5.31× 10−6, a per-device training batch size of 16, 437

a per-device evaluation batch size of 8, one train- 438

ing epoch, and a weight decay of 0.0093. These 439

values were carefully selected to balance training 440

efficiency and model generalization. The learning 441

rate was adjusted to avoid overfitting, while batch 442

sizes optimized the use of available computational 443

resources. The weight decay was included to reg- 444

ularize the model and improve its performance on 445

unseen data. 446
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A.4 Examples of Generated Hypotheses447

In Table 4, we provide some examples of the hy-448

potheses generated. Each row contains the original449

premise, the generated hypothesis, and the origi-450

nal label, highlighting the model’s generalization451

ability.452

Premise Hypothesis (Generated) Label
People are clean-
ing up a street.

A group of individuals are
picking up trash and debris
from the street.

0

Swimmers leap
off the starting
blocks into their
race lanes at an
indoor pool.

Athletes jump off the start-
ing blocks into their desig-
nated lanes at the beginning
of a swimming competition.

0

Two women are
sitting at a table
working with clay.

The women are engaged in
a quiet activity.

1

Young man play-
ing darts in a cur-
tained room.

A young man is throwing
darts in a private space.

0

A man is bent over
working outside
under red, green,
and yellow flags.

A man is working outside
under construction flags.

0

Table 4: Examples of generated hypotheses with their
corresponding original labels.

7


	Introduction
	Background and Related Work
	Methodology
	Dataset Comparison and Semantic Analysis
	Key Findings From the Dataset Analysis

	Avoiding Forgetness

	Evaluation and Results
	Discussion and Future Research
	Limitations
	Appendix
	Model Prompting Procedure for Validation
	Model Prompting Procedure for Generation
	Optimized Hyperparameters for RoBERTa-base-SNLI Model
	Examples of Generated Hypotheses


