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Exploring Neural Scaling Law and Data Pruning Methods For
Node Classification on Large-scale Graphs
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ABSTRACT
Recently, how the model performance scales with the training sam-

ple size has been extensively studied for large models on vision and

language related domains. Nevertheless, the ubiquitous node clas-

sification tasks on web-scale graphs were ignored, where the traits

of these tasks, such as non-IIDness, semi-supervised setting, and

distribution shift, are likely to cause different scaling laws and moti-

vate novel techniques to beat the law. Therefore, we first explore the

neural scaling law for node classification tasks on three large-scale

OGB datasets. Then, we benchmark several state-of-the-art data

pruning methods on these tasks, not only validating the possibility

of exploiting data redundancy for improving the original unsatisfac-

tory power law but also gaining valuable insights into a hard-and-

representative principle on picking an effective subset of training

nodes. Moreover, we leverage the semi-supervised setting of node

classification to propose a novel data pruning method, which in-

stantiates our principle in a test set-targeted manner. Our method

consistently outperforms related methods on all three datasets.

Meanwhile, we utilize a PAC-Bayesian framework to analyze our

method, extending prior results to account for both hardness and

representativeness. In addition to a promising way to ease GNN

training on web-scale graphs, our study offers knowledge of the

relationship between training nodes and GNN generalization.

1 INTRODUCTION
In recent years, more and more neural scaling laws have been

observed [10, 11, 15, 29, 39], within which the power law, char-

acterizing how test error falls along with the increasing amount

of training data, has gained much attention. It has been theoreti-

cally shown that such power law scaling can be beaten by pruning

training data with an appropriate fraction of the hardest exam-

ples reserved [30]. Meanwhile, several state-of-the-art data pruning

methods [4, 5, 24, 25, 28, 32] were shown to be capable of beating

the power law scaling on large-scale image classification datasets.

Such theoretical and empirical results provide people with a promis-

ing path toward reducing the overhead of model training, which is

helpful, especially when the training data is on a web scale.

However, most existing scaling law investigations concentrate

on data types such as images [13, 30] and text [8, 12]. Yet, despite

its prevalence in web applications such as user modeling on social

networks [31] and fraud detection on transaction networks [20],

node classification on large-scale graphs remains underexplored.

In practice, the number of nodes in such graphs can reach a billion

or even trillion orders of magnitude. Such a scale often forbids

people to train graph neural networks (GNN) via traversing on all

training nodes for tens of epochs. If an unsatisfactory scaling law

for node classification tasks is observed, which suggests exploiting

data redundancy, then pruning less valuable training nodes might

be promising for accelerating GNN training.

Directly borrowing the results from classification tasks on other

data types might be unreliable. Traits of node classification distin-

guishing it from classification tasks on other data types include: (1)

The training examples, i.e., nodes, are not independent and identi-

cally distributed but associated by graph structures [40]; (2) Most

often a semi-supervised learning setting is considered, where the

testing nodes except for their labels are accessible during the model

training stage [18]; and (3) The training and testing sets are often

split in a natural way such as by the time each node emerges, result-

ing in a distribution shift between training and testing nodes [14].

Thus, it is necessary to deliberately explore the neural scaling

law and data pruning methods dedicated to node classification tasks.

To this end, we attempt to answer the research questions as follows:

(1) Does the relationship between the classification error rate

and the number of training nodes also obey a power law? If

this is the case, does the exponent in the power law suggest

a satisfactory scaling?

(2) If the scaling law is unsatisfactory, will the state-of-the-art

data pruning methods beat it as on other data types? Is

there any general principle for picking an effective subset

of training nodes?

(3) Can we exploit the traits of node classification tasks to

design a more effective data pruning method?

At first, we conduct extensive empirical studies concerning this

sample complexity-related neural scaling law for node classification

on three large-scale datasets of OGB [14]. A power law scaling is

consistently witnessed across the datasets with small exponents,

which is unsatisfactory and implies redundancy in the training

set. Hence, we implement a benchmark suite to evaluate several

data pruning methods comprehensively, some of which enable a

sample complexity better than these power law scalings. Through

carefully analyzing three kinds of statistics of the nodes preferred

by each method, we derive the hard-and-representative principle

for picking an effective subset of training nodes.

Furthermore, we instantiate our hard-and-representative prin-

ciple in a test set-targeted way. Specifically, we formulate node

selection as a variant of the 𝑘-center problem and propose an ap-

proximation algorithm with a performance guarantee to solve it,

where both hardness and representativeness are measured regard-

ing the test nodes. Empirically, our proposed method is compared

to related baselines and shows advantages consistently across these

three datasets. Theoretically, we exploit a previous PAC-Bayesian

framework [23, 26] to analyze the generalization discrepancy for the

subsets determined by our method and discuss the regime, wherein

data pruning as a regularizer tends to outperform the entire dataset.

By answering these questions, our studies not only contribute

to reducing the computational burden of GNN training on web-

scale graph but also provide insights into the connection between

training nodes and GNN performance, which tends to help people

understand what and how a GNN learns.
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2 BACKGROUND AND RELATEDWORKS
Node classification. A node classification task is often considered

in a semi-supervised setting [18], where a graph G = (V, E) is
given, with all its node features 𝑿 |V |×𝑓 and the labels of a portion

of nodes accessible during the model training stage. We call these

labeled nodes training nodes and denote them by V(tr)
while re-

garding those without labels as test nodes and denoting them by

V(ts)
. Then, we use 𝑛 and𝑚 to indicate the cardinality ofV(tr)

and

V(ts)
, respectively. For simplicity, we index V so that the first 𝑛

nodes belong to V(tr)
, and the remaining𝑚 nodes belong to V(ts)

.

Conventionally, we use 𝑨 to denote the adjacency matrix, where

𝑨𝑖, 𝑗 = 1, if (𝑖, 𝑗) ∈ E, otherwise 𝑨𝑖, 𝑗 = 0; and we use 𝑫 to denote

the degree matrix, where 𝑫𝑖 =
∑

𝑗 𝑨𝑖 𝑗 . Their counterparts, wherein

one self-loop has been added to each node, are denoted by
˜𝑨 and

�̃� , respectively.

Generally, a GNN predicts node labels based on both node fea-

tures and graph structures: �̂� |V |× |Y | = ℎ(𝑿 ,𝑨;𝜃 ), where Y de-

notes the label set. At the core of GNN is the message-passing

paradigm, where, in each layer, messages are calculated by trans-

forming current node representations, and node representations

are updated by aggregating incoming messages from each node’s

neighbors. Noticeably, a genre of GNNs decouples feature transfor-

mation from message propagation [3, 6], among which SGC [34]

is highlighted by its popularity in the literature of GNN’s theo-

retical analysis [16, 38]. In this paper, our analysis also focuses

on the case of SGC. The learnable parameters of the GNN (i.e.,

𝜃 ) are often optimized by minimizing a loss function of �̂�𝑖 and
𝑦𝑖 , 𝑖 = 1, . . . , 𝑛, such as a margin loss 𝑙𝛾 (𝒀𝑖 , 𝑦𝑖 ) := 1

Ŷi,y
i
≤𝛾+maxj≠y

i
Ŷi,j

,

where 𝑦𝑖 ∈ {1, . . . , |Y|} is the 𝑖-th node’s label, 𝛾 ≥ 0 denotes a

specified margin, and 1[ · ] represents the indicator function.
Neural Scaling Laws. Recently, particularly since the transformer-

based large models have become de facto solutions in many do-

mains, more and more observations reveal that test loss often de-

creases along with the number of model parameters, the amount

of computation, and the number of training examples following

a power law [8, 10–13, 15, 29, 39]. Beyond phenomenon, [30] the-

oretically show that, in a teacher-student perceptron setting, the

test performance such as error rate 𝑟 drops as the number of train-

ing examples 𝑛 increases, following a power law 𝑟 = 𝑛−𝑣 , and a

faster drop can be achieved by reserving an appropriate ratio of

the hardest training examples. As their setting differs from node

classification tasks, and their empirical studies are all conducted

on data types other than graph, we deliberately explore the neural

scaling law for node classification tasks in this paper.

Data Pruning. Since the exponent 𝑣 in 𝑟 = 𝑛−𝑣 is usually close to

zero, indicating redundancy in the data, pruning becomes a promis-

ing strategy for reducing the overhead of model training. EL2N [28]

uses the Euclidean distance between predicted probability distribu-

tion and the one-hot label to reflect the magnitude of the gradient

norm, where the larger, the harder an example is. Memorization [5]

estimates the improvement in the predicted probability of a train-

ing example’s truth class if this training example is included in the

training set, which can be interpreted as the hardness of correctly

predicting this example based on the rest of this training sample. Its

variant, Influence [5], calculates the memorization score regarding

how a training example affects a test example. DDD [24] uses the

number of incorrect predictions made by a pool of models to reflect

the hardness of each training example. Forgetting [32] counts the

number of mis-predicting the learned label during a training course

to reflect the hardness of a training example, where the larger, the

harder it is. Active [4] uses the uncertainty in an ensemble model’s

prediction to reflect the hardness.

Those methods mentioned above are designed for general data

pruning purposes. As for node classification tasks on graphs, some

active learning methods have taken the traits of tasks and the

message propagation nature of GNN into consideration [1, 36, 41].

However, instead of iterations of incremental training and selection,

we explore data pruning in this paper, that is to say, picking a subset

of nodes from the huge and possibly redundant training set in a

single shot. Thus, the purpose is not to save efforts of labeling.

Instead, we seek a subset that can lead to an error rate as low as an

entire training set.

3 OBSERVATION OF A POWER LAW
We conduct our investigation on three node classification datasets of

OGB [14], namely, ogbn-products, ogbn-papers100M, andMAG240M.

They correspond to large-scale graphs with around 2.4M, 111M, and

121M nodes. More statistics of these three datasets are provided in

Appendix (see Table 1). For the generality of our observation, we ap-

ply GraphSage [9] to ogbn-products, SGC [34] to ogbn-papers100M,

and GAT [33] to MAG240M, where OGB’s official implementations

are adopted. More details about the applied GNN models can be

found in Appendix A.

To observe how the performance of a learned model changes

across different numbers of training nodes, we randomly select a

fraction of training nodes, where the considered fraction ranges

from 20% to 100%, with increments of 10%. Meanwhile, all provided

test nodes are used for performance evaluation.

We present the results in Figure 1, where we plot the perfor-

mances of random pruning at considered pruning rates (denoted by

“Random”) and a fitted power function (denoted by “Fitted”). As can

be seen, these two curves exhibit remarkable similarity, suggesting

that the performance scales with the number of training nodes

following a power law. Thus, we provide a positive answer to the

first research question raised in Section 1, which can be analytically

expressed as 𝑟 = 𝑛−𝑣 , where 𝑟 denotes the error rate on test nodes,

𝑛 denotes the number of training nodes, and 𝑣 characterizes the

speed of change.

On all these three datasets, the scaling is unsatisfactory due to

the near-zero exponent 𝑣 . On all these three datasets, the scaling is

unsatisfactory due to the near-zero exponent 𝑣 . Slow scaling implies

that a significant fraction of training examples and computations

are allocated for marginal performance gains. For the web-scale

graphs in realistic scenarios, avoiding such diminishing returns

is appealing, namely, eliminating the necessity for traversing this

fraction of data so that lots of computation resources are saved.

4 DATA PRUNING FOR NODE
CLASSIFICATION TASKS

4.1 Benchmarking Related Methods
A promising strategy for improving the scaling is to exploit the

redundancy in large-scale graphs, expecting to train a GNN from

2
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(c) GAT on MAG240M.

Figure 1: Error rate (𝑟 ) v.s. #training nodes (𝑛): both axes are in logarithm scale, and thus these near linear relations imply a
power law scaling.

just a portion of labeled nodes such that the learned GNN possesses

comparable performance as that learned from all training nodes.

Data pruning methods are designed for such a purpose, and some

active learning methods can be adapted to this one-shot pruning

setting. As prior works have not comprehensively investigated

related methods on large-scale node classification tasks, we decided

to benchmark several representative methods on ogbn-products,

ogbn-papers100M, and MAG240M.

We largely follow the setting adopted in [30]. Specifically, we

evaluate general data pruning methods including EL2N [28], Mem-

orization (Mem) [5], Influence score (Infl-max) [5], and DDD [24]

as well as graph-dedicated active learning method AGE [1]. Here,

we also evaluate our proposed method, which will be detailed in

Section 5. It is worth noticing that not all adopted methods are

practical. Mem needs training almost a thousand GNN models,

which introduces computational overhead larger than the origi-

nal learning task on the full dataset. Infl-max needs to know the

labels of test nodes, which are obviously unavailable in realistic

scenarios. We include all these methods because our purposes of

benchmarking them are not only to seek the most effective one

for node classification but also to understand intrinsic connections

between training nodes and model performance.

As each adopted method is designed to assign a score to each

training example to reveal its usefulness, we implement eachmethod

and let it process the data in a unified way, i.e., to produce a ranking

list of training nodes in descending order of their assigned scores.

To fairly compare considered methods, we build a pipeline that

takes a specified portion of the top-ranked training nodes from

a specified ranking list, learn a GNN model from these selected

training nodes, and evaluate the learned GNN.

All our code for benchmarking is available at here. The ranking

lists generated by considered methods are also included in our

repository so that people no longer need to train thousands of

GNNs on those large-scale graphs for re-generating the ranking

lists. More implementation details about our benchmark suite are

deferred to Appendix A.

4.2 Results and Findings
We present experimental results in Figure 2. Overall, whatever the

dataset and model architecture are, there always exists data prun-

ing methods whose corresponding curve is below that of random

pruning. Thus, we can answer the second research question raised

in Section 1: it is always possible to beat the power law scaling

by data pruning, where some methods can consistently achieve a

better sample complexity while some others may not.

As not all compared methods can successfully beat random prun-

ing, a series of questions naturally arise: are there commonalities

amongst successful ranking lists, what might be the reason for some

ranking lists’ failure, and can we attain some general principle for

data pruning in node classification tasks? To gain insights into

these questions, we compute the mean degree, mean unnormalized

PageRank score (denoted by “Pr”) [27], and mean homophilic level

(denoted by “Homo”) [3] for each specific group of training nodes,

where groups corresponding to different quantiles in a ranking are

considered. Conventionally, the homophilic level of node 𝑖 ∈ V is

defined as

| { 𝑗 |𝑨𝑖,𝑗=1∧𝑦𝑖=𝑦 𝑗 } |
| { 𝑗 |𝑨𝑖,𝑗=1} | .

As expected, none of these statistics monotonically changes

along with quantile since no method ranks training nodes directly

and merely by one of these node properties. Therefore, we focus

on the groups corresponding to the top 20% of nodes ranked by

adopted methods, respectively, and their statistics are illustrated in

Figure 2d. Examining the commonalities and distinctions among

different methods, we present our findings as follows:

Successful pruning prefers hard examples. Themean homophilic

level of all training nodes is 0.808, 0.976, and 0.502 on these three

datasets, respectively. Methods successfully outperforming ran-

dom pruning always pick their top 20% of nodes so that the mean

homophilic level is remarkably below the average level over the

whole graph. On ogbn-products, all adopted methods outperform

random pruning and correspond to a lower homophilic level. On

ogbn-papers100M, successful ones, including Mem, Infl-max, and

Ours have 0.168, 0.255, and 0.191 as their mean homophilic level,

respectively. On MAG240M, all adopted methods except for EL2N

and DDD have beaten random pruning, and all correspond to a

lower homophilic level.

It is generally believed that common GNNs, such as the adopted

GraphSage and SGC, benefit from homophily and struggle with

predicting nodes with heterophily [22, 37, 42, 43]. Hence, this com-

monality of successful methods, i.e., a preference for nodes with

lower homophilic level, validate the effectiveness of choosing hard

training examples. Regardless, we are not saying that hardness is a

3
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Figure 2: Results of benchmarking data pruning methods: (a), (b), and (c) visualize how the model performance scales with the
training sample size; (d) compares the statistics of nodes preferred by different methods.

sufficient condition for successfully pruning nodes, as the following

finding explains.

Failed pruning lacks the consideration of representativeness.
Despite the technical difference in how to reflect a training ex-

ample’s hardness, EL2N and DDD also prioritize nodes with het-

erophily, where the homophilic level of their top 20% of nodes

is even lower than methods that have successfully beat random

pruning. However, when the fraction of reserved training nodes is

very limited, EL2N and DDD are remarkably surpassed by random

pruning on ogbn-papers100M and MAG240M.

As GNN is essentially based on the message-passing paradigm,

some studies [19, 21] have revealed its shortcomings in handling

nodeswith sparse neighborhoods or even significantly below-average

degrees. Thus, we conjecture that such nodes are over-rated by

EL2N and DDD due to their hardness to GNNs, and those prop-

erties make such nodes less representative of the whole node set,

leading to biased GNN and poor performance. Actually, Figure 2d

shows that, on both ogbn-papers100M and MAG240M, EL2N and

DDD’s mean values of PR are the smallest two among all adopted

methods, not to say that those nodes top-ranked by EL2N have very

small degrees. In a word, only prioritizing hardness is inadequate,

and being representative of the entire training set is necessary for

successful pruning.
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Distribution shift matters. As we have pointed out in Section 1,

the semi-supervised setting of node classification tasks allows data

pruning methods to utilize the features of test nodes, which, intu-

itively speaking, is helpful for mitigating the distribution shift issue.

From Figure 2a, 2b, and 2c, we find that our method consistently

outperforms baselines in the sense that it can achieve an error rate

that is no worse than that of a complete set by one standard devia-

tion, by the least number of reserved training nodes. Moreover, our

method has achieved the best error rate at most of the considered

pruning rates. As we will elaborate in the next section, the most

salient characteristic distinguish our method from compared ones

is its exploitation of the test nodes, which encourages subsets with

fewer distribution shifts.

Remark 1. When we consolidate these findings, a test set-targeted

hard-and-representative principle emerges. Specifically, under the

semi-supervised setting, plausible subsets are supposed to be hard

and representative for the entire training set, where measuring

hardness and representativeness regarding the given test set would

be more effective.

5 SEMI-SUPERVISED NODE PRUNING
5.1 Modelling
To utilize the semi-supervised setting for mitigating distribution

shift, we propose to prune training nodes by prioritizing those that

are more similar to testing nodes. As the first step, we need to de-

termine how to represent the nodes and measure their similarities

or distances. Inspired by recent theoretical results justifying the

discrimination advantages of GNN’s message propagation [16], we

decided to use 𝑯 = (�̃�−1 ˜𝑨)𝑑𝑿 for representing nodes, where 𝑑

controls the size of the receptive field. Although nontrivial choice

(i.e., 𝑑 >= 1) has been proven to exist, guaranteeing 𝑯 is more

discriminative than 𝑿 , large values for 𝑑 tend to cause the over-

smoothing issue [35]. For simplicity, we just set 𝑑 to be the depth

of the GNNs adopted in our benchmark (3, 3, and 2 on those three

datasets, respectively). The exploration of various propagation ma-

trices and choices for 𝑑 is deferred to our future work.

At first glance, such a representation seems inconsistent with

the representation learning functionality of GNNs since each GNN

layer, including that used by GraphSage and GAT, aggregates mes-

sages with parametric transformation rather than identity mapping.

However, a fairness-focused study [23] has shown that when the

distance between a subgroup of test nodes and the fixed training

set is measured based on such a representation, the error rate on

different subgroups positively correlates with their distances to the

common training set. Meanwhile, our definition of 𝑯 coincides

with a feature propagation-based pre-processing step to accelerate

GNN training on large-scale graphs [2], in which case, there would

be no extra overhead to compute 𝑯 .

When the node is well represented, the next step is to define the

distance between a subset of training nodes and the given test set

such that picking training nodes can be formulated as minimizing

such a distance. Inspired by [23], we define the bottleneck distance

between a subset S ⊆ V(tr)
and the test setV(ts)

as follows:

Definition 5.1 (Bottleneck distance).

Δ(𝑆) := max

𝑖∈V (ts)

min

𝑗∈S
∥𝑯 𝑗 − 𝑯𝑖 ∥2

4

2

3

1

Figure 3: A toy example with 2-dimensional node representa-
tions, where triangles represent training nodes while squares
represent test nodes.

Then we propose to formulate data pruning for node classifica-

tion as a facility location problem, or more specifically, a variant of

𝑘-center problem. With a specified pruning rate, or equivalently, a

specified number of training nodes to pick (denoted by 𝑘), we can

determine a subset of training nodes S𝑘 by solving:

min

S
Δ(S) s.t., |S| = 𝑘. (1)

Intuitively, each training node and test node play the role of a

supplier and customer, respectively. Every customer’s demand is

just 1, and the volume each supplier can serve is infinite. The trans-

portation cost per unit serviced from supplier 𝑗 to customer 𝑖 is the

Euclidean distance between their corresponding node representa-

tions.We are tasked to pick at most𝑘 suppliers as facilities to service

all the customers so that the maximum value of transportation cost

from a customer to its closest facility is minimized.

Hardness. By picking training node(s) that have similar represen-

tation to the test nodes, our strategy accounts for the distribution

shift. In other words, when we hypothesize that the hardness of

a test node can be measured by how far its closest training node

is, our method can be interpreted as picking training nodes by

reducing the hardness of the given test set.

Representativeness. One limitation of our formulation is that

representativeness seems to be ignored. Considering the case shown

in Figure 3, the optimal solution to Equation 1 with 𝑘 = 4 is to pick

the four numbered triangles (i.e., training nodes). Although this

solution minimizes the bottleneck distance, no one would regard it

as a representative subset of the complete training/test set. The bias

of this solution is rooted in overemphasis on the outliers, which

leads to more assignments to them (𝑣1, 𝑣2, and 𝑣3 serve the four

outliers), while just 𝑣1 serves the majority of test nodes. It is straight

to encourage a more representative subset by uniformly restricting

each supplier’s supply capacity, yet solving our variant of the 𝑘-

center problem with more constraints becomes more challenging.

5.2 Approximation Problem Solving
There is awell-known approximation algorithm to solve the original

𝑘-center problem (no separation of training and test sets but just

pick facilities from one set of points), which, in each iteration,

greedily picks the point most distant from the current set of facilities

and adds it as another facility [7]. Inspired by this algorithm, we

propose a greedy max-min selection algorithm to solve the problem

defined in Equation 1, which, in the meantime, incorporates our

goal of encouraging a more representative solution.

5
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Algorithm 1: Greedy max-min selection algorithm.

Input: Training nodesV(tr)
, testing nodesV(ts)

,

representations of training nodes 𝑯 (tr)

𝑛×𝑓 ,

representations of testing nodes 𝑯 (ts)

𝑚×𝑓 , a specified
patience 𝑇 > 0, and optionally a centrality

measurement 𝑐 : V → ℜ (e.g., degree or page rank).

Output: Ranking list of training nodes r.
1 Initialize r = (𝑣, ), where 𝑣 = argmax𝑣′∈V (tr) 𝑐 (𝑣 ′) if 𝑐 is

given or 𝑣 ∼ Uniform(V(tr)), array d and a s.t.,
d𝑖 = ∥𝑯 (tr)

𝑣 − 𝑯 (ts)

𝑖
∥2, and a𝑖 = 1 for 𝑖 = 1, . . . ,𝑚, and

no-improvement counter by 𝑐𝑛𝑡 = 0;

2 while len(r) < 𝑛 do
3 Solve 𝑢 = argmax𝑖∈{1,...,𝑚} a𝑖d𝑖 and let 𝑞 = d𝑢 ;
4 if a𝑢 ≠ 1 then
5 Re-initialize a s.t., a𝑖 = 1, 𝑖 = 1, . . . ,𝑚;

6 continue
7 else
8 Set a𝑢 = 0;

9 end
10 Solve 𝑣 = argmin𝑣′∈V (tr)∧𝑣′∉r ∥𝑯

(tr)

𝑣′ − 𝑯 (ts)

𝑢 ∥2 and let

𝑠 = ∥𝑯 (tr)

𝑣 − 𝑯 (ts)

𝑢 ∥2;
11 if 𝑠 < 𝑞 then
12 Append 𝑣 to the end of r;
13 Update d s.t.,

d𝑖 = min(d𝑖 , ∥𝑯 (tr)

𝑣 − 𝑯 (ts)

𝑖
∥2), 𝑖 = 1, . . . ,𝑚;

14 Set 𝑐𝑛𝑡 = 0;

15 else
16 Update 𝑐𝑛𝑡 = 𝑐𝑛𝑡 + 1;

17 if 𝑐𝑛𝑡 ≥ 𝑇 then
18 Re-initialize a s.t., a𝑖 = 1, 𝑖 = 1, . . . ,𝑚;

19 𝑣 = argmax𝑣′∈V (tr)∧𝑣′∉r 𝑐 (𝑣 ′) if 𝑐 is given or

𝑣 ∼ Uniform(V(tr) \ r);
20 Append 𝑣 to the end of r;
21 Re-initialize d s.t.,

d𝑖 = ∥𝑯 (tr)

𝑣 − 𝑯 (ts)

𝑖
∥2, 𝑖 = 1, . . . ,𝑚;

22 Set 𝑐𝑛𝑡 = 0;

23 end
24 end
25 end

We present the pseudo-code in Algorithm 1. Overall, our algo-

rithm is also a greedy algorithm, which, in each iteration, relies on

the test node, whose representation has the maximal distance from

currently selected training nodes, as a reference to pick the training

node with the minimal distance to it. However, it should be aware

that the separation of training and test sets makes our variant quite

different from that dedicated to the original 𝑘-center problem. In

each iteration, we restrict the candidates to training nodes that have

not been included as a facility, as the original greedy algorithm

does. However, we encounter extra design choices, e.g., whether a

test node can be repeatedly used as a reference.

To mitigate the overemphasis on outlier(s), we maintain a flag

(i.e., a𝑖 ) for each test node and deactivate it once the test node is

used as the reference in an iteration. Considering the toy example

shown in Figure 3, suppose the initial facility set is {𝑣1}, then the

reference would be the rightmost test node. Without maintaining

the flags, after adding 𝑣2 to the facility set, the reference in the

following iterations is still that test node, which would suggest 𝑣3
and 𝑣4 as facility, making the selected subset biased toward it.

Besides, our algorithm offers a hyperparameter 𝑇 named “pa-

tience”. Once this number of consecutive iterations has not found a

facility that can effectively reduce the distance from the reference

to the set of facilities (Line 17), we would re-activate all test nodes

(Line 18) and re-initialize their current distances to the facility set

(Line 21). Considering the toy example in Figure 3, in the second

iteration, the current facility set is {𝑣1, 𝑣2}, and thus the reference

is the test node in the middle of the figure, which has no facility

that can further reduce its distance to the facility set, namely, the

“no-improvement counter” will be increased by one (Line 16). With

our designed mechanism and suppose 𝑇 = 1, we have a large prob-

ability of randomly adding one training node from the majority at

the left-hand side as a facility. Otherwise, we would add either 𝑣3
or 𝑣4, overemphasizing the outliers.

Algorithm 1 has an 𝑂 (𝑛 ×𝑚) complexity in terms of distance

calculation. However, we can effortlessly change it into amini-batch

mode and utilize the parallel processing capacity of GPU. Hence, its

overhead is often lower than training a model, which some related

methods require.

5.3 Results and Analysis
We evaluate our method based on our benchmark so that it is rigor-

ously and fairly compared with related baselines. On ogbn-products

(see Figure 2a), the model trained on just half of the training nodes

picked by our method can achieve an error rate no worse than that

of the complete set by a standard deviation, namely, half data can

lead to a statistically comparable performance by our method. On

ogbn-papers100M, (see Figure 2b), our method is again the first to

achieve an averaged error rate no larger than that of the complete

set plus a standard deviation. Besides, with the top 80% of training

nodes ranked by our method, we can achieve an averaged error

rate almost the same as that of the complete set. On MAG240M

(see Figure 2c), our method outperforms baselines by a remarkable

margin at all considered pruning rates.

To better understand the advantages of our method, the first

question is how to derive some performance (e.g., hardness) guar-

antee for the subsets determined by our approximation algorithm.

Then, more importantly, the main question is how to relate a GNN’s

generalization risk on test nodes to the hardness and representa-

tiveness of the subset of training nodes picked by our method.

5.3.1 Analysis of hardness reduction. Before presenting the per-

formance guarantee for the picked subsets, we define bottleneck

distance (see Definition 5.1)’s counterpart for the training set itself

as Δ′ (S) := max𝑖∈V (tr) min𝑗∈S ∥𝑯 𝑗 − 𝑯𝑖 ∥2, which reflects how

well the selected facilities service the training nodes (as customers).

Suppose S is a subset produced by Algorithm 1. Let S′∗
denote the

optimum set of facilities that minimizes the bottleneck distance for

the training set and have the same cardinality asS (i.e., |S′∗ | = |S|).
6
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We offer a guarantee for Δ(S) to show how well the solution Algo-

rithm 1 seeks is, which can be formally stated as follows:

Proposition 1. Δ(S) ≤ 2Δ′ (S′∗) + Δ(V(tr)).
Due to the limited space, we defer our proof to Appendix B. As

discussed in Section 5.1, when we interpret the distance from a test

node to the closest training node from a picked subset as a measure

of this test node’s hardness, reducing the bottleneck distance means

making the test set easier. Thus, Proposition 1 guarantees that the

picked subset would not let the hardness of the test set exceed

an upper bound. We realize this is not a tight bound and thus

empirically compare our picked subsets to those constructed by

applying the classical greedy algorithm to allocate facilities for

serving the training nodes themselves. The results are presented in

Figure 4, where the 𝑥-axis represents the number of picked training

nodes (i.e., 𝑘), and the 𝑦-axis represents the averaged minimum

distance over the next 𝑘 referenced test nodes. Except for ogbn-

products, our algorithm leads to a significantly faster decrease

in such distance as the 𝑘 increases, which can be interpreted as

being more effective in eliminating the distribution shift and thus

reducing the test set’s hardness. Both algorithms behave almost the

same on ogbn-products because there are nearly ten times the test

nodes of the training nodes.
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Figure 4: Comparison of Algorithm 1 and classical greedy
algorithm: effectiveness in reducing test set hardness.

As discussed in Section 5.1, intuitively speaking, a more uniform

assignment of facilities (i.e., picked training nodes) to test nodes

corresponds to a more representative subset for the test set. How-

ever, as no such notion is directly optimized in Algorithm 1, we

cannot offer any guarantee for the representativeness of S by now

and leave it as our future work.

5.3.2 Generalization risk analysis for pruned training data. Our
analysis is primarily built upon a PAC-Bayesian framework in-

troduced for analyzing the performance fairness among different

subgroups of test nodes [23]. The most salient differences are two-

fold: (1)We are interested inmodels learned from our picked subsets

rather than a fixed training set, which requires changing some as-

sumptions to a different form and restricts the range of applicable

pruning rate; (2) More importantly, we eliminate their assumption

of uniform assignment but instead introduce a novel notion and

use it to account for the representativeness of picked subsets in the

generalization risk bound.

Settings. Data are generated following a process wherein an under-

lying aggregation function 𝑔, such as a 𝐿-layer GNN, produces

𝒁 |V |×𝑓 , and node labels are conditional independent given 𝒁 ,
namely, each node label is independently sampled from an un-

known conditional probability distribution 𝑦𝑖 ∼ 𝑃 (𝑦 |𝒁𝑖 ). This is

not conflict with our setting that node labels are not i.i.d., because

𝒁𝑖s are obviously allowed to be non-i.i.d. This is also consistent

with the existence of distribution shift because 𝒁1:𝑛 and 𝒁𝑛+1:𝑛+𝑚
may obey different distribution.

To analyze our data pruning method, it is straightforward to as-

sume 𝒁 coincides with𝑯 used as input to Algorithm 1. Nonetheless,

to better understand why our simple random walk-based aggrega-

tion works consistently well, we analyze its difference against a

more realistic 𝑔: Suppose 𝑔 has feature transformation in each step

of message propagation but no non-linearity, then ∃𝑾 such that,

𝒁 = 𝑔(𝑿 ,𝑨) = (�̃�−1 ˜𝑨)𝑑𝑿𝑾1 · · ·𝑾𝑙 = (�̃�−1 ˜𝑨)𝑑𝑿𝑾 = 𝑯𝑾 . As a

result,∀𝑖, 𝑗, ∥𝒁𝑖−𝒁 𝑗 ∥2
2
= (𝑯𝑖−𝑯 𝑗 ) (𝑾𝑾T) (𝑯𝑖−𝑯 𝑗 )T ≤ 𝜆max∥𝑯𝑖−

𝑯 𝑗 ∥2
2
, where 𝜆max ≥ 0 is the largest eigenvalue of 𝑾𝑾T

. Thus,

for a subset of training node S, max𝑖∈V (ts) min𝑗∈S ∥𝒁𝑖 − 𝒁 𝑗 ∥2 ≤√
𝜆maxΔ(S). Based on the above analysis, the first implication is

why feature normalization is often helpful in practice. The second

implication is that it is reasonable to skip the difference of just

a scaling factor (i.e.,

√
𝜆max). Thus, in the following analysis, we

simplify this data generation process by letting 𝒁 = 𝑯 and use

them interchangeably.

Here, each classifier drawn from the hypothesis spaceH is ReLU-

activated 𝐿-layer Multi-layer perceptron (MLP) with {𝑾𝑙 }𝐿𝑙=1 as

model parameters. Then each ℎ ∈ H is applied to 𝑯 to produce

predictions �̂� = ℎ(𝑯 ; {𝑾𝑙 }𝐿𝑙=1). ThisH seems quite restricted, but

both the widely adopted SGC [34] and the theoretical result that 𝑯
contains rich information [16] confirm that it is a reasonable choice

for analyzing our method. The largest width of all the MLP layers

is denoted by 𝑏.

Recall the margin loss we have introduced in Section 2, then

the empirical margin loss of any classifier ℎ ∈ H on a node set

S can be defined as
ˆL𝛾

S (ℎ) :=
1

|S |
∑
𝑖∈S 𝑙𝛾 (�̂�𝑖 , 𝑦𝑖 ), where �̂� is the

predictions made by classifier ℎ. Naturally, the expected margin

loss is defined as L𝛾

S (ℎ) := E𝑦𝑖∼𝑃 (𝑦 |𝒁𝑖 ), 𝑖∈S [ ˆL𝛾

S (ℎ)].
Analysis. Conventionally, our analysis starts with a widely adopted
smoothness assumption:

Assumption 5.1 (Smoothness). For each 𝑗 = 1, . . . , |Y|, there is a
𝜂 𝑗 : ℜℎ → ℜ such that 𝜂 𝑗 (𝒁𝑖 ) = 𝑃 (𝑦 = 𝑗 |𝒁𝑖 ), and all these 𝜂 𝑗 s are
𝑐-Lipschitz continuous function.

Then, the essential difference between our analysis and that

dedicated to performance fairness comes. That work bounds, for a

fixed classifier, the difference between the expected margin loss on

any subgroup of test nodes and that on their common training set,

with another strong and unrealistic assumption that each training

node has disjoint and equal-sized near set (a near set consists of test

nodes within the bottleneck distance to that training node). Instead,

we have gained knowledge from our benchmark (see Section 4.2)

that whether a selected subset is representative of the test set is

crucial to themodel performance, where, regarding Algorithm 1, the

representativeness can be reflected by the uniformness of facility

assignment. Thus, we aim to characterize how the uniformness of

facility assignment ultimately affects the generalization ability of

a classifier trained on the selected subset. For such purpose, we

define the max flow of a selected subset as follows:

Definition 5.2 (Max flow of a selected subset). Given a subset of

training nodes S, construct a bi-partite graph for it, where a set of
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𝑚 nodes corresponding to the original test nodes are connected to a

set of |S| nodes corresponding to the selected training nodes. There
is a directed edge from a node corresponding to 𝑖 ∈ V(ts)

to a node

corresponding to a selected training node 𝑗 ∈ S if ∥𝑯𝑖 − 𝑯 𝑗 ∥2 ≤
Δ(S), and the edge weight is +∞. Then a source node is connected

to all the 𝑚 nodes by directed edges with the same weight
|S |
𝑚 ,

and all those |S| nodes are connected to a target node by directed

edges with the same weight 1. The maximum feasible flow from the

source to the target is said to be the max flow of S, i.e., 𝑓 𝑙𝑜𝑤 (S).
In the Appendix, we provide readers with an illustrative example

of such a bi-partite graph (see Figure 7).

Based on this novel notion, we can bound the difference between

the expected margin loss on the test set and that on a subset of

training nodes S for a fixed classifier as follows:

Lemma2. For a𝐿-layer classifierℎ ∈ H with parameters𝑾1, . . . ,𝑾𝐿 ,

define 𝑇ℎ := max𝑙=1,...,𝐿 ∥𝑾𝑙 ∥2. Under Assumption 5.1, suppose S
is a subset of training nodes, for any 𝛾 ≥ 0, if Δ(S)𝑇𝐿

ℎ
≤ 𝛾

4
, then

L𝛾/2
V (ts)

(ℎ) − L𝛾

S (ℎ) ≤
2( |S |−𝑓 𝑙𝑜𝑤 (S) )

|S | + |Y|𝑐Δ(S).

Due to the limited space, we defer our proof to Appendix B.

Remark 2. As can be seen, without Assumption 2 of [23], the first

term in our upper bound cannot be eliminated. Instead, we consider

a more general case and account for the factor of representativeness

characterized by the defined max flow.

Then, the remaining path toward our ultimate theoretical result

follows the same rationale as that in [23]. As our focus is the gen-

eralization risk of different subsets of training nodes rather than

different subgroups of test nodes, we no longer need to index dif-

ferent subgroups yet use S𝑘 , 𝑘 ≤ 𝑛, to index the subsets produced

by our algorithm, where |S𝑘 | = 𝑘 . It is worth noticing that 𝑘 is

not allowed to be too small. In practice, too little 𝑘 often causes

performance corruption. Moreover, our theoretical result requires

that |S| be large enough, which is essentially demanded by the

following assumption. Specifically, due to the difference in purpose

and our upper bound (see Lemma 2) against theirs, our counterpart

of Assumption 3 in [23] needs to be changed as follows:

Assumption 5.2 (Small generalization discrepancy). For any of our
considered subset S𝑘 , let 𝑃 be a distribution onH , which is defined
by sampling the vectorized MLP parameters fromN(0, 𝜎2𝑰 ) for some

𝜎2 ≤ (𝛾/8Δ(S𝑘 ) )2/𝐿
2𝑏 (𝜆𝑘−𝛼+ln 2𝑏𝐿) . For any 𝐿-layer classifier ℎ ∈ H with model

parameters𝑾ℎ
1
, . . . ,𝑾ℎ

𝐿
, again define 𝑇ℎ := max𝑙=1,...,𝐿 ∥𝑾ℎ

𝑙
∥2. As-

sume there exists some 0 < 𝛼 < 1

4
such that:

𝑃ℎ∼H
(
L𝛾/4

V(ts) (ℎ) − L𝛾/2
S𝑘

(ℎ) > 𝑘−𝛼 + 2(𝑘 − 𝑓 𝑙𝑜𝑤 (S𝑘 ))
𝑘

+ |Y|𝑐Δ(S𝑘 ) |𝑇𝐿
ℎ
Δ(S𝑘 ) >

𝛾

8

)
≤ 𝑒−𝑘

2𝛼

.

Similarly, Assumption 4 in [23] should be changed according to

our cases as follows:

Assumption 5.3 (Constant norms). For any of our considered subset
S𝑘 , define 𝐵𝑘 := max𝑖∈V(ts)∪S𝑘

∥𝑯𝑖 ∥2. For any classifier ˜ℎ ∈ H with
parameters {�̃�𝑙 }𝐿𝑙=1, assume ∀𝑙, ∥�̃�𝑙 ∥F ≤ 𝐶 . Assume 𝐵𝑘 and 𝐶 are
constants no matter which value 𝑘 takes.

Finally, combining all the above assumptions and intermediate

results, we can reach our ultimate theoretical result:

Theorem 3. For any ˜ℎ ∈ H with parameters {�̃�𝑙 }𝐿𝑙=1. Under
Assumptions 5.1,5.2, and 5.3, for any of our considered subset S𝑘 that
ensures 𝑘 large enough, for any 𝛾 ≥ 0, with probability at least 1 − 𝛿

over the sample of 𝑦𝑖 , 𝑖 ∈ S𝑘 , we have

L0

V(ts) ( ˜ℎ) ≤ ˆL𝛾

S𝑘
( ˜ℎ) +𝑂

(𝑏∑𝐿
𝑙=1

∥�̃�𝑙 ∥2F
𝑘𝛼 (𝛾/8)2/𝐿

Δ(S𝑘 )2/𝐿+

1

𝑘2𝛼
ln

𝐿𝐶 (2𝐵𝑘 )1/𝐿

𝛾1/𝐿𝛿
+ 1

𝑘1−2𝛼
+

(𝑘 − 𝑓 𝑙𝑜𝑤 (S𝑘 ))
𝑘

+ |Y|𝑐Δ(S𝑘 )
)
.

The complete analysis, including more detailed intermediate

results and the proof of this theorem, can be found in Appendix B.

5.4 Sensitivity Analysis
When the data distribution occasionally causes Algorithm 1 to

encounter no-improvement events, the patience 𝑇 would matter.

Thus, we conduct sensitivity analysis by executing Algorithm 1

on ogbn-papers100M, with different choices of 𝑇 ∈ {1, 3, 5, 15, 45},
and comparing their resulting ranking list of training nodes. For

each ranking list, how model performance scales with the number

of reserved training nodes is shown in Figure 5. Whichever 𝑇 is,

the resulting ranking list can beat random pruning. Besides, some

choices (e.g., 3 and 5) can perform better than what we used in our

main experiment (i.e., 15) at the pruning rates of 60% and 80%.

6 8 10 20
#Training examples (×104)

36.5

37

37.5

38

Er
ro

r r
at

e 
(%

)

Random
Ours (T=1)
Ours (T=3)
Ours (T=5)
Ours (T=15)
Ours (T=45)

Figure 5: Comparison of different choices of patience 𝑇 .

6 CONCLUSIONS AND FUTURE DIRECTIONS
Through extensive studies on large-scale graphs, we reveal an un-

satisfactory power law scaling for training GNN to classify nodes,

beat such a law by several data pruning methods, and attain a

principle for picking useful training nodes. Based on this test set-

targeted hard-and-representative principle, we not only design a

novel method that can outperform existingmethods but also present

a theoretical analysis accounting for both hardness and representa-

tiveness factors. Being a promising way to reduce the overhead of

GNN training, our study also offers the community more insights

into the relation between training samples and model performance

in node classification tasks.
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A IMPLEMENTATION DETAILS
GNNmodels. We consider GraphSage, SGC, and GAT in our bench-

mark, where all their implementations are based on the PyG version

of model implementations provided by OGB team. For the general-

ity, we keep the default hyper-parameters unchanged. Readers who

are interested in the details are referred to this GitHub repository.

Benchmark suite. Our setting largely follows that in [30]. For

each data pruning method, we first apply it to generate a ranking

list of all the training nodes. Then, to evaluate this method at a

certain pruning rate, or equivalently, at a certain number of reserved

training nodes (i.e., 𝑘), we first randomly sample a fraction of
𝑘
2𝑛

training nodes of each class. This is needed to alleviate the influence

of label distribution discrepancy caused by data pruning. Then the

remaining
𝑘
2
training nodes are determined by the top-

𝑘
2
elements

in the ranking list that have not been included.

Then a specified GNN model is learned from this picked subset

and evaluated, where all the training and evaluation procedures

are the same across different data pruning methods. There are two

sources of randomness: one is the half of training nodes randomly

selected, the other is the randomness in model training stage. Thus,

on each dataset, we marginalize the first factor by considering

five different seeds. Each seed corresponds to a specific subset of

the considered data pruning method. Then. on each subset, we

repeat the model training and evaluation procedure for 10, 5, 1

times on ogbn-products, ogbn-papers100M, and MAG240M, respec-

tively. Finally, we average the reported error rate on test set, where

the corresponding model checkpoint is the one achieves the best

validation performance.

B FULL THEORETICAL ANALYSIS
B.1 Analysis of our approximation algorithm
We re-state Proposition 1 as follows:

Proposition 4. Δ(S) ≤ 2Δ′ (S′∗) + Δ(V(tr)).

Proof. As S is constructed by iteratively adding 𝑠1, 𝑠2, . . . , 𝑠𝑘
into it, we use 𝑡1, 𝑡2, . . . , 𝑡𝑘 to denote the reference point (i.e., the

test node with maximal distance to the current facility set) at each

iteration. Meanwhile, we use 𝑠𝑘+1 to denote the next training node

being included if we continue the procedure.

Let Δ𝑖 , 𝑖 = 1, . . . , 𝑘 denote the bottleneck distance for the subset

consisting of the first 𝑖 elements added to S. Then it is obvious that

Δ𝑖+1 ≤ Δ𝑖 because the distance of each testing node to its closest

facility will either decrease or at least be unchanged.

Next, we show that ∀𝑗 < 𝑗 ′ ≤ 𝑘 + 1, ∥𝑯 (tr)

𝑠 𝑗 − 𝑯 (tr)

𝑠 𝑗 ′ ∥ ≥ Δ 𝑗 ′−1 −
Δ(V(tr)). Actually, this proposition can be restated as∀𝑖 = 2, . . . , 𝑘+
1,∀𝑗, 𝑗 ′ ≤ 𝑖 ( 𝑗 ≠ 𝑗 ′), ∥𝑯 (tr)

𝑠 𝑗 −𝑯 (tr)

𝑠 𝑗 ′ ∥ ≥ Δ 𝑗 ′−1 −Δ(V(tr)). The case of
𝑖 = 2 is obvious. Δ1 = ∥𝑯 (tr)

𝑠1 −𝑯 (ts)

𝑡1
∥. 𝑠2 would not be far way from

𝑡1 by a distance larger than Δ1, otherwise 𝑡1 will be skipped and

inactivated (Line 15 in Algorithm 1). Then the worst case (i.e., the

case leading to the closest 𝑠2 to 𝑠1) is that 𝑠2 lies in the line segment

between 𝑠1 and 𝑡1. Meanwhile, 𝑠2 can not be far away from 𝑡1 by

Δ(V(tr)) due to that otherwise there must exist a closer training

node to 𝑡1. Thus, the base case ∥𝑯 (tr)

𝑠1 − 𝑯 (tr)

𝑠2 ∥ ≥ Δ1 − Δ(V(tr)) has
been established. By induction, we first assume the case of 𝑖 is right

and start from it to show the case of 𝑖 + 1 is also right. Specifically,

the closest training node (w.l.o.g., denote it by 𝑠 𝑗 , 1 ≤ 𝑗 ≤ 𝑖) to 𝑡𝑖 is

distant from it by Δ𝑖 , and again the existence of an improvement

brought in by 𝑠𝑖+1 ensures that ∥𝑯 (tr)

𝑠 𝑗 − 𝑯 (tr)

𝑠𝑖+1 ∥ ≥ Δ𝑖 + Δ(V(tr)).
Meanwhile, as ∀𝑗 ′ ≠ 𝑗, ∥𝑯 (tr)

𝑠 𝑗 ′ − 𝑯 (ts)

𝑡𝑖
∥ ≥ Δ𝑖 and ∥𝑯 (tr)

𝑠𝑖+1 − 𝑯 (ts)

𝑡𝑖
∥ ≤

Δ(V(tr)), we have shown that∀𝑗 ≤ 𝑖, ∥𝑯 (tr)

𝑠 𝑗 −𝑯 (tr)

𝑠𝑖+1 ∥ ≥ Δ𝑖+Δ(V(tr)).
Thus, we complete the induction step, where the main intuition

behind this induction proof is visualized in Figure 6.

Finally, for an arbitrary facility set C with ∥C∥ = ∥S∥ = 𝑘 ,

we will show Δ(S) ≤ 2Δ′ (C) + Δ(V(tr)). Considering S ∪ {𝑠𝑘+1},
there must be at least two of its elements that lie within the dis-

tance Δ′ (C) to a certain element 𝑐 ∈ C by the pigeonhole principle.

Suppose these two facilities are 𝑠 𝑗 , 𝑠
′
𝑗
, 𝑗, 𝑗 ′ ≤ 𝑘 + 1, ∥𝑯 (tr)

𝑠 𝑗 −𝑯 (tr)

𝑠 𝑗 ′ ∥ ≥
Δ𝑘 − Δ(V(tr)) = Δ(S) − Δ(V(tr)) as we have just proved above.

Meanwhile, by triangle inequality, ∥𝑯 (tr)

𝑠 𝑗 −𝑯 (tr)

𝑠 𝑗 ′ ∥ ≤ ∥𝑯 (tr)

𝑠 𝑗 −𝑯 (tr)

𝑐 ∥+
∥𝑯 (tr)

𝑐 − 𝑯 (tr)

𝑠 𝑗 ′ ∥ ≤ 2Δ′ (C). Combining these inequalities and ex-

ploiting the arbitrary of choosing C, we have Δ(S) ≤ 2Δ′ (S′∗) +
Δ(V(tr)), where S′∗

is the optimum set of facilities for reducing

the bottleneck distance on the training set itself. □

Δ(𝒱(𝑡𝑟))
Δi − Δ(𝒱(𝑡𝑟))

Figure 6: Bounding the distance between next added facility
to existing facilities.

One limitation of the above analysis is that we have not consid-

ered the re-start mechanism of our propose algorithm. However,

this is equivalent to consider a very large patience 𝑇 , where our

sensitivity analysis (see Section 5.4) has shown that the end-to-end

performance of our data pruning method is robust to changes of 𝑇 .

B.2 Analysis of the performance of models
learned on pruned data

For readers to better understand our novel notion for uniform

assignment of facilities (recall Definition 5.2), we show such a bi-

partite graph in Figure 7 as an example.

We re-state our Lemma 2 as follows:

Lemma5. For a𝐿-layer classifierℎ ∈ H with parameters𝑾1, . . . ,𝑾𝐿 ,

define 𝑇ℎ := max𝑙=1,...,𝐿 ∥𝑾𝑙 ∥2. Under Assumption 5.1, suppose S
is a subset of training nodes, for any 𝛾 ≥ 0, if Δ(S)𝑇𝐿

ℎ
≤ 𝛾

4
, then

L𝛾/2
V (ts)

(ℎ) − L𝛾

S (ℎ) ≤ |Y|𝑐Δ(S) + 2( |S |−𝑓 𝑙𝑜𝑤 (S) )
|S | .

10
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Table 1: Statistics of adopted datasets.

name #node #edge #feature #class split by train/valid/test

products 2,449,029 61,859,640 100 47 species 8%/1.6%/90.4%

papers100M 111,059,956 1,615,685,872 128 172 time 78%/8.1%/13.9%

MAG240M 121,751,226 1,296,620,606 768 153 time 83%/10.4%/6.6%
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Figure 7: Bi-partite graph construction based on 𝑘-center
solution.

Proof. To keep our notation terse, we use𝜂𝑘 (𝑖) to denote𝜂𝑘 (𝒁𝑖 )
and define L𝛾

𝑖,𝑘
:= 1

Ŷ
i,k≤𝛾+max

k
′≠k Ŷi,k′

.

L𝛾/2
V (ts)

(ℎ) − L𝛾

S (ℎ) = E𝑦𝑖 [
1

𝑚

∑︁
𝑖∈V (ts)

L𝛾/2
𝑖,𝑦𝑖

] − E𝑦 𝑗
[ 1

|S|
∑︁
𝑗∈S

L𝛾

𝑗,𝑦 𝑗
]

=
1

|S|E𝑦𝑖 ,𝑦 𝑗
[
∑︁
𝑗∈S

∑︁
𝑖∈V (ts)

𝜔 (𝑖, 𝑗)L𝛾/2
𝑖,𝑦𝑖

− L𝛾

𝑗,𝑦 𝑗
],

where we let ∀𝑖, 𝑗, 𝜔 (𝑖, 𝑗) ≥ 0 and is positive only if ∥𝑯 (tr)

𝑖
−

𝑯 (ts)

𝑗
∥ ≤ Δ(S), and ∀𝑖 ∈ {𝑛 + 1, . . . , 𝑛 +𝑚},∑𝑗∈S 𝜔 (𝑖, 𝑗) = |S |

𝑚 .

1

|S|E𝑦𝑖 ,𝑦 𝑗
[
∑︁
𝑗∈S

∑︁
𝑖∈V (ts)

𝜔 (𝑖, 𝑗)L𝛾/2
𝑖,𝑦𝑖

− L𝛾

𝑗,𝑦 𝑗
]

=
1

|S|
∑︁
𝑗∈S

( ∑︁
𝑖∈V (ts)

𝜔 (𝑖, 𝑗)
|Y |∑︁
𝑘=1

𝜂𝑘 (𝑖)L
𝛾/2
𝑖,𝑘

−
|Y |∑︁
𝑘=1

𝜂𝑘 ( 𝑗)L
𝛾

𝑗,𝑘

)
=

1

|S|
∑︁
𝑗∈S

( ∑︁
𝑖∈V (ts)

𝜔 (𝑖, 𝑗)
|Y |∑︁
𝑘=1

𝜂𝑘 (𝑖) (L
𝛾/2
𝑖,𝑘

− L𝛾

𝑗,𝑘
)

+
∑︁

𝑖∈V (ts)

𝜔 (𝑖, 𝑗)
|Y |∑︁
𝑘=1

𝜂𝑘 (𝑖)L
𝛾

𝑗,𝑘
−

|Y |∑︁
𝑘=1

𝜂𝑘 ( 𝑗)L
𝛾

𝑗,𝑘

)
≤ 1

|S|
∑︁
𝑗∈S

( ∑︁
𝑖∈V (ts)

𝜔 (𝑖, 𝑗)
|Y |∑︁
𝑘=1

𝜂𝑘 (𝑖)L
𝛾

𝑗,𝑘
−

|Y |∑︁
𝑘=1

𝜂𝑘 ( 𝑗)L
𝛾

𝑗,𝑘

)
,

where the last inequality is valid since ∀𝑘 ∈ {1, . . . , |Y|},∀𝑖 ∈
V(ts), 𝑗 ∈ S,L𝛾/2

𝑖,𝑘
≤ L𝛾

𝑖,𝑘
due to ∥�̂�𝑖−�̂�𝑗 ∥∞ ≤ ∥𝑯𝑖−𝑯 𝑗 ∥2

∏𝐿
𝑙=1

∥𝑾𝑙 ∥2
≤ Δ(S)𝑇𝐿

ℎ
≤ 𝛾

4
, as the proof of Lemma 5 in [23] has shown.

1

|S|
∑︁
𝑗∈S

( ∑︁
𝑖∈V (ts)

𝜔 (𝑖, 𝑗)
|Y |∑︁
𝑘=1

𝜂𝑘 (𝑖)L
𝛾

𝑗,𝑘
−

|Y |∑︁
𝑘=1

𝜂𝑘 ( 𝑗)L
𝛾

𝑗,𝑘

)
=

1

|S|
∑︁
𝑗∈S

∑︁
𝑖∈V (ts)

(
𝜔 (𝑖, 𝑗)

|Y |∑︁
𝑘=1

𝜂𝑘 (𝑖)L
𝛾

𝑗,𝑘
− 𝜔 ′ (𝑖, 𝑗)

|Y |∑︁
𝑘=1

𝜂𝑘 ( 𝑗)L
𝛾

𝑗,𝑘

)
=

1

|S|
∑︁
𝑗∈S

∑︁
𝑖∈V (ts)

|Y |∑︁
𝑘=1

L𝛾

𝑗,𝑘

(
𝜔 (𝑖, 𝑗)𝜂𝑘 (𝑖) − 𝜔 ′ (𝑖, 𝑗)𝜂𝑘 ( 𝑗)

)
=

1

|S|
∑︁
𝑗∈S

∑︁
𝑖∈V (ts)

|Y |∑︁
𝑘=1

L𝛾

𝑗,𝑘

(
(𝜔 (𝑖, 𝑗) − 𝜔 ′ (𝑖, 𝑗))𝜂𝑘 (𝑖)

+ 𝜔 ′ (𝑖, 𝑗) (𝜂𝑘 (𝑖) − 𝜂𝑘 ( 𝑗))
)

≤ 1

|S|
∑︁
𝑗∈S

∑︁
𝑖∈V (ts)

|Y |∑︁
𝑘=1

L𝛾

𝑗,𝑘
(𝜔 (𝑖, 𝑗) − 𝜔 ′ (𝑖, 𝑗))𝜂𝑘 (𝑖) + |Y|𝑐Δ(S),

where the last inequality comes from that ∀𝑘 ∈ {1, . . . , |Y|},∀𝑖 ∈
V(ts), 𝑗 ∈ S, 𝜂𝑘 (𝑖)−𝜂𝑘 ( 𝑗) ≤ ∥𝑯𝑖−𝑯 𝑗 ∥ ≤ 𝑐Δ(S), and∀𝑖, 𝑗, 𝜔′ (𝑖, 𝑗) ≥
0 and is positive only if ∥𝑯𝑖−𝑯 𝑗 ∥ ≤ Δ(S), and∀𝑗,∑𝑖∈V (ts) 𝜔

′ (𝑖, 𝑗) =
1.

The remaining difficulty is to bound the first term:

1

|S|
∑︁
𝑗∈S

∑︁
𝑖∈V (ts)

|Y |∑︁
𝑘=1

L𝛾

𝑗,𝑘
(𝜔 (𝑖, 𝑗) − 𝜔 ′ (𝑖, 𝑗))𝜂𝑘 (𝑖)

≤ 1

|S|
∑︁
𝑗∈S

∑︁
𝑖∈V (ts)

|𝜔 (𝑖, 𝑗) − 𝜔 ′ (𝑖, 𝑗) |

(as 0 ≤ L𝛾

𝑗,𝑘
≤ 1, 0 ≤ 𝜂𝑘 (𝑖), and

∑︁
𝑘

𝜂𝑘 (𝑖) = 1),

where the RHS is minimized by adjusting 𝜔 (𝑖, 𝑗) and 𝜔 ′ (𝑖, 𝑗) in a

way that “mostly reducing the wasted flow” in the flow network

corresponding to S as Definition 5.2 introduced. Specifically, the

RHS can be as small as
2( |S |−𝑓 𝑙𝑜𝑤 (S) )

|S | , where no matter 𝜔 (𝑖, 𝑗) <
𝜔 ′ (𝑖, 𝑗) or 𝜔 (𝑖, 𝑗) > 𝜔 ′ (𝑖, 𝑗), it means a waste happened either at

an edge from the source node to the test node 𝑖 or at an edge from

the training node 𝑗 to the target node.

Combining all the above results, we know that L𝛾/2
V (ts)

(𝑓 ) −

L𝛾

S (𝑓 ) ≤
2( |S |−𝑓 𝑙𝑜𝑤 (S) )

|S | + |Y|𝑐Δ(S).
□

Then the remaining path toward completing the proof of Theo-

rem 3 is mostly the same as that in [23]. As our focus is the gen-

eralization risk of different subsets of training nodes rather than

the performance fairness among different subgroups of test nodes,

we no longer need to index different subgroups yet use S𝑘 , 𝑘 ≤ 𝑛

11
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to index the subsets produced by our algorithm, where |S𝑘 | = 𝑘 .

It is worth noticing that 𝑘 is not allowed to be arbitrarily close to

zero. In practice, data pruning is promising when 𝑛 is extremely

large, namely, there is a lot of redundancy in the data. However, it

certainly leads to performance corruption if the remaining training

sample is too small. Moreover, our theoretical result has a require-

ment that |S| should be large enough, where the specific sense will
be detailed later.

Then, based on the above assumptions and lemma, our counter-

part of Lemma 6 in [23] should be stated as follows:

Lemma 6 ([23]). Under the Assumption 5.1 and 5.2, for any of

our considered subset S𝑘 , any 0 < 𝜆 ≤ 𝑘2𝛼 and any 𝛾 ≥ 0, Prior

distribution 𝑃 onH is defined as in Assumption 5.2. Then we have:

lnEℎ∼𝑃 [𝑒
𝜆 (L𝛾/4

V(ts)
(ℎ)−L𝛾/2

S𝑘
(ℎ) ) ]

≤ ln 3 + 𝜆

(
2(𝑘 − 𝑓 𝑙𝑜𝑤 (S𝑘 ))

𝑘
+ |Y|𝑐Δ(S𝑘 )

)
.

The proof is the same as that in [23] except for the difference in

assumed value that will be used in the derivation. Hence, we omit

a copy of it here.

Again for the same reason, an intermediate result of the Theorem

1 in [26] needs to be changed according to our cases as follows:

Lemma 7 ([26]). Let
˜ℎ be any classifier in H with parameters

{�̃�𝑙 }𝐿𝑙=1. Define
˜𝛽 = (∏𝐿

𝑙=1
∥�̃�𝑙 ∥2)

1

𝐿 . Let {𝑼𝑙 }𝐿𝑙=1 be the random
perturbation to be applied to {�̃�𝑙 }𝐿𝑙=1, and �̃�𝑙 ∼ N(0, 𝜎2𝑰 ). Again
define 𝐵𝑘 as in Assumption 5.3. If for any of our considered subset

S𝑘 :

𝜎 ≤ 𝛾

84𝐿𝐵𝑘𝛽
𝐿−1√𝑏 ln 4𝑏𝐿

,

and 𝛽 is any constant satisfying | ˜𝛽 − 𝛽 | ≤
˜𝛽

𝐿
, then regarding the

randomness of {𝑼𝑙 }𝐿𝑙=1:

𝑃

(
max

𝑖∈V (ts)∪S𝑘

∥ ˜ℎ𝑖 (𝑯 ; {�̃�𝑙 }𝐿𝑙=1) − ˜ℎ𝑖 (𝑯 ; {�̃�𝑙 + 𝑼𝑙 }𝐿𝑙=1)∥∞ <
𝛾

8

)
>

1

2

,

Similarly, the Theorem 5 in [23] needs to be changed according

to our cases as follows:

Theorem 8 ([23]). Any ˜ℎ ∈ H , for any of our considered sub-
set S𝑘 , for any 𝜆 > 0 and 𝛾 ≥ 0, for any “prior” distribution 𝑃

on H that is independent of S𝑘 , with probability 1 − 𝛿 over the
sample of 𝑦𝑖 , 𝑖 ∈ S𝑘 , for any probability distribution 𝑄 on H s.t.,

𝑃ℎ∼𝑄
(
max𝑖∈V(ts)∪S𝑘

∥ℎ𝑖 (𝑯 ) − ˜ℎ𝑖 (𝑯 )∥∞ <
𝛾
8

)
> 1

2
, we have

L0

V(ts) ( ˜ℎ) ≤ ˆL𝛾

S𝑘
( ˜ℎ) + 1

𝜆

(
2(𝐷KL (𝑄 ∥𝑃) + 1) + ln

1

𝛿
+ 𝜆2

4𝑘

+ lnEℎ∼𝑃𝑒
𝜆 (L𝛾/4

V(ts) (ℎ)−L𝛾/2
S𝑘

(ℎ) ) )
.

Finally, combining all the above assumptions and results, we

reach our Theorem 3, which we re-state as follows:

Theorem 9. For any ˜ℎ ∈ H with parameters {�̃�𝑙 }𝐿𝑙=1. Under
Assumptions 5.1,5.2, and 5.3, for any of our considered subset S𝑘 that
ensures 𝑘 large enough, for any 𝛾 ≥ 0, with probability at least 1 − 𝛿

over the sample of 𝑦𝑖 , 𝑖 ∈ S𝑘 , we have

L0

V(ts) ( ˜ℎ) ≤ ˆL𝛾

S𝑘
( ˜ℎ) +𝑂

(𝑏∑𝐿
𝑙=1

∥�̃�𝑙 ∥2F
𝑘𝛼 (𝛾/8)2/𝐿

Δ(S𝑘 )2/𝐿+

1

𝑘2𝛼
ln

𝐿𝐶 (2𝐵𝑘 )1/𝐿

𝛾1/𝐿𝛿
+ 1

𝑘1−2𝛼
+

(𝑘 − 𝑓 𝑙𝑜𝑤 (S𝑘 ))
𝑘

+ |Y|𝑐Δ(S𝑘 )
)
.

Proof. The logic for proving our theorem is the same as that

for proving the Theorem 6 in [23]. We just elaborate on the equa-

tions with different terms in our cases, and highlight some crucial

differences.

In our cases, for a specific 𝛽 , to satisfy Lemma 6 and Lemma 7,

we would let 𝜎 take (at most):

min

( (𝛾/8Δ(S𝑘 ))1/𝐿√︁
2𝑏 (𝜆𝑘−𝛼 + ln 2𝑏𝐿)

,
𝛾

84𝐿𝐵𝑘𝛽
𝐿−1√𝑏 ln 4𝑏𝐿

)
.

By considering a prior distribution 𝑃 sampling vectorized MLP

parameters fromN(0, 𝜎2𝑰 ) and a posterior𝑄 that adds perturbation

obeying the same distribution as 𝑃 to {�̃�𝑙 }𝐿𝑙=1, then for any
˜ℎ whose

{�̃�𝑙 }𝐿𝑙=1 has a
˜𝛽 satisfying | ˜𝛽 − 𝛽 | ≤

˜𝛽

𝐿
, Lemma 7 tells us that the

condition Theorem 8 requires is satisfied. Meanwhile, as Lemma 6

has been satisfied, with probability 1 − 𝛿 ,

L0

V (ts)
( ˜ℎ) − ˆL𝛾

S𝑘
( ˜ℎ)

≤ 1

𝜆

(
2(𝐷KL (𝑄 ∥𝑃) + 1) + ln

1

𝛿
+ 𝜆2

4𝑘
+

ln 3 + 𝜆

(
2(𝑘 − 𝑓 𝑙𝑜𝑤 (S𝑘 ))

𝑘
+ |Y|𝑐Δ(S𝑘 )

))
=

2

𝑘2𝛼
𝐷KL (𝑄 ∥𝑃) + 1

𝑘2𝛼
(ln 3

𝛿
+ 2) + 1

4𝑘1−2𝛼
+(

2(𝑘 − 𝑓 𝑙𝑜𝑤 (S𝑘 ))
𝑘

+ |Y|𝑐Δ(S𝑘 )
)
,

where we take 𝜆 = 𝑘2𝛼 as Lemma 6 allows.

Different from [23], which just needs |V(tr) | to be large
enough, we should restrict our scope to subsets that have
large enough cardinality. Specifically, the considered 𝑘 should

be large enough to satisfy:

(𝛾/8Δ(S𝑘 ))1/𝐿√︁
2𝑏 (𝑘𝛼 + ln 2𝑏𝐿)

<
𝛾

84𝐿𝐵𝑘𝛽
𝐿−1√𝑏 ln 4𝑏𝐿

,

which is viable since 𝐵𝑘 and 𝛽 are upper bounded by Assump-

tion 5.3.

Then, combining the fact that 𝐷KL (𝑄 ∥𝑃) <
∑𝐿

𝑙=1
∥ ˜𝑾𝑙 ∥2

F

2𝜎2
and the

considered value of 𝜎 , we have that, with probability at least 1 − 𝛿 ,

12
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L0

V (ts)
( ˜ℎ) − ˆL𝛾

S𝑘
( ˜ℎ)

≤
2𝑏 (𝑘𝛼 + ln 2𝑏𝐿)∑𝐿

𝑙=1
∥�̃�𝑙 ∥2F

𝑘2𝛼 (𝛾/8Δ(S𝑘 ))2/𝐿
+ 1

𝑘2𝛼
(ln 3

𝛿
+ 2) + 1

4𝑘1−2𝛼
+(

2(𝑘 − 𝑓 𝑙𝑜𝑤 (S𝑘 ))
𝑘

+ |Y|𝑐Δ(S𝑘 )
)

≤𝑂
(𝑏∑𝐿

𝑙=1
∥�̃�𝑙 ∥2F

𝑘𝛼 (𝛾/8)2/𝐿
Δ(S𝑘 )2/𝐿 + 1

𝑘2𝛼
ln

1

𝛿
+ 1

𝑘1−2𝛼
+

(𝑘 − 𝑓 𝑙𝑜𝑤 (S𝑘 ))
𝑘

+ |Y|𝑐Δ(S𝑘 )
)
.

The remaining part is the same as [23], which, in our case, needs

to replace 𝛿 by
𝛾1/𝐿𝛿

𝐿𝐶 (2𝐵𝑘 )1/𝐿
. Thus, the final result becomes:

L0

V (ts)
( ˜ℎ) − ˆL𝛾

S𝑘
( ˜ℎ)

≤𝑂
(𝑏∑𝐿

𝑙=1
∥�̃�𝑙 ∥2F

𝑘𝛼 (𝛾/8)2/𝐿
Δ(S𝑘 )2/𝐿 + 1

𝑘2𝛼
ln

𝐿𝐶 (2𝐵𝑘 )1/𝐿

𝛾1/𝐿𝛿
+ 1

𝑘1−2𝛼
+

(𝑘 − 𝑓 𝑙𝑜𝑤 (S𝑘 ))
𝑘

+ |Y|𝑐Δ(S𝑘 )
)
.

□

C MORE EXPERIMENTAL RESULTS
Considering that different representations may have an impact on

the performance of Algorithm 1, we conduct comparative analysis

by executing Algorithm 1 on ogbn-products, using our representa-

tion and the representation pre-trained by GVAE [17], respectively,

and comparing their resulting ranking list of training nodes. For

each ranking list, how model performance scales is shown in Fig-

ure 8. Clearly, the pre-trained representation is surpassed by our

simple yet effective random walk-based representation 𝑯 . Out of

our expectation, performance with the pre-trained representation

is even worse than random pruning in some intervals. GVAE [17]

is generally used to restore the edges between nodes, therefore,

the information contained in the representation pre-trained by

GVAE [17] may be not suitable for node classification tasks.
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Figure 8: Comparison of different representations 𝑇 .
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