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Empirical auditing has emerged as a means of catching some
of the flaws in the implementation of privacy-preserving
algorithms. Existing auditing mechanisms, however, are
either computationally inefficient — requiring multiple runs
of the machine learning algorithms —- or suboptimal in
calculating an empirical privacy. In this work, we present a
tight and efficient auditing procedure and analysis that can
effectively assess the privacy of mechanisms. Our approach
is efficient; similar to the recent work of Steinke, Nasr,
and Jagielski (2023), our auditing procedure leverages the
randomness of examples in the input dataset and requires
only a single (training) run of the target mechanism. And it
is more accurate; we provide a novel analysis that enables
us to achieve tight empirical privacy estimates by using the
hypothesized f-DP curve of the mechanism, which provides
a more accurate measure of privacy than the traditional €, ¢
differential privacy parameters. We use our auditing procure
and analysis to obtain empirical privacy, demonstrating that
our auditing procedure delivers tighter privacy estimates.

1. Introduction

Differentially private machine learning (Chaudhuri et al.,
2011; Abadi et al., 2016) has emerged as a principled so-
lution to learning models from private data while still pre-
serving privacy. Differential privacy (Dwork, 20006) is a
cryptographically motivated definition, which requires an
algorithm to possess certain properties: specifically, a ran-
domized mechanism is differentially private if it guarantees
that the participation of any single person in the dataset does
not impact the probability of any outcome by much.

Enforcing this guarantee requires the algorithm to be care-
fully designed and analyzed. The process of designing and
analyzing such algorithms is prone to errors and imperfec-
tions as has been noted in the literature (Tramer et al., 2022).
A result of this is that differentially private mechanisms may
not perform as intended, either offering less privacy than
expected due to flaws in mathematical analysis or implemen-
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tation, or potentially providing stronger privacy guarantees
that are not evident through a loose analysis.

Empirical privacy auditing (Ding et al., 2018; Nasr et al.,
2023; Jagielski et al., 2020) has emerged as a critical tool to
bridge this gap. By experimentally assessing the privacy of
mechanisms, empirical auditing allows for the verification
of privacy parameters. Specifically, an audit procedure is
a randomized algorithm that takes an implementation of a
mechanism M, runs it in a black-box manner, and attempts
to test a privacy hypothesis (such as, a differential privacy
parameter). The procedure outputs O if there is sufficient ev-
idence that the mechanism does not satisfy the hypothesized
guarantees and 1 otherwise. The audit mechanism must
possess two essential properties: 1) it must have a provably
small false-negative rate, ensuring that it would not erro-
neously reject a truly differentially private mechanism, with
high probability; 2) it needs to empirically exhibit a “rea-
sonable” false positive rate, meaning that when applied to a
non-differentially private mechanism, it would frequently
reject the privacy hypothesis. The theoretical proof of the
false positive rate is essentially equivalent to privacy ac-
counting (Abadi et al., 2016; Dong et al., 2019; Mironov,
2017), which is generally thought to be impossible in a
black-box manner (Zhu et al., 2022).

The prior literature on empirical audits of privacy consists of
two lines of work, each with its own set of limitations. The
first line of work (Ding et al., 2018; Jagielski et al., 2020;
Tramer et al., 2022; Nasr et al., 2023) runs a differentially
private algorithm multiple times to determine if the privacy
guarantees are violated. This is highly computationally in-
efficient for most private machine learning use-cases, where
running the algorithm involves training a large model.

Recent work (Steinke et al., 2023) remove this limitation
by proposing an elegant auditing method that runs a differ-
entially private training algorithm a single time. In particu-
lar, they rely on the randomness of training data to obtain
bounds on the false negative rates of the audit procedure. A
key limitation of the approach in (Steinke et al., 2023) is that
their audit procedure is sub-optimal in the sense that there is
a relatively large gap between the true privacy parameters of
mainstream privacy-preserving algorithms (e.g., Gaussian
mechanism) and those reported by their auditing algorithm.

In this work, we propose a novel auditing procedure that is



Auditing f-Differential Privacy in One Run

computationally efficient and accurate. Our method requires
only a single run of the privacy mechanism ! and leverages
the f-DP curve (Dong et al., 2019), which allows for a
more fine-grained accounting of privacy than the traditional
reliance on ¢, parameters. By doing so, we provide a
tighter empirical assessment of privacy.

We experiment with our approach on both simple Gaussian
mechanisms as well as a model trained on real data witth
DP-SGD. Our experiments show that our auditing procedure
can significantly outperform that of (Steinke et al., 2023)
(see Figure 1). This implies that better analysis may enable
relatively tight auditing of differentially privacy guarantees
in a computationally efficient manner in the context of large
model training.

Technical overview: We briefly summarize the key tech-
nical components of our work and compare it with that of
Steinke et al. (2023). Their auditing procedure employed
a game similar to a membership inference process: the au-
ditor selects a set of canaries and, for each canary, decides
whether to inject it into the training set with independent
probability 0.5. Once model training is completed, the au-
ditor performs a membership inference attack to determine
whether each canary was included. The number of correct
guesses made by the adversary in this setting forms a ran-
dom variable. The key technical contribution of Steinke et
al. was to establish a tail bound on this random variable
for mechanisms satisfying (¢)-DP. Specifically, they demon-
strated that the tail of this random variable is bounded by
that of a binomial distribution, binomial(n, p), where n is
the number of canaries and p = e:ﬁ To extend this anal-
ysis to approximate DP mechanisms, they further showed
that the probability of the adversary’s success exceeding this
tail bound is at most O(n - 4).

Steinke et al. highlighted a limitation in their approach in
auditing specific mechanisms, such as the Gaussian mech-
anism. They correctly argue that simplifying the mecha-
nism’s behavior to just two parameters, (¢, §) , results in sub-
optimal auditing of specific mechanisms. In other words,
the effectiveness of membership inference attacks against
the Gaussian mechanism differs significantly from predic-
tions based solely on the (e, d) parameters. To overcome
this limitation, we propose auditing the entire privacy curve
of a mechanism, rather than focusing solely on (¢, ¢). Our
solution involves three key technical steps:

1. We derive an upper bound on the adversary’s success
in correctly guessing a specific canary for mechanisms

'In the context of privacy-preserving training of machine learn-
ing models, the privacy mechanism refers to the training algorithm.
Therefore, when we mention a single run, we are specifically re-
ferring to a single execution of the training algorithm, not the
inference algorithm.

satisfying f-DP. This bound is an improved version of
the result by (Hayes et al., 2023) for bounding train-
ing data reconstruction in DP mechanisms. However,
this is insufficient, as the adversary’s guesses could be
dependent, potentially leading to correlated successes
(e.g., correctly or incorrectly guessing all samples).

2. To address the issue of dependency, we refine our anal-
ysis by defining p; as the probability of the adversary
making exactly % correct guesses. We derive a recursive
relation that bounds p; based on pq, ..., p;_1. This re-
cursive bound is the main technical novelty of our work.
To derive this bound, we consider two conditions: the
adversary correctly guesses the first canary or not. In
the first case, we use our analysis from Step 1 to bound
the probability of making 7 — 1 correct guesses given
that the first guess was correct. For the incorrect guess
case, we perform a combinatorial analysis to eliminate
the condition. This analysis uses the fact that shuffling
of the canaries does not change the probabilities of
making ¢ correct guesses. We note that it is crucial
not to use the analysis of Step 1 for both cases. This
is because the analysis of Step 1 cannot be tight for
both cases at the same time. Finally, leveraging the
convexity of trade-off functions and applying Jensen’s
inequality, we derive our final recursive relation. To the
best of our knowledge, This combination of trade-off
function with shuffling is a new technique and could
have broader applications.

3. Finally, we design an algorithm that takes advantage of
the recursive relation to numerically calculate an upper
bound on the tail of the distribution. The algorithm is
designed carefully so that we do not need to invoke the
result of step 2 for very small events.

We also generalize our analysis to a broader notion of canary
injection and membership inference. Specifically, we utilize
a reconstruction game where the auditor can choose among
k options for each canary point, introducing greater entropy
for each choice. This generalization allows for auditing
mechanisms with fewer canaries.

In the rest of the paper, we first introduce the notions of
f-DP and explain what auditing based on f-DP entails. We
then present our two auditing procedures based on mem-
bership inference and reconstruction attacks (Section 2). In
Section 3, we provide a tight analysis of our audit’s accuracy
based on f-DP curves. Finally, in Section 4, we describe
the experimental setup used to compare the bounds.

2. Auditing f- differential privacy

Auditing privacy involves testing a “’privacy hypothesis”
about an algorithm M. Different mathematical forms can be
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used for a ’privacy hypothesis,” but they all share the com-
mon characteristic of being about an algorithm/mechanism
M. For example, one possible hypothesis is that applying
SGD with specific hyperparameters satisfies some notion
of privacy. With this in mind, the privacy hypothesis are
often mathematical constraints on the sensitivity of the al-
gorithm’s output to small changes in its input. The most
well-known definition among these is differential privacy.

Definition 2.1. A mechanism M is (¢, ¢)-DP if for all neigh-
boring datasets S, S” with |[SAS’| = 1 and all measurable
sets T, we have Pr[M(S) € T| < e*Pr[M(S’) € T] + 6.

In essence, differential privacy ensures that the output distri-
bution of the algorithm does not heavily depend on a single
data point. Based on this definition, one can hypothesize
that a particular algorithm satisfies differential privacy with
certain € and § parameters. Consequently, auditing differen-
tial privacy involves designing a test for this hypothesis. We
will later explore the desired properties of such an auditing
procedure. However, at present, we recall a stronger notion
of privacy known as f-differential privacy.

Notation For a function f: [0,1] — [0,1] we use f to
denote the function f(z) =1 — f(x).

Definition 2.2. A mechanism M is f-DP if for all neigh-
boring datasets S, S’ and all [SAS’| = 1 measurable sets
T we have

Pr[M(S) € T] < f(Pr[M(S')] € T}).

Note that this definition generalizes the notion of approx-
imate differential privacy by allowing a more complex re-
lation between the probability distributions of M (.S) and
M (S"). The following proposition shows how one can ex-
press approximate DP as an instantiation of f-DP.

Proposition 2.3. A mechanism is (¢,6)-DP if it is f-DP
with respect to f(x) = e - x + 6.

Although the function f could be an arbitrary function,
without loss of generality, we only consider a specific class
of functions in this notion.

Remark 2.4. Whenever we say that a mechanism satisfies f-
DP, we implicitly imply that f is a valid trade-off function .
Thatis, f is defined on domain [0, 1] and has a range of [0, 1].
Moreover, f is a decreasing and convex with f(z) <1 —z
for all z € [0, 1]. We emphasize that this is without loss
of generality. That is, if a mechanism is f-DP for a an
arbitrary function f : [0, 1] — [0, 1], then it is also f'-DP
for valid trade-off function f’ with f/(z) < f(z) for all
x € [0,1] (See Proposition 2.2 in (Dong et al., 2019)).

Definition 2.5 (Order of f-DP curves). For two trade-off
functions f; and fo, we say f; is more private than fo
and denote it by f1 > fo iff fi(z) > fo(x) forall z €

[0,1]. Also, for a family of trade-off functions F', we use
mazimal(F) to denote the set of maximal elements w.r.t to
the privacy relation. Note that F' could be a partial ordered
set, and mazimal(F') may have multiple elements.

Now that we have defined our privacy hypothesis, we can
turn our attention to auditing these notions.

Definition 2.6 (Auditing f-DP). An audit procedure takes
the description of a mechanism M, a trade-off function f,
and outputs a bit that determines whether the mechanism
satisfies f-DP or not. We define it as a two-step procedure.

e game: M — O, In this step, the auditor runs a po-
tentially randomized experiment/game using the de-
scription of mechanism M &€ M and obtains some
observation o € O.

¢ evaluate : O x F' — {0,1}, In this step, the auditor
will output a bit b based on an observation o and a
trade-off function f. This audit operation tries to infer
whether the observation o is “likely” for a mechanism
that satisfies f-DP.

The audit procedure is 1-accurate if for all mechanism M
that satisfy f-DP, we have
Pr  [evaluate(o, f) = 1] > .

o<—game(M)

Note that we are defining the accuracy only for positive
cases. This is the only guarantee we can get from attacks.
For guarantees in negative cases, we need to perform privacy
accounting for the mechanism (Wang et al., 2023).

Next, we formally define the notion of empirical pri-
vacy (Nasr et al., 2021) based on an auditing procedure.
This notion provides the best privacy guarantee that is not
violated by auditors’ observation from a game setup.

Definition 2.7 (Empirical Privacy). Let (game, evaluate)
be an audit procedure. We define the empirical privacy
random variable for a mechanism M, w.r.t a family F' of
trade-off functions, to be the output of the following process.
We first run the game to obtain observation o = game(M).
We then construct

F, = maximal({f € F;evaluate(o, f) = 1})

where the maximal set is constructed according to Definition
2.5. Then, the empirical privacy of the mechanism at a
particular ¢ is defined as

l—fir) 75)'

€(d) = min max lo
(9) fEF, z€[0,1] 9(
Note that the empirical privacy €(d) is a function of the
observation o. Since, o itself is a random variable, then €(0)
is also a random variable.



Auditing f-Differential Privacy in One Run

How to choose the family of trade-off functions? The
family of trade-off functions should be chosen based on
the expectations of the true privacy curve. For example, if
one expects the privacy curve of a mechanism to be similar
to that of a Gaussian mechanism, then they would choose
the set of all trade-off functions imposed by a Gaussian
mechanism as the family. For example, many believe that
in the hidden state model of privacy (Ye & Shokri, 2022),
the final model would behave like a Gaussian mechanism
with higher noise than what is expected from the accounting
in the white-box model (where we assume we release all
the intermediate models). Although we may not be able
to prove this hypothesis , we can use our framework to
calculate the empirical privacy, while assuming that the
behavior of the final model would be similar to that of a
Gaussian mechanism.

Auditing f-DP vs DP:  f-DP can be viewed as a collec-
tion of DP parameters, where instead of considering (¢, )
as fixed scalars, we treat ¢ as a function of . For any
d € [0,1], there exists an €(d) such that the mechanism
satisfies (¢(d), d)-DP. The f-DP curve effectively represents
the entire privacy curve rather than a single (¢, ¢) pair. Thus,
auditing f-DP can be expected to be more effective, as
there are more constraints that need to be satisfied. A naive
approach for auditing f-DP is to perform an audit for ap-
proximate DP at each (¢, §) value along the privacy curve,
rejecting if any of the audits fail. However, this leads to sub-
optimal auditing performance. First, the auditing analysis
involves several inequalities that bound the probabilities of
various events using differential privacy guarantees. The
probability of these events could take any number between
[0, 1]. Using a single (¢, d) value to bound the probability
of all these events cannot be tight because the linear ap-
proximation of privacy curve is tight in at most a single
point. Hence, the guarantees of (¢, §)-DP cannot be simul-
taneously tight for all events. However, with f-DP, we can
obtain tight bounds on the probabilities of all events simulta-
neously. Second, For each (¢, ) we have a small possibility
of incorrectly rejecting the privacy hypothesis. So if we
audit privacy for (¢(0), ) independently, we will reject any
privacy hypothesis with probability 1.0. This challenge can
be potentially resolved by using correlated randomness.

To demonstrate this key difference, we try a baseline for d
auditing f-DP based on the work of (Steinke et al., 2024b)?.
In this baseline, we consider a gaussian mechanism with
noise o. Then, we audit the privacy curve at various values
of . For this, we need to make sure that we run the attack
once (the correlated randomness mentioned above), so we
fix the number of guesses to be the optimal choice for 6 =
10~°. Then we observe the attack’s performance and apply

This experiment was suggested by our anonymous reviewer.
We than the reviewer for their suggestion.

the method of (Steinke et al., 2024b). We observe that this
improves the performance over the plain method but there
it still has large gap with direct f-DP auditing. The details
and results of this experiment are reported in Section 4.2.

2.1. Guessing games

Here, we introduce the notion of guessing games which is a
generalization of membership inference attacks (Nasr et al.,
2023), and closely resembles the reconstruction setting in-
troduced in (Hayes et al., 2023).

Definition 2.8. Consider a mechanism M : [k]™ — ©. In
a guessing game we first sample an input dataset u € [k]™
from an arbitrary distribution. We run the mechanism to
get § ~ M(u). Then a guessing adversary A : © —
([k]U{L})™ tries to guess the input to the mechanism from
the output. We define

+ the number of guesses by ¢’ = > | I(A(f); # 1)

e and the number of correct guesses by ¢ =

S I(A(0): = wy).
Then we output (¢, ¢') as the output of the game.

These guessing games are integral to our auditing strategies.
We outline two specific ways to instantiate the guessing
game. The first procedure is identical to that described in
the work of (Steinke et al., 2023) and resembles membership
inference attacks. The second auditing algorithm is based
on the reconstruction approach introduced by (Hayes et al.,
2023). In Section 3, we present all of our results in the
context of the general notion of guessing games, ensuring
that our findings extend to both the membership inference
and reconstruction settings.

Auditing by membership inference: Algorithm 1 de-
scribes a game setup based on membership inference at-
tacks. In this setup, we have a fixed training set 7 and a
set of canaries C. We first sample a subset S of the canaries
using poisson sampling. Then we run the mechanism M on
T US to get amodel § ~ M(T US). Then the adversary
A inspects 6 and tries to find examples that were present
in S. Observe that this procedure is a guessing game with
k = 2 and m = |C|. This is simply because the adversary is
guessing between two choices for each canary, it is either
included or not included. Note that this procedure is modu-
lar, we can use any 7 and C for the training set and canary
set. We can also use any attack algorithm A.

We note that membership inference attacks have received
a lot of attention recently (Homer et al., 2008; Shokri
et al., 2017; Leino & Fredrikson, 2020; Bertran et al., 2024;
Hu et al., 2022; Matthew et al., 2023; Duan et al., 2024;
Zarifzadeh et al., 2023). These attack had a key difference
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from our attack setup and that is the fact that there is only
a single example that the adversary is trying to make the
inference for. Starting from the work of (Shokri et al., 2017),
researchers have tried to improve attacks in various settings
(Ye et al., 2022; Zarifzadeh et al., 2023). For example, using
calibration techniques has been an effective way to improve
membership inference attacks (Watson et al., 2021; Carlini
et al., 2022). Researchers have also changed their focus
from average case performance of the attack to the tails of
the distribution and measured the precision at low recall
values (Ye et al., 2022; Nasr et al., 2021).

A substantial body of research has also explored the relation-
ship between membership inference attacks and differential
privacy (Sablayrolles et al., 2019; Mahloujifar et al., 2022;
Balle et al., 2022; Bhowmick et al., 2018; Stock et al., 2022;
Balle et al., 2022; Guo et al., 2022; Kaissis et al., 2023;
2024), using this connection to audit differential privacy
(Steinke et al., 2024a; Pillutla et al., 2024; Jagielski et al.,
2020; Ding et al., 2018; Bichsel et al., 2018; Nasr et al.,
2021; 2023; Steinke et al., 2024b; Tramer et al., 2022; Bich-
sel et al., 2021; Lu et al., 2022; Andrew et al., 2023; Cebere
etal., 2024; Annamalai & De Cristofaro, 2024; Chadha et al.,
2024). Some studies have investigated empirical methods
to prevent membership inference attacks that do not rely
on differential privacy (Hyland & Tople, 2019; Jia et al.,
2019; Chen & Pattabiraman, 2023; Li et al., 2024; Tang
et al., 2022; Nasr et al., 2018). An intriguing avenue for
future research is to use the concept of empirical privacy to
compare the performance of these empirical methods with
provable methods, such as DP-SGD.

Algorithm 1 Membership inference in one run game

input Oracle access to a mechanism M(-), A training
dataset 7, An indexed canary set C = {x;;7 € [m]},
An attack algorithm A.

1: Setm = |C|

2: Sample v = (uy,...,Un) ~ Bernoulli(0.5)™, a bi-
nary vector where u; = 1 with probability 0.5.

3: Let S = {Clus];u; = 1}icpm. the subset of selected
elements in C.

4: Run mechanism M on 7 U S to get output 6.

5: Run membership inference attack A on 6 to get set
of membership predictions v = (v1, ..., v,,) which is
supported on {0, 1, L}™.

6: Count ¢, the number of correct guesses where u; = v;
and ¢’ the total number of guesses where v; # L.
return (c, ).

Auditing by reconstruction: We also propose an alter-
native way to perform auditing by reconstruction attacks.
This setup starts with a training set S;, similar to the mem-
bership inference setting. Then, we have a family of m

canary sets {S!;i € [m]} where each S’ contains k distinct
examples. Before training, we construct a set S of size m
by uniformly sampling an example from each S?. Then, the
adversary tries to find out which examples were sampled
from each canary set S! by inspecting the model. We recog-
nize that this might be different from what one may consider
a true “reconstruction attack”, because the adversary is only
performing a selection. However, if you consider the set
size to be arbitrary large, and the distribution on the set to be
arbitrary, then this will be general enough to cover various
notions of reconstruction. We also note that (Hayes et al.,
2023) use the same setup to measure the performance of the
reconstruction attacks.

Algorithm 2 Reconstruction in one run game

input Oracle access to a mechanism M(-), A training
dataset 7, number of canaries 1m, number of options for
each canary k, a matrix of canaries C = {2 }ic(m] je (ks
an attack algorthm A.

I: Letu = (uq,...
from [k]™.

2: LetS = {x:”}ie[m]‘

3: Run mechanism M on S U T to get output 6.

4: Run a reconstruction attack A on 6 to get a vector v =
(v1,..., v ) which is a vector in ([k] U {L})™.

5: Count ¢ the number of coordinates where u; = v; and
¢’ the number of coordinates where v; # L.
return (c, ).

, Um ) be a vector uniformly sampled

3. Implications of f-DP for guessing games

In this section, we explore the implications of f-DP for
guessing games. Specifically, we focus on bounding the
probability of making more than c correct guesses for adver-
saries that make at most ¢’ guesses. We begin by stating our
main theorem, followed by an explanation of how it can be
applied to audit the privacy of a mechanism.

Theorem 3.1. [Bounds for adversary with bounded
guesses] Let M : [k]™ — O be a f-DP mechanism. Let
u be a random variable uniformly distributed on [k|™. Let
A: © — ([k] U{L})™ be a guessing adversary which
always makes at most ¢’ guesses, that is

V6 € ©,Pr [(iI(A(e)i £1))>d| =0,
i=1

and let v = A(M(u)). Define p; = Pr [(Zje[m] I(u; =

vj)) = z} For all subset of indices T C [c'], we have

i ~ 1 d—i+1
—n; < i—1)-
Zmpz_f(k_lz m Di 1)

€T €T
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This Theorem, which we consider to be our main technical
contribution, provides a nice invariant that bounds the prob-
ability p; (probability of making exactly ¢ correct guesses)
based on the value of other p;s. Imagine P to be a set of
vectors p = (p1, - . . , e’ ) that could be realized for an attack
on a f-DP mechanism. Theorem 3.1 significantly confines
this set. However, this still does not resolve the auditing

task. We are interested in bounding max,¢ p, Zf; . Di» the
maximum probability that an adversary can make more
than ¢ correct guesses for an f-DP mechanism. Next, we
show how we can algorithmically leverage the limitations
imposed by Theorem 3.1 and calculate an upper bound on

/
c
maxpepy 3 i Pi-

3.1. Numerically bounding the tail

In this subsection, we specify our procedure for bounding
the tail of the distribution and hence the accuracy of our
auditing procedure. Our algorithm needs oracle access to f
and f and decides an upper bound on the probability of an
adversary making c correct guesses in a guessing game with
alphabet size k and a mechanism that satisfies f-DP. This
algorithm relies on the confinement imposed by Theorem
3.1. Note that Algorithm 3 is a decision algorithm, it takes
a value 7 and decide if the probability of making more than
c correct guesses is less than or equal to 7. We can turn this
algorithm to a estimation algorithm by performing a binary
search on the value of 7. However, for our use cases, we
are interested in a fixed 7. This is because we (similar to
(Steinke et al., 2023)) want to set the accuracy of our audit
to be a fixed value such as 0.95.

Algorithm 3 Numerically deciding an upper bound proba-
bility of making more than ¢ correct guesses

input Oracle access to f and f~!, number of guesses ¢/,

number of correct guesses ¢, number of samples m,

alphabet size k, probability threshold 7 (default is 7 =

0.05).

V0 < i < ecseth[i| =0, and r[i] = 0.

setr[c] =7 <

set hlc] =T -

foricc—1,...,0]do
Bli] = (k= 1)f 1
rlil =rli+1] + 7= -

end for

if 7[0] + h[0] > < then
Return True; (Probability of ¢ correct guesses (out of
') is less than 7).

10: else

11:  Return False; (Probability of having c correct guesses

(out of ¢’) could be more than 7).
12: end if

R A T o T

Theorem 3.2. If Algorithm 3 returns True on inputs

f.k,m,c,d and T, then for any f-DP mechanism
M: [E]™ — ©, any guessing adversary A: © — ([k] U
{L})™ with at most ¢’ guesses, defining u to be uni-
form over [k]™, and setting v. = A(M(u)), we have
Pr[(X0 I(wy=v;)) > < 7.

In a nutshell, this algorithm tries to obtain an upper bound
on the sum p. + pe4+1 + - . ., per. We assume this probability
is greater than 7, and we obtain lower bound on p._1 +
Pe + - -+ + po based on this assumption. We keep doing
this recursively until we have a lower bound on py + - - - +
per . If this lower bound is greater than 1, then we have a
contradiction and we return true. The detailed proof of this
Theorem is involved and requires careful analysis. We defer
the full proof of Theorem to appendix.

Auditing f-DP with Algorithm 3: When auditing the
f-DP for a mechanism, we assume we have injected m
canaries, and ran an adversary that is allowed to make ¢’
guesses and recorded that the adversary have made c correct
guesses. In such scenario, we will reject the hypothesized
privacy of the mechanism if the probability of this observa-
tion is less than a threshold 7, which we by default set to
0.05. To this end, we just call Algorithm 3 with parameters
¢, ¢, m, 7 = 0.05 and f. Then if the algorithm returns
True, we will reject the privacy hypothesis and approve it
otherwise.

Empirical privacy: Although auditing in essence is a hy-
pothesis testing, previous work has used auditing algorithms
to calculate empirical privacy as defined in definition 2.7. In
this work, we follow the same route. For simplicity, we only
consider an ordered set of privacy hypotheses hq, ..., hy
as our family of f-DP curves. These sets are ordered in
their strength, meaning that any mechanism that satisfies h;,
would also satisfy h; for all j < 4. Then, we would report
the strongest privacy hypothesis that passes the test as the
empirical privacy of the mechanism.

4. Experiments

Most of our experiments are conducted in an idealized set-
ting, similar to that used in (Steinke et al., 2023), unless
otherwise stated. In this setting, the attack success rate is
automatically calculated to simulate the expected number of
correct guesses by an optimal adversary (details of the ideal-
ized setting are provided in Algorithm 4 in Appendix). We
then use this expected number as the default value for the
number of correct guesses to derive the empirical e. More
specifically, as specified in Definition 2.6, we instantiate
our auditing with a game and evaluation setup. We use Al-
gorithm 4 in Appendix as our game setup. This algorithm
returns the number of guesses and the number of correct
guesses as the observations from the game. Then, we use
Algorithm 3 as our evaluation setup to audit an f-DP curve
based on the observation from Algorithm 4. Note that in our
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comparison with the auditing of Steinke et al., we always
use the same membership inference game setup (k = 2) as
defined in their work. This ensures that our comparison is
only on the evaluation part of the audit procedure.

In all experiments, we use empirical € as the primary metric
for evaluating our bounds.

f-DP candidates: As described in Section 3.1 , we need
an ordered set of f-DP curves to obtain empirical privacy.
In our experiments, we use f-DP curves for Gaussian mech-
anisms with varying standard deviations (this forms an or-
dered set because the f-DP curve of a Gaussian mechanism
with a higher standard deviation dominates that of a lower
standard deviation). For sub-sampled Gaussian mechanisms,
the ordered set consists of f-DP curves for sub-sampled
Gaussian mechanisms with fixed sub-sampling rates and
number of steps, and various noise stds.

4.1. Comparison with (Steinke et al., 2023)

In this section, we evaluate our auditing method for mem-
bership inference in an idealized setting, using the work
of (Steinke et al., 2023) as our main baseline. We compare
our approach directly to their work, which operates in the
same setting as ours.

Simple Gaussian Mechanism: In the first experiment
(Figure 1), we audit a simple Gaussian mechanism, varying
the standard deviations from [0.5, 1.0, 2.0, 4.0], resulting in
different theoretical € values. We vary the number of ca-
naries (m) from 102 to 107 for auditing, set the bucket size
to k = 2, and adjust the number of guesses (¢’) for each
number of canaries. For each combination of m, ¢’, and each
standard deviation, we calculate (c) using Algorithm 4 (the
idealized setting in appendix). This algorithm calculates the
expected number of correct guesses for an adversary who
observes the output of an m-dimensional gaussian mecha-
nism, V + N (0™, ), with V being a uniform sample from
{0,1}™. The adversary’s goal is to guess ¢’ coordinates
in V. cis calculated to be the expected number of correct
guesses by the optimal adversary. Note that this setup is
designed as the worst-case scenario for the gaussian mecha-
nism. After obtaining ¢, we then audit all tuples of (m, ¢, ¢’)
using the f-DP curves of the Gaussian mechanism. Then
we find the c that achieves the highest empirical € and then
report that as the empirical e. We audit the exact same setup
with the auditing method of (Steinke et al., 2024b). Figure
1 demonstrates that our approach outperforms the empirical
privacy results from Steinke et al. Interestingly, while the
bound in Steinke et al. (2023) degrades as the number of
canaries increases, our bounds continue to improve.

Experiments on CIFAR-10: We also run experiments
on CIFAR-10 on a modified version of the WRNI16-

4 (Zagoruyko & Komodakis, 2016) architecture, which sub-
stitutes batch normalization with group normalization. We
follow the setting proposed by (Sander et al., 2023), which
use custom augmentation multiplicity (i.e., random crop
around the center with 20 pixels padding with reflect, ran-
dom horizontal flip and jitter) and apply an exponential
moving average of the model weights with a decay param-
eter of 0.9999. We run white-box membership inference
attacks by following the strongest attack used in the work
of (Steinke et al., 2023), where the auditor injects multiple
canaries in the training set with crafted gradients. More
precisely, each canary gradient is set to zero except at a
single random index (“Dirac canary” (Nasr et al., 2023)).
Note that in the white-box attack, the auditor has access to
all intermediate iterations of DP-SGD. The attack scores are
computed as the dot product between the gradient update
during consecutive model iterates and the aggregated gra-
dients from dp-sgd. As done in the work of (Steinke et al.,
2023), we audit CIFAR-10 model with m = 5, 000 canaries
and all training points from CIFAR-10 n = 50, 000 for the
attack. We set the batch size to 4,096, using augumented
multiplicity of K = 16 and training for 2, 500 DP-SGD
steps. For ¢ = 8.0,5 = 10>, we achieved 77% accuracy
when auditing, compared to 80% without injected canaries.
Figure 2 shows the comparison between the auditing scheme
by (Steinke et al., 2023) with ours for different values of
theoretical €. We are able to achieve tighter empirical lower
bounds. We also report the performance of the black-box at-
tack, where the auditor does not control the training pipeline
and can only compute membership scores (losses) from the
final model. Figure 3 shows how we achieve tighter lower
bounds compared to Steinke et al. (2023) where we set
m = 1,000 and all training samples are used for auditing
(m = n). This corresponds to the stronger setup for the
black-box auditor in Steinke et al. (2023).

Finally, we report the results of auditing the robust mem-
bership inference attack (Zarifzadeh et al., 2023) (RMIA),
which to the best of our knowledge, represents the State-
of-The-Art (SoTA) black-box membership inference attack
on CIFAR-10 from the literature. We reproduce the results
in (Zarifzadeh et al., 2023) with a non-private WideResNet
model (with depth 28 and width 2) for 100 training epochs
on half of the dataset chosen at random resulting on a test
accuracy of 92.2%. We run the low-cost black-box member-
ship inference attack using 2 reference models in the offline
setting (Zarifzadeh et al., 2023). We audit with m = 5, 000
canaries and report in Figure 4 the comparison between our
scheme and (Steinke et al., 2023) with different abstention
values. Our auditing method clearly outperforms Steinke et
al. for all bounded guesses settings, with higher empirical
epsilon for larger abstention values (i.e., fewer guesses).
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Why is our bound better better than (Steinke et al.,
2023)? The bounds in Steinke et al. audit approximate
DP. That is, they take DP parameters (¢, d) and prove an
upper bound on the probability of any adversary obtaining
¢’ correct guesses out of ¢ total guesses, given m canaries
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Figure 4. Comparison with auditing procedure of (Steinke et al.,
2023) on non-private model trained on CIFAR-10 against black-
box RMIA method (Zarifzadeh et al., 2023). Empirical ¢ is
reported at § = 1075,

available. For the case of § = 0, their bound is tight. For
the case of & > 0, however, they need to define a set of
undesirable events and bound their collective probability.
This incurs an additional O(m - ) in the probability. The
reason why their bounds start to degrade when we increase
m is this very fact. The m - § term starts to dominate and
causes the empirical epsilon estimation to become worse.
The reason we do not observe this behavior is that we do not
use (¢, d) to approximate the privacy curve, we use the exact
curve as is. As we know, the linear approximation of privacy
curve is optimal only in a single point for mechanisms that
we are interested in (e.g. the Gaussian mechanism). Namely,
there is only a single probability p’ € [0, 1] where we have

p=Pr[M(D) € E] and e -p+d=Pr[M(D’) € E].

Our bound is designed to avoid this issue. We derive a
bound that uses the exact f-DP curve, which ensures that for
all probabilities p € [0, 1] the upper bound on the blow-up
of events of size p is tight. Moreover, the way we invoke our
Theorem 3.1 in our numerical estimation 3 is designed to
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Noise # Canaries Theoretical Steinke et al. Steinke et al. (pointwise) Ours
c=0.5 10° 9.99 4.99 5.01 8.16
oc=1.0 10° 437 2.61 2.71 3.61
o=2.0 10° 1.99 1.33 1.35 1.59
oc=4.0 106 0.92 0.61 0.67 0.82

Table 1. Comparison of empirical privacy Gaussian noise levels. The reported numbers of are empirical € at § = 1075,

apply the bound on events that can be simultaneously tight.
This way, our bound does not have the problem of getting
worse as the number of samples increases.

Note that this does not mean that there is no way to improve
our bound. We still see some gap between the empirical
epsilon and the true epsilon. The reason for this, we believe,
is in the way numerical tail bound in Algorithm 3.2 is de-
signed. In this algorithm, we make some relaxations that
can be a source of sub-optimality. Specifically, our analysis
benefits from the fact that the expectation of correct guesses,
conditioned on the correct guesses being greater than c di-
vided by the expectation incorrect guesses conditioned on
the same event is greater than ¢/c’. This step is not tight as
we cannot have a mechanism where the adversary makes
exactly c correct guesses with probability greater than 0,
while making more than c correct guesses with probability
exactly 0. For a more interested reader, Equations 6 and 7
in the proof of Theorem 3.2 is a source of sub-optimality
that future work can resolve.

4.2. Improving (Steinke et al., 2024b) by testing multiple
hypothesis.

In this section, we describe a method that uses the method
of (Steinke et al., 2024b) to audit f-DP. We use the idea
that if a mechanism satisfies f-DP, then for all § € [0, 1] it
should pass the DP audit for (es, d), where € is the optimal
€ obtained from f for J. A key issue here is that auditing in
one run will always suffer from probabilistic error. There is
a small chance 7 that the audit mechanism rejects the privacy
hypothesis incorrectly. When doing the test multiple times,
then we have to multiply the the failure probability by the
number of trials.

However, we can avoid this by using shared randomness
between trials. Specifically, if we only run the privacy game
once and use the output of the game to audit privacy for
different values of (¢, d), we can potentially avoid this mul-
tiplication. Here, we design an experiment that shows even
with this this approach, the bounds of previous work cannot
match ours. We try to auditing Gaussian DP. First we in-
stantiate a membership inference game with a fixed number
of canaries (m) and a fixed number of guesses (¢'). This is
optimized to achieve the best € at § = 1075, We collect the
number of correct guesses (c) in the membership inference

game. Using (m, ¢, ¢’) we can now auditing (es, §)-DP for a
large range of values of 4 (§ = 10~ for 60 different values
of x linearly spread between 3 to 9), where €5 is the privacy
of a gaussian mechanism with a given noise at §. Then, we
reject the privacy hypothesis for gaussian-DP if any of the
individual tests are rejected. Using this auditing procedure,
we obtain empirical epsilon values.

Table 1 shows the results of our experiments. We can see
that there is still a large gap between our auditing and the
multiple run of the approach of previous work as described
above. As discussed in Section 2, the reason for the multiple
testing method being inferior to our direct f-DP auditing
is that in the multiple DP-auditing approach, each auditing
procedure is oblivious to other points on the f-DP curve and
can only observe a single point on the curve. Whereas for
our method, the audit procedure observes the entire curve.
This point has also been discussed by the authors of (Steinke
et al., 2024b) as a limitation on of their approach.

5. Conclusions and limitations

We introduce a new approach for auditing the privacy of
algorithms in a single run using f-DP curves. This method
enables more accurate approximations of the true privacy
guarantees, addressing the risk of a false sense of privacy”
that may arise from previous approximation techniques. By
leveraging the entire f-DP curve, rather than relying solely
on point estimates, our approach provides a more nuanced
understanding of privacy trade-offs. This allows practition-
ers to make more informed decisions regarding privacy-
utility trade-offs in real-world applications. However, our
approach does not provide a strict upper bound on privacy
guarantees but instead offers an estimate of the privacy pa-
rameters that can be expected in practical scenarios. We also
recognize that, despite the improvements over prior work,
we still observe a gap between the empirical and theoretical
privacy reported in the “one run” setting. Future work could
focus on closing this gap to further enhance the reliability
of empirical privacy estimations.
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Impact Statement

This paper aims to advance the empirical measurement of
algorithmic privacy. By improving our ability to evaluate
the privacy risks associated with machine learning and data
processing systems, this work contributes to the develop-
ment of more trustworthy and accountable Al technologies.
The main societal benefit is positive: practitioners and pol-
icymakers will be better equipped to assess and mitigate
potential privacy harms, leading to safer deployment of
data-driven systems.
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A. Proofs
A.1. Proof outline for Theorem 3.1

In this subsection, we outline the main ingredients we need to prove our Theorem 3.1. We also provide a warm up proof for
a simplified version of Theorem 3.1 without abstentions and then we focus on the proof of the main theorem. First, we have
a Lemma that bounds the probability of any event conditioned on correctly guessing a single canary.

Lemma A.1. Let M : [k]™ — © be a mechanism that satisfies f-DP. Also let A: © — ([k] U {L})™ be a guessing attack.
Let u be a random variable uniformly distributed over [k]™ and let v = A(M (u)) Then for any subset E C © we have

I (Pr [M(u) € E]) < Pr[M(u) € Eanduy = vy] < f,;(Pr [M(u) € E])

where

fia@) = supfasa+ F(;—7) <1} and f/(x) = inf{as (k — 1)f(a) + @ —a) < 1}.
This Lemma which is a generalization and an improvement over the main Theorem of (Hayes et al., 2023), shows that the
probability of an event cannot change too much if we condition on the success of adversary on one of the canaries. Note that
this Lemma immediately implies a bound on the expected number of correct guesses by any guessing adversary (by just
using linearity of expectation). However, here we are not interested in expectations. Rather, we need to derive tail bounds.
The proof of Theorem 3.1 relies on some key properties of the f’ and f” functions defined in the statement of Lemma A.1.
These properties are specified in the following Proposition and proved in the Appendix.

Proposition A.2. The functions fj, as defined in Lemma A.1 is increasing and concave. The function f; as defined in
Lemma A.l is increasing and convex.

Now, we are ready to outline the proof of a simplified variant of our Theorem 3.1 for adversaries that make a guess on all
canaries. This makes the proof much simpler and enables us to focus more on the key steps in the proof.

Theorem A.3 (Special case of 3.1). Let M : [k]™ — O be a f-DP mechanism. Let u be a random variable uniformly

distributed on [k]™. Let A: © — [k]™ be a guessing adversary and let v = A(M (u)). Define p; = Pr [(Zje[m] I(u; =

v;)) = z} For all subset of indices T C [m], we have

T i1
Z%piﬁf(kilzm ni pi-1)

€T €T

Proof. Let us define a random variable t = (t1,. .., t,,) which is defined as t; = I(u; = v;) We have

:Pr[Zti:c Pth—c—landt1—1+PrZ =cand t; = 0]
i= i=2 i=2

Now by Lemma A.1 we have Pr[} ", t; = c—1land t; = 1] < f/(>;", t; = ¢ — 1). This is a nice invariant that we can
use but ", t; = ¢ — 1 could be really small depending on how large m is. To strengthen the bound we sum all p.’s for
c € T, and then apply the lemma on the aggregate. That is

ij = ZPr[Zti:j] :ZPr[Zti = jand t; =0]+2Pr[2ti:j—landt1 =1]

JjeET JjeT i=1 JjeT 1=2 JjeT =2
m m
=Pr[> t;€Tandt; =0]+Pr[l+ Y t; € Tandt; = 1]

=2 =2

Now we only use the inequality from Lemma A.1 for the second quantity above. Using the inequality for both probabilities
is not ideal because they cannot be tight at the same time. So we have,

> p <Pr[> €Tandty = 0]+ fr(Pr[l+ Y t; € T)).
JET i=2 i=2

13
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Now we use a trick to make this cleaner. We use the fact that this inequality is invariant to the order of indices. So we can
permute t;’s and the inequality still holds. We have,

[f1( Pr1+Zt i €T))]

=2

PI' Ztﬂ( iy € T and tﬂ.(l) = 0]]
=2

m

[Pr[ Zt iy € T'and tr(1) = 0] + f(

1=2

ij,ﬁ ]

~II ~II
Ser ™ [m]

m
E [Pr[l1+ t,
w~II[m] P

<

n € Tl]).
7r~H ] (2)6 H)

Now we perform a double counting argument. Note that when we permute the order ZZ’;Q tr) = jand t ;) = 0 counts
each instance ¢4, . . ., t,, with exactly j non-zero locations, for exactly (m — j) x (m — 1)! times. Therefore, we have

m-—j
E. Pth,,( yETand by =0 = Y D
™ i=2 jeT
With a similar argument we have,
- m—j+1 j
E [Pr[1+ t.i €T|| = ——Dpi_1+ —p;.
TFNH[’UL][ [ zz:; © H jze; m J m"’

Then, we have

J m—j+1
B+ 1 ) Pt ——Pj-1)-
]GT

PR D

JeT JeET

And this implies

+1

J / J m—J
< A T L
Z mpj > k(z mpJ + m pj-1)
JeET JeT
And this, by definition of f;, implies
j 1 m—j+1
Zﬁpjgf(k—lz — Y
JET JjET

A.2. Proof of Main Lemmas and Theorems

Proof of Lemma A.1. Letp = Pr[M(u) € E and u; = v1] and ¢ = Pr[M(u) € E]. We have

14
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(By definition of f-DP) < —

p= ZPr[M(u)eEandulzvlzi]

1€[k]
1
=_ ZPI[M(LI) € Eandv; =i | uy = 1]
i€[k]
1 1 ' |
=% _ Z Pr[M(u)GEandvlzz\ulzz})

— k—1\ .
i€lk] JE[R\{i}

L( Z 1—f(Pr[M(u) €FEandv; =i |u :]]))

i€lk] JE[RN\{i}

(By convexity of f) <1—f kzi( Z Pr[M 6Eandm—z|ul—]])>)

Similarly we have,

(By definition of f-DP)

(By convexity of f)

i€k JEeRN{i}

—1-f k— Z( Z —Pr eEandv1—Z|u1—J])))

ielk]  jelk]\{i }

=1—f k— Z( Z Pr[M eEandm—Zandm—JD))

iglk]  je[k\{}

—1- f(ﬁ Pr[M(u) € E and u; # v1])
=1- (=),

p= ZPr[M(u) € Eand uy; = vy =i

==Y Pr[M(u) € Eandvy =i | uy =i

i€ k]

i€[k]

> f!

L( Z Pr[M(u)eEandvlzilmzi])
IR EING!
Zsz( Z{}f (1 PrM(u) € Bandvy =i | u; = )
K1\
kzi( Z 1—Pr[M(u)eEandv1=i|u1=j])>
ic[k] JERI\{i}

=/
=

N

!

k_ Z( Z 2(1 - Prf ()eEandv1:i|u1:j])))

i€lk] je kr]\{z}

k:— Z( Z Pr[M eEandvl—zandul—j]))

ic[k]  je[k]\{i}

L (1= Pe[M(u) € Eand uy # 1))

-1

“ﬂ

k-1 )
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This implies that,

fp)-(k=1)+q-p<1
O

Proof of Proposition A.2. The function is increasing simply because f is decreasing. We now prove concavity. Let
a1 = fr(z1) and ag = fi(x2). By definition of f; we have

T — «
ar + f( ;_;)Sl
and
To — «
0[2+f( 2_12)§1.

Averaging these two we get,

Tioay) 4 f(22=q2
041—5042+f( k_1)2f( k‘l)gl

By convexity of f we have
T1+xo a1 tas

a1+ a P
<1
5 T )<

Therefore, by definition of f}, we have f; (£:322) > @1dez Similarly, f/ in increasing just because f is decreasing. And
assuming oy = fi(z1) and ag = fi(22) we have
xr1 + X9 @1 + o

1
<
() <

which implies f;/ is convex. O

Proof of Theorem 3.1. Instead of working with an adversary with ¢’ guesses, we assume we have an adversary that makes a
guess on all m inputs, however, it also submits a vector q € {0, 1}, with exactly ¢’ Is and m — ¢’ 0s. So the output of this
adversary is a vector v € [k]™ and a vector q € {0, 1}". Then, only correct guesses that are in locations that q is non-zero
is counted. That is, if we define a random variable t = (t1,...,t,,) as t; = I(u; = v;) then we have

pe=Pr[> ti-qi =
=1

:Pr[Zti =c—1landt; =1landq; = 1]+Pr[2ti =cand t; - q; =0
=2 1=2

Now by Lemma A.1 we have

Pr[Zti =c—landt; =landq; =1] < f,’C(Zti =c—1landq; =1).
i=2 =2

This is a nice invariant that we can use but > ., t; = ¢ — 1 could be really small depending on how large m is. To
strengthen the bound we sum all p.’s for ¢ € T', and then apply the lemma on the aggregate. That is

m

S S S
JjeT JjeT i=1
= ZPr[iti =jandt; - qi :O} —‘rZPI‘[iti =j—landt; =1landq; = 1]
jer =2 jeT =2

:Pr[Zti €T andt; -q :O]+Pr[1+2ti €Tandt; =1and q; = 1]
i=2 i=2
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Now we only use the inequality from Lemma A.1 for the second quantity above. Using the inequality for both probabilities
is not ideal because they cannot be tight at the same time. So we have,

ij < Pr[z €Tandt,-q =0]+ f.(Pr[l + Zti € Tand q; = 1]).
JET i=2 i—2

Now we use a trick to make this cleaner. We use the fact that this inequality is invariant to the order of indices. So we can
permute t;’s and the inequality still holds. We have,

ijf

[Pr Ztﬂm € Tand tr(1) - gr(1) = 0]] + E [fk (Pr[1+ Ztﬂ( y € 17)]

TI'NH[’I’TL]

jeT =2 =2
< H[ ] [Pr] Ztﬁ( €T and t(1) = 0]] + fllc( ]12}[ ][Pr[l + Zt,r(i) €T and qr(1) = 1).
i e i=2

Now we perform a double counting argument. Note that when we permute the order y ", tr@) = j and t,(;) = 0 counts
each instance t1, . . ., t,, with exactly j non-zero locations, for exactly (m — j) x (m — 1)! times. Therefore, we have

i
Pthﬂ( (i) € T and t (1) - Ay = 0]] = Z — Jpj.

7r~H[m] Z
With a similar argument we have,
3 d—j+1 j
wNH[m][ I'[ + n(i) " Ar(4) € 1 an qr(1) H Z m Dj—1 + mpj

i=2 JET

Then, we have

. ;o
ZPJ < Z p7 + fk(z Tjnpj + %%‘—1)

JjeET jeT jET
J d—j+1
—Z J+fk(z it ——Dj-1)-
JET JET

And this implies
J / J d—j+1
E Lp < E Lpi4+ —2"pi ).
: mPi = fk( mPi + m P 1)
JET JET

And this, by definition of f; implies

j 1 d—j7+1
Ly < 1).
mpj_f(kfljz: m P 1)

Proof of Theorem 3.2. To prove Theorem 3.2, we first state and prove a lemma which is consequence of Theorem 3.1.

Lemma A4. Forall c < ¢ € [m] let us define

Z pz and ﬁc - m Di

i=c

We also define a family of functions v = {r; j : [0,1] x [0,1] = [0,1]};<jc{m) and h = {h;; : [0,1] — [0, 1]} that are
defined recursively as follows.
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Vi e [m]:rii(a,B) = aand h; ;(a, B) = B and for all i < j we have
hij(a, ) = (k=1)f" (Ti-i-l,j(avﬁ))

rij(a, B) = riy15(a, B) + %(hi,j(oﬁﬁ) — hig1,(a, B))

i
Then for all i < j we have

a; > 1 (o, B) and  B; > hj(ay, Bj)

Moreover, fori < j, r; ; and h; ; are increasing with respect to their first argument and decreasing with respect to their
second argument.

Proof of Lemma A.4. We prove this by induction on j — ¢. For j — ¢ = 0, the statement is trivially correct. We have
hijj(ag, ;) = (k= 1) (rivag(ay, 8))-
By induction hypothesis, we have ;1 j(a;, 8;) < a;41. Therefore we have
hij(g, B;) < (k= 1) fH(ait). (0

Now by invoking Theorem 3.1, we have
Bi
-1

Oéi+1§f(k

).

Now since f is increasing, this implies
(k=1 f Haiy1) <Bi @)

Now putting, inequalities 1 and 2 together we have h; ;(«;, 5;) < B;. This proves the first part of the induction hypothesis
for the function h. Also note that h; ; is increasing in its first component and decreasing in the second component by
invoking induction hypothesis and the fact that f~! is increasing. Now we focus on function r;,;. First note that there is an
alternative form for r; ; by opening up the recursive relation. Let v, = We have ,

Z* J—
c'—z c! z+1

7j—1
1]]0‘5 Z'Yz ,]aﬂ

rij(a, B) =rj5(a, B) + C/Z_ i B) = ﬁ z=i+1

. . J
= (0, B) + ——hi (e, B) - C%jhj,j(a,ﬁ) + D wehelaf)

z=1+1
j 7
:aia_]ﬂJrc/_ i.j(a B) Z;l% 24 &)
Now we show that for all 7 we have
i m
i = %) zMz- 4
= ——p +Z;+176 )

This is because we have

(¢ —i)m

o — ﬁﬁi = :Z (% - u)pz.
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On the other hand we have

m m z

Z ’Yzﬁz = Z ( Z 7z’)0/%pz

z=i+1 z=i+1 z/=i+1

= Z (% - m)pz
z=i+1

and this shows that Equation 4 is correct. Therefore for all © < 5 we have

. J
J
- — Eﬂ] =+ Z V25

o — oy =
' ’ C/ -t z=1+1
Now, using the induction hypothesis for h we have,
i j ]
;> (o7 + mhi_j(aj, ﬂj) — ﬂﬂj + z;rl ’Yzhz,j(aj,ﬁj)- (5)

Now verify that the right hand side of Equation 5 is equal to r; ;(c;, 8;) by the formulation of Equation 3

Also, using the induction hypothesis, we can observe that the right hand side of 3 is increasing in o; and decreasing in f3;
because all terms there are increasing in «; and decreasing in f3;. 0

This lemma enables us to prove that algorithm 3 is deciding a valid upper bound on the probability correctly guessing c
examples out of ¢’ guesses. To prove this, assume that the probability of such event is equal to 7/, Note that this means
e+ e = 7', Also note that

Q c
- > 6
B~ d—c ©
therefore, we have
Qo> —r! ™
m

c'—c, 1 : c 1 c—c 1 c,. 1 c—c 1
and 3. < <—<7'. Therefore, using Lemma A.1 we have g > 7o (57", 5¢7) and Bo > ho (57", S577).

£, CITZCT) +ri (5T, CI_CT).

Now we prove a lemma about the function s; ;(7) = h; ;( —

/

Lemma A.5. the function s; ;(7) = h; j (5T, S<7) + 73 j (5T, C/7;‘27) is increasing in T for i < j < c.

/
c —c
m

’
c —cC
m

Proof. To prove this, we show that for all 7 < 5 < ¢ both 7;, j( T,

ﬁ 7') and hiyj(%T,
prove this by induction on j — ¢. For j — ¢ = 1, we have

7) are increasing in 7. We

/
c d—c -1, C
hi,i-i—l(ETa T)=(k-1)f (ET)
We know that £~ is increasing, therefore hiiv1(5T, C;CT) is increasing in 7 as well. For r; ;11 we have
c d—-c . ¢ i h c d—c d—c
Tiir (T, 7) = 7+ o (hia (T, 7)== —T)

So we have
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c d-c e(d —1)—i(d —¢) i c d-—c
rie (77 m m) = m(c —1) T c — ihi’iH(ET’ m 7)
(c—1)d i ¢ d—c
- hiion (S .
m(c’—i)T+c’—i z,2+1(m7—7 m T)

(c— 1,)0

= €7) is increasing in 7. We also have =) > 0, since 7 < c. Therefore

We already proved that h; ;41 (5T,

c d—c
Ti,i+1(ETv m 7)

is increasing in 7. So the base of induction is proved. Now we focus on j — ¢ > 1. For h; ; we have

/ /
c d—c =1 c d—c
hig (1 ——=1) = (k = Df 7 (i1, 7).
By the induction hypothesis, we know that ;1 ;(;57, C;CT) is increasing in 7, and we know that f~! is increasing,

’
therefore, h; (57, 5¢

7) is increasing in 7.

For r; ;, note that we rewrite it as follows

rij(a, B) = 2i(@ B)
where A, = (C/Z_J;l_l — =) > 0. Therefore, we have
c d—c c  (d=0aj c’ —c
Tiﬁj(aﬂ - T):T(%— m(@ = ) +Zx\ hzj - T)
_ ' +ZA e (Sr, 0,
(¢ —=j) = a m

Now we can verify that all terms in this equation are increasing in 7, following the induction hypothesis and the fact that
A, > 0andalso j <c. O

’

Now using this Lemma, we finish the proof. Note that we have o + 8o = .

So assuming that 7’ > 7, then we have

=aqap + 50 Z 50,0(7—/) Z SO,C(T)-

RN

The last step of algorithm checks if sy . > % and it concludes that 7/ < 7 if that’s the case, because s . is increasing in 7.
This means that the probability of having more than ¢ guesses cannot be more than 7. O

B. Ablation Experiments

Reconstruction attacks: To show the effect of the bucket size (k) on the auditing performance, in Figure 5, we change the
number of examples in the two different setups. In first setup we use 10,000 canaries and change the bucket size from 50 to
5000. In the other setup we only use 100 canaries and change the bucket-size from 3 to 50. Note that in these experiments,
we do not use abstention and only consider adversaries that guess all examples.
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8.0 81
7
7.5
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c
5 —— Empirical lower bound privacy with different bucket sizes i) 54
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& 6.5 &
a
6.0 q
3
55 —— Empirical lower bound privacy with different bucket sizes
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T T T T T T T T T T T
1000 2000 3000 4000 5000 0 10 20 30 40 50
Number of examples in each reconstruction bucket Number of examples in each reconstruction bucket

Figure 5. Effect of bucket size on the empirical lower bounds for reconstruction attack (Gaussian mechanism with standard deviation 0.6).
Left: 10,000 canaries with bucket size up-to 5000. Right: 100 canaries with bucket-size up-to 50. Empirical e is reported at § = 10™°.

Effect of number of guesses In Figures 6-9, we compare the theoretical upper bound, our lower bound, and the lower
bound of Steinke et al. with varying number of guesses. In total, we have m = 107 canaries. The number of correct guesses
is determined using Algorithm 4 (the idealized setting). Then we use our and (Steinke et al., 2023)’s auditing with the
resulting numbers and report the empirical €. As we can see, both our and Steinke et al.’s auditing procedure achieve the
best auditing performance for small number of guesses. This shows the importance of abstention in auditing.

A curious reader might wonder why the number of guesses has such a big impact on empirical privacy. Essentially, our
analysis involves estimating how many correct guesses an adversary can make when given a certain number of attempts. We
focus on specific percentiles of these distributions. The accuracy of our empirical privacy estimates can vary significantly
based on how much the number of correct guesses fluctuates, which is influenced by how many guesses we allow the
adversary to make. To explain further, consider a random variable representing the ratio of correct guesses (c) to total
guesses (). If we reduce the number of guesses, the variance of this ratio tends to decrease because the ratio approaches 1
(the adversary can make more correct guesses when we decrease ¢’). Conversely, if we increase the number of guesses, the
variance can also decrease because having more guesses generally leads to a more stable average, owing to the law of large
numbers. This balance makes the number of guesses a crucial factor in optimizing for the best estimate of empirical privacy.

Varying ¢ and confidence levels: We also examine the effect of  on the obtained empirical e. We fix the number of
canaries to 10° and the number of guesses to 1, 500 and the number of correct guesses are set to 1,429, suggested by the
idealized setting. We use a Gaussian mechanism with standard deviation 1.0, we vary the value of ¢ and the confidence
level to observe how they affect the results. Figures 10 and 11 shows the bound of (Steinke et al., 2023) and our bound,
respectively. Note that our lower bounds represent the true behavior of ¢ independent of the confidence level, in contrast to
the bound of (Steinke et al., 2023).

C. Other datasets

We also report in Figure 12 our privacy analysis method in the black-box attack setting on the tabular dataset of shopping
records Purchase (Shokri et al., 2017). We replicate the same setup in (Zarifzadeh et al., 2023), on a non-private MLP model
trained on 25000 samples for 50 epochs. We outperform Steinke et al. method for all numbers of guesses
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Figure 6. Effect of number of guesses (Gaussian mechanism with

standard deviation 1.0). Empirical e is reported at § = 1075,

1le6

Empirical &

--- Theoretical £
—— Empirical £ (SN))
0.00 —— Empirical € (Ours)

0 1 2 3 4 5
Number of guesses (out of 1.0E+07 canaries) 1le6

Figure 7. Effect of number of guesses (Gaussian mechanism with
standard deviation 2.0). Empirical € is reported at § = 1075,

08
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Empirical €
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0.0 ~—<— Empirical £ (Ours)

Empirical €

—--- Theoretical £

0.0 05 10 15 2

.0 3.0 35
Number of guesses (out of 1.0E+07 canaries)

Figure 8. Effect of number of guesses (Gaussian mechanism with

standard deviation 4.0). Empirical e is reported at § = 107°.

D. Experimental details

Idealized setting: In the idealized setting, we work with
a toy version of the mechanism to calculate the expected
number of correct guesses for the ideal adversary. For
Gaussian mechanism, the ideal setting for an adversary
is when we have a Gaussian mechanism that is used to
calculate the sum of vectors. In this setting, each canary
represents a unit vector that is orthogonal to all other
canary vectors. Then, given the noisy sum, the adversary
will calculate the likelihood of the canary being used
in the sum, and then decides on the guesses based on
these likelihoods. For the setting that the adversary has
more than 2 guesses (k > 2), we use a slightly different
idealized setting. In all settings, we run the attack 100
times and average the result to get the expected number
of correct guesses. Algorithm 4 shows how we calculate
the number of correct guesses in the idealized setting.

f —— Empirical € (SN))
0 —— Empirical € (Ours)
] 2 4 6 8
Number of guesses (out of 1.0E+07 canaries) 1e6

1e6

Figure 9. Effect of number of guesses (Gaussian mechanism with
standard deviation 0.5). Empirical e is reported at § = 107°.

Purchase Black-box RMIA

—— This paper
Steinke et al.

Empirical epsilon

T T T T
5000 10000 15000 20000 25000
Number of guesses (out of 25000 examples)

Figure 12. Comparison with auditing procedure of (Steinke et al.,
2023) on non-private model trained on Purchase against black-box
RMIA method (Zarifzadeh et al., 2023). Empirical € is reported at
§=10"".
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—-- Lower Bound (75.0% confidence) 59
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Figure 11. Idealized setting for different values of ¢ and confi-

Figure 10. Idealized setting for different values of ¢ and confi- dence levels for our bounds.

dence levels for bounds of (Steinke et al., 2023).
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Algorithm 4 Simulate the Number of Correct Guesses

import numpy as np

from scipy.special import softmax

from numpy.random import normal, binomial

def idealized_setting(target_noise, n_guesses, n_canaries, k):
n_correct_vec = []

if k==2:
for _ in range (100):
s_vector = binomial(l, 0.5, size=n_canaries) » 2 - 1
noise = normal (0, 2+target_noise, n_canaries)
noisy_s = s_vector + noise
sorted_noisy_s = np.sort (noisy_s)
threshold_c = sorted_noisy_s[-int (n_guesses)//2-1]
n_correct = np.ceil (n_guesses+ (s_vector[noisy_s > threshold_c]
— 1) .mean())
n_correct_vec.append(n_correct)
else:
for _ in range (100):
s_recon_vec = np.random.randint (0, k, n_canaries)
s_vec_recn_ohe = np.eye (k) [s_recon_vec]
s_recon_noisy_vec_ohe = s_vec_recn_ohe + normal (0,

— np.sqrt(2)+«target_noise, s_vec_recn_ohe.shape)

idx_max = np.argmax(s_recon_noisy_vec_ohe, axis=1)

buckets = softmax (s_recon_noisy_vec_ohe/ (2+target_noisex*«*2),

— axis=1) [np.arange (s_recon_noisy_vec_ohe.shape[0]),
sorted_buckets = np.sort (buckets)
bucket_c_thr = sorted_buckets[-int (n_guesses) ]

n_correct_rec = np.ceil(
n_guessesx* (s_recon_vec [buckets > bucket_c_thr] ==
— s_recon_noisy_vec_ohe[buckets >
— bucket_c_thr].argmax (1)) .mean ()

)

n_correct_vec.append (n_correct_rec)

return int (np.array (n_correct_vec) .mean (0))
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Auditing code

Here we include the code to compute empirical epsilon.

from scipy.stats import norm
import numpy as np

# Calculate h and r recursively (no abstentions)

def rh(inverse_blow_up_function, alpha, beta, j, m, k=2):
# Initialize 1lists to store h and r values
h = [0 for _ in range(j + 1)]

r = [0 for _ in range(j + 1)]

# Set initial values for h and r
h[j] = beta

r[j] = alpha

# Iterate from j—1 to 0

for i in range(j - 1, -1, -1):

# Calculate h[i] using the maximum of h[i+1] and a scaled inverse
— blow—up function

h(i] = max(h[i + 1], (k - 1) % inverse_blow_up_function(r[i + 1]))
# Update r[i] based on the difference between h[i] and h[i+1]
r(i] = r[i + 1] + (1 / (m — 1)) = (h[i] — h[i + 1])

# Return the 1lists of h and r values
return (r, h)

# Audit function without abstention
def audit_rh(inverse_blow_up_function, m, ¢, threshold=0.05, k=2):
# Calculate alpha and beta values
alpha = threshold * ¢ / m
beta = threshold » (m — ¢c) / m
# Call the rh function to get the lists of h and r values
r, h = rh(inverse_blow_up_function, alpha, beta, c, m, k)
# Check if the differential privacy condition is satisfied
if r[0] + h[0] > 1.0:
return False
else:
return True

# Calculate h and r recursively (with abstentions)
def rh_with_cap(inverse_blow_up_function, alpha, beta, j, m,c_cap, k=2):
h=[0 for i in range(j+1)]
r=[0 for i in range(j+1)]
h[j]l= beta
r[jl= alpha
for i in range(j-1,-1,-1):
h{i]l=max(h[i+1], (k—-1)*inverse_blow_up_function(r[i+1]))
r{il= r[i+l] + (i/(c_cap-1))*(h[i] - h[i+1])

return (r,h)
# Audit function with abstentions
def audit_rh_with_cap(inverse_blow_up_function, m, c,c_cap, threshold=0.05,
> k:2) M

threshold=thresholdxc_cap/m
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alpha=(threshold*c/c_cap)
beta=threshold« (c_cap-c) /c_cap
r,h=rh_with_cap (inverse_blow_up_function, alpha, beta, c, m, c_cap, k)

if r[0]+h[0]>c_cap/m:
return False
else:
return True

# Calculate the blow-up function for Gaussian noise
def gaussianDP_blow_up_function (noise):
def blow_up_function (x):
# Calculate the threshold value
threshold = norm.ppf (x)
# Calculate the blown-up threshold value
blown_up_threshold = threshold + 1 / noise
# Return the CDF of the blown-up threshold value
return norm.cdf (blown_up_threshold)
return blow_up_function

# Calculate the inverse blow-up function for Gaussian noise
def gaussianDP_blow_up_inverse (noise):
def blow_up_inverse_function(x):
# Calculate the threshold value
threshold = norm.ppf (x)
# Calculate the blown-up threshold value
blown_up_threshold = threshold - 1 / noise
# Return the CDF of the blown-up threshold value
return norm.cdf (blown_up_threshold)
return blow_up_inverse_function

# Define a function to calculate delta for Gaussian noise
def calculate_delta_gaussian(noise, epsilon):
# Calculate delta using the formula
delta = norm.cdf (-epsilon * noise + 1 / (2 * noise)) — np.exp(epsilon) =«
— norm.cdf (-epsilon * noise — 1 / (2 * noise))
return delta

# Define a function to calculate epsilon for Gaussian noise
def calculate_epsilon_gaussian (noise, delta):
# Set initial bounds for epsilon
epsilon_upper = 100
epsilon_lower = 0
# Perform binary search to find epsilon
while epsilon_upper - epsilon_lower > 0.001:
epsilon_middle = (epsilon_upper + epsilon_lower) / 2
if calculate_delta_gaussian(noise, epsilon_middle) > delta:
epsilon_lower = epsilon_middle
else:
epsilon_upper = epsilon_middle
# Return the upper bound of epsilon
return epsilon_upper

# Get the empirical epsilon value
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def get_gaussian_emp_eps_ours (candidate_noises, inverse_blow_up_functions, m,

—

c, threshold, delta, k=2):
# Initialize the empirical privacy index
empirical_privacy_index = 0
# Iterate through candidate noises until the privacy condition fails
while audit_rh(inverse_blow_up_functions|[empirical_privacy_index], m, c,
— threshold=0.05, k=k):

empirical_privacy_index += 1
# Get the empirical noise and calculate the empirical epsilon
empirical_noise = candidate_noises[empirical_privacy_index]
empirical_eps = calculate_epsilon_gaussian(empirical_noise, delta=delta)
# Return the empirical epsilon
return empirical_eps

# Set target noise and generate candidate noises
target_noise = 0.6

candidate_noises=[target_noise+ i%x0.01 for i in range(1000)]
inverse_blow_up_functions=[gaussianDP_blow_up_inverse (noise) for noise in

—

candidate_noises]
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