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ABSTRACT

The fine-tuning of deep pre-trained models has revealed compositional properties,
with multiple specialized modules that can be arbitrarily composed into a single,
multi-task model. However, identifying the conditions that promote composition-
ality remains an open issue, with recent efforts concentrating mainly on linearized
networks. We conduct a theoretical study that attempts to demystify composition-
ality in standard non-linear networks through the second-order Taylor approxima-
tion of the loss function. The proposed formulation highlights the importance of
staying within the pre-training basin to achieve composable modules. Moreover, it
provides the basis for two dual incremental training algorithms: the one from the
perspective of multiple models trained individually, while the other aims to opti-
mize the composed model as a whole. We probe their application in incremental
classification tasks and highlight some valuable skills. In fact, the pool of incre-
mentally learned modules not only supports the creation of an effective multi-task
model but also enables unlearning and specialization in certain tasks.

1 INTRODUCTION

In the last two decades, AI technologies have predominantly been viewed as monoliths, centered
around a single model trained on a single (albeit large) dataset. This paradigm has undeniably
yielded impressive results and is likely to continue doing so. However, to meet the numerous chal-
lenges of business, more modular and flexible approaches, such as model averaging (McMahan
et al., 2017) and Mixture Of Experts (Yadav et al., 2024a), have experienced a renewed interest. In
fact, the life cycle of monolithic models demands incremental and intensive updates to accommodate
the diversity of markets, platforms, and customer needs. Moreover, many companies lack the finan-
cial means to assemble a proficient AI team or access GPU clusters to support the rapid evolution of
these factors. In an effort to democratize AI, we advocate for modern paradigms (Li et al., 2023b;
Pfeiffer et al., 2023) prioritizing fast adaptability, model customization, and data heterogeneity.

Recent frameworks (Liu & Soatto, 2023; Bowman et al., 2023) support these principles through
model compositionality, allowing the creation of bespoke models through cheap editing opera-
tions. Surprisingly, fine-tuning pre-trained models not only enables efficient transfer with limited
data (Zhuang et al., 2020) but also offers insights into compositionality (Ilharco et al., 2022). In fact,
it has been shown (Wortsman et al., 2022) that a simple linear combination of individually fine-tuned
weights yields meaningful outcomes. The resulting composed model exhibits rich and robust repre-
sentations (Zhang & Bottou, 2023) without incurring additional inference or memory costs. Such a
simple but powerful schema has been primarily employed in model soups (Wortsman et al., 2022),
where individual models are trained on the same task but with different hyper-parameters. In con-
trast, Task arithmetic (Ilharco et al., 2022; Liu & Soatto, 2023; Ortiz-Jimenez et al., 2024) addresses
a cross-dataset setting with each individual model focusing on a distinct task. Such a framework has
also been recently explored for language modeling through ColD fusion (Don-Yehiya et al., 2023).

In this context, we elaborate on two points. Firstly, considering multiple models trained individually
on different tasks, we aim to understand the conditions that allow the successful combination of their
weights. This finding has been predominantly explored empirically (Ilharco et al., 2022), with a few
notable exceptions (Ortiz-Jimenez et al., 2024) that aim to provide a more theoretical understanding.
However, these approaches only focus on linearized networks and tangent fine-tuning (Liu & Soatto,
2023). We instead aim for a formulation that generalizes to standard non-linear deep networks

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

and diverse fine-tuning strategies (e.g., LoRA (Hu et al., 2021)). To do so, we propose leveraging
the second-order Taylor approximation of the loss function around the pre-training weights. This
enables us to derive a relationship between the capabilities of individual models and those of their
composition, offering a key takeaway. Specifically, for the composed model to be accurate, each
component should attain decent performance on examples outside its individual training distribution.

The second point of our study is a derivation of the former and revolves around learning compos-
able models in an incremental fashion, dedicating an individual module to each incoming task. In
this respect, previous works (Bowman et al., 2023; Liu & Soatto, 2023) build on the intuitive idea
that modularity provides a natural foundation for incremental training. Through model editing and
composition, in fact, one can simply introduce novel concepts without having to re-train the model.
In this work, we turn the perspective and argue that compositional capabilities require incremental
learning skills. Indeed, as mentioned above, preserving out-of-distribution performance is essential
for compositionality. Nevertheless, this can be framed as a continual learning problem (Kirkpatrick
et al., 2017), where the objective of each individual model is to maintain the pre-training general
capabilities on examples that fall outside its specific training distribution.

On this basis, we propose two algorithms that tackle the incremental fine-tuning of composable mod-
els. The two algorithms build upon the same second-order formulation but approach the problem
from opposed perspectives: optimizing the loss of each model individually vs. optimizing the loss
of the composed model. We assess them on several class-incremental settings (Van de Ven & Tolias,
2019), differing in terms of alignment with pre-training knowledge. Notably, our approaches lead to
an accurate multi-task model with further editing capabilities. These allow the efficient specializa-
tion of the model on certain tasks, as well as the ability of removing some others (unlearning).

2 FRAMEWORK

We consider f(·;θ) : X → Y as a twice-differentiable deep network with weights θ ∈ Θ ⊆ Rm. It
takes inputs x ∈ X ⊆ Rd and yields a conditional distribution pθ(y|x) over the targets y ∈ Y ⊆ Rc.
In this paper, we focus on incremental training, which progresses sequentially through a series of
T classification tasks T = {1, 2, . . . , T}. Each task t ∼ T is characterized by a dataset Dt with nt

training samples x,y ∼ pt(x,y) drawn from a distribution varying across tasks. We assume that
tasks share the same loss function ℓ(θ|x,y), i.e., the negative log-likelihood − log pθ(y|x).

In this setting, we build upon a pool of fine-tuned composable networks P = {f(·;θt) | θt ≜
θ0+ τt}t∈T . In detail, each model is fine-tuned from a common set of pre-training weights θ0. The
τt indicates the displacement in parameter space w.r.t. θ0 after training on task t, often referred as
task vector (Ilharco et al., 2022; Ortiz-Jimenez et al., 2024). We obtain the weights of the composed
model fP by averaging the weights within the pool, as follows:

fP ≜ f(·;θP) s.t. θP = θ0 +
∑T

t=1wtτt,
∑T

t=1wt = 1 (1)

where wt balances the contribution of the t-th learner. While some works (Asadi et al., 2024; Huang
et al., 2023) optimize these coefficients, we devise uniform weights wt = 1/T in our algorithms.

Scope. How can we learn multiple disjoint tasks through a pool P of models, so that the composed
model performs well on their union? To answer this question, we introduce the concept of empirical
risk, i.e., the average loss ℓ̂(θ|D), computed over the union D =

⋃T
t=1 Dt of all training tasks:

ℓ̂(θ|D) = 1∑T
t=1 nt

∑
x,y∈D ℓ(θ|x,y) ≈ E t∼T

x,y∼pt(x,y)
[ℓ(θ|x,y)] (2)

To simplify notation, we will henceforth omit the explicit dependence of the loss on the data, de-
noting the individual loss ℓ(θ|x,y) simply as ℓ(θ), and the empirical risk ℓ̂(θ|D) as ℓ̂(θ). On this
basis, the rest of this section will delve into the following research questions.

Question i) Given the empirical risk of each individual model, what can we say about the
composed model f(·;θP)? Question ii) How can we train individual learners f(·;θt) on
distinct tasks (individual training) to still achieve a reliable composition f(·;θP)? Question
iii) Instead of optimizing each model on its individual loss, could we optimize each model
based on the loss of the whole composed model f(·;θP) (ensemble training)?
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2.1 INDIVIDUAL LEARNERS vs. THE COMPOSED MODEL: A PRE-TRAINING PERSPECTIVE

We now relate the composed model fP to the individual components f(·;θt) of the pool. To do
so, we introduce the second-order Taylor approximation ℓcur(θ) of the loss around the pre-trained
weights θ0:

ℓ(θ) = ℓcur(θ) +O(∥θ − θ0∥3) (3)

where ℓcur(θ) = ℓ(θ0) + (θ − θ0)
T∇ℓ(θ0) +

1

2
(θ − θ0)

THℓ(θ0)(θ − θ0). (4)

∇ℓ(θ0) ≜ ∇θℓ(θ0|x,y) and Hℓ(θ0) ≜ ∇2
θℓ(θ0|x,y) are the gradient and the Hessian around

θ0. Similarly, we can define the second-order approximation ℓ̂cur(θ) ≈ ℓ̂(θ) of the empirical risk,
which corresponds to averaging the approximated loss across examples from all tasks.

Assumption. We now assume that θ = θ0 is a point of local minimum of the empirical risk
ℓ̂(θ)1across all tasks (Eq. 2). Under this hypothesis, the Hessian of the empirical risk Hℓ̂(θ0) ⪰ 0 is
positive semidefinite. In light of this and the quadratic nature of ℓ̂cur(θ), we can state that the second-
order approximation of the empirical risk ℓ̂cur(θ) is convex. Therefore, we apply the Jensen’s
inequality to derive a relation between the composed model and the individual components:

ℓ̂cur(θP = θ0 +
∑T

t=1wtτt) ≤
∑T

t=1 wt ℓ̂cur(θt = θ0 + τt). (5)

The relation states that, under the second-order approximation, the empirical risk ℓ̂cur(θP) of the
composed model is upper-bounded by the convex combination of its individuals. In other words, if
each individual model is trained to the optimum with near-zero loss value, there are some guarantees
on the loss function attained by the composed model. Notably, this relation could help reduce
the computational footprint during inference, as it enables the reduction of forward passes, from
multiple (one for each individual) to a singular pass (performed on the composed model).

At a first glance, the result of Eq. 5 appears similar to the statement of Eq. 2 in (Liu & Soatto, 2023):

ℓ̂(θP = θ0 +
∑T

t=1wtτt) ≤
∑T

t=1wtℓ̂(θt = θ0 + τt) (6)

given that ft(·;θt) ≜ flin(·;θt) =f(·;θ0) + (θt − θ0)
T∇f(·;θ0) (tangentness) (7)

However, some notable distinctions remain. Their inequality applies to the exact risk ℓ̂ but is valid
only for linearized models (i.e., fine-tuned in the tangent space of pre-training weights). In contrast,
our result pertains to the second-order approximation ℓ̂cur of the risk and applies to any fine-tuning
strategy (e.g., LoRA, adapters, etc.). Intuitively, our inequality provides more flexibility to the train-
ing of individual learners, as long as: i) the learners remain in the pre-training basin, such that
O(∥θ − θ0∥3) → 0 and ℓcur can be considered a good proxy of ℓ; ii) θ0 is a local minimum of ℓ.

2.2 ENABLING INDIVIDUAL TRAINING IN INCREMENTAL SCENARIOS

As mentioned above, a possible application of Eq. 5 is to devote each learner to a distinct task and
optimize them in isolation (i.e., individual training). Indeed, the upper bound in Eq. 5 describes a
sort of worst-case scenario for the risk of the composed model: at worst, it collapses to that given by
the upper bound. Nonetheless, if every individual model were accurate on all tasks, the right-side
term of Eq. 5 would yield an appealing upper-bound to the risk of the composed model.

Limits of Eq. 5. Under the constraints of individual training, each individual learner f(·;θt) can
be optimized only on the current distribution pt(x,y). Therefore, when considering examples from
other data distributions pt′ ̸=t(x,y), the loss ℓcur(θt|x,y) of the t-th individual learner is likely to
be much higher for examples outside its training distribution pt(x,y). As a consequence, the upper
bound delivered by the right-side of Eq. 5 is likely to increase one task after the other, and we cannot
rely on it to recover a reliable composed model f(·;θP).
In this respect, our proposal is to tighten the upper bound of Eq. 5 through explicit regularization,
which we devise during the optimization of each individual learner. In practice, each model is

1As shown in Ostapenko et al. (2022), techniques like linear probing, latent replay, and incremental linear
discriminant analysis can be employed to enforce the optimality of the base model θ0, along with Instruction
Tuning for language modeling (Yadav et al., 2024c). See Sec. 3 for additional implementation details.
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provided with a learning objective that extends beyond minimizing the loss on the assigned data dis-
tribution pt(x,y). Specifically, to ensure decent performance on external distributions pt′ ̸=t(x,y),
we anchor the model to the pre-training knowledge for out-of-distribution examples. We do so
by encouraging the predictions of f(·;θt) to be close to those generated by the pre-trained model
f(·;θ0), given examples x,y ∼ pt′ ̸=t(x,y). Denoting the pre-training posterior distribution as
pθ0

(y|x), we have:
minimize

θt

Ex,y∼pt(x,y) [ℓcur(θt|x,y)] +DKL(pθ0
(y|x)||pθt

(y|x)). (8)

It is noted that the computation of the KL term DKL(·) requires sampling from the external distribu-
tions pt′ ̸=t(x,y). Theoretically, this clashes with the constraints of individual training. Thankfully,
if τt → 0, the KL term can be approximated (Chaudhry et al., 2018) with the distance between θt
and pre-training weights θ0:

DKL(pθ0
(y|x) || pθt

(y|x)) ≈ 1
2 (θt − θ0)

TFθ0
(θt − θ0) =

1
2∥τt∥

2
Fθ0

. (9)

The distance is computed in the Riemannian manifold (Lee, 2006) induced by the Fisher Information
Matrix (FIM) (Huszár, 2018); namely, a |θ| × |θ| positive semi-definite matrix given by:

Fθ0
= E t∼T

x∼pt(x,y)

[
Ey∼pθ0

(y|x)
[
∇ log pθ0

(y|x)∇ log pθ0
(y|x)⊤

]]
. (10)

Under the local minimum hypothesis on pre-training weights, the FIM at θ0 equals the expected2

Hessian of the negative log-likelihood (Martens, 2020): Fθ0
= Ex [Hℓ(θ0)]. Due to this connection,

the FIM yields insights on the sensitivity of each parameter to changes in the data distribution.

Application to incremental learning. Given that optimizing the regularization above does not
necessitate data from external tasks, it can be readily adapted to incremental learning. Follow-
ing Chaudhry et al. (2018); Schwarz et al. (2018), we introduce a few additional approximations.
Firstly, we limit to estimate the diagonal F̂θ0

of the FIM, thus avoiding the prohibitive footprint
required to treat a |θ| × |θ| matrix. Basically, the diagonal F̂θ0

consists of a Monte Carlo estimate
of the (squared) gradients of the log-likelihood. Secondly, we note that the expectation Ex [Hℓ(θ0)]
in the FIM cannot be directly estimated, as examples from all tasks are not available simultaneously
but rather sequentially. We hence compute the expectation incrementally (Chaudhry et al., 2018;
Schwarz et al., 2018) one task at a time. As each new task becomes available, we calculate a lo-
cal Fisher matrix on the data of the new task and then accumulate it into a global running Fisher
estimate. As outlined by Alg. 1, the accumulation can be thought as a simple summation, net of
re-normalizing operations reflecting the number of samples of each task (see App. E).

Given Eq. 9 and the diagonal FIM, the augmented optimization problem for the t-th learner becomes:

minimize
θt

E
x,y∼pt(x,y)

[ℓcur(θt|x,y)] +
α

2
EWCθ0(θt) (11)

where EWCθ0
(θt) =

∑|θ|
i F̂

(i)
θ0
(θ

(i)
t − θ

(i)
0 )2. (12)

where α ≥ 0 is an hyper-parameter and EWCθ0
(·) indicates the Riemannian distance from the

pre-training weights θ0. The acronym EWCθ0
highlights the strong analogy with Elastic Weight

Consolidation (Kirkpatrick et al., 2017), a well-established approach against catastrophic forget-
ting (McCloskey & Cohen, 1989). In a sense, our term prevents forgetting pre-training knowledge;
however, while our anchor is fixed at θ0, the anchor of EWC instead shifts and focuses on the
weights learned during the preceding task.

2.3 JOINT TRAINING OF THE COMPOSED MODEL IN INCREMENTAL SCENARIOS

Individual training profitably aligns with decentralized learning (Bowman et al., 2023), emphasizing
minimal interactions between learners and privacy preservation. Nevertheless, it might be inefficient
when these constraints are not of interest and the goal is simply to create an accurate model. In fact,
individual training prevents a learner from leveraging the knowledge of other ensemble members,
eliminating the potential for beneficial mutual transfer. For these reasons, we adopt the dual per-
spective, in which each model is directly optimized using the loss of the composed model f(·;θP)
(ensemble training). Since the inequality in Eq. 5 does not provide much help for the explicit opti-
mization of ℓcur(θP), we quantify the exact gap between the two sides of the Jensen’s inequality:

2Precisely, we take the expectation w.r.t. data from other tasks t′ ̸= t to reflect the regularization in Eq. 8.
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Theorem 1. Let us assume a pool P with T ≥ 2 models, with the t-th model parameterized by
θt = θ0+τt. If we compose them through coefficients w1, . . . , wT s.t. wt ∈ [0, 1] and

∑T
t=1wt = 1,

the 2nd order approximation ℓcur(θP) evaluated on composed weights θP = θ0 +
∑T

t=1wtτt is:

ℓcur(θP) + Ω(θ1, . . . ,θT ) =
∑T

t=1wtℓcur(θt) (13)

where Ω(θ1, . . . ,θT ) =
1

2

∑T
t=1

∑
t′<twtwt′(τt − τt′)

THℓ(θ0)(τt − τt′). (14)

Proof in App. B. The equality introduces a term Ω(·) that is non-negative (due to Hℓ(θ0) ⪰ 0) and
depends on weights θ1, . . . ,θT . Therefore, Ω(·) is proportional to the cumulative distance between
every pair of learners, within the Riemannian manifold induced by the Hessian Hℓ(θ0) (Lee, 2006).
Notably, Eq. 13 permits to draw the following insights: i) optimizing both the loss of the composed
model ℓcur(θP) and the term Ω(·) is equivalent to individual training; ii) during inference, if Ω(·)
tends towards zero, performing a prediction with the composed model is akin to conducting multiple
forward passes, each corresponding to an individual learner. Based on that interpretation, we now
transition to a setting that considers the explicit auxiliary minimization of Ω(·), as follows:

minimize
θ1,...,θT

E t∼T
x,y∼pt(x,y)

[ℓcur(θP |x,y) + β Ω(θ1, . . . ,θT )] (15)

where β ≥ 0 is an hyper-parameter. It is noted that minimizing Ω(·) encourages alignment among
task vectors, especially for those weights that are sensitive/important in the pre-training loss land-
scape.

Similarly to Jeffares et al. (2024), the objective of Eq. 15 can be interpreted as a smooth transition
between individual and ensemble training. Indeed, given that Ω(·) =

∑
twtℓcur(θt) − ℓcur(θP),

Eq. 15 can be restated:

ℓcur(θP) + β Ω(θ1, . . . ,θT )
Eq. 13
= (1− β) ℓcur(θP) + β

∑T
t=1wtℓcur(θt) (16)

This suggests that by minimizing both the loss ℓcur(θP) of the joint composed model and Ω(·), we
also implicitly optimize the individual models. Notably, this result not only paves the way for a
well-performing ensemble but also for components that are reliable when considered individually.

Incremental ensembles. We now refine the problem in Eq. 15 to account for incremental settings.
We firstly bring the expectation inside Ω(·) (Eq. 14) and replace the Hessian Hℓ(θ0) with its expec-
tation, taken across data points x,y ∼ pt(x,y) from all tasks up to the current one. Afterwards,
we capitalize on a property mentioned in Sec. 2.2, which states that, for a point of maximum like-
lihood like θ = θ0, the expected Hessian of the negative log-likelihood coincides with the Fisher
Fθ0 . As a result, we can approximate Ex [Hℓ(θ0)] with the tractable diagonal Fisher F̂θ0 . Based on
Hℓ(θ0) ≈ F̂θ0

and further steps (see App. B) , we can rearrange Ω(·) as:

Ω(·) ≈ ΩF̂(θ1, . . . ,θT ) =
1
2

∑T
t=1wt(1− wt) EWCθ0

(θt)︸ ︷︷ ︸
see Eq. 12

−
∑T

t=1

∑
t′<twtwt′τt

TF̂θ0
τt′ . (17)

Intuitively, ΩF̂(·) aims to preserve pre-training knowledge embodied by θ0 through the first term;
through the second one, instead, it encourages pairwise alignment between task vectors. Also, we
highlight that the summations depend on the number of models T . Therefore, the more components
we manage within the ensemble, the more crucial it becomes to minimize ΩF̂(·) within Eq. 15.

Finally, we plug the approximated barrier term ΩF̂(·) into the optimization problem outlined in
Eq. 15. As learning proceeds in subsequent tasks, we can optimize the composed model only one
task at a time. To prevent biasing the previously learned components of the pool toward current data,
at each round t we optimize only the weights θt ≜ θ0 + τt of the corresponding t-th learner, while
freezing the others components of the pool. This yields the following form for the t-th learning task:

minimize
θt

Ex,y∼pt(x,y) [ℓcur(θP |x,y)] + β ΩF̂(θ1, . . . ,θt). (18)

Finally, if we optimize only one θt at a time and wt = 1
t , then several terms in Eq. 17 can be

ignored, such as EWCθ0
(θt′) for t′ < t. Hence, minimizing Eq. 18 is equivalent to minimize:

Ex,y∼pt(x,y) [ℓcur(θP |x,y)] +
β
t

[
(1− 1

t )
1
2 EWCθ0

(θt)− 1
t

∑
t′<t τt

TF̂θ0
τt′

]
. (19)

As shown in App. C for both full and LoRA fine-tuning, the gradients of the regularization term in
Eq. 19 can be computed in closed form. Importantly, this derivation enables a lightweight optimiza-
tion, as the analytical gradients maintain constant complexity w.r.t. the number of tasks.

5
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Algorithm 1 Incremental Task Arithmetic (ITA) vs. Incremental Ensemble Learning (IEL)

Input: T disjoint classification tasks Dt = {(x,y)}nt , a pre-trained DNN f(·;θ0), learning rate lr,
hyper-parameters α and β, initialized pool P = ∅ and the diagonal Fisher F̂θ0 = 0.

for each task t ∈ {1, 2, . . . , T} do
h

(t)
0 ← Linear Probing on Dt with the pre-trained f(·;θ0) Task pre-consolidation

θ0 ← θ0 ∪ h
(t)
0 ▷ add the pre-training classification head

F̂θ0 ← F̂θ0 + F̂
(t)
θ0

▷ update the global Fisher with the local Fisher F̂(t)
θ0

estimated on Dt

τt ← N (µinit, σinit) Fine-tuning
P ← P ∪ {f(·;θt = θ0 + τt)} ▷ extend P with the weights of the t-th learner
for each example (x,y) in Dt do

pθ(y|x)← f(x;θt) ▷ predict with the t-th learner θt ← θ0 + τt

pθ(y|x)← f(x;θP) ▷ predict with the composed model θP ← θ0 +
1
t

∑t
t′=1 τt′

ℓ← − log pθ(y|x)
τt ← τt − lr · ∇τt [ℓ+

α
2
EWCθ0(θt)] ▷ arithmetic-oriented regularization (Eq. 11)

τt ← τt − lr · ∇τt [ℓ+ βΩF̂(P)] ▷ ensemble-oriented regularization (Eqs. 18 and 19)

3 ALGORITHM(S)

We present Incremental Task Arithmetic (ITA) and Incremental Ensemble Learning (IEL),
two distinct algorithms for individual and ensemble incremental learning respectively. As shown
in Alg. 1, they divide each task into the pre-consolidation and fine-tuning stages, with differences
occurring in the latter. We direct the reader to App. E for comprehensive implementation guidelines.

Task pre-consolidation. Due to the pivotal role of the local optimality of θ0 (Sec. 2.1), we now
follow up on this aspect and consider closed vocabulary models. Unlike models like CLIP (Radford
et al., 2021), closed vocabulary models require the addition of a tailored classification head to handle
novel classes. In line with Ortiz-Jimenez et al. (2024), we denote the process of fine-tuning only the
added classification head as linear probing (LP): specifically, LP keeps the rest of the layers fixed
to the pre-training θ0. In our work, we basically exploit linear probing to enforce the optimality of
pre-training weights θ0. Namely, during the pre-consolidation phase, we conduct a few preliminary
training epochs on the t-th incoming task, with the sole purpose of fine-tuning the new classification
head. From that point onward, the fine-tuned head ht

0 is regarded as a part of pre-training weights
θ0. Finally, the pre-consolidation stage concludes with the update of the diagonal Fisher matrix F̂θ0

.

Fine-tuning. While the pre-consolidation step is identical for both ITA and IEL, they differ during
the fine-tuning phase. The shared goal is to learn a task vector τt s.t. θt ≡ θ0 + τt for the current
task. However, ITA treats τt as the weights of an individual model, whereas IEL interprets it as a new
learnable component of the composition. In other words, ITA computes predictions through the t-th
learner f(x;θt), while IEL leverages the composed function f(x;θP). Moreover, their regularizing
objectives differ: ITA builds upon Eq. 11 (i.e., the additional EWC-like term computed w.r.t. θ0),
while IEL exploit Eqs. 18 and 19 to train the composed model. Notably, both approaches can be
applied to any fine-tuning strategy in the form of θ0 + ∆θ. We conduct experiments on Full Fine-
Tuning (i.e., τt ∈ RFOUT×FIN ), Low-Rank Adaptation (LoRA) (Hu et al., 2021) (i.e., τt = BtAt),
and on (IA)3 (Liu et al., 2022). About the latter, let h represent the hidden dimension and l ∈ Rh

denote the (IA)3 task-specific vector: it can be shown that (IA)3 is equivalent to θt ≡ θ0 + τt
with τt = θ0 ⊙ ((l − 1h) ⊗ 1h), where 1h is the all-ones vector. For each fine-tuning strategy, we
initialize their parameters so that the resulting task vector τt starts as a null vector at the beginning.

Computational analysis. As outlined in App. D, by treating the composed model as a cumulative
average of individual models, both training/inference stages of ITA/IEL maintain constant complex-
ity O(1) with respect to the number of tasks T . Indeed, a single forward pass is sufficient to compute
the output of the composed model (constant time). Moreover, we do not need to store a separate set
of weights for each task (constant memory), provided we are not interested in more complex forms
of composition than the simplest uniform average (as required for specialization and unlearning).
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4 RELATION WITH EXISTING WORKS

Task arithmetic. Standard and Parameter-Efficient (PEFT) fine-tuning have been shown to support
addition/subtraction of task vectors. However, while the evidence in (Zhang et al., 2024; Ilharco
et al., 2022) is primarily empirical, we derive theoretical insights about the pre-conditions for task
arithmetic, emphasizing the importance of staying close to the pre-training basin. In this respect, our
derivations ground previous findings regarding the efficacy of low learning rates (Ilharco et al., 2022;
Ortiz-Jimenez et al., 2024). Remarkably, staying within the pre-training basin has also been proved
beneficial in (Sadrtdinov et al., 2024) for ensemble learning. The conditions for compositionality are
also studied by Ortiz-Jimenez et al. (2024) on linearized networks (Eq. 7). Albeit considering this
work inspirational, we see the pros of task arithmetic in the non-linear regime. Firstly, non-linear
models surpass their linearized counterparts in single-task accuracy, making them more attractive.
To reduce the gap, linearization-aware fine-tuning has to be used (Liu & Soatto, 2023), contrarily
to our approach that is compatible with the prevalent fine-tuning techniques. Secondly, linearized
inference requires the demanding Jacobian-vector product (three times slower than a forward pass).

Ensemble learning. While original model soups (Wortsman et al., 2022) combine multiple weights
fine-tuned on the same dataset, we herein managed to unlock running model soups in cross-dataset
incremental settings, with possible returns in terms of forward transfer (Lopez-Paz & Ranzato,
2017). The optimization of the whole deep ensemble is also discussed in Jeffares et al. (2024) for
standard ensembles, i.e., averaging the outputs of different models. Their derivation is similar to ours
and regards the decomposition of the ensemble loss into the strength of the individual learners and
their diversity. However, Jeffares et al. (2024) use this result to elucidate the shortcomings of jointly
trained deep ensembles, whereas we leverage it to provide effective regularization for model soups
in incremental scenarios. Similar to our IEL, several works (Li et al., 2022; 2023a; Schmidt et al.,
2023) build an ensemble through a cumulative mean of intermediate checkpoints sampled along the
training trajectory, with benefits in terms of generalization and preservation of zero-shot pre-training
capabilities (Zheng et al., 2023). Differently, Jolicoeur-Martineau et al. (2023) maintain a population
of models trained with varying configurations (e.g., data augmentations). They also gradually push
each weight toward the population average, thus encouraging alignment across individual models.
Notably, such a behaviour is also positively rewarded by our second-order formulation (see Eq. 17).

Incremental learning. Adding new knowledge in deep networks often degrades the ability on ear-
lier tasks. Approaches against forgetting can be divided into three groups: those involving regular-
ization (Kirkpatrick et al., 2017; Zenke et al., 2017), those retaining old data for rehearsal (Lopez-
Paz & Ranzato, 2017; Aljundi et al., 2019), and those allocating new modules (Mallya & Lazebnik,
2018; Abati et al., 2020). Among the latter, SEED (Rypeść et al., 2024) manages an ensemble of
expert networks learned incrementally, sharing similarities with our IEL. However, SEED stores
separate models and combines their outputs, whereas our approach maintains a cumulative weight
average of past experts, minimizing memory and computational overhead. This running average
can also be achieved by InfLoRA (Liang & Li, 2024), which addresses interference among LoRA
modules through tailored initialization. In contrast, our method addresses this issue through explicit
regularization. In addition, a recent trend capitalizes on prompt-tuning (Wang et al., 2022a;b; Smith
et al., 2023), devising a pool of learnable prompts. Notably, the extent to which these models sup-
port compositionality is investigated in Perera et al. (2023). Bowman et al. (2023) propose À-la-carte
Prompt Tuning (APT), an attention mechanism that enables the creation of bespoke models by com-
posing arbitrary prompts. Their setting called à-la-carte aligns with the scope of our ITA; however,
our work extends to a broader range of PEFT modules, unlike APT that is limited to soft prompts.

NTK-based Incremental learning. The authors of Tangent Model Composition (TMC) (Liu &
Soatto, 2023) build on the foundational work of Ortiz-Jimenez et al. (2024) to address incremental
learning. They enforce task arithmetic across subsequent tasks through linearization-aware fine-
tuning, which entails a first-order Taylor approximation of the output function around θ0. In this
context, each task of TMC is effectively equivalent to training a kernel predictor using the Neural
Tangent Kernel (NTK) (Jacot et al., 2018), defined as kNTK(x, x

′) = ∇θf(x;θ0)
⊤∇θf(x

′;θ0).
In contrast, our approach employs a higher-order approximation of the empirical risk, thereby focus-
ing on the geometry of the loss landscape (Chaudhry et al., 2018). Notably, other recent works (Liu
et al., 2024) have adopted the NTK framework to tackle incremental learning: e.g., TKIL (Xiang &
Shlizerman, 2023) exploit the NTK formulation to align representations for current and past tasks.
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Table 1: Comparison with SOTA (Final Accuracy [↑]). Best results in bold, second-best underlined.
EWC, LwF-MC, DER++ (buffer size of 1, 000 examples), SEED, and TMC rely on full fine-tuning;
L2P, CODA, and APT utilize prompt-based learning. Finally, InfLoRA adopts LoRA fine-tuning.

Model IN-R C-100 CUB Caltech MIT RESISC CropDis.
Joint 86.08 91.74 87.12 93.21 87.19 96.79 99.71
Finetune 22.31 21.57 29.35 44.03 18.85 12.90 20.54

EWC 58.64 73.49 40.33 73.23 64.44 58.80 70.33
LWF-MC 50.93 72.16 21.88 79.73 67.04 68.09 78.28
DER++ 60.53 83.02 76.10 86.11 68.88 67.23 98.77
L2P 67.17 87.32 78.95 91.22 83.17 63.47 75.18
CODA 74.12 86.48 78.54 90.57 77.73 69.50 74.65
SEED 55.87 83.39 85.35 90.04 86.34 74.81 92.77
APT 65.32 86.19 69.51 87.71 75.83 49.99 59.37
InfLoRA 76.97 87.17 79.14 90.53 79.14 79.92 89.05
TMC 60.01 78.42 71.72 82.30 68.66 60.66 66.56

ITA-FFT 76.43 89.38 84.80 92.32 85.35 80.50 91.81
ITA-LoRA 77.79 89.96 85.55 92.65 86.60 82.00 95.85
ITA-(IA)3 77.04 90.66 85.67 92.67 84.74 83.73 95.41

IEL-FFT 80.09 89.38 84.89 92.23 82.79 81.42 95.83
IEL-LoRA 79.93 89.53 84.95 92.19 84.49 82.53 95.88
IEL-(IA)3 77.86 89.72 84.57 92.70 85.54 81.50 95.68

5 EXPERIMENTS

Datasets. Following affine works (Wang et al., 2022b; Bowman et al., 2023; Liu & Soatto, 2023),
we evaluate on these class-incremental benchmarks: Split ImageNet-R (Hendrycks et al., 2021)
(10 tasks × 20 classes each), Split CIFAR-100 (Krizhevsky et al., 2009) (10 tasks × 10 classes),
Split CUB-200 (Wah et al., 2011) (10 tasks × 20 classes), Split Caltech-256 (Griffin et al., 2007)
(10 tasks, as in (Liu & Soatto, 2023)), and Split MIT-67 (Quattoni & Torralba, 2009) (10 tasks, as
in (Liu & Soatto, 2023)). We conduct further tests on the aerial and medical domains using Split
RESISC45 (Cheng et al., 2017) (9 tasks × 5 classes) and Split CropDiseases (Hughes et al., 2015) (7
tasks × 5 classes). They provide a challenging benchmark for our proposals due to their low domain
similarity with the ImageNet pre-training (Oh et al., 2022). Further details can be found in App. G.

Benchmarking. We compare against recognized incremental methods as EWC (Kirkpatrick et al.,
2017), LwF-MC (Rebuffi et al., 2017), DER++ (Buzzega et al., 2020b), L2P (Wang et al., 2022b),
and CODA (Smith et al., 2023). We also asses SEED (Rypeść et al., 2024), InfLoRA (Liang &
Li, 2024), APT (Bowman et al., 2023), and TMC (Liu & Soatto, 2023), four approaches featur-
ing compositionality and ensemble learning. Their description and the main differences from our
approaches are provided in App. F. All methods, including ours, utilize the same backbone – a ViT-
B/16 (Dosovitskiy et al., 2020) with supervised pre-training on ImageNet21K (Ridnik et al., 2021)
– and the same batch size (128). We compute the accuracy on all classes at the end of the final task
(Final Accuracy, FA). Following Buzzega et al. (2020b), the hyperparameters are chosen through
a grid search on a validation set (i.e., 10% of the training set). This procedure was repeated for each
method, ensuring careful tuning of the search space. See the supplementary for 1) the standard
deviation of the FA (the results are averaged over three runs, see App. H.2); 2) the results expressed
as Final Forgetting (Chaudhry et al., 2018) (App. H.1); 3) the selected hyper-parameters (App. I).

Comparison with SOTA. As reported in Tab. 1, ITA and IEL outperform existing approaches on
all datasets except MIT-67 and CropDisease. At times, they match SEED; however, its reliance on
Mixture of Experts makes its inference computationally demanding. Our results far exceed those of
TMC, showcasing the potential of the non-linear regime over linearization. Considering the good re-
sults on RESISC and CropDis., ITA and IEL do not seem affected by large domain shifts, indicating
that our formulation remains effective even when the pre-training optimality is challenged. Finally,
given the comparable results of ITA and IEL, we recommend ITA as the preferred starting point for
future research, in light of the greater flexibility offered by the individual training paradigm.
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Table 2: For ITA, analysis of the impact of the proposed regularization loss (FA [↑]).
Model IN-R C-100 CUB Caltech MIT RESISC CropDis.
ITA-FFT (reg) 76.43 89.38 84.80 92.32 85.35 80.50 91.81

without Eq. 12 reg. 8.61 17.59 10.47 12.76 12.01 17.17 20.64
Eq. 12 only on CLS 76.00 87.60 83.54 91.04 81.45 75.26 77.00

ITA-LoRA (reg) 77.79 89.96 85.55 92.65 86.60 82.00 95.85
without Eq. 12 reg. 50.17 66.58 60.58 74.87 52.74 37.59 55.86
Eq. 12 only on CLS 77.33 90.03 85.55 92.59 84.86 80.64 96.22

On the impact of regularization. Tab. 2 reports the results of ITA when the regularization term
in Eq. 12 is removed (the same analysis for ITA-(IA)3 and IEL is available in App. H). To evaluate
the effect on distinct layers, we additionally assess the model with only the last classification layer
regularized (see Eq. 12 only on CLS in Tab. 2). As observed: i) applying Eq. 12 is beneficial for all
examined fine-tuning strategies; ii) although regularizing all layers is the most consistent approach,
applying Eq. 12 only on the classification head already yields good accuracy. This suggests that
compositionality in closed-set models is largely dependent on the learning dynamics of the last layer.
Finally, full fine-tuning (FFT) struggles the most when no regularization or partial regularization is
applied, in contrast to PEFT modules like LoRA and (IA)3 that still manage to achieve decent
results. We ascribe this evidence to the tendency of PEFT modules to forget less of the pre-trained
knowledge (Biderman et al., 2024), a feature we identify as beneficial for model compositionality.
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Figure 1: Effect of ITA. Best viewed in color.

To gain insights into our regularization, we re-
visit the foundations of ITA: specifically the
inequality in Eq. 5, which states that the risk
of the composed model ℓ̂cur(θP) is upper
bounded by the weighted risk of the individ-
ual models

∑
wtℓ̂cur(θt). In practice, there is

no guarantee that this upper bound is tight: as
these individual models are trained on disjoint
tasks, their risk is likely high for examples out-
side their training distribution. We hence ex-
pect the upper bound to be loose: this is shown
in Fig. 1, where we measure the effect of our
regularization on the empirical risk of the com-
posed model
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From this lens, ITA significantly tightens the upper bound, with a remarkable reduction of the risk
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(obtained with linear probing). This indicates that there is a good
margin to find a point in parameter space that improves pre-training. Vice versa, the upper bound∑

wtℓ̂cur(θt) does not always exceed pre-training, even with regularization applied. This raises the
theoretical possibility of regret between the composed model and pre-training. This work provides
empirical evidence to address it but a theoretical analysis is needed, which we leave for future works.

On the compositional skills of ITA and IEL. We herein investigate specialization and unlearning
capabilities of our approaches. Specifically, given the task vectors trained on the sequence of tasks,
we freeze and use them to edit the composed model. As these adaptations involve simple additions
and subtractions of task vectors, we can perform specialization and unlearning in a zero-shot fashion
requiring no examples. In particular, through the former test on specialization, we examine whether
composing only a subset of the task vectors can boost the composed model on the respective selected
tasks. In doing so, we focus on three tasks of the incremental sequence i.e., the first, the central, and
the last one. The performance is then measured considering the average FA across the tasks we
wish to specialize in (FATGT ) and the average FA across the others (FACTRL ). In the second
test, instead, our goal is to eliminate knowledge of a specific task without degrading performance
on other tasks (unlearning). Specifically, to unlearn a given task, we subtract its associated task
vector from the composition, which still includes the weights of the tasks that need to be preserved.
Afterwards: i) we measure the accuracy for the unlearned task (FATGT ) and the others (FACTRL );
ii) the procedure is then repeated for all tasks, with the performance averaged across them.
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Table 3: Analysis of compositional capabilities – see App. H for results on other datasets. In paren-
theses, we report the gain (or loss) in accuracy on the target task.

Dataset Model zero-shot specialization zero-shot unlearning
FATGT [↑] FACTRL FATGT [↓] FACTRL

ITA-LoRA 80.83 (+11.40) 50.52 22.77 (−55.02) 52.72 (−25.07)

IEL-LoRA 73.46 (−06.68) 38.46 18.55 (−61.38) 41.97 (−37.96)IN-R
TMC 69.93 (+08.36) 34.08 45.77 (−14.24) 54.37 (−05.64)

ITA-LoRA 92.80 (+01.63) 60.06 28.67 (−61.29) 71.96 (−17.99)

IEL-LoRA 77.77 (−13.22) 37.90 19.48 (−70.05) 56.52 (−33.01)C-100
TMC 87.53 (+06.49) 45.75 55.63 (−22.79) 71.83 (−06.59)

The results are in Tab. 3 and Tab. 7 of App. H, where we compare with TMC by Liu & Soatto (2023),
i.e., model linearization and tangent fine-tuning. Regarding specialization, both ITA and TMC
improve the accuracy on the target tasks. IEL, instead, leads to a severe drop during specialization.
This yields an interesting finding: while Tab. 1 highlights its performance as satisfying, we observe
that the ensemble struggles when any of its members are removed. In an era where ensemble models
are experiencing renewed attention (Liang & Li, 2024; Marouf et al., 2023), this evidence should
be sobering. On the other hand, we underline the specialization capabilities of ITA, with the best
absolute performance on the target tasks. We ascribe it to the devised regularization objective and
the natural advantages of the non-linear regime. When focusing on unlearning, ITA shows mixed
results. Notably, both ITA and TMC consistently reduce the performance of the task to be forgotten.
While this also affects the tasks that should be preserved, ITA exhibits a greater distinction between
the target and control tasks, indicating a more effective disentanglement of knowledge across tasks.

6 DISCUSSION OF LIMITATIONS AND FUTURE DIRECTIONS

Second-order Taylor approximations are valid tools to make the theory more tractable. For instance,
a similar approach was used by Mirzadeh et al. (2020) to support the importance of wider local
minima against forgetting. Nonetheless, these approximations often rely on certain concessions, the
first regarding their validity during training. Since our approximation is performed at the pre-training
weights, it may become inaccurate as parameters drift. While importance-based terms like ours may
partially mitigate the drift, other techniques could be used (e.g., a L2-norm penalty on task vectors
or low learning rate). Even without explicit countermeasures, existing studies suggest that deep
networks often fall into a regime where the loss tends to be almost convex in a neighborhood around
their local minima (Goodfellow et al., 2015; Lucas et al., 2021; Yunis et al., 2022). Also, under
some conditions, their training dynamics can enter the lazy regime (Chizat et al., 2019; Jacot et al.,
2018), where these models rapidly achieve near-zero loss with minimal changes to their weights.

Moreover, two other concessions warrant a discussion: approx. i) we implicitly model the weight
distribution with a Gaussian (Chaudhry et al., 2018) (Eq. 9); approx. ii) the Fisher matrix is ap-
proximated by its diagonal (Eq. 11). Regarding approx. i), while non-Gaussian posteriors are often
cumbersome to manage, Farquhar et al. (2020) challenge the common belief that mean-field approx-
imations are overly restrictive for deep networks. Moreover, although approx. ii) may seem crude,
the diagonal approximation is efficient, with a low memory footprint. Still, our approach could profit
from more accurate estimations of the Hessian, like the Kronecker factored approximation (Martens
& Grosse, 2015), which considers the interactions between weights of the same layer.

Future work. Through theoretical and empirical analyses, we support the importance of remaining
within the pre-training basin to achieve composable deep networks. However, there is still much to
explore along this path. We mainly focus on closed-set classification models but it would be note-
worthy to extend our analysis to self-supervised pre-training and open-vocabulary models like CLIP.
Indeed, recent works (Zheng et al., 2023) have shown their tendency to forget zero-shot pre-training
capabilities while fine-tuning. In this respect, our second-order regularization could significantly aid
compositionality in CLIP-based models. Finally, we believe that staying within the pre-train basin is
only one aspect to consider; future research should emphasize the exploration of the pre-train basin,
to achieve composable modules with a higher degree of specialization on their respective tasks.
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A APPENDIX / SUPPLEMENTAL MATERIAL

The appendix is organized via the following contributions:

• App. B provides the proofs for Theorem 1 and Eq. 17.
• App. C illustrates that gradients of Eq. 19 can be derived in closed-form.
• App. D reports the computational analysis for our approaches Incremental Task Arithmetic

(ITA) and Incremental Ensemble Learning (IEL).
• App. E describes the essential details required to reproduce the methods described in the

main paper.
• Apps. F and G supplements the main paper with additional information regarding the rela-

tion with existing works and the adopted benchmarks.
• App. H provides additional experimental results: the forgetting metric, the standard devia-

tion measured in each experiment, an additional ablation study regarding IEL, an extensive
evaluation of model compositionality across multiple datasets, an analysis of the similari-
ties between task vectors learned by ITA and IEL, and a timing analysis.

• App. I outlines the hyperparameter configurations adopted in our experiments.

B PROOFS

B.1 PROOF OF THEOREM 1

Proof. For the sake of notation, we will use the shortcuts ℓ0 ≜ ℓ(θ0), Jℓ ≜ ∇ℓ(θ0), and Hℓ ≜
Hℓ(θ0). Given a setting with only two learners A and B, the second-order approximation of the
loss function of the composed model P is:

ℓcur(θP) = ℓ0 + (θP − θ0)
TJℓ +

1

2
(θP − θ0)

THℓ(θ − θ0)

= (wa + wb)︸ ︷︷ ︸
=1

ℓ0 + ( θP − θ0︸ ︷︷ ︸
waτa+wbτb

)TJℓ +
1

2
(θP − θ0)

THℓ(θ − θ0)

= waℓ0 + wbℓ0 + (waτa + wbτb)
TJℓ +

1

2
(waτa + wbτb)

THℓ(waτa + wbτb)

= waℓ0 + wbℓ0 + waτ
T
a Jℓ + wbτ

T
b Jℓ +

1

2
(waτ

T
a + wbτ

T
b )Hℓ(waτa + wbτb)

= wa[ℓ0 + τT
a Jℓ] + wb[ℓ0 + τT

b Jℓ] +
1

2
(waτ

T
a Hℓ + wbτ

T
b Hℓ)(waτa + wbτb)

= wa[ℓ0 + τT
a Jℓ] + wb[ℓ0 + τT

b Jℓ] +
1

2
(w2

aτ
T
a Hℓτa + w2

bτ
T
b Hℓτb+

+ wawbτ
T
a Hℓτb + wawbτ

T
b Hℓτa)

Given that τT
a Hℓτb is a scalar and (ABC)T = (CTBTAT)

→ τT
a Hℓτb = (τT

a Hℓτb)
T = (τT

b Hℓ︸︷︷︸
symm.

Tτa) = τT
b Hℓτa

ℓcur(θP) = wa[ℓ0 + τT
a Jℓ] + wb[ℓ0 + τT

b Jℓ] +
1

2
(w2

aτ
T
a Hℓτa + w2

bτ
T
b Hℓτb + 2wawbτ

T
a Hℓτb)

= wa[ℓ0 + τT
a Jℓ] + wb[ℓ0 + τT

b Jℓ] +
1

2
( w2

aτ
T
a Hℓτa︸ ︷︷ ︸

w2
a=wa(1−wb)
=wa−wawb

+w2
bτ

T
b Hℓτb + 2wawbτ

T
a Hℓτb)

= wa[ℓ0 + τT
a Jℓ +
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2
τT
a Hℓτa] + wb[ℓ0 + τT

b Jℓ] +
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2
(waτ

T
a Hℓτa + wbτ

T
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a Hℓτb)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

= wa[ℓ0 + τT
a Jℓ +

1

2
τT
a Hℓτa] + wb[ℓ0 + τT

b Jℓ +
1

2
τT
b Hℓτb] +

− 1

2
wawb(τ

T
a Hℓτa + τT

b Hℓτb − 2τT
a Hℓτb)

= waℓcur(θA) + wbℓcur(θB)−
1

2
wawb(τ

T
a Hℓτa + τT

b Hℓτb − 2τT
a Hℓτb)

= waℓcur(θA) + wbℓcur(θB)−
1

2
wawb(τa − τb)

THℓ(τa − τb).

In the multiple learning setting, we have that θP = θ0 + τP = θ0 +
∑T

t=1wtτt with
∑T

t=1wt = 1.
Therefore:

ℓcur(θP) = ℓ0 + (θP − θ0)
TJℓ +

1

2
(θP − θ0)

THℓ(θ − θ0)

=

T∑

t=1

wt
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=1

ℓ0 + τP
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τP

THℓτP =
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wtτt)
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2
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THℓτP

=
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t=1
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[
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TJℓ

]
+

1

2
τP

THℓτP .

Let us now focus on the quadratic term:

τP
THℓτP = (

T∑

t=1

wtτt)
THℓ(
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t=1

wtτt) = (
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T
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2τT

t Hℓτt + 2

T∑

t,t′<t

wtwt′τ
T
t Hℓτt′

Given that wt
2 = wt · wt = wt(1−

∑T
t′ ̸=t wt′) = wt − wt

∑T
t′ ̸=t wt′ :

=

T∑

t=1


wt − wt

T∑

t′ ̸=t

wt′


 τT

t Hℓτt + 2

T∑

t=1,t′<t

wtwt′τ
T
t Hℓτt′

=

T∑

t=1

wtτ
T
t Hℓτt −

T∑

t=1


wt

T∑

t′ ̸=t

wt′


 τT

t Hℓτt + 2

T∑

t=1,t′<t

wtwt′τ
T
t Hℓτt′

=

T∑

t=1

wtτ
T
t Hℓτt −

T∑

t=1

T∑

t′ ̸=t

wtwt′τ
T
t Hℓτt + 2

T∑

t=1,t′<t

wtwt′τ
T
t Hℓτt′

=

T∑

t=1

wtτ
T
t Hℓτt −

T∑

t=1,t′<t

wtwt′(τ
T
t Hℓτt + τT

t′ Hℓτt′) + 2

T∑

t=1,t′<t

wtwt′τ
T
t Hℓτt′

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

=

T∑
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THℓτP .

=

T∑

t=1

wt

[
ℓ0 + τt

TJℓ

]
+

1

2

T∑

t=1

wtτ
T
t Hℓτt −

1

2

T∑

t=1,t′<t

wtwt′(τt − τt′)
THℓ(τt − τt′)

=

T∑

t=1

wt

[
ℓ0 + τt

TJℓ +
1

2
wtτ

T
t Hℓτt

]
− 1

2

T∑

t=1,t′<t

wtwt′(τt − τt′)
THℓ(τt − τt′)

=

T∑

t=1

wtℓcur(θt)−
1

2

T∑

t=1,t′<t

wtwt′(τt − τt′)
THℓ(τt − τt′),

which ends the proof of Theorem 1.

B.2 PROOF OF EQ. 17

Proof. In the dual-learner setting we have:

Ω(A,B) =
1

2
wAwB(τA − τB)

THℓ(θ0)(τA − τB).

If we replace the Hessian matrix with the diagonal Fisher matrix F̂θ0 , we get:

Ω(A,B) =
1

2
wAwB(τA − τB)

TF̂θ0(τA − τB) =

=
1

2
wAwB

[
τA

TF̂θ0
τA − 2τA

TF̂θ0
τB + τB

TF̂θ0
τB

]
.

If we focus on the first term inside the parenthesis, we obtain:

τA
TF̂θ0

τA = τA
TF̂

1/2
θ0

F̂
1/2
θ0

τA = (F̂
1/2
θ0

τA)
T(F̂

1/2
θ0

τA) = ∥F̂1/2
θ0

τA∥22

=

|θA|∑

i=1

F̂
(i)
θ0
(τ

(i)
A )2 =

|θA|∑

i=1

F̂
(i)
θ0
(θ

(i)
A − θ

(i)
0 )2 = EWCθ0

(θA).

Therefore, we can rewrite Ω(A,B) as:

Ω(A,B) =
1

2
wAwB

[
EWCθ0

(θA) + EWCθ0
(θB)− 2τA

TF̂θ0
τB

]
.

We now generalize to T ≥ 2. Starting from Eq. 14 and replacing the Hessian with the diagonal
Fisher approximation F̂θ0

, we obtain:

1

2

T∑

t=1,t′<t

wtwt′(τt − τt′)
THℓ(τt − τt′) ≈
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≈ 1

2

T∑

t=1,t′<t

wtwt′

[
EWCθ0

(θt) + EWCθ0
(θt′)− 2τT

t F̂θ0
τt′

]

=
1

2

T∑

t=1,t′<t

wtwt′ [EWCθ0
(θt) + EWCθ0

(θt′)]−
T∑

t=1,t′<t

wtwt′τ
T
t F̂θ0

τt′

=
1

2

T∑

t=1,t′ ̸=t

wtwt′ EWCθ0
(θt)−

T∑

t=1,t′<t

wtwt′τ
T
t F̂θ0

τt′

=
1

2

T∑

t=1

wt EWCθ0(θt)

T∑

t′ ̸=t

wt′

︸ ︷︷ ︸
1−wt

−
T∑

t=1,t′<t

wtwt′τ
T
t F̂θ0τt′

=
1

2

T∑

t=1

wt(1− wt) EWCθ0
(θt)−

T∑

t=1,t′<t

wtwt′τ
T
t F̂θ0

τt′ ,

which aligns with the result of Eq. 17.

C CLOSED FORM GRADIENTS FOR EQ. 19

We start by deriving the gradients of ΩF̂(·) (Eq. 14) w.r.t. the generic task vector τk. We initially
consider the case of full-fine tuning, and then generalize the results to LoRA and (IA)3.

To simplify the calculations, we first rearrange ΩF̂(·) as:

ΩF̂(θ1, . . . ,θT ) =
1

2

T∑

t=1

∑

t′<t

wtwt′(τt − τt′)
TF̂θ0

(τt − τt′)

≈ 1

2

T∑

t=1

wt(1− wt) EWCθ0
(θt)−

T∑

t=1,t′<t

wtwt′τ
T
t F̂θ0

τt′ (see Eq. 17),

Therefore, we can write:

∂ΩF̂

∂τk
=

∂
[
1
2

∑T
t=1 wt(1− wt) EWCθ0

(θt)
]

∂τk
−

∂
[∑T

t=1,t′<t wtwt′τ
T
t F̂θ0

τt′
]

∂τk

=
∂
[
1
2wk(1− wk) EWCθ0

(θk)
]

∂τk
− (20)

−
∂
[∑

t′<kwkwt′τ
T
k F̂θ0τt′ +

∑
t ̸=k,t′<twtwt′τ

T
t F̂θ0τt′

]

∂τk

= wk(1− wk)
∂
[
1
2 EWCθ0(θk)

]

∂τk
−

T∑

t′ ̸=k

wkwt′
∂τT

k F̂θ0
τt′

∂τk

= wk(1− wk) F̂θ0
⊙ τk − wk

T∑

t′ ̸=k

wt′ F̂θ0
⊙ τ ′

t

= wk

[
(1− wk) F̂θ0 ⊙ τk −

T∑

t′ ̸=k

wt′ F̂θ0 ⊙ τ ′
t

]

= wk


F̂θ0

⊙
[
(1− wk)τk −

T∑

t′ ̸=k

wt′τ
′
t

]

 . (21)
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We now suppose that training is performed incrementally on a sequence of 1, 2, . . . , k, . . . , T tasks.
During the k-th task, IEL optimizes only τk, namely the task vector instantiated at the beginning of
the k-th task. Indeed, as discussed in Sec. 2.3 (Eq. 19), the task vectors τ1, τ2, . . . , τk−1 introduced
in preceding tasks are kept frozen. Moreover, at each round, we devise uniform weights, such that
wt =

1
k , with t < k. On top of that, we can rewrite the gradients in Eq. 20 as:

∂ΩF̂

∂τk
=

1

k

[
F̂θ0 ⊙

[
(1− 1

k
)τk − 1

k

∑

t<k

τt
]
]

(22)

Notably, the term 1
k

∑
t<k τt is a running average of the preceding task vectors. As also discussed

in App. D, this reduces the memory/time computational cost for computing the gradients of ΩF̂ to
O(1).

As a final step, we can exploit the result in Eq. 22 to compute the gradients of LoRA (τk = BkAk)
and (IA)3. For LoRA, we have that:

∂Ω

∂Bk
=

∂Ω

∂τk

∂τk
∂Bk

=
1

k

[
F̂θ0 ⊙

[
(1− 1

k
)τk − 1

k

∑

t<k

τt
]
]
AT

∂Ω

∂Ak
=

∂Ω

∂τk

∂τk
∂Ak

=
1

k
BT

[
F̂θ0

⊙
[
(1− 1

k
)τk − 1

k

∑

t<k

τt
]
]

In the case of (IA)3, where τk = θ0 ⊙ ((lk − 1d)⊗ 1d):

∂Ω

∂lk
=

∂Ω

∂τk

∂τk
∂lk

=

[
1

k

[
F̂θ0

⊙
[
(1− 1

k
)τk − 1

k

∑

t<k

τt
]
]
⊙ θT

0

]
1d

where 1d is a d-dimensional column vector of ones with shape d× 1.

D COMPUTATIONAL ANALYSIS

Analysis of ITA. Regarding ITA (i.e., individual training), the learning phase has constant O(1)
time and memory complexity. As each model is optimized in isolation, the training cost is similar
to that of EWC (Kirkpatrick et al., 2017) and stems from the computation and storage of the Fisher
Information Matrix, along with the calculations of the penalty term. During the evaluation phase,
the time complexity of ITA remains O(1), as it involves a single forward pass on the composed
model f(·;θP). Memory complexity, on the other hand, is O(T ) if maintaining separate models
with distinct expertise is desired (e.g., for later re-composition). Otherwise, this can be avoided by
considering the composed model as a cumulative average of individual models (see later), resulting
in a memory cost of O(1).

Analysis of IEL. Referring to IEL (i.e., ensemble training), it might initially appear expensive
due to the joint training of the ensemble. However, the complexity of IEL remains constant to
O(1) in terms of both memory and time. This reduction is intuitive when we view the ensemble
as a cumulative average of individual weights. To demonstrate this, we begin by considering the
following cascade of models to be learned:

Task#1 → f(·;θP = θ0 + τ1)

Task#2 → f(·;θP = θ0 +
1

2
τ1 +

1

2
τ2)

. . .

Task#t → f(·;θP = θ0 +
1

t
τ1 +

1

t
τ2 + · · ·+ 1

t
τt−1 +

1

t
τt)

At each task, only the latter component of the composed model is learnable, while the preceding
components are frozen:

Task#t → f(·;θP = θ0 +
1

t
τ1 +

1

t
τ2 + . . .

1

t
τt−1

︸ ︷︷ ︸
frozen components

+
1

t
τt︸︷︷︸

learnable

).
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Therefore, as the preceding #t − 1 components are kept frozen, we can incorporate them into the
initialization weights θ0 → θ

(t)
0 and optimize:

Task#t → f(·;θP = θ
(t)
0 +

1

t
τt) where θ

(t)
0 = θ0 +

1

t

t−1∑

t′=1

τt′ .

Under this perspective, the learning of the t-th task is comparable to standard fine-tuning with a
re-scaling factor = 1/t. Therefore, provided that θ(t)

0 is computed once at the beginning of the t-th
task, the learning of the t-th task has constant O(1) time complexity.

It is noted that optimizing Eq. 19 via gradient descent can be similarly simplified, resulting in a
constant O(1) time complexity. In fact, the gradients derived in App. C involve averaging the
weights learned during previous tasks, specifically 1

t

∑t−1
t′=1 τt′ . Since the weights from previous

tasks are frozen during the current task, we can compute this average once and cache it.

To reduce memory complexity to O(1), we must avoid storing τ1, . . . , τt−1 separately. This can be
accomplished by assuming an initial null displacement τ0 = 0 and redefining θ

(t)
0 as:

θ
(t)
0 = θ0 +

1

t

t−1∑

t′=1

τt′ = θ0 + τ0 +
1

t

t−1∑

t′=1

τt′ = θ0 +
1

t

t−1∑

t′=0

τt′ =

= θ0 + τ
(t)
AVG

The term τ
(t)
AVG = 1

t

∑t−1
t′=0 τt′ is basically the cumulative average of the displacements up to the

current task (excluded). The cumulative average is straightforward to compute and, as is well-
known, eliminates the need to store all previous values appearing in the sum, with resulting memory
complexity O(1).

E IMPLEMENTATION DETAILS OF ITA AND IEL

Task pre-consolidation – Linear Probing. At the beginning of each task, during the pre-
consolidation phase, we train a new classification head to account for the classes introduced by
the current task. While the rest of the backbone remains frozen, a new linear classification layer
is then trained with standard Stochastic Gradient Descent (SGD) for a varying number of epochs,
depending on the dataset (typically either 3 or 8 epochs, as detailed in App. I).

Task pre-consolidation – Update of the FIM. Afterward, the diagonal Fisher Information Matrix
(FIM) has to be updated to incorporate new information from the current task. Similar to Schwarz
et al. (2018), we consider the estimated FIM as an online cumulative average of the squared gradi-
ents of the negative log-likelihood. Unlike Schwarz et al. (2018), we do not introduce the hyper-
parameter γ to down-weight the importance of the previous estimate. Moreover, following Kunstner
et al. (2019), we compute the true FIM as defined in Eq. 10: i.e., taking the expected gradient on
the prediction vector ŷ. This approach differs from the majority of existing methods (Schwarz et al.,
2018; Kirkpatrick et al., 2017; Chaudhry et al., 2018), which apply a further approximation by rely-
ing on the empirical FIM: i.e., only considering the gradient of the ground truth label. Consequently,
our estimate is more accurate but requires multiple backward passes, but the computational impact
of this operation can be significantly reduced through batch-wise parallelization as in George (2021).

Fine-tuning – Initialization. All methods utilize the same pre-training (supervised) on Ima-
geNet21K (‘vit base patch16 224.augreg in21k‘ from the ‘timm‘ library). Following
the original works, we initialize the learnable parameters such that task vectors start from the pre-
train initialization:

• Full Fine-Tuning: we apply zero-initialization.
• LoRA: we use Gaussian initialization for matrix A and zero initialization for matrix B.
• (IA)3: we initialize the vectors l with ones.

Fine-tuning – Loss function. Importantly, while our derivations regard the second-order ap-
proximation ℓcur, the full loss ℓ is instead employed in our algorithms. Indeed, as is common in
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frameworks similar to ours (Chaudhry et al., 2018; Mirzadeh et al., 2020), the Taylor approximation
is employed to build a surrogate of the exact loss that is both accurate and mathematically tractable.
However, when it comes to practice, this proxy is often relaxed, and the full target function is used
instead for simplicity.

Following existing works (Smith et al., 2023; Wang et al., 2022b), we employ the local cross-
entropy loss as the learning objective. Given an example from the current task, while the standard
cross-entropy loss considers logits related to all classes, including those learned in previous tasks,
the local cross-entropy focuses only on logits corresponding to the classes introduced in the current
task. This approach prevents the logits of past classes from being overly penalized during the current
task (Caccia et al., 2022; Boschini et al., 2022). To ensure a fair comparison in our experiments, we
apply this modification to other competing methods (e.g., EWC (Kirkpatrick et al., 2017)).

Fine-tuning – Optimization. In each experiment, we use the AdamW optimizer (Loshchilov &
Hutter, 2017) with a learning rate of 3 × 10−4 for LoRA and (IA)3 fine-tuning, and 1 × 10−4 for
full fine-tuning. Importantly, in both ITA and IEL, we employ a decoupled strategy (Loshchilov
& Hutter, 2017) to incorporate the gradients of the regularization term. Specifically, we apply the
gradients of the regularizing objectives directly to the parameters before the gradient update step,
ensuring that the regularization term does not interfere with momentum in the optimization dynam-
ics. By adopting this approach, we observe an empirical improvement in final accuracy, attributed to
a more effective minimization of the Riemannian distance relative to the pre-training initialization
(see Eq. 12). Finally, we apply this decoupled gradient update exclusively to LoRA and (IA)3. For
full fine-tuning, we refrain from using it as we observed numerical instabilities (i.e., exploding loss).

Furthermore, we decouple the regularization strength applied to the final classification layer from
that applied to the rest of the learnable parameters. This introduces two additional hyper-parameters:
αCLS for ITA and βCLS for IEL. Intuitively, by decoupling the regularization weights, we can
increase the regularization strength of intermediate layers without causing numerical instabilities,
which often stem from the final classification layer.

F EXTENDED DISCUSSION ON RELATED WORKS AND COMPETING METHODS

To deliver the most comprehensive and significant comparison with the state of the art in incremental
learning, we chose a combination of well-established standard approaches (such as EWC, DER++,
L2P, and CODA) and recent proposals emphasizing compositionality skills (e.g., TMC and APT)
and ensemble learning (i.e., SEED). It is important to note that these methods have been heavily
influenced by the research trends prevalent at the time they were originally proposed, and therefore,
they tend to employ different strategies for fine-tuning the model. To sum up:

• EWC, LwF, DER++, SEED and TMC leverage on full-fine tuning.

• L2P, CODA, APT resort instead to prompting.

Therefore, achieving a direct apple-to-apple comparison is challenging, as the approaches present in
the literature are themselves prone to this issue.

We herein summarize the main aspects of the more important recent methods we compared with.

Elastic Weight Consolidation (EWC) As discussed in the main paper, while our approach regu-
larizes the distance in parameter space with respect to θ0, the regularization in EWC (Kirkpatrick
et al., 2017) instead focuses on the weights learned during the preceding task. However, beyond
the different regularizing strategies, there is another significant difference between ITA and EWC.
While ITA fine-tunes each task starting from the same original pre-trained model θ0, EWC begins
with the weights of the previous task.

It is noted that an EWC-like term that protects the last task weights could work as well in our
framework based on task vectors. We chose to anchor the model to the pre-training weights to allow
for more flexible decentralized learning, wherein multiple task vectors can be trained on different
tasks in parallel, with minimal interactions. In contrast, an EWC-like term, which regularizes each
successor based on its predecessor, would necessitate training the multiple task vectors in sequence.
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Learning to Prompt (L2P) (Wang et al., 2022b) and CODA-Prompt (Smith et al., 2023) are two
continual learning techniques based on prompting. They fine-tune a pre-trained model through a few
learnable parameters stored in a prompt pool, which can be either shared or tied to different tasks.
At inference time, the prompts are retrieved from the pool through a query-key search. In terms of
memory complexity, our ITA is in line with L2P and CODA when coupled with a parameter-efficient
fine-tuning technique such as IA3. Moreover, ITA does not require the additional forward pass on
the frozen pre-trained model required to retrieve the prompts.

À-la-carte Prompt Tuning (APT) (Bowman et al., 2023) is a prompt-based strategy similar to L2P
and CODA. The prompts are trained in isolation (similarly to ITA) and concatenated at inference
time to create the composed predictor (no prior query-key search is required). To avoid destructive
interference, a tailored masking mechanism is employed in self-attention layers. Differently, our
approaches fuse parameters through linear combinations.

Tangent Model Composition (TMC) (Liu & Soatto, 2023) is a recent approach addressing con-
tinual learning through task arithmetic in the tangent space. TMC builds upon task vectors and is
similar to ITA (full fine-tuning). They differ in two aspects: i) TMC applies a first-order approxi-
mation of the forward pass to support compositionality, making it two to three times slower than a
non-linear forward pass; ii) TMC does not include auxiliary regularization during training.

Selection of Experts for Ensemble Diversification (SEED) (Rypeść et al., 2024) is a recent ap-
proach that trains an ensemble of models incrementally. For each incoming task, an expert model is
chosen from the pool and trained. The major difference with respect to our IEL concerns the infer-
ence stage: while IEL performs an ensemble prediction in O(1) time (thanks to weight averaging),
SEED makes inference on all models at test time and averages their predictions.

Model merging. While we address compositionality during training, other approaches focus on
post-training techniques, as simple averaging leads to interference (Yadav et al., 2024b) when pa-
rameters are redundant or have conflicting signs. TIES (Yadav et al., 2024b) discards uninformative
parameters and addresses conflicts via majority voting. Zipit! (Stoica et al., 2023) merges redundant
parameters that produce similar features, while RegMean (Jin et al., 2022) exploits a closed-form
solution for linear layers. Notably, (Matena & Raffel, 2022) weighs the contribution of each param-
eter through the Fisher matrix, computed by each individual model at its optimum. This differs from
our approach that evaluates the FIM at the pre-training optimum.

G DATASETS

We conduct a comprehensive evaluation using a variety of benchmarks. Following the current liter-
ature on pre-trained CL models (Wang et al., 2022b;a; Smith et al., 2023), we include conventional
image datasets such as Split CIFAR-100 and Split ImageNet-R. We also include Split CUB-200,
Split Caltech-256 and Split MIT-67, recently used in the context of composable incremental meth-
ods (Bowman et al., 2023; Liu & Soatto, 2023). Finally, we assess the adaptability of these pre-
trained methods in settings with decreasing domain similarity to the ImageNet pre-training utilized
by our backbone model (Oh et al., 2022; Cui et al., 2018). Specifically, these settings include the
satellite and medical domains, represented by Split RESISC45 and Split CropDiseases, respectively.
In the following, we outline the due details:

• Standard domains: Split CIFAR-100 (Krizhevsky et al., 2009) and Split ImageNet-
R (Hendrycks et al., 2021), with respectively 100 and 200 classes split into 10 tasks. We
train each task of Split ImageNet-R for 30 epochs and each task of Split CIFAR-100 for
20 epochs. In particular, IN-R is a variant of the ImageNet dataset that includes artistic
renditions such as sketches, cartoons, and paintings. It is used to evaluate the robustness
and generalization capabilities of models trained on the original ImageNet when tested on
out-of-distribution data. Following (Liu & Soatto, 2023), we also employ Split Caltech-
256 (Griffin et al., 2007) and Split MIT-67 (Quattoni & Torralba, 2009), dividing both into
10 tasks (5 epoch each).

• Specialized domain: We adopt Split CUB-200 (Wah et al., 2011) to evaluate compositional
capabilities in a more fine-grained classification scenario, namely recognizing 200 species
of birds. The classes are split across 10 tasks, each lasting for 50 epochs.
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Table 4: Comparison with the SOTA across several benchmarks (Final Forgetting [↓]).
Model IN-R C-100 CUB Caltech MIT RESISC CropDis.
Joint ✗ ✗ ✗ ✗ ✗ ✗ ✗
Finetune 75.5 85.7 65.79 58.76 87.89 97.6 92.04

EWC (ON) 32.43 25.37 53.04 23.52 34.65 43.12 31.58
LWF-MC 10.39 6.13 26.2 5.23 3.56 5.66 7.94
DER++ 35.81 15.66 13.58 11.19 31.51 43.04 0.76
L2P 5.6 6.08 6.63 1.78 5.55 26.29 17.81
CODA 4.97 5.28 8.82 2.64 7.49 22 15.37
SEED 8.96 6.39 5.12 2.67 4.53 8.66 1.19
InfLoRA 5.67 4.05 4.58 1.89 6.85 10.77 4.79
APT 8.99 6.71 8.82 3.64 6.33 27.74 14.01
TMC 11.66 9.2 7.37 6.39 12.43 16.43 16.94

ITA-FFT 7.72 3.89 1.39 2.44 4.80 6.19 0.95
ITA-LoRA 8.00 3.22 2.08 2.38 4.68 8.30 0.68
ITA-(IA)3 8.72 3.57 2.23 2.39 4.48 7.33 0.76

IEL-FFT 5.40 2.20 2.04 1.50 2.29 3.46 1.40
IEL-LoRA 7.63 5.14 3.46 2.46 8.34 8.30 2.14
IEL-(IA)3 8.34 3.27 1.69 2.20 5.82 6.86 1.04

• Aerial domain: we use Split RESISC45 (Cheng et al., 2017), which comprises 30000 RGB
satellite images for land use and land cover classification. The dataset contains 45 classes
(e.g., airport, cloud, island, and so on) divided into 9 tasks, with each task lasting 30 epochs.

• Medical domain: we finally explore the medical setting (i.e., plant diseases) and conduct
experiments on Split CropDiseases (Hughes et al., 2015). It regards infected leaves with 7
tasks of 5 classes each (5 epochs).

We base our code on Mammoth (Buzzega et al., 2020b;a), a widely adopted framework in the class-
incremental learning literature.

H ADDITIONAL RESULTS

H.1 FORGETTING

Tab. 4 reports the Final Forgetting metric (Chaudhry et al., 2018) for our experiments.

H.2 STANDARD DEVIATION OF FA

Tab. 5 reports the standard deviation of the Final Accuracy metrics reported in Tab. 1.

H.3 ABLATION STUDY ON IEL

We herein present an ablative analysis regarding the ensemble-oriented regularization applied to the
proposed IEL approach. Specifically, we evaluate the impact of Eq. 19 on the final accuracy and
report the results in Tab. 6. After examining them, we can draw conclusions similar to those made
for ITA. In particular, the regularization driven by the second-order formulation proves beneficial for
achieving effective composition (especially the full-fine tuning), with the final classification layer
playing an important role in attaining good performance.

H.4 ADDITIONAL EXPERIMENTS ON INCREMENTAL MODEL COMPOSITIONALITY

Tab. 7 reports the results of ITA, IEL and TMC on additional datasets, with a focus on their compo-
sitionality capabilities (i.e., specialization and unlearning).
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Table 5: For each experiment of Tab. 1, the standard deviation of the Final Accuracy (FA).
Model IN-R C-100 CUB Caltech MIT RESISC CropDis.
Joint 0.87 0.16 0.41 0.43 0.31 0.22 0.21
Finetune 4.53 2.83 1.65 2.57 3.49 1.12 0.43

EWC 0.73 1.20 0.87 1.29 1.45 0.61 0.99
LWF-MC 0.89 1.12 3.23 3.94 2.98 2.85 2.85
DER++ 1.12 1.14 0.82 1.27 0.95 1.79 1.29
L2P 0.56 1.23 2.12 0.63 0.81 3.42 0.45
CODA 0.63 0.95 2.87 0.82 0.69 4.61 0.98
SEED 0.18 0.47 0.65 0.55 0.41 0.86 0.23
APT 0.84 1.30 2.45 0.95 0.73 1.94 0.68
InfLoRA 0.10 0.21 0.89 0.68 2.03 1.16 0.42
TMC 0.45 0.85 1.67 0.71 0.92 0.82 0.81

ITA-FFT 0.27 0.27 0.39 0.18 0.24 0.56 2.10
ITA-LoRA 0.26 0.20 0.13 0.16 0.40 0.89 0.55
ITA-(IA)3 0.28 0.04 0.18 0.18 0.69 0.68 0.27

IEL-FFT 0.11 0.17 0.21 0.09 1.12 0.77 0.90
IEL-LoRA 0.36 0.27 0.37 0.41 0.93 0.30 0.43
IEL-(IA)3 0.23 0.20 0.32 0.21 0.55 0.48 0.41

Table 6: Ablation study for ITA-(IA)3 and IEL on several benchmarks (FA [↑]).
Model IN-R C-100 CUB Caltech MIT RESISC CropDis.

ITA-(IA)3 (reg) 77.04 90.66 85.67 92.67 84.74 83.73 95.41
without Eq. 12 reg. 71.82 88.43 77.61 90.66 69.14 69.01 63.72
Eq. 12 only on CLS 76.72 90.48 85.56 92.56 85.25 84.37 95.45

IEL-FFT (reg) 80.09 89.38 84.89 92.23 82.79 81.42 95.83
without Eq. 19 reg. 40.85 52.56 14.02 53.76 47.63 39.20 31.24
Eq. 19 reg. only on CLS 77.99 85.82 85.30 91.43 77.58 76.87 96.18

IEL-LoRA (reg) 79.93 89.53 84.95 92.19 84.49 82.53 95.88
without Eq. 19 reg. 51.15 66.01 60.39 70.71 55.38 42.72 45.25
Eq. 19 reg. only on CLS 76.14 86.11 84.43 91.77 82.50 70.05 95.54

IEL-(IA)3 (reg) 77.86 89.72 84.57 92.70 85.54 81.50 95.68
without Eq. 19 reg. 73.72 84.00 74.72 89.58 69.82 62.52 66.29
Eq. 19 reg. only on CLS 77.23 89.38 84.70 92.76 85.43 81.60 95.72

H.5 ALIGNMENT BETWEEN TASK VECTORS OF ITA AND IEL

To better understand the relationship between the task vectors learned by ITA and IEL, in Fig. 2
we conduct an additional evaluation by measuring the alignment – in terms of cosine similarity –
between the parameters learned by the two proposed approaches. The analysis is twofold: first, the
alignment is evaluated between individual task vectors τ ITA

t and τ IEL
t by averaging the similarity

across tasks; second, it is assessed between composed models τ ITA
P and τ IEL

P . To eliminate potential
confounding effects due to PEFT strategies, we perform the experiment using full fine-tuning.

Our results reveal mostly positive alignment, even for out-of-distribution datasets such as RESISC45
and CropDisease, and low-resolution datasets like CIFAR-100. On the other hand, we observe
smaller similarities between the task vectors of the individual models learned on more fine-grained
and complex datasets such as CUB-200 and MIT67. Indeed, CUB-200 demands highly detailed
distinctions between bird species, while MIT67 involves subtle contextual differences, such as dis-
tinguishing children’s rooms from living rooms or art studios from classrooms.
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Table 7: Analysis of compositional capabilities. In parentheses, we report the gain (or loss) in
accuracy on the target task.

Dataset Model zero-shot specialization zero-shot unlearning
FATGT [↑] FACTRL FATGT [↓] FACTRL

ITA-LoRA 80.83 (+11.40) 50.52 22.77 (−55.02) 52.72 (−25.07)

IEL-LoRA 73.46 (−06.68) 38.46 18.55 (−61.38) 41.97 (−37.96)IN-R
TMC 69.93 (+08.36) 34.08 45.77 (−14.24) 54.37 (−05.64)

ITA-LoRA 92.80 (+01.63) 60.06 28.67 (−61.29) 71.96 (−17.99)

IEL-LoRA 77.77 (−13.22) 37.90 19.48 (−70.05) 56.52 (−33.01)C-100
TMC 87.53 (+06.49) 45.75 55.63 (−22.79) 71.83 (−06.59)

ITA-LoRA 90.46 (+05.21) 57.87 68.19 (−17.36) 74.63 (−10.92)

IEL-LoRA 74.03 (−10.57) 47.95 22.44 (−62.51) 30.99 (−53.96)CUB
TMC 71.06 (+09.92) 44.93 67.91 (−03.81) 53.22 (−18.50)

ITA-LoRA 89.84 (−01.21) 65.47 80.02 (−12.63) 82.40 (−10.25)

IEL-LoRA 79.70 (−12.99) 62.45 32.00 (−60.19) 42.03 (−50.16)Caltech
TMC 89.23 (+10.63) 49.46 64.52 (−17.78) 73.33 (−08.97)

ITA-LoRA 89.66 (+08.17) 57.30 36.99 (−49.61) 74.75 (−11.85)

IEL-LoRA 56.14 (−19.38) 37.54 06.39 (−78.10) 32.57 (−52.02)MIT
TMC 88.03 (+10.11) 30.56 29.77 (−38.89) 62.03 (−06.63)

ITA-LoRA 89.47 (+06.70) 49.75 33.38 (−48.62) 64.06 (−17.94)

IEL-LoRA 90.13 (+04.92) 48.06 32.77 (−49.76) 65.19 (−17.34)RESISC
TMC 75.77 (+27.63) 17.00 06.64 (−54.02) 52.31 (−08.35)

ITA-LoRA 97.63 (+00.11) 53.05 65.87 (−29.98) 79.24 (−16.61)

IEL-LoRA 90.12 (−04.68) 48.31 34.01 (−61.87) 54.43 (−41.45)CropDis.
TMC 73.60 (+09.23) 15.95 06.24 (−60.32) 53.21 (−13.35)
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Figure 2: Alignment – i.e., cosine similarity – between the task vectors produced by ITA and IEL
for both the composed model θP and individual learners θt (averaged across tasks t).

Despite the lower alignment for individual task vectors in certain datasets, we observe that the
similarity is consistently higher when comparing the composed task vectors to the individual ones.

H.6 TIMING

We herein include a wall-clock time analysis of the training algorithms. Specifically, considering
Split ImageNet-R, Split RESISC45, and Split CropDisease, we measured the per-task runtime of
ITA and IEL (both trained with full fine-tuning), as well as that of three existing approaches to
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Figure 3: Comparative timing analysis (in minutes). The plot illustrates the per-task runtime of ITA
and IEL, alongside baseline methods (DER++, TMC, and SEED). Runtimes include both the setup
phase (e.g., steps required to compute FIM statistics) and the training phase.

incremental learning: DER++ (rehearsal), TMC (model compositionality), and SEED (ensemble
learning).

Among the methods compared, SEED appears to be the most efficient. However, the runtimes of
both ITA and IEL are comparable to, or even better than, those of baseline methods like DER++
and TMC. Specifically, on ImageNet-R and RESISC45, the average runtime of ITA/IEL is approxi-
mately 2/3 that of DER++. We attribute the reasonable training times of IEL/ITA to the efficient pro-
cedure we employed for estimating the FIM, which leverages batch-wise parallelization (see App. E
and George (2021)), combined with the use of closed-form gradient computation (refer to App. C).

I HYPERPARAMETERS

The hyperparameters employed for each experiment are reported in the following subsections (one
for each dataset).

I.1 IMAGENET-R

CODA-Prompt: lr = 1.0× 10−3;

DER++: α = 3.0× 10−1; β = 8.0× 10−1; lr = 1.0× 10−3;

EWC: ϵ = 1.0× 102; γ = 1.0; lr = 1.0× 10−2;

L2P: lr = 2.5× 10−3;

LWF-MC: wd = 0.0; lr = 1.0× 10−2;

SEED: lr = 3.0× 10−4;

SGD: lr = 3.0× 10−2;

TMC: lr = 1.0× 10−4;

InfLoRA: lr = 5.0× 10−4 r = 10; ϵ = 0.98;

For both ITA and IEL: #epochspre-tuning = 3; lrpre-tuning = 1.0× 10−2;

ITA-FFT: α = 5.0× 101; αCLS = 1.0× 10−1; αCLS-prior = 1.0× 10−2; lr = 1.0× 10−4;

ITA-LoRA: α = 2.0× 10−2; αCLS = 1.0× 10−1; αCLS-prior = 1.0× 10−3; lr = 3.0× 10−4;

ITA-(IA)3: α = 7.0× 10−1; αCLS = 1.0× 10−1; αCLS-prior = 1.0× 10−2; lr = 3.0× 10−3;

IEL-FFT: β = 5.0× 101; βCLS = 1.0× 10−1; βCLS-prior = 3.0× 10−3; lr = 1.0× 10−4;

IEL-LoRA: β = 2.0× 101; βCLS = 1.0× 10−1; βCLS-prior = 1.0× 10−3; lr = 3.0× 10−4;

IEL-(IA)3: β = 2.0× 101; βCLS = 1.0× 10−1; βCLS-prior = 1.0× 10−2; lr = 3.0× 10−3;
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I.2 CIFAR-100

CODA-Prompt: lr = 1.0× 10−3;

DER++: α = 3.0× 10−1; β = 8.0× 10−1; lr = 1.0× 10−4;

EWC: ϵ = 1.0× 102; γ = 1.0; lr = 1.0× 10−3;

L2P: lr = 2.5× 10−3;

LWF-MC: wd = 0.0; lr = 1.0× 10−2;

SEED: lr = 3.0× 10−4;

SGD: lr = 1.0× 10−2;

TMC: lr = 1.0× 10−4;

InfLoRA: lr = 5.0× 10−4 r = 10; ϵ = 0.95;

For both ITA and IEL: #epochspre-tuning = 3; lrpre-tuning = 1.0× 10−2;

ITA-FFT: α = 2.0× 103; αCLS = 1.0× 10−1; αCLS-prior = 3.0× 10−3; lr = 1.0× 10−4;

ITA-LoRA: α = 2.0× 10−2; αCLS = 1.0× 10−1; αCLS-prior = 1.0× 10−3; lr = 3.0× 10−4;

ITA-(IA)3: α = 2.0× 10−2; αCLS = 1.0× 10−1; αCLS-prior = 3.0× 10−3; lr = 3.0× 10−3;

IEL-FFT: β = 2.0× 103; βCLS = 2.5× 10−2; βCLS-prior = 1.0× 10−2; lr = 1.0× 10−4;

IEL-LoRA: β = 2.0× 101; βCLS = 1.0× 10−1; βCLS-prior = 1.0× 10−3; lr = 3.0× 10−4;

IEL-(IA)3: β = 2.0× 101; βCLS = 2.5× 10−2; βCLS-prior = 1.0× 10−3; lr = 3.0× 10−4;

I.3 CUB-200

CODA-Prompt: lr = 1.0× 10−3;

DER++: α = 3.0× 10−1; β = 8.0× 10−1; lr = 1.0× 10−3;

EWC: ϵ = 1.0× 101; γ = 9.0× 10−1; lr = 1.0× 10−2;

L2P: lr = 2.5× 10−3;

LWF-MC: wd = 1.0× 10−4; lr = 1.0× 10−2;

SEED: lr = 3.0× 10−4;

SGD: lr = 3.0× 10−2;

TMC: lr = 1.0× 10−4;

InfLoRA: lr = 5.0× 10−4 r = 10; ϵ = 0.98;

For both ITA and IEL: lrpre-tuning = 1.0× 10−2; #epochspre-tuning = 8.

ITA-FFT: α = 5.0× 102; αCLS = 1.0× 10−1; αCLS-prior = 1.0× 10−2; lr = 1.0× 10−4;

ITA-LoRA: α = 5.0; αCLS = 1.0× 10−1; αCLS-prior = 1.0× 10−2; lr = 3.0× 10−4;

ITA-(IA)3: α = 7.0× 10−1; αCLS = 1.0× 10−1; αCLS-prior = 1.0× 10−2; lr = 3.0× 10−3;

IEL-FFT: β = 5.0× 103; βCLS = 1.0× 10−1; βCLS-prior = 1.0× 10−2; lr = 1.0× 10−5;

IEL-LoRA: β = 2.0× 101; βCLS = 1.0× 10−1; βCLS-prior = 1.0× 10−2; lr = 3.0× 10−4;

IEL-(IA)3: β = 5.0× 102; βCLS = 1.0× 10−1; βCLS-prior = 1.0× 10−2; lr = 3.0× 10−4;

I.4 CALTECH-256

CODA-Prompt: lr = 1.0× 10−3;
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DER++: α = 3.0× 10−1; β = 8.0× 10−1; lr = 1.0× 10−3;

EWC: ϵ = 1.0× 102; γ = 1.0; lr = 1.0× 10−2;

L2P: lr = 2.5× 10−3;

LWF-MC: wd = 0.0; lr = 1.0× 10−2;

SEED: lr = 3.0× 10−4;

SGD: lr = 1.0× 10−2;

TMC: lr = 1.0× 10−4;

InfLoRA: lr = 5.0× 10−4 r = 10; ϵ = 0.99;

For both ITA and IEL: lrpre-tuning = 1.0× 10−2.

ITA-FFT: #epochspre-tuning = 3; α = 2.0× 103; αCLS = 1.0× 10−1; αCLS-prior = 1.0× 10−2;
lr = 1.0× 10−4;

ITA-LoRA: #epochspre-tuning = 3; α = 2.0×10−2; αCLS = 1.0×10−1; αCLS-prior = 3.0×10−3;
lr = 3.0× 10−4;

ITA-(IA)3: #epochspre-tuning = 8; α = 7.0×10−1; αCLS = 1.0×10−1; αCLS-prior = 1.0×10−2;
lr = 3.0× 10−3;

IEL-FFT: #epochspre-tuning = 3; β = 5.0× 101; βCLS = 1.0× 10−1; βCLS-prior = 1.0× 10−2;
lr = 1.0× 10−4;

IEL-LoRA: #epochspre-tuning = 3; β = 2.0 × 101; βCLS = 5.0; βCLS-prior = 3.0 × 10−3;
lr = 3.0× 10−4;

IEL-(IA)3: #epochspre-tuning = 3; β = 2.0×101; βCLS = 1.0×10−1; βCLS-prior = 3.0×10−3;
lr = 3.0× 10−4;

I.5 MIT-67

CODA-Prompt: lr = 1.0× 10−3;

DER++: α = 3.0× 10−1; β = 8.0× 10−1; lr = 1.0× 10−3;

EWC: ϵ = 1.0× 102; γ = 1.0; lr = 1.0× 10−3;

L2P: lr = 2.5× 10−3;

LWF-MC: wd = 0.0; lr = 1.0× 10−2;

SEED: lr = 3.0× 10−4;

SGD: lr = 1.0× 10−2;

TMC: lr = 1.0× 10−4;

InfLoRA: lr = 1.0× 10−3 r = 10; ϵ = 0.95;

For both ITA and IEL: lrpre-tuning = 1.0× 10−2.

ITA-FFT: #epochspre-tuning = 8; α = 5.0× 103; αCLS = 1.0× 10−1; αCLS-prior = 1.0× 10−1;
lr = 1.0× 10−4;

ITA-LoRA: #epochspre-tuning = 8; α = 5.0; αCLS = 1.0 × 10−1; αCLS-prior = 1.0 × 10−2;
lr = 3.0× 10−4;

ITA-(IA)3: #epochspre-tuning = 8; α = 5.0; αCLS = 1.0 × 10−1; αCLS-prior = 3.0 × 10−3;
lr = 3.0× 10−4;
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IEL-FFT: #epochspre-tuning = 8; β = 5.0× 103; βCLS = 1.0× 10−1; βCLS-prior = 1.0× 10−2;
lr = 1.0× 10−4;

IEL-LoRA: #epochspre-tuning = 3; β = 2.0×101; βCLS = 1.0×10−1; βCLS-prior = 1.0×10−2;
lr = 3.0× 10−4;

IEL-(IA)3: #epochspre-tuning = 3; β = 2.0×101; βCLS = 1.0×10−1; βCLS-prior = 1.0×10−2;
lr = 3.0× 10−4;

I.6 RESISC

CODA-Prompt: lr = 1.0× 10−3;

DER++: α = 3.0× 10−1; β = 8.0× 10−1; lr = 1.0× 10−3;

EWC: ϵ = 1.0× 102; γ = 9.0× 10−1; lr = 1.0× 10−2;

L2P: lr = 2.5× 10−3;

LWF-MC: wd = 0.0; lr = 1.0× 10−2;

SEED: lr = 3.0× 10−4;

SGD: lr = 1.0× 10−2;

TMC: lr = 3.0× 10−4;

InfLoRA: lr = 5.0× 10−4 r = 10; ϵ = 0.98;

For both ITA and IEL: #epochspre-tuning = 8; lrpre-tuning = 1.0× 10−2.

ITA-FFT: α = 1.0× 104; αCLS = 1.0× 10−1; αCLS-prior = 1.0× 10−2; lr = 1.0× 10−4;

ITA-LoRA: α = 2.0× 10−2; αCLS = 1.0× 10−1; αCLS-prior = 1.0× 10−2; lr = 3.0× 10−4;

ITA-(IA)3: α = 5.0; αCLS = 1.0× 10−1; αCLS-prior = 3.0× 10−3; lr = 3.0× 10−3;

IEL-FFT: β = 5.0× 103; βCLS = 1.0× 10−1; βCLS-prior = 3.0× 10−3; lr = 1.0× 10−4;

IEL-LoRA: β = 2.0× 102; βCLS = 1.0× 10−2; βCLS-prior = 1.0× 10−3; lr = 3.0× 10−4;

IEL-(IA)3: β = 2.0; βCLS = 1.0× 10−2; βCLS-prior = 1.0× 10−3; lr = 3.0× 10−4;

I.7 CROPDISEASE

CODA-Prompt: lr = 1.0× 10−3;

DER++: α = 3.0× 10−1; β = 8.0× 10−1; lr = 1.0× 10−3;

EWC: ϵ = 1.0; γ = 1.0; lr = 1.0× 10−2;

L2P: lr = 2.5× 10−3;

LWF-MC: wd = 1.0× 10−4; lr = 1.0× 10−2;

SEED: lr = 3.0× 10−4;

SGD: lr = 1.0× 10−2;

TMC: lr = 1.0× 10−4;

InfLoRA: lr = 5.0× 10−4 r = 10; ϵ = 0.98;

For both ITA and IEL: #epochspre-tuning = 8; lrpre-tuning = 1.0× 10−2;.

ITA-FFT: α = 5.0× 103; αCLS = 2.5× 10−2; αCLS-prior = 1.0× 10−2; lr = 1.0× 10−4;

ITA-LoRA: α = 5.0; αCLS = 1.0× 10−1; αCLS-prior = 1.0× 10−2; lr = 3.0× 10−4;

ITA-(IA)3: α = 2.0× 10−2; αCLS = 1.0× 10−1; αCLS-prior = 1.0× 10−2; lr = 3.0× 10−4;
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IEL-FFT: β = 2.0× 102; βCLS = 1.0× 10−1; βCLS-prior = 1.0× 10−2; lr = 1.0× 10−5;

IEL-LoRA: β = 5.0× 101; βCLS = 1.0× 10−1; βCLS-prior = 1.0× 10−2; lr = 3.0× 10−4;

IEL-(IA)3: β = 2.0; βCLS = 2.5× 10−2; βCLS-prior = 1.0× 10−2; lr = 3.0× 10−4;

31


	Introduction
	Framework
	Individual learners vs. the composed model: a pre-training perspective
	Enabling individual training in incremental scenarios
	Joint training of the composed model in incremental scenarios

	Algorithm(s)
	Relation with existing works
	Experiments
	Discussion of limitations and future directions
	Appendix / supplemental material
	Proofs
	Proof of Theorem 1
	Proof of Eq. 17

	Closed form gradients for Eq. 19
	Computational analysis
	Implementation details of ITA and IEL
	Extended discussion on related works and competing methods
	Datasets
	Additional results
	Forgetting
	Standard deviation of FA
	Ablation study on IEL
	Additional experiments on incremental model compositionality
	Alignment between task vectors of ITA and IEL
	timing

	Hyperparameters
	ImageNet-R
	CIFAR-100
	CUB-200
	Caltech-256
	MIT-67
	RESISC
	CropDisease


