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ABSTRACT

Energy-based learning algorithms, such as predictive coding (PC), have garnered
significant attention in the machine learning community due to their theoretical
properties, such as local operations and biologically plausible mechanisms for er-
ror correction. In this work, we rigorously analyze the stability, robustness, and
convergence of PC through the lens of dynamical systems theory. We show that,
first, PC is Lyapunov stable under mild assumptions on its loss and residual energy
functions, which implies intrinsic robustness to small random perturbations due to
its well-defined energy-minimizing dynamics. Second, we formally establish that
the PC updates approximate quasi-Newton methods by incorporating higher-order
curvature information, which makes them more stable and able to converge with
fewer iterations compared to models trained via backpropagation (BP). Further-
more, using this dynamical framework, we provide new theoretical bounds on the
similarity between PC and other algorithms, i.e., BP and target propagation (TP),
by precisely characterizing the role of higher-order derivatives. These bounds,
derived through detailed analysis of the Hessian structures, show that PC is signif-
icantly closer to quasi-Newton updates than TP, providing a deeper understanding
of the stability and efficiency of PC compared to conventional learning methods.

1 INTRODUCTION

The successes of artificial intelligence (AI) over the past decade have been primarily driven by deep
learning, which has become a cornerstone in modern machine learning. Despite these remarkable
achievements, there has been a resurgence of interest in exploring alternative paradigms for training
neural networks Zador et al. (2022); Hinton (2022). This renewed interest stems from the inherent
limitations of standard backpropagation-based training (BP) Rumelhart et al. (1986), such as high
computational overhead, energy inefficiency, and biological implausibility Lillicrap et al. (2020);
Ororbia et al. (2024). As a result, there has been a revival of energy-based learning methods that
were initially popularized in the 1980s, such as Hopfield networks Ramsauer et al. (2020), equilib-
rium propagation Scellier & Bengio (2017), contrastive Hebbian learning Høier et al. (2023), and
predictive coding Salvatori et al. (2023). These models, which minimize a general energy functional
Ororbia et al. (2024), employ local update rules that are well-suited for both spiking neural networks
Ororbia (2023); Lee et al. (2024) and neuromorphic hardware implementations Kendall et al. (2020).

Among these approaches, predictive coding (PC) stands out due to its intriguing theoretical proper-
ties and practical performance. Originally developed to model hierarchical information processing
in the neocortex Rao & Ballard (1999); Friston & Kiebel (2009), PC has shown remarkable per-
formance in a wide range of machine learning tasks, such as image classification and generation
Ororbia & Kifer (2022); Pinchetti et al. (2024), continual learning Ororbia et al. (2020), associative
memory formation Salvatori et al. (2021); Tang et al. (2022), and reinforcement learning Rao et al.
(2023). In addition to its practical applications, recent work has focused on analyzing PC from a
theoretical standpoint, examining its stability and robustness properties Alonso et al. (2022); Song
et al. (2023). Prior investigations have drawn parallels between PC and other learning frameworks,
such as BP and target propagation, but have not provided rigorous and tight bounds on the stability
and robustness of PC’s updates Song et al. (2020); Salvatori et al. (2022). Existing bounds are often
based on first-order approximations Millidge et al. (2022), overlooking the impact of higher-order
derivatives, which are crucial for understanding stability in non-linear systems.
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A rigorous theoretical study of stability is essential for ensuring convergence to fixed points and
robustness under various perturbations, which is crucial for applications such as noisy inputs or
uncertain synaptic parameters. Stability has been shown to enhance the performance of neural net-
works in complex scenarios, e.g., sequence length generalization Stogin et al. (2024), symbolic rule
extraction Dave et al. (2024); Mali et al. (2023), and stable prediction dynamics Chang et al. (2019);
Dai et al. (2021); Haber & Ruthotto (2017). In biologically-motivated learning, where models are
deployed on hardware platforms susceptible to noise, understanding stability is even more critical
Kendall et al. (2020); Scellier et al. (2024). Hence, in this work, we leverage dynamical systems
theory to rigorously analyze the stability and convergence properties of predictive coding networks
(PCNs). Our contributions are as follows:

• Derivation of Stability Bounds: We derive tight stability bounds for PCNs using Lipschitz
conditions on the activation functions. By leveraging these bounds, we establish that PCNs
are Lyapunov stable, ensuring that their synaptic weight updates converge to a fixed point.
This stability guarantees robustness to perturbations in the input, synaptic weights, and initial
neuronal states, providing a formal foundation for the robustness properties of PCNs.

• Quasi-Newton Approximation: We demonstrate that PC updates approximate quasi-
Newton updates for synaptic parameters by incorporating higher-order curvature informa-
tion. This property implies that PCNs require fewer update steps to achieve convergence
compared to standard gradient descent, owing to the incorporation of second-order informa-
tion, which adjusts both the direction and magnitude of gradient steps.

• Theoretical Comparison with BP and Target Propagation: Using our developed frame-
work, we derive novel bounds that quantify similarities between PC, backpropagation (BP),
and target propagation (TP). These bounds explicitly capture the influence of higher-order
derivatives, showing that PC is closer to quasi-Newton updates than TP, thereby providing a
more refined understanding of its stability and efficiency relative to other learning schemes.

Our results establish a new theoretical foundation for PC as a robust and efficient learning frame-
work, offering insights into its convergence properties and stability advantages over traditional learn-
ing methods. To this end, in the following section we will both introduce some background on PCNs,
as well as defining concepts from the dynamical systems theory that will be used to prove our results.

2 BACKGROUND AND MOTIVATION

Predictive coding networks (PCNs) are hierarchical neural networks, structurally similar to multi-
layer perceptrons, that perform approximate Bayesian inference and adapt parameters by minimizing
a variational free energy functional Friston (2008); Salvatori et al. (2023); Rao & Ballard (1999). A
PCN consists of L layers with neural activities {x0, x1, . . . , xL}, where x0 and xL correspond to
the input and output signal, respectively. The goal of each layer is to predict the neural activities of
the next layer via the parametric function f(Wlxl−1), where Wl is a weight matrix that represents
a linear map, and f is a non-linearity (or nonlinear activation function). The difference between
the predicted and actual neural activities is referred to as the prediction error, formally defined and
denoted as ϵl = xl − f(Wlxl−1). During model training, the goal of a PCN is to minimize the total
summation of (squared) prediction errors, expressed via the following variational free energy:

F =

L∑
l=0

El =

L∑
l=0

|ϵl|2, (1)

where El = |ϵl|2 represents the local energy at neuronal layer l. This decomposition in terms of
layer-wise energy functionals is what allows every update to be performed using local information
only (i.e., only pre-synaptic and post-synaptic neural activity values), regardless of the fact that the
updates rely on gradients. In supervised learning, the input layer x0 is clamped to the data d whereas
the output layer xL is clamped to the target T . The free energy then decomposes into the loss at the
output layer and the residual energy of hidden layers:

F = L+ Ẽ, with L = EL = |ϵL|2 and Ẽ =

L−1∑
l=1

El. (2)

Minimizing the free energy functional F in PCNs is then accomplished through two distinct phases:
inference and learning. During the inference phase, the activations of the hidden neuronal layers,
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denoted by x1, . . . , xL−1, are iteratively updated so as to minimize F , while the activation values at
the input layer x0 and output layer xL are held fixed to the values of the input data and target output,
respectively. The dynamics governing the inference updates for each hidden layer are as follows:

∆xl = − ∂F

∂xl
= −ϵl +W⊤

l+1 (ϵl+1 ⊙ f ′(Wl+1xl)) , for l = 1, . . . , L− 1, (3)

where ⊙ signifies elementwise multiplication. Following the convergence of the inference phase, the
learning phase then commences. During this phase, the network’s synaptic parameters, specifically
the weights Wl at each layer, are updated to further minimize the overall free energy as follows:

∆Wl = −η

(
∂L

∂Wl
+

∂Ẽ

∂Wl

)
= −η (ϵl ⊙ f ′(Wlxl−1))x

⊤
l−1, (4)

where η denotes the learning rate.

2.1 DYNAMICAL SYSTEMS BACKGROUND

In this section, we outline the key concepts of stability and robustness taken from dynamical systems
theory; these are essential for analyzing the behavior of neural networks and their corresponding
learning algorithms. Understanding these concepts further allows us to characterize the performance
and reliability of different models in terms of their dynamical properties. Note that the definitions
stated here are not rigorous, due to a lack of space needed to properly define all the details, and
notation. Readers interested in the relevant formal definitions, which are notably used to be formally
prove the theorems of this work, should refer to the supplementary material.

Firstly, we formally characterize what it means for a dynamical system to be stable.
Definition 2.1. A dynamical system is said to be stable if, for any given ϵ > 0, there exists a δ > 0
such that if the initial state x(0) is within δ of an equilibrium point x∗ (i.e., |x(0) − x∗| < δ), then
the state x(t) remains within ϵ of x∗ for all t ≥ 0 (i.e., |x(t)− x∗| < ϵ for all t ≥ 0).

We further consider comparing stability between two dynamical systems, defining conditions under
which one system is considered more stable than another.
Definition 2.2. Let D and D′ be two dynamical systems with equilibrium points x∗

D and x∗
D′ ,

respectively. The system D is said to be more stable than D′ if, for the same perturbation or initial
deviation from equilibrium, D either:

(i) Converges to its equilibrium point faster than D′,
(ii) Remains closer to its equilibrium point over time, or,

(iii) Has a larger region of attraction, indicating greater tolerance to perturbations.

Next, we define the key dynamical systems analysis concept of a system reaching a fixed point.
Definition 2.3. A point x∗ ∈ Rn is called a fixed point or equilibrium point of the dynamical system
ẋ(t) = f(x(t)) if f(x∗) = 0. The system is said to converge to the fixed point x∗ if, for initial states
x(0) in a neighborhood of x∗, the trajectories satisfy limt→∞ x(t) = x∗.

Lastly, we address the rate of convergence between two stable dynamical systems, which can be
used to measure convergence bounds for networks.
Definition 2.4. Let D and D′ be dynamical systems that converge to the same fixed point x∗. We
say that D converges faster than D′ if, for initial conditions close to x∗, the distance to the fixed
point decreases at a higher rate for D compared to D′.

2.1.1 ROBUSTNESS TO PERTURBATIONS AND LYAPUNOV’S STABILITY

Beyond stability, robustness refers to a system’s ability to maintain performance in the presence of
disturbances or uncertainties. Robust systems can handle variations without significant degradation,
which is critical for practical applications. This notion can be formally read as follows:
Definition 2.5. A dynamical system is said to be robust to random perturbations if, for any small
random perturbation η(t) acting on the system, the perturbed state xη(t) remains close to the un-
perturbed state x(t) with high probability for all t ≥ 0. This implies that the system can maintain
its desired performance despite small random disturbances.
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Similarly, robustness with respect to initial conditions ensures consistent system behavior even when
starting from a range of possible initial states due to uncertainties or randomness.
Definition 2.6. A dynamical system is said to be robust to random initial conditions if, given ini-
tial state x(0) drawn from a probability distribution with bounded support, the system’s state x(t)
remains close to the desired trajectory or equilibrium point x∗(t) with high probability for all t ≥ 0.

Robustness is particularly important in artificial neural networks (ANNs) operating in real-world en-
vironments, where inputs and initial conditions can vary unpredictably. Applying these concepts to
neural networks, Lyapunov’s methods provide tools for assessing whether small changes in weights
or inputs lead to small changes in outputs, which is crucial for ensuring reliable learning and infer-
ence. To this end, we now introduce the important definition of Lyapunov stability:
Definition 2.7. An ANN is Lyapunov stable if, for any given ϵ > 0, there exists a δ > 0 such that if
initial weights W (0) are within δ of a trained equilibrium point W ∗ (i.e., |W (0)−W ∗| < δ), then
the weights W (t) remain within ϵ of W ∗ for all t ≥ 0 (i.e., |W (t) −W ∗| < ϵ for all t ≥ 0). If, in
addition, the weights converge to W ∗ as t → ∞, then the ANN is said to be asymptotically stable.

3 THEORETICAL RESULTS

In this section, we study the convergence and stability of PCNs by leveraging the framework of dy-
namical systems and Lyapunov stability theory established above. We establish a series of theorems
that states that, if activation functions and their higher-order derivatives are Lipschitz continuous,
PCNs converge to Lyapunov stable equilibrium points. These results are then used to compare con-
vergence speed of PCNs against backpropagation (BP) updates. Note that such a condition on the
activations excludes linear rectifiers (ReLUs) yet includes oft-used ones such as the logistic sigmoid,
the hyperbolic tangent (tanh), and the newly proposed TeLU Fernandez & Mali (2024).

The following theorem provides a characterization of the convergence and stability of the PCN based
on the properties of these types of functions (proof in the appendix).

Theorem 3.1. Let M be a PCN that minimizes a free energy F = L+ Ẽ, where L is the backprop
loss and Ẽ is the residual energy. Assume the activation function f and its derivatives f ′, f ′′, and f ′′′

are Lipschitz continuous with constants K, K ′, K ′′, and K ′′′, respectively. Then, the convergence
and stability of the PCN can be characterized by the bounds involving these higher-order derivatives.

The above shows that if a PCN uses activations that are smooth and well-behaved (i.e., they and
their first few derivatives change gradually without sudden spikes), then the network will converge
reliably and maintain stability during training.

The next theorem crucially connects PCNs with continuous-time dynamical systems, facilitating
analysis of their behavior with the plethora of tools of dynamical systems theory. Usefully, the
result below effectively establishes that the dynamics of the neuronal layers (the E-steps Friston
et al. (2008)) that make up PCNs do converge to equilibrium points

Theorem 3.2. Let M be a PCN that minimizes a free energy function F = L + Ẽ, where L is
the backprop loss and Ẽ is the residual energy. Assume that L(x) and Ẽ(x) are positive definite,
and their sum F (x) has a strict minimum at x = x∗, where F (x∗) = 0. Further, assume the
activation function f and its derivatives f ′, f ′′ are Lipschitz continuous with constants K,K ′,K ′′,
respectively. Then, the PCN dynamics can be represented as a continuous-time dynamical system,
and the Lyapunov function V (x) = F (x) ensures convergence to the equilibrium x = x∗.

This theorem 3.2 establishes the stability and convergence properties of a PCN that minimizes a free
energy function, defined as F = L + Ẽ, with L as the BP loss and Ẽ as the residual energy. The
conditions assumed are that both L(x) and Ẽ(x) are positive definite, meaning they are zero only at
a unique equilibrium x = x∗ – where F (x∗) = 0 – and are strictly positive otherwise. The theorem
further states that the free energy function F (x) can be used as a Lyapunov function, V (x) = F (x),
to analyze the PCN’s behavior as a continuous-time dynamical system. Since V (x) is positive defi-
nite and decreases along the system’s trajectories, it implies that the system will converge stably to
the equilibrium point x∗ during training. Additionally, the smoothness assumptions on the activation
f and its derivatives (up to second order, i.e., f ′ and f ′′) being Lipschitz continuous ensures that
the updates are stable and do not lead to erratic behavior (proof/assumptions in the appendix). The
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importance of this result is that it provides a formal guarantee for the convergence of PCNs, even
in complex multi-layered networks. This makes it a powerful tool for understanding the theoretical
underpinnings of PCNs and their use in various machine learning contexts.

The next result formally establishes that the parameter updates (M-steps Friston et al. (2008)), as
governed by Equation 4, reliably converge to a fixed point of the variational free energy.

Theorem 3.3. Let M be a PCN that minimizes a free energy function F = L + Ẽ, where L is the
backpropagation loss and Ẽ is the residual energy. Assume that L(x) and Ẽ(x) are positive definite
functions and their sum F (x) has a strict minimum at x = x∗. Further, assume activation function
f and its derivatives f ′, f ′′, and f ′′′ are Lipschitz continuous with constants K,K ′,K ′′, and K ′′′,
respectively. Then, the PCN updates are Lyapunov stable and converge to a fixed point x = x∗.

This theorem provides a rigorous guarantee of stability and convergence of a PCN that minimizes
a free energy functional F (x). Note that this result assumes that both L(x) and Ẽ(x) are positive
definite functions, meaning that they are zero only at the equilibrium point x = x∗ and strictly
positive elsewhere. This ensures that their combination F (x) = L(x) + Ẽ(x) also reaches its strict
minimum value at x = x∗. Theorem 3.3 further requires that the activation f and its higher-order
derivatives f ′, f ′′, and f ′′′ are Lipschitz continuous, which guarantees smooth changes in these
functions without sudden spikes/oscillations. These Lipschitz continuity conditions, defined by the
constants K,K ′,K ′′, and K ′′′, ensure that the PCN updates remain stable even in the presence of
non-linearities. By treating F (x) as a Lyapunov function, the positive definiteness and monotonic
decrease of F (x) along the trajectories of the system imply that the updates are Lyapunov stable,
meaning that any small perturbations to the system will not cause instability. Consequently, the PCN
is guaranteed to converge to the unique equilibrium point x = x∗ as training progresses.

Finally, our last theorem establishes a comparison in terms of convergence speed to fixed points be-
tween PCNs and the popular workhorse training algorithm of deep neural networks, backprop (BP).
Crucially, our result formally shows that, assuming both PCNs and BP-trained networks start from
the same ideal initial conditions, PCNs converge faster – in terms of number of needed parameter
updates – to fixed points than equivalent neuronal systems trained via BP.

Theorem 3.4. Let M be a PCN that minimizes a free energy F = L+ Ẽ, where L is the backprop-
agation loss and Ẽ is the residual energy. Assume the activation function f and its derivatives f ′,
f ′′, and f ′′′ are Lipschitz continuous with constants K,K ′,K ′′, and K ′′′, respectively. Then, the
PCN updates are Lyapunov stable and converge to a fixed point faster than BP updates.

Here, in establishing that a PCN minimizer of F is Lyapunov stable, the convergence behavior is
analyzed under the assumption that the activation f (and derivatives f ′, f ′′, and f ′′′) is Lipschitz
continuous (ensuring smooth, controlled changes in these functions). The significance of this result
lies in showing that PCN dynamics can achieve a stable equilibrium point with faster convergence
due to the inclusion of the residual energy Ẽ. This term captures complex dependencies between
layers, providing additional regularization and smoothing to the gradient flow, further aiding to
reduce oscillations and accelerating convergence (compared to BP). In interpreting F as a Lyapunov
function (as before, this allowed us to prove guaranteed convergence to a unique equilibrium), we
see that the Ẽ introduces a corrective mechanism, which ensures that the PCN reaches its fixed point
more efficiently than BP, making it particularly useful for training deep networks where standard BP
may suffer from slower convergence/instability (proof/derivations in appendix).

Taken together, the above results rigorously demonstrate, from a dynamical systems perspective,
why PCNs tend to quickly converge to stable solutions as compared to BP. This rapid convergence,
despite extra computational complexity incurred by an EM-like optimization, is well-supported by
a body of experimental evidence Ororbia & Kifer (2022); Alonso et al. (2022); Song et al. (2023).

3.1 ROBUSTNESS ANALYSIS

Next, we turn to our result to formally characterize the robustness of PCNs compared to BP-adapted
networks. With L(W ) corresponding to the BP loss and Ẽ(W ) representing the residual energy of
the system, we are able to establish that a PCN’s trajectory (through a loss surface) is Lyapunov sta-
ble. While BP (Backpropagation) optimizes L(W ) by directly minimizing the loss through gradient
descent updates, PCNs take into account both L(W ) and Ẽ(W ), resulting in a combined energy
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minimization that stabilizes the optimization path. This provides a theoretical justification for the
improved robustness of PCNs, as the added residual energy Ẽ(W ) acts as a corrective term that
smooths out abrupt changes in the gradient landscape, leading to a more gradual convergence.

Theorem 3.5. Let VPC(W ) = L(W ) + Ẽ(W ) be a Lyapunov function, where L and Ẽ are positive
definite functions that achieve their minimum at W = W ∗. Then, the time derivative of VPC(W )
along the trajectories of the system, and the predictive coding updates seen as a continuous-time
dynamical system are, respectively:

V̇PC(W ) = −

∥∥∥∥∥ ∂L

∂W
+

∂Ẽ

∂W

∥∥∥∥∥
2

≤ 0, Ẇl = −

(
∂L

∂Wl
+

∂Ẽ

∂Wl

)
, (5)

making the system Lyapunov stable. Furthermore, if V̇PC(W ) = 0 only at W = W ∗, then the
predictive coding updates are asymptotically stable and converge to the equilibrium point W = W ∗.

To better understand how this relates to standard BP, let us now analyze the derivative of VPC(W ).
If the residual energy Ẽ(W ) → 0, the update rule reduces to:

Ẇl = − ∂L

∂Wl
,

which is precisely the standard BP update. Thus, BP can be seen as a special case of PCNs where
the residual energy term vanishes. However, in practical scenarios, Ẽ(W ) typically does not reach
zero, allowing PCNs to maintain more stable trajectories through the loss landscape. This difference
becomes evident in the Lyapunov stability analysis. Since Ẽ(W ) is a positive definite function, it
introduces an additional stabilizing force in the gradient dynamics, ensuring that any perturbations in
W are corrected by Ẽ(W ). This means that, unlike BP, which optimizes L(W ) alone, the combined
energy minimization in PCNs results in a smoother convergence trajectory, reducing sensitivity to
local minima and sharp changes in the loss surface.

Let us again consider VPC(W ), where L and Ẽ are positive definite and achieve their minima at the
equilibrium point W = W ∗. This composite energy function serves as a Lyapunov function for the
system, as shown in the above theorem. We now state a more powerful result that establishes the
robustness of PCNs compared to BP.

Theorem 3.6 (Robustness of Predictive Coding Networks). Let VPC(W ) = L(W ) + Ẽ(W ) be
the Lyapunov function of a PCN, where L and Ẽ are positive definite functions that achieve their
minima at W = W ∗. Assume the following conditions hold:

1. The Hessian of L(W ), denoted as HL = ∂2L
∂W 2 , is positive semi-definite.

2. The residual energy term Ẽ(W ) satisfies a Lipschitz continuity condition, i.e., there exists
a constant K > 0 such that: ∥∥∥∥∥ ∂Ẽ∂W

∥∥∥∥∥ ≤ K ∥W −W ∗∥ .

3. The time derivative of VPC(W ) along the system trajectories satisfies equation 5 (left).
4. The initial perturbation ∆W is small, i.e., ∥∆W∥ ≪ 1.

Under these conditions, the following robustness property holds for PCNs:

Bounded Perturbation Recovery: For any perturbation ∆W such that W = W ∗ +∆W , the PCN’s
weight trajectory W (t) satisfies:

∥W (t)−W ∗∥ ≤ Ce−λt∥∆W∥+O(ϵ),

where constants C, λ > 0 depend on properties of L(W ) and Ẽ(W ); ϵ is perturbation magnitude.
This result guarantees exponential convergence to W ∗ and robustness to bounded perturbations.
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Effectively, these results establish that PCNs reliably converge to equilibrium points of the loss
function when optimizing their variational free energy, and once they do, the parameters will remain
near those points indefinitely, highlighting the robustness of PCNs.

Robustness Comparison between PC and BP. As one may observe above, a core difference
between a BP-based network and a PCN is their underlying optimization objective – BP optimizes
just L(W ) whereas a PCN optimizes L(W ) + Ẽ(W ). The central mechanism behind a PCN’s
effectiveness is its use of and focus on optimizing energy Ẽ, which, as our results in Section 3
established, underwrites the PCN’s ability to stably converge to fixed points (equilibrium). There
are several consequences that come as a result of this crucial difference:

• Separation Characteristic: For BP, robustness is characterized by the minimal separation
characteristic, which can be improved but remains sensitive to input deviations. However,
for PCNs, robustness is higher due to stabilization provided by residual energy Ẽ.

• Error Handling: BP updates only consider the gradient of the loss function L, which
makes the resulting network models more prone to overfitting and less robust to perturba-
tions. PCN updates, in contrast, consider both L and Ẽ, ensuring smoother transitions and
better handling of input deviations.

• Convergence: BP updates can lead to oscillations or slower convergence due to their
sensitivity to initial conditions and perturbations. On the other hand, PCN updates converge
faster and more smoothly to equilibrium due to the damping effect of Ẽ.

PREDICTIVE CODING UPDATES AS QUASI-NEWTON UPDATES

Quasi-Newton (QN) methods, such as BFGS optimization Head & Zerner (1985), iteratively update
an approximation of the Hessian H−1, leading to more stable, faster converging updates compared
to simple gradient descent. The Newton-Raphson update rule, for example, is given as follows:

Wt+1 = Wt −H−1∇L(Wt)

where H is the Hessian matrix of the loss function L. Notably, the weight updated performed by
PC has been shown to approximate second-order optimization methods, specifically Gauss-Newton
updates Alonso et al. (2022). In this section, we extend this result by showing first that it is the
residual energy term Ẽ that modifies the gradient similarly to what the inverse Hessian does. Sec-
ond, we connect this modification to QN updates, broadening the understanding of PC within this
optimization framework. Finally, we compare the computed bounds against those obtained for tar-
get propagation (TP) Bengio (2014), a popular biologically plausible learning algorithm for deep
neural networks, and show that PC updates are much closer to QN updates as compared to TP, while
converging faster to solutions. Let us start with the following:

Theorem 3.7. Let M be a neural network that minimizes a free energy F = L + Ẽ, where L is
the loss function and Ẽ is the residual energy. Assume the activation function f and its derivatives
f ′, f ′′, and f ′′′ are Lipschitz continuous with constants K,K ′,K ′′, and K ′′′, respectively. Then, the
PC updates approximate quasi-Newton updates by incorporating higher-order information through
the residual energy term Ẽ.

Given the above, let us now assume that we are faced with a learning task where we prefer using a
stable training algorithm. As QN updates are well-known for their stability Head & Zerner (1985),
we could favor one algorithm over another if the first better approximates such updates. Motivated
by this, we next compare PC and TP, showing that the first better approximates QN updates:

Theorem 3.8. Let M be a neural network minimizing a free energy function F = L+Ẽ, where L is
the loss function and Ẽ is a residual energy term. Let HGN = JTJ denote the Gauss-Newton matrix,
where J is the Jacobian matrix of the network’s output with respect to the parameters. Consider the
following update rules:

• QN Update: ∆WQN = −H−1
GN ∇L(W ),

• TP Update: ∆WTP = −B−1
l ∇L(W ), where Bl is a block-diagonal approximation of the

matrix HGN,
• PC Update: ∆WPC = −(H + H̃)−1

(
∇L(W ) +∇Ẽ(W )

)
.
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Assume that L(W ) and Ẽ(W ) are twice differentiable, and the activation function f and its deriva-
tives are Lipschitz continuous. Then, the approximation error between the updates and the true
Quasi-Newton update satisfies EPC ≤ ETP, where:

EPC = ∥∆WPC −∆WQN∥, ETP = ∥∆WTP −∆WQN∥.

Thus, PC is mathematically closer to the true Quasi-Newton updates than TP.

The following theorem builds on the previous result and formally proves that PC reaches fixed points
faster than TP, bolstering the value of PC bio-inspired learning over approaches such as TP.
Theorem 3.9. Let DPC and DTP represent two dynamical systems corresponding to predictive cod-
ing (PC) and target propagation (TP), respectively. Assume that both systems have the same equilib-
rium point W ∗, and the loss functions L and residual energy Ẽ are twice differentiable and positive
definite. Furthermore, let the activation functions fl and their derivatives be Lipschitz continuous.
Define the Lyapunov functions:

1. For predictive coding: VPC(W ) = F (W ) = L(W ) + Ẽ(W ).
2. For target propagation: VTP(W ) =

∑L
l=1

1
2∥tl − fl(Wltl−1)∥2.

Then, it follows that PC is more stable than TP according to the following criteria:

1. Convergence Rate: DPC converges faster to its equilibrium point compared to DTP.
2. Deviation from Equilibrium: DPC exhibits a smaller deviation from the equilibrium com-

pared to DTP for the same initial perturbation.
3. Region of Attraction: The region of attraction for DPC is larger than that of DTP.

The above highlights the fact that an important factor behind PC’s successful ability to traverse to
fixed-points reliably and stably is its ability to approximate the updates yielded by quasi-Newton
methodology. This means that a PCN’s optimization of its free energy functional affords it second-
order information (without the typically prohibitive cost of computing the Hessian itself) in its traver-
sal of a loss surface landscape. A desirable positive consequence of this section’s results is that PC
yields a better approximation of QN updates that the popular TP algorithm and, furthermore, PC-
based learning is more stable than that of TP-centric adaptation (due to PC’s ability to converge
faster to equilibrium due to its smaller deviation from region of attractions in its loss surface).

4 SIMULATION RESULTS

In this section, we provide empirical evidence related to some of the theoretical claims made by
this work. First, we test convergence bounds for PC and BP, using an MSE loss, trained on MNIST
and CIFAR10. Figures 1 and 2 show a custom convolution model (2 conv layer, 3 fc layer) trained
on MNIST using TeLU and tanh activations. On MNIST, we see that PC converges faster than BP,
even though both approaches reach similar performance; however, the different parameter updates
of each yielded different trajectories. Similar findings are seen in Figure 3 for the CIFAR10-trained
model.

Next, we conduct large-scale experiments. Specifically, we train multiple models on image clas-
sification tasks using PC, BP, and TP, as well as key variations, and report the number of epochs
(which is proportional to the number of weight updates) needed to reach the best performance. Our
computer simulations involved testing across across four widely-used image classification datasets,
offering results for both useful digit and clothing object recognition but also for the case of more
complex natural images: 1) MNIST, 2) Fashion-MNIST, 3) CIFAR10, and 4) CIFAR100. The
variant algorithm methods included in our study were backprop (BP), predictive coding (PC) that
optimizes a free energy functional made up of squared error losses PC-SE, predictive coding that
optimizes a free energy functional composed of cross-entropy losses PC-CE, DDTP-Linear Meule-
mans et al. (2020), DDTP-Control Meulemans et al. (2020), and DTP-σ Ororbia & Mali (2019).

Each model was trained for 100 epochs using architectures designed for the characteristics of each
dataset. Additionally, beside standard activation such as Tanh, ReLU, sigmoid we incorporated
a novel activation function, the hyperbolic tangent exponential linear unit (TeLU) Fernandez &
Mali (2024), in all experiments which offered better stability. Unlike ReLU, which lacks higher-
order Lipschitz continuity, TeLU, Tanh and sigmoid ensures smooth transitions and stability even
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Method MNIST Fashion-MNIST CIFAR10 CIFAR100
BP 98.03± 0.05% 89.07± 0.09% 88.16± 0.17% 60.86± 0.39%
PC-SE 98.4± 0.05% 89.52± 0.07% 87.97± 0.11% 54.92± 0.11%
PC-CE 98.23± 0.08% 89.11± 0.19% 88.02± 0.14% 61.94± 0.12%
DDTP-Linear 98.17± 0.09% 88.99± 0.17% 83.01± 0.20% 57.80± 0.43%
DDTP-control 98.20± 0.08% 88.70± 0.31% 82.71± 0.28% 54.75± 0.43%
DTP-σ 98.34± 0.19% 89.01± 0.53% 49.49± 0.23% 31.74± 0.30%

Table 1: Test accuracy corresponding to the epoch with the best validation error over the 100 train-
ing epochs (architecture with 5 fully-connected hidden layers of 256 units for MNIST & Fashion-
MNIST; VGG-5 architecture employed for CIFAR10 and CIFAR100). Mean ± SD for 15 random
seeds. Best test errors (except BP) are displayed in bold.

Method SGD (lr = 0.01) SGD+M (lr = 1e-3) RMSProp(lr = 1e-3)
BP 74 70 71
PC-CE 62 63 65
PC-SE 63 61 64
DDTP-Linear 73 68 70
DDTP-Control 71 72 71

Table 2: Average number of epochs required to obtain best validation accuracy on Cifar-10 for
various methods using different optimizers.

Figure 1: Convergence comparison of backprop (BP; blue) and predictive coding (PC; red) in a
convolutional network with MSE loss trained on MNIST for 30Ksteps. Panels A and B show the
training (light colors) and test (dark colors) loss (A) and accuracy (B) for a 5-layer network (TeLU
activation, optimizer = SGD with momentum 0.9, lr = 0.01, batch_size= 100 ) trained using PC
(red) and BP (blue). Panels C and D depict the relative error (C) and angle (D) between parameter
updates (dθ) and the negative gradient of the loss at each layer. While PC and BP achieve comparable
accuracies in all experiments, the differences in the parameter updates highlight the nuances between
the two approaches. (Note: We adapted the code of Rosenbaum (2022) to generate these plots.)

for higher-order derivatives, a property crucial for this paper’s theoretical findings. This property
proved particularly beneficial for the predictive coding (PC) and difference target propagation (DTP)
methods, resulting in more stable, consistent convergence behavior than traditional activations (using
Relu/Tanh, PC exhibited higher variance.

All of the models were optimized using stochastic gradient descent (SGD) with momentum, specif-
ically using a learning rate set to 0.001 with a batch size 128. For each method and dataset, we ran
the experiments for 15 trials (with 15 different random seeds) and report the mean test accuracy and
standard deviation (SD) corresponding to the epoch with the best validation error. The experiments
were performed using PCX, a novel library introduced to perform experiments with and benchmark
predictive coding networks Pinchetti et al. (2024). A more detailed description of the models used,
as well as the test accuracies reached during the experiments, is reported in Table 4, while the the av-
erage number of epochs required for each algorithm to converge on the complex CIFAR-10 dataset

9



Under review as a conference paper at ICLR 2024

Figure 2: Convergence analysis with the tanh activation – same setting as in Figure 1.

Figure 3: Convergence comparison of backprop (BP; blue) and predictive coding (PC; red) in a
convolutional network with MSE loss trained on the CIFAR-10 dataset over first 4K steps. Panels A
and B show the training (light colors) and test (dark colors) loss (A) and accuracy (B) for a 5-layer
network (TeLU activation, optimizer = SGD with momentum 0.9, lr = 0.01, batch_size= 100 )
trained using PC shown in red) and BP (shown in blue). Panels C and D depict the relative error (C)
and angle (D) between the parameter updates,(dθ) and the negative gradient of the loss at each layer

is reported in Table 2. Note that, in Table 2, we investigated each algorithm used in tandem with
either SGD, SGD with momentum (SGD+M), or RMSprop Tieleman et al. (2012).

5 CONCLUSION

In this work, we conducted a rigorous study of the stability and robustness of the biological infer-
ence and learning framework known as predictive coding (PC). Concretely, we employed dynamical
systems theory to show that PC networks (PCNs) are Lyapunov stable by specifically deriving tights
bounds on the stability of PCNs equipped with Lipschitz activation functions, demonstrating that
they are able to converge to fixed-points and further offer robustness to perturbations applied to
sensory inputs, synaptic weight values, and initial neuronal state conditions. Furthermore, we were
able to formally demonstrate that the updates yielded by PCN dynamics approximate quasi-Newton
updates applied to synaptic connection strengths, uncovering that PCNs utilize second order infor-
mation to adjust the direction and magnitude of the gradient steps that they carry out. Notably, our
results usefully yielded tighter theoretical bounds on the approximations of other algorithms, such
as backpropagation of errors and target propagation, that are yielded by predictive coding models.
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In this appendix, we provide additional experimental details as well as the complete formaliza-
tion/set of details underlying the definitions and theoretical results provided in this work, including
the formal proofs behind the presented theorems.

A EXPERIMENTAL DETAILS

In this section, in Table 3 (Left), we provide additional details with respect to the full specification of
the model architectures utilized for our credit assignment algorithms in the main paper’s simulations.
Furthermore, we present hyper-parameter value settings used for each credit assignment algorithm in
Table 3 (Right). Hyper-parameter search where conducted over optimizer(SGD, SGD+M, AdamW),
learning rate ([0.1, 1e-4]) and activation ([Tanh, Sigmoid, TeLU, ReLU]).

Model Architecture
MNIST 5 × 256 FC, Glorot-uniform init

FMNIST 5 × 256 FC, Glorot-uniform init
CIFAR10 VGG5, Glorot-uniform init
CIFAR100 VGG5, Glorot-uniform init

Algorithm Hyper-parameter Configuration
BP SGD, lr=1e-3, Momentum= 0.9, Batch_size=128

DTP-Linear SGD, lr=1e-4, Momentum= 0.9, Batch_size=128
DTP-Control SGD, lr=1e-4, Momentum= 0.92, Batch_size=128

DTP-σ SGD, lr=1e-2, Momentum= 0.91, Batch_size=128
PC-SE SGD, lr=1e-3, Momentum= 0.9, Batch_size=128
PC-CE SGD, lr=1e-3, Momentum= 0.9, Batch_size=128

Table 3: (Left) Architecture details used for the neural models simulated in this work. (Right)
Algorithm hyper-parameter configuration for each credit assignment scheme explored in the main
paper. ‘FC’ denotes fully-connected, ‘SGD’ denotes stochastic gradient descent, and VGG5 refers
to the convolution vision architecture designed in Simonyan & Zisserman (2014). Note that all pa-
rameter/synaptic weight values were initialized from a fan-in-scaled initialization Glorot & Bengio
(2010) scheme (“Glorot-uniform init”), except for the biases, which were initialized to zeros.

B DEFINITIONS

In this section, we fully formalize the background section on dynamical systems, made more infor-
mal due to a lack of space. The theorems stated in the main body of the paper, and proved in the
following sections, rely on the following definitions. We start by first characterizing what it means
for a dynamic system to be stable. This is established by the following definition:
Definition B.1. A dynamical system is said to be stable if, for any given ϵ > 0, there exists a δ > 0
such that if the initial state x(0) is within δ of an equilibrium point x∗ (i.e., ∥x(0)− x∗∥ < δ), then
the state x(t) remains within ϵ of x∗ for all t ≥ 0 (i.e., ∥x(t)− x∗∥ < ϵ for all t ≥ 0).

Formally:

∀ϵ > 0,∃δ > 0 such that ∥x(0)− x∗∥ < δ =⇒ ∥x(t)− x∗∥ < ϵ for all t ≥ 0.

Next we compare stability between two dynamical systems and show conditions required to show
one system is better compared to another, which is formally defined as follows:
Definition B.2. Let D and D′ be two dynamical systems with equilibrium points x∗

D and x∗
D′ ,

respectively. We say that the dynamical system D is more stable than the dynamical system D′ if,
for the same perturbation or initial deviation from the equilibrium, the system D either:

(i) Converges to its equilibrium point faster than D′, i.e., it has a higher convergence rate, or

(ii) Remains closer to its equilibrium point for all time, i.e., has a smaller deviation from the
equilibrium for the same perturbation, or

(iii) Has a larger region of attraction, indicating a greater tolerance to perturbations.
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Formally, consider two dynamical systems D and D′ represented by the differential equations:

ẋD = fD(x), ẋD′ = fD′(x),

with equilibrium points x∗
D and x∗

D′ , respectively. We define three criteria:

1. Convergence Rate: D converges faster to x∗
D compared to D′ if there exists a constant λ > 0

such that, for initial conditions x(0) close to x∗
D and x(0) close to x∗

D′:

∥xD(t)− x∗
D∥ ≤ e−λt∥x(0)− x∗

D∥, ∥xD′(t)− x∗
D′∥ ≥ e−λ′t∥x(0)− x∗

D′∥, with λ > λ′.

2. Region of Attraction: D has a larger region of attraction if the set of initial points that converge
to x∗

D, denoted as RD, satisfies:
RD ⊇ RD′ .

3. Deviation from Equilibrium: For the same initial deviation ∥x(0) − x∗
D∥ = ∥x(0) − x∗

D′∥, the
system D satisfies:

∥xD(t)− x∗
D∥ ≤ ∥xD′(t)− x∗

D′∥, ∀t ≥ 0.

If any of these criteria are met, then we say that D is more stable than D′.

Next we show important property of a system reaching fixed point, which is formally defined as
follows:

Definition B.3. Let x(t) ∈ Rn denote the state of a dynamical system at time t, governed by the
differential equation:

ẋ(t) = f(x(t)),

with f : Rn → Rn a continuous function. A point x∗ ∈ Rn is called a fixed point or equilibrium
point of the system if f(x∗) = 0. The system is said to converge to the fixed point x∗ if, for any
initial state x(0) in a neighborhood N of x∗, the trajectory x(t) satisfies:

lim
t→∞

x(t) = x∗.

More formally, for a neighborhood N ⊆ Rn of x∗, there exists a constant δ > 0 such that if
∥x(0)− x∗∥ < δ, then:

lim
t→∞

x(t) = x∗.

If the above holds for every initial condition x(0) ∈ Rn, then x∗ is said to be a globally stable fixed
point.

Next we formally define rate of convergence between two stable dynamical systems and how can be
used to measure convergence bound for a network, which is defined as follows:

Definition B.4. Let D and D′ be dynamical systems that converge to the same fixed point x∗ given
the same initial conditions. Let xD(t) and xD′(t) denote the trajectories of the systems D and D′,
respectively, starting from the same initial state x(0). We say that D converges faster than D′ if, for
any initial state x(0) sufficiently close to x∗, the distance to the fixed point decreases at a higher
rate for D compared to D′.

Formally, D converges faster than D′ if there exists a positive constant λ > 0 such that for all t ≥ 0:

∥xD(t)−x∗∥ ≤ Ce−λt∥x(0)−x∗∥, and ∥xD′(t)−x∗∥ ≥ C ′e−λ′t∥x(0)−x∗∥, with λ > λ′,

where C,C ′ > 0 are positive constants and λ, λ′ represent the exponential convergence rates of the
systems D and D′, respectively.

Alternatively, for non-exponential convergence, D converges faster than D′ if, for any ϵ > 0, there
exist times TD, TD′ > 0 such that:

TD ≤ TD′ and ∥xD(t)− x∗∥ < ϵ for all t ≥ TD, ∥xD′(t)− x∗∥ < ϵ for all t ≥ TD′ .

Next we formally define robustness of a dynamical system
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Definition B.5. A dynamical system is said to be robust to random perturbations if, for any small
random perturbation η(t) acting on the system, the perturbed state xη(t) remains close to the un-
perturbed state x∗(t) with high probability for all t ≥ 0. This implies that the system can maintain
its desired performance despite the presence of small random disturbances.

Formally, let x(t) be the unperturbed state and xη(t) be the perturbed state of the system. The
system is robust if, for any ϵ > 0 and any initial condition x(0), there exists a constant δ > 0 and a
probability threshold 1− α, such that if ∥η(t)∥ < δ for all t ≥ 0, then:

P
(
sup
t≥0

∥xη(t)− x(t)∥ < ϵ

)
≥ 1− α.

Next now we formally define what it means for a dynamical system to be robust to initial conditions.
Definition B.6. A dynamical system is said to be robust to random initial conditions if, given an
initial state x(0) drawn from a probability distribution P with bounded support, the system’s state
x(t) remains within a bounded region around its desired trajectory or equilibrium point x∗(t) with
high probability for all t ≥ 0.

Formally, let the initial state x(0) be drawn from a distribution P with support S such that ∥x(0)−
x∗(0)∥ ≤ M for some M > 0. The system is robust if there exists a probability threshold 1 − α
such that for any ϵ > 0, there exists a constant δ > 0 satisfying:

P
(
sup
t≥0

∥x(t)− x∗(t)∥ < ϵ

)
≥ 1− α whenever ∥x(0)− x∗(0)∥ ≤ δ.

Definition B.7. A neural network is said to be Lyapunov stable if, for any given ϵ > 0, there
exists a δ > 0 such that if the initial weights W (0) are within δ of a trained equilibrium point
W ∗ (i.e., ∥W (0) − W ∗∥ < δ), then the weights W (t) remain within ϵ of W ∗ for all t ≥ 0 (i.e.,
∥W (t)−W ∗∥ < ϵ for all t ≥ 0).

If, in addition, the weights converge to W ∗ as t → ∞, i.e.,

lim
t→∞

∥W (t)−W ∗∥ = 0,

then the neural network is said to be asymptotically stable.
Example 1. Why is Stability Important?

Stability is a fundamental property of neural networks, ensuring that small changes in the input
or initial conditions do not cause large, unpredictable variations in the network’s output. Stabil-
ity is crucial for both training and deployment. During training, instability can cause gradients to
explode, leading to chaotic updates and preventing convergence. During deployment, an unstable
network might produce drastically different outputs for minor input changes, undermining its relia-
bility. In real-world scenarios where inputs are often noisy or slightly perturbed, a stable network
can still produce accurate and consistent predictions, making it more reliable and robust.

Mathematical Insight:

Stability can be formally understood through the concept of *bounded sensitivity*. For a neural
network f : Rn → Rm to be stable, a small change in the input δx should lead to a bounded change
in the output. Mathematically, this is expressed as:

∥f(x+ δx)− f(x)∥ ≤ K · ∥δx∥,

for a constant K > 0. A network is *stable* if K is small, implying that the network is not highly
sensitive to input variations. A more refined way to analyze stability is through the eigenvalues of
the Jacobian matrix Jf (x). If the largest eigenvalue λmax of Jf (x) satisfies λmax < 1, then the
system is considered to be stable because small perturbations in the input will decay rather than
amplify as they propagate through the network.

Intuitive Example of Stability:

Consider a neural network trained for handwritten digit classification. If the network is stable,
adding a small amount of Gaussian noise or slightly changing the position of a digit in the image
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(e.g., shifting the digit by a few pixels) will not cause the network’s prediction to change significantly.
For example, a stable network will continue to classify a digit ’8’ as ’8’, even if the digit is slightly
blurred or has a few pixels altered. This stability is essential for real-world applications where
inputs are rarely perfect replicas of training data.

Detailed Example: Training a Recurrent Neural Network (RNN)

Stability becomes even more critical in Recurrent Neural Networks (RNNs) due to their sequential
nature. Consider an RNN designed to predict the next word in a sentence. During training, if
small changes in initial states or earlier inputs cause large deviations in hidden states, the RNN
can produce completely different outputs, making training highly unstable. Mathematically, this
corresponds to having a Jacobian matrix with eigenvalues greater than 1, which indicates that small
errors will grow exponentially as they propagate through the network.

Counterexample: Non-Stable Systems and Vanishing/Exploding Gradients

Imagine training a deep feedforward network or an RNN without appropriate regularization. If the
network is not stable, even small changes in the input or initial weights can lead to vanishing or
exploding gradients, making learning ineffective. For example, in a deep RNN, an input sequence
with slightly perturbed values might cause the gradients to either shrink to zero (vanishing gradi-
ent problem) or explode to very large values (exploding gradient problem), leading to poor model
performance and unstable training.

Practical Implications of Stability:

1. Improved Training Dynamics: Stability ensures that gradient-based optimization methods
produce smooth and predictable updates, enabling faster and more reliable convergence. 2.
Reliable Predictions: In deployment, stable networks produce consistent outputs even with noisy
or perturbed inputs, making them suitable for real-world applications like speech recognition or
autonomous driving. 3. Control Over Adversarial Attacks: A stable network is less vulnerable to
adversarial attacks, where small, carefully crafted input changes are designed to mislead the net-
work into producing incorrect outputs.

Real-World Example: Stability in Financial Forecasting

Consider a neural network used for predicting stock prices. Financial data is inherently noisy and
contains sudden fluctuations. If the network is unstable, even a slight change in the input features
(e.g., a minor fluctuation in daily stock prices) could lead to drastically different predictions, making
the network unreliable for decision-making. On the other hand, a stable network will produce
consistent and reliable forecasts, ensuring that minor changes in the data do not cause significant
shifts in the predictions.

Definition B.8. A neural network is said to be robust to small random perturbations if, for any small
random perturbation η(t) applied to its inputs or parameters, the network’s output yη(t) remains
close to its unperturbed output y∗(t) with high probability for all t ≥ 0.

Formally, let y(t) be the nominal (unperturbed) output of the neural network and yη(t) be the output
under random perturbations η(t). The network is said to be robust if, for any ϵ > 0, there exists a
constant δ > 0 and a probability threshold 1− α, such that if ∥η(t)∥ < δ for all t ≥ 0, then:

P
(
sup
t≥0

∥yη(t)− y∗(t)∥ < ϵ

)
≥ 1− α.

Example 2. Why is Robustness Important?

Robustness is a critical property for neural networks, especially in real-world applications, where
input data is often noisy, contains slight perturbations, or deviates from the clean training data.
A robust neural network maintains its accuracy and reliability even when faced with unexpected
changes, ensuring consistent performance across diverse and challenging conditions. Robustness
is crucial for safety-critical systems (e.g., autonomous vehicles, medical diagnosis), as failures can
have significant real-world consequences.

Mathematical Intuition:

17



Under review as a conference paper at ICLR 2024

Robustness can be understood mathematically through the concept of *Lipschitz continuity*. For a
neural network f to be robust, small changes in the input should only cause small changes in the
output. Formally, if f is K-Lipschitz continuous, then for any two inputs x and x′:

∥f(x)− f(x′)∥ ≤ K · ∥x− x′∥,

where K is a constant that quantifies the network’s sensitivity to input variations. A small K implies
that the network is less sensitive to input noise, thereby enhancing robustness. Robust networks
minimize K and ensure that even adversarial or noisy inputs do not cause large deviations in the
output, making them more reliable.

Intuitive Example of Robustness in Autonomous Driving:

Consider a neural network used for object detection in an autonomous vehicle. In ideal conditions,
the network correctly identifies cars, pedestrians, and traffic signs. However, in real-world scenar-
ios, the network must operate in varying lighting conditions (e.g., night vs. day), different weather
(e.g., fog, rain), and even with potential sensor noise (e.g., camera blur, reflections).

If the network is robust, a slight distortion in a camera image—such as a shadow, slight rain droplets,
or fog—will not cause it to misclassify a pedestrian as a signpost or ignore a stop sign. The network’s
ability to generalize well in the presence of such variations ensures safety and reliability.

Detailed Example: Image Classification under Adversarial Noise

Let’s consider a neural network trained to classify handwritten digits from the MNIST dataset. If the
network is only trained on clean images, adding small perturbations (e.g., random Gaussian noise)
might lead to misclassification, even though a human observer would still recognize the digit.

To test robustness, we introduce small adversarial noise δ to the input images such that the perturbed
image is x′ = x + δ. For a non-robust network, a minimal δ can cause the classification result to
change drastically, even though ∥δ∥ is small. A robust network, however, would maintain consistent
outputs for both x and x′, implying that f(x′) ≈ f(x).

Counterexample: Non-Robust Systems in Medical Imaging

Consider a neural network designed to detect tumors in medical images. If the network is not ro-
bust, even slight variations in the input—such as minor differences in lighting or slight changes in
the position of the patient—could lead to incorrect classifications, potentially causing false posi-
tives or missing a critical diagnosis. In medical applications, where errors have life-threatening
consequences, robustness is paramount.

Real-World Consequences of Non-Robustness

In safety-critical applications like autonomous driving or healthcare, a non-robust network can have
catastrophic outcomes. For example, an autonomous vehicle that fails to detect a pedestrian due to
a shadow or slight occlusion might cause an accident. Similarly, a non-robust medical diagnostic
system could misinterpret scans due to slight noise, leading to misdiagnosis.
Definition B.9. Let N and N ′ be two neural networks with weight dynamics governed by the dif-
ferential equations:

ẆN (t) = FN (WN (t)), ẆN ′(t) = FN ′(WN ′(t)),

where WN (t) and WN ′(t) represent the weights of the networks N and N ′ at time t, respectively,
and W ∗ is the common equilibrium point such that FN (W ∗) = 0 and FN ′(W ∗) = 0.

We say that the network N converges faster than the network N ′ if, for any initial weights WN (0)
and WN ′(0) sufficiently close to W ∗, there exists a positive constant λ > 0 such that the following
inequality holds:

∥WN (t)−W ∗∥ ≤ Ce−λt∥WN (0)−W ∗∥, ∥WN ′(t)−W ∗∥ ≥ C ′e−λ′t∥WN ′(0)−W ∗∥, with λ > λ′,

where C,C ′ > 0 are positive constants and λ, λ′ represent the exponential convergence rates of the
systems N and N ′, respectively.

If the convergence is non-exponential, N is said to converge faster than N ′ if, for any ϵ > 0, there
exist times TN , TN ′ > 0 such that:
TN ≤ TN ′ and ∥WN (t)−W ∗∥ < ϵ for all t ≥ TN , ∥WN ′(t)−W ∗∥ < ϵ for all t ≥ TN ′ .
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Example 3. Why is Fast Convergence Important?

Fast convergence is essential for neural networks because it significantly reduces the time and com-
putational resources required to train complex models. In modern machine learning, where models
often have millions or even billions of parameters, slow convergence can make training impractical
or prohibitively expensive. Moreover, achieving faster convergence often means that the model can
reach higher accuracy or better generalization in less time, making it more competitive in real-world
applications. Fast convergence is particularly important for:

• Large-scale datasets: Reducing convergence time on massive datasets (e.g., ImageNet,
OpenWebText) can translate to days or even weeks saved during training.

• Iterative model development: Faster convergence allows for rapid prototyping and testing,
enabling researchers to experiment with more architectures and hyperparameters within
the same timeframe.

• Dynamic or real-time systems: In applications where models need to be frequently re-
trained (e.g., reinforcement learning in robotics, online learning in trading systems), fast
convergence is a necessity rather than a luxury.

Mathematical Insight into Convergence Speed:

The convergence rate of an optimization algorithm is typically characterized by the decrease in the
loss function L over iterations. Formally, if Lt denotes the loss at iteration t, then the convergence
rate is defined as:

Lt − L∗ ≤ C · e−ρt for some constants C, ρ > 0,

where L∗ is the optimal loss and ρ is the convergence rate. A higher ρ indicates faster convergence.
Consider two algorithms:

1. Algorithm A with a high convergence rate ρA, such that Lt − L∗ ≤ C · e−ρAt.

2. Algorithm B with a lower convergence rate ρB < ρA.

Even if both algorithms have the same starting point and are optimizing the same loss, Algorithm A
will reach near-optimal performance exponentially faster than Algorithm B. This difference becomes
dramatic when t is large, making Algorithm A much more suitable for training deep neural networks.

Detailed Example: Training a Convolutional Neural Network (CNN)

Consider a Convolutional Neural Network (CNN) designed to classify images in the CIFAR-10
dataset. Let’s analyze two scenarios:

1. Scenario 1: We use a standard Stochastic Gradient Descent (SGD) optimizer with a constant
learning rate, which is known for slow convergence on non-convex functions. As a result, the network
might require 300 epochs to reach an accuracy of 85

2. Scenario 2: We switch to a momentum-based variant of SGD or the Adam optimizer, both of which
have adaptive learning rates and gradient scaling. This change allows the same CNN to reach 85

The significant difference in training time between these two scenarios can be quantified as follows:
if each epoch takes 5 minutes to complete, Scenario 1 would take 25 hours, while Scenario 2 would
take just over 8 hours. This not only saves time but also reduces computational costs, which is
crucial for large-scale deployments.

Counterexample: Slow Convergence and Its Implications

Let’s consider training a Transformer model for language modeling on a large corpus. Suppose that
due to poor hyperparameter tuning (e.g., a suboptimal learning rate schedule), the convergence rate
is so slow that it requires 10x more epochs to reach comparable performance. The consequences
are as follows:

• Higher computational cost: Training time may increase from 2 days to 20 days on a multi-
GPU setup, inflating hardware costs.
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• Delayed deployment: In dynamic systems, delayed training means delayed responses to
changes in the data distribution, making the model outdated by the time it is deployed.

• Suboptimal performance: Slow convergence can sometimes lead to getting stuck in local
minima or saddle points, resulting in a final model that performs worse than one trained
with a faster-converging algorithm.

Real-World Example: Fine-Tuning a BERT Model

Consider fine-tuning a BERT model for a sentiment analysis task. Due to the size of the model and
the complexity of the task, convergence can be slow. However, by using learning rate scheduling
strategies such as a cosine decay or warm-up phase, we can speed up convergence significantly.
Instead of taking 5 epochs to achieve 90

In practice, this difference translates to reduced training costs and faster model deployment. More-
over, faster convergence reduces the risk of overfitting, since the model spends less time oscillating
around local minima.

Thus faster convergence in neural networks is not just a matter of training speed—it impacts every
stage of model development, from experimentation and prototyping to deployment and long-term
maintenance. Thus, selecting optimizers and training strategies that promote fast convergence is
crucial for efficient and effective deep learning.

C THEOREMS ON THE STABILITY OF PC

C.1 PROOF OF THEOREM 3.1

Theorem C.1. Let M be a Predictive Coding Network (PCN) that minimizes a free energy F =
L + Ẽ, where L is the backpropagation loss and Ẽ is the residual energy. Assume the activation
function f and its derivatives f ′, f ′′, and f ′′′ are Lipschitz continuous with constants K, K ′, K ′′,
and K ′′′, respectively. Then, the convergence and stability of the PCN can be characterized by the
bounds involving these higher-order derivatives.

Proof. Consider the prediction error dynamics for the l-th layer in a PCN, defined as:

ϵl(t) = xl(t)− f(Wlxl−1(t)).

We perform a Taylor series expansion of f(Wlxl−1(t)) around the equilibrium point Wlx
∗
l−1:

f(Wlxl−1) = f(Wlx
∗
l−1) + f ′(Wlx

∗
l−1)(Wl(xl−1 − x∗

l−1)) +
1

2
f ′′(Wlx

∗
l−1)(Wl(xl−1 − x∗

l−1))
2

+
1

6
f ′′′(Wlx

∗
l−1)(Wl(xl−1 − x∗

l−1))
3 +O((Wl(xl−1 − x∗

l−1))
4).

Define the residual terms:

R2 =
1

2
f ′′(Wlx

∗
l−1)(Wl(xl−1 − x∗

l−1))
2, R3 =

1

6
f ′′′(Wlx

∗
l−1)(Wl(xl−1 − x∗

l−1))
3.

The prediction error can then be expressed as:

ϵl(t) = xl(t)− f(Wlx
∗
l−1)− f ′(Wlx

∗
l−1)(Wl(xl−1 − x∗

l−1))−R2 −R3.

By the Lipschitz continuity assumptions, we have the following bound for ϵl(t):

∥ϵl(t)∥ ≤ K∥xl−f(Wlx
∗
l−1)∥+K ′∥Wl(xl−1−x∗

l−1)∥+K ′′∥(Wl(xl−1−x∗
l−1))

2∥+K ′′′∥(Wl(xl−1−x∗
l−1))

3∥.

This completes the proof.
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C.2 PROOF OF THEOREM 3.2

Theorem C.2. Let M be a Predictive Coding Network (PCN) that minimizes a free energy function
F = L + Ẽ, where L is the backpropagation loss and Ẽ is the residual energy. Assume that
L(x) and Ẽ(x) are positive definite, and their sum F (x) has a strict minimum at x = x∗, where
F (x∗) = 0. Further, assume the activation function f and its derivatives f ′, f ′′ are Lipschitz
continuous with constants K,K ′,K ′′, respectively. Then, the PCN dynamics can be represented as
a continuous-time dynamical system, and the Lyapunov function V (x) = F (x) ensures convergence
to the equilibrium x = x∗.

Proof. Consider the prediction error dynamics in a PCN given by:

ϵl = xl − f(Wlxl−1).

The objective of the PCN is to minimize the free energy function:

F (x) = L(x) + Ẽ(x),

where L(x) is the backpropagation loss and Ẽ(x) is the residual energy. To analyze the stability of
this system, we introduce a Lyapunov function:

V (x) = F (x) = L(x) + Ẽ(x).

**Step 1: Verifying Positive Definiteness of V (x)**

For V (x) = L(x) + Ẽ(x) to be positive definite, the following must hold:

1. V (x) ≥ 0 for all x. 2. V (x) > 0 for x ̸= x∗. 3. V (x∗) = 0.

We assume that both L(x) and Ẽ(x) are positive definite around x = x∗. This implies:

L(x) > 0 and Ẽ(x) > 0 for x ̸= x∗,

and
L(x∗) = 0, Ẽ(x∗) = 0.

Therefore, V (x) = L(x) + Ẽ(x) satisfies V (x) > 0 for all x ̸= x∗ and V (x∗) = 0. Thus, V (x) is
positive definite.

**Step 2: Time Derivative of V (x)**

The time derivative of V (x) along the trajectories of the system is given by:

V̇ (x) =
∂V

∂x
· ẋ.

Using the dynamical system equation:

ẋl = − ∂F

∂xl
= −

(
∂L

∂xl
+

∂Ẽ

∂xl

)
,

we have:

V̇ (x) =
∂F

∂x
·
(
−∂F

∂x

)
= −

∥∥∥∥∂F∂x
∥∥∥∥2 .

Since V̇ (x) = −
∥∥∂F

∂x

∥∥2 ≤ 0, V (x) is non-increasing along the trajectories of the system.

**Step 3: Stability Analysis**

Because V (x) is positive definite and V̇ (x) = −
∥∥∂F

∂x

∥∥2 ≤ 0, V (x) decreases monotonically and
reaches its minimum value at x = x∗. This implies that the system is Lyapunov stable. Furthermore,
V̇ (x) = 0 if and only if ∂F

∂x = 0, which occurs at the equilibrium point x = x∗.

Hence, the system converges to the equilibrium point x = x∗, completing the proof.
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C.3 PROOF OF THEOREM 3.3

Theorem C.3. Let M be a Predictive Coding Network (PCN) that minimizes a free energy function
F = L + Ẽ, where L is the backpropagation loss and Ẽ is the residual energy. Assume that
L(x) and Ẽ(x) are positive definite functions, and their sum F (x) has a strict minimum at x = x∗.
Further, assume the activation function f and its derivatives f ′, f ′′, and f ′′′ are Lipschitz continuous
with constants K,K ′,K ′′, and K ′′′, respectively. Then, the PCN updates are Lyapunov stable and
converge to a fixed point x = x∗.

Proof. Consider the prediction error dynamics in a PCN defined as:

ϵl = xl − f(Wlxl−1).

The objective of the PCN is to minimize the free energy function:

F (x) = L(x) + Ẽ(x),

where L(x) is the backpropagation loss and Ẽ(x) is the residual energy. To analyze the stability of
this system, we introduce a Lyapunov function:

V (x) = F (x) = L(x) + Ẽ(x).

**Step 1: Verifying Positive Definiteness of V (x)**

For V (x) = L(x) + Ẽ(x) to be a valid Lyapunov function, it must be positive definite, which
requires:

V (x) > 0 for allx ̸= x∗ and V (x∗) = 0.

We assume that both L(x) and Ẽ(x) are positive definite around x = x∗. This means:

L(x) > 0 and Ẽ(x) > 0 forx ̸= x∗,

and
L(x∗) = 0, Ẽ(x∗) = 0.

Thus, V (x) = L(x) + Ẽ(x) satisfies V (x) > 0 for all x ̸= x∗ and V (x∗) = 0.

**Step 2: Time Derivative of V (x)**

The time derivative of V (x) along the trajectories of the system is given by:

V̇ (x) =
∂V

∂x
· ẋ.

Using the dynamical system equation:

ẋl = − ∂F

∂xl
= −

(
∂L

∂xl
+

∂Ẽ

∂xl

)
,

we obtain:

V̇ (x) =
∂F

∂x
·
(
−∂F

∂x

)
= −

∥∥∥∥∂F∂x
∥∥∥∥2 .

Since V̇ (x) = −
∥∥∂F

∂x

∥∥2 ≤ 0, V (x) is non-increasing along the trajectories of the system. This
implies that the free energy F decreases monotonically until the system reaches the equilibrium
point x = x∗, where ∂F

∂x = 0.

**Step 3: Establishing Stability and Convergence**

Because V (x) is positive definite and V̇ (x) = −
∥∥∂F

∂x

∥∥2 ≤ 0, V (x) decreases monotonically and
reaches its minimum value at x = x∗. This implies that the system is Lyapunov stable.

Furthermore, V̇ (x) = 0 if and only if ∂F
∂x = 0, which occurs at the equilibrium point x = x∗.

Thus, as t → ∞, V̇ (x) → 0 and the system converges to the equilibrium point x = x∗, completing
the proof.
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C.4 PROOF OF THEOREM 3.4

Theorem C.4. Let M be a Predictive Coding Network (PCN) that minimizes a free energy F =
L + Ẽ, where L is the backpropagation loss and Ẽ is the residual energy. Assume the activation
function f and its derivatives f ′, f ′′, and f ′′′ are Lipschitz continuous with constants K,K ′,K ′′,
and K ′′′, respectively. Then, the PCN updates are Lyapunov stable and converge to a fixed point
faster than BP updates.

Proof. Stability Analysis of BP Updates. Consider the BP updates modeled as a continuous-time
dynamical system:

Ẇl = − ∂L

∂Wl
.

Define a Lyapunov function for the BP updates:

VBP(W ) = L(W ).

The time derivative of VBP along the trajectories of the system is:

V̇BP(W ) =
∂VBP

∂W
· Ẇ = −

(
∂L

∂W

)T

· ∂L

∂W
= −

∥∥∥∥ ∂L

∂W

∥∥∥∥2 .
Since V̇BP ≤ 0, VBP is non-increasing along the trajectories of the BP updates. This indicates that
the BP updates are Lyapunov stable. However, the convergence rate depends on the norm of the
gradient ∥ ∂L

∂W ∥, which may oscillate or decrease slowly if L is non-convex.

Stability Analysis of PC Updates Consider the PC updates modeled as a continuous-time dynami-
cal system:

Ẇl = −

(
∂L

∂Wl
+

∂Ẽ

∂Wl

)
.

Define a Lyapunov function for the PC updates:

VPC(W ) = F (W ) = L(W ) + Ẽ(W ).

The time derivative of VPC along the trajectories of the system is:

V̇PC(W ) =
∂VPC

∂W
· Ẇ = −

(
∂L

∂W
+

∂Ẽ

∂W

)T

·

(
∂L

∂W
+

∂Ẽ

∂W

)
.

This simplifies to:

V̇PC(W ) = −

∥∥∥∥∥ ∂L

∂W
+

∂Ẽ

∂W

∥∥∥∥∥
2

.

Since V̇PC ≤ 0, VPC is non-increasing along the trajectories of the PC updates. The residual energy
term Ẽ captures higher-order dependencies between layers, which leads to a smoother and more
stable gradient trajectory, helping to reduce oscillations.

Comparison of Convergence Rates. To compare the convergence rates of BP and PC updates,
consider the difference in the time derivatives of VBP and VPC:

V̇BP = −
∥∥∥∥ ∂L

∂W

∥∥∥∥2 , V̇PC = −

∥∥∥∥∥ ∂L

∂W
+

∂Ẽ

∂W

∥∥∥∥∥
2

.

Since the PC updates include the additional residual energy term Ẽ, which contributes to damping
and faster reduction in V̇PC, we have:

V̇PC ≤ V̇BP.
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Thus, the PC updates decrease the free energy F = L+Ẽ more rapidly than the BP updates decrease
the loss L alone. This implies that the PC updates converge to the equilibrium point W ∗ faster than
the BP updates.

Thus the presence of the residual energy term Ẽ in the PC updates leads to a smoother and more
stable update trajectory, resulting in faster convergence to the fixed point. Therefore, the PC updates
are more stable and reach a fixed point earlier than BP updates.

Backprop Updates. In traditional backpropagation (BP), the weight updates are given by:

∆Wl = −η
∂L

∂Wl

where η is the learning rate and L is the loss function. The update rule can be expressed in terms of
stochastic gradient descent (SGD):

W
(t+1)
l = W

(t)
l − η

∂L

∂Wl
.

PC Updates. In predictive coding, the weight updates are derived by minimizing the free energy
functional F = L+ Ẽ. The resulting update rule is:

∆Wl = −η

(
∂L

∂Wl
+

∂Ẽ

∂Wl

)
which can further, much like in BP, can be cast in terms of an SGD adjustment:

W
(t+1)
l = W

(t)
l − η

(
∂L

∂Wl
+

∂Ẽ

∂Wl

)
.

D THEOREMS ON ROBUSTNESS

Updates of BP Consider the BP updates as a continuous-time dynamical system:

Ẇl = − ∂L

∂Wl

Introduce a Lyapunov function VBP(W ) = L(W ). The time derivative along the trajectories of the
system is:

V̇BP(W ) =
∂VBP

∂W
· Ẇ = −

(
∂L

∂W

)T

· ∂L

∂W
= −

∥∥∥∥ ∂L

∂W

∥∥∥∥2
Since V̇BP ≤ 0, VBP is non-increasing, indicating that the BP updates are stable. However, the
convergence rate depends on the learning rate η and the curvature of the loss function L.

Updates of PCNs Consider the PC updates as a continuous-time dynamical system:

Ẇl = −

(
∂L

∂Wl
+

∂Ẽ

∂Wl

)
Introduce a Lyapunov function VPC(W ) = F (W ) = L(W ) + Ẽ(W ). The time derivative along the
trajectories of the system is:

V̇PC(W ) =
∂VPC

∂W
· Ẇ = −

(
∂L

∂W
+

∂Ẽ

∂W

)T

·

(
∂L

∂W
+

∂Ẽ

∂W

)

This simplifies to:

V̇PC(W ) = −

∥∥∥∥∥ ∂L

∂W
+

∂Ẽ

∂W

∥∥∥∥∥
2
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D.1 PROOF OF THEOREM 3.5

Theorem D.1. Consider the predictive coding updates as a continuous-time dynamical system:

Ẇl = −

(
∂L

∂Wl
+

∂Ẽ

∂Wl

)
.

Let VPC(W ) = L(W )+Ẽ(W ) be a Lyapunov function, where L and Ẽ are positive definite functions
that achieve their minimum at W = W ∗. Then, the time derivative of VPC(W ) along the trajectories
of the system is:

V̇PC(W ) = −

∥∥∥∥∥ ∂L

∂W
+

∂Ẽ

∂W

∥∥∥∥∥
2

≤ 0,

and the system is Lyapunov stable. Furthermore, if V̇PC(W ) = 0 only at W = W ∗, then the
predictive coding updates are asymptotically stable and converge to the equilibrium point W = W ∗.

Proof. Step 1: Defining the Lyapunov Function Consider the Lyapunov function defined as:

VPC(W ) = L(W ) + Ẽ(W ),

where: 1. L(W ) is the backpropagation loss. 2. Ẽ(W ) is an auxiliary error or regularization term.

Assume that L(W ) and Ẽ(W ) are positive definite, i.e.,

L(W ) > 0 and Ẽ(W ) > 0 for allW ̸= W ∗,

and L(W ∗) = 0, Ẽ(W ∗) = 0. Thus, VPC(W ) > 0 for W ̸= W ∗ and VPC(W
∗) = 0.

Step 2: Time Derivative of VPC(W ) The time derivative of VPC(W ) along the trajectories of the
system is given by:

V̇PC(W ) =
d

dt
VPC(W ).

Using the chain rule, we have:

V̇PC(W ) =
∂VPC

∂W
· dW
dt

.

Since VPC(W ) = L(W ) + Ẽ(W ), its gradient is:

∂VPC

∂W
=

∂L

∂W
+

∂Ẽ

∂W
.

Substitute dW
dt from the weight update rule:

dW

dt
= −

(
∂L

∂W
+

∂Ẽ

∂W

)
.

Thus, we get:

V̇PC(W ) =

(
∂L

∂W
+

∂Ẽ

∂W

)
·

(
−

(
∂L

∂W
+

∂Ẽ

∂W

))
.

The dot product of a vector with its negative is the negative squared norm of the vector:

V̇PC(W ) = −

∥∥∥∥∥ ∂L

∂W
+

∂Ẽ

∂W

∥∥∥∥∥
2

.

Step 3: Stability Analysis Since
∥∥∥ ∂L
∂W + ∂Ẽ

∂W

∥∥∥2 ≥ 0 for all W , we have:

V̇PC(W ) ≤ 0.
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This shows that VPC(W ) is non-increasing along the trajectories of the system. If V̇PC(W ) = 0
only at W = W ∗, then the system is asymptotically stable and converges to the equilibrium point
W = W ∗.

Thus, the predictive coding updates are Lyapunov stable and, under the given conditions, asymptot-
ically stable.

D.2 PROOF OF THEOREM 3.6

Theorem D.2. Let VPC(W ) = L(W )+ Ẽ(W ) be a Lyapunov function, where L and Ẽ are positive
definite functions that achieve their minimum at W = W ∗. Then, the time derivative of VPC(W )
along the trajectories of the system, and the predictive coding updates seen as a continuous-time
dynamical system are, respectively:

V̇PC(W ) = −

∥∥∥∥∥ ∂L

∂W
+

∂Ẽ

∂W

∥∥∥∥∥
2

≤ 0, Ẇl = −

(
∂L

∂Wl
+

∂Ẽ

∂Wl

)
, (6)

making the system Lyapunov stable. Furthermore, if V̇PC(W ) = 0 only at W = W ∗, then the
predictive coding updates are asymptotically stable and converge to the equilibrium point W = W ∗.

To better understand how this relates to standard BP, let us now analyze the derivative of VPC(W ).
If the residual energy Ẽ(W ) → 0, the update rule reduces to:

Ẇl = − ∂L

∂Wl
,

which is precisely the standard BP update. Thus, BP can be seen as a special case of PCNs where
the residual energy term vanishes. However, in practical scenarios, Ẽ(W ) typically does not reach
zero, allowing PCNs to maintain more stable trajectories through the loss landscape.

This difference becomes evident in the Lyapunov stability analysis. Since Ẽ(W ) is a positive def-
inite function, it introduces an additional stabilizing force in the gradient dynamics, ensuring that
any perturbations in W are corrected by Ẽ(W ). This means that, unlike BP, which optimizes L(W )
alone, the combined energy minimization in PCNs results in a smoother convergence trajectory,
reducing sensitivity to local minima and sharp changes in the loss surface.

Now we establish stronger robustness bounds. Let L(W ) represent the standard BP loss and Ẽ(W )
denote the residual energy term introduced by the predictive coding framework. We define the
composite energy function as:

VPC(W ) = L(W ) + Ẽ(W ),

where L and Ẽ are positive definite and achieve their minima at the equilibrium point W = W ∗.
This composite energy function serves as a Lyapunov function for the system, as shown in the above
theorem. We now state a more powerful result that establishes the robustness of PCNs compared to
BP.
Theorem D.3 (Robustness of Predictive Coding Networks). Let VPC(W ) = L(W ) + Ẽ(W ) be
the Lyapunov function of a PCN, where L and Ẽ are positive definite functions that achieve their
minima at W = W ∗. Assume the following conditions hold:

1. The Hessian of L(W ), denoted as HL = ∂2L
∂W 2 , is positive semi-definite.

2. The residual energy term Ẽ(W ) satisfies a Lipschitz continuity condition, i.e., there exists a
constant K > 0 such that: ∥∥∥∥∥ ∂Ẽ∂W

∥∥∥∥∥ ≤ K ∥W −W ∗∥ .
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3. The time derivative of VPC(W ) along the system trajectories satisfies Equation (5) (left).

4. The initial perturbation ∆W is small, i.e., ∥∆W∥ ≪ 1.

Under these conditions, the following robustness property holds for PCNs:

Bounded Perturbation Recovery: For any perturbation ∆W such that W = W ∗ +∆W , the PCN’s
weight trajectory W (t) satisfies:

∥W (t)−W ∗∥ ≤ Ce−λt∥∆W∥+O(ϵ),

where C, λ > 0 are constants that depend on the properties of L(W ) and Ẽ(W ), and ϵ is the
perturbation magnitude. This result guarantees exponential convergence to W ∗ and robustness to
bounded perturbations.

Proof. We start by defining the Lyapunov function VPC(W ) = L(W ) + Ẽ(W ), which is positive
definite and achieves its minimum at W = W ∗. Our goal is to analyze the stability of the system
by considering the time derivative of VPC(W ) along the system trajectories. The time derivative is
given by:

V̇PC(W ) =
∂L

∂W
· Ẇ +

∂Ẽ

∂W
· Ẇ .

Using the update rule for PCNs, we have:

Ẇ = −

(
∂L

∂W
+

∂Ẽ

∂W

)
.

Substitute Ẇ into V̇PC(W ):

V̇PC(W ) =
∂L

∂W
·

(
− ∂L

∂W
− ∂Ẽ

∂W

)
+

∂Ẽ

∂W
·

(
− ∂L

∂W
− ∂Ẽ

∂W

)
.

Simplifying, we get:

V̇PC(W ) = −

∥∥∥∥∥ ∂L

∂W
+

∂Ẽ

∂W

∥∥∥∥∥
2

≤ 0.

This inequality shows that V̇PC(W ) is non-positive, implying that VPC(W ) is monotonically decreas-
ing along the trajectories of the system, ensuring Lyapunov stability.

Next, we analyze the perturbation dynamics. Define the deviation ∆W = W − W ∗. The time
derivative of ∆W is:

˙∆W = Ẇ = −

(
∂L

∂W
+

∂Ẽ

∂W

)
.

For small ∆W , we use the linear approximation:

∂L

∂W
≈ HL∆W,

∂Ẽ

∂W
≈ K∆W,

where HL is the Hessian of L(W ) and K is the Lipschitz constant for Ẽ(W ). Thus, the perturbation
dynamics become:
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˙∆W = −(HL +KI)∆W.

Let λmin be the minimum eigenvalue of HL + KI . Then, solving the differential equation, we
obtain:

∥∆W (t)∥ ≤ ∥∆W (0)∥e−λmint +O(ϵ).

This proves that ∆W (t) decays exponentially, establishing that PCNs converge exponentially to W ∗

and are robust to small perturbations.

E QUASI-NEWTON UPDATES

E.1 PROOF OF THEOREM 3.7

Theorem E.1. Let M be a neural network that minimizes a free energy F = L + Ẽ, where L is
the loss function and Ẽ is the residual energy. Assume the activation function f and its derivatives
f ′, f ′′, and f ′′′ are Lipschitz continuous with constants K,K ′,K ′′, and K ′′′, respectively. Then, the
PC updates approximate quasi-Newton updates by incorporating higher-order information through
the residual energy term Ẽ.

Proof. Step 1: PC Update Rule The Predictive Coding (PC) update rule for the weights Wl at layer
l is given by:

∆Wl = −η

(
∂L

∂Wl
+

∂Ẽ

∂Wl

)
,

where η is the learning rate, L is the loss function, and Ẽ is an auxiliary residual energy term.

Step 2: Taylor Series Expansion We perform a Taylor series expansion of L around the current
weight W :

L(W +∆W ) ≈ L(W ) +∇L(W )T∆W +
1

2
∆WTH∆W +O(∥∆W∥3),

where H is the Hessian matrix of L at W . Similarly, expanding Ẽ around W :

Ẽ(W +∆W ) ≈ Ẽ(W ) +∇Ẽ(W )T∆W +
1

2
∆WT H̃∆W +O(∥∆W∥3),

where H̃ is the Hessian matrix of Ẽ.

Step 3: Combined Free Energy Expansion Combining the expansions of L and Ẽ, the total free
energy F = L+ Ẽ can be approximated as:

F (W +∆W ) ≈ F (W ) +
(
∇L(W ) +∇Ẽ(W )

)T
∆W +

1

2
∆WT (H + H̃)∆W +O(∥∆W∥3).

Step 4: Minimizing the Free Energy To minimize F , we set the gradient of the quadratic approxi-
mation to zero:

∇F (W +∆W ) ≈ ∇F (W ) + (H + H̃)∆W = 0.

Solving for ∆W :
∆W = −(H + H̃)−1

(
∇L(W ) +∇Ẽ(W )

)
.

Step 5: Comparison with Quasi-Newton Updates In quasi-Newton methods, the weight update
rule is:

∆W = −B−1∇L(W ),

where B ≈ H is an approximation to the Hessian matrix. Comparing this with the PC update:

∆WPC = −(H + H̃)−1
(
∇L(W ) +∇Ẽ(W )

)
,
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we see that the PC updates incorporate an additional term H̃ , which adjusts the curvature approxi-
mation to include higher-order information. This makes (H + H̃)−1 a refined approximation of the
inverse Hessian.

Step 6: Stability and Convergence The presence of the residual energy term Ẽ in the updates
ensures that the direction of the gradient descent is better aligned with the curvature of the energy
landscape. Thus, the PC updates provide a more stable update rule compared to standard gradient
descent, similar to quasi-Newton methods.

Therefore, the PC updates approximate quasi-Newton updates by incorporating a refined curvature
correction through Ẽ, leading to improved stability and convergence.

E.2 PROOF OF THEOREM 3.8

Theorem E.2. Let M be a neural network minimizing a free energy function F = L+Ẽ, where L is
the loss function and Ẽ is a residual energy term. Let HGN = JTJ denote the Gauss-Newton matrix,
where J is the Jacobian matrix of the network’s output with respect to the parameters. Consider the
following update rules:

- Quasi-Newton (QN) Update: ∆WQN = −H−1
GN ∇L(W ),

- Target Propagation (TP) Update: ∆WTP = −B−1
l ∇L(W ), where Bl is a block-diagonal approx-

imation of HGN,

- Predictive Coding (PC) Update: ∆WPC = −(H + H̃)−1
(
∇L(W ) +∇Ẽ(W )

)
.

Assume that L(W ) and Ẽ(W ) are twice differentiable, and the activation function f and its deriva-
tives are Lipschitz continuous. Then, the approximation error between the updates and the true
Quasi-Newton update satisfies:

EPC ≤ ETP,

where:
EPC = ∥∆WPC −∆WQN∥, ETP = ∥∆WTP −∆WQN∥.

Thus, Predictive Coding is mathematically closer to the true Quasi-Newton updates than Target
Propagation.

Proof. Step 1: Derive the True Gauss-Newton Update The true Gauss-Newton (GN) update for
the weights W is given by:

∆WQN = −H−1
GN∇L(W ),

where HGN = JTJ is the Gauss-Newton matrix. Here, J is the Jacobian matrix of the network’s
outputs y with respect to the parameters W , i.e., J = ∂y

∂W .

Step 2: Derive Target Propagation (TP) Update Target Propagation updates the weights using a
block-diagonal approximation of the GN matrix:

∆WTP = −B−1
l ∇L(W ),

where Bl ≈ HGN is a block-diagonal matrix that approximates the full curvature information. Be-
cause Bl ignores off-diagonal elements of HGN, it captures less curvature information. Thus, the
error between TP and GN is given by:

ETP = ∥∆WTP −∆WQN∥ = ∥η(B−1
l −H−1

GN )∇L(W )∥.

Step 3: Predictive Coding (PC) Update The Predictive Coding update is derived by minimizing
the free energy:

F (W ) = L(W ) + Ẽ(W ),

where Ẽ(W ) is a residual energy term. The PC update rule is:

∆WPC = −(H + H̃)−1
(
∇L(W ) +∇Ẽ(W )

)
.
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Step 4: Second-Order Analysis for Predictive Coding Using a Taylor series expansion for L and
Ẽ, we have:

L(W +∆W ) ≈ L(W ) +∇L(W )T∆W +
1

2
∆WTH∆W,

where H = ∂2L
∂W 2 is the Hessian of L. Similarly, expanding Ẽ(W ) around W :

Ẽ(W +∆W ) ≈ Ẽ(W ) +∇Ẽ(W )T∆W +
1

2
∆WT H̃∆W,

where H̃ = ∂2Ẽ
∂W 2 .

Step 5: Combining the Hessians The total second-order curvature matrix for PC is given by:

HPC = H + H̃.

The PC update becomes:
∆WPC = −(H + H̃)−1∇L(W ).

Step 6: Error Analysis for PC and TP The error between PC and GN is:

EPC = ∥∆WPC −∆WQN∥ = ∥η(H + H̃)−1∇L(W )−H−1
GN∇L(W )∥.

The error between TP and GN is:

ETP = ∥η(B−1
l −H−1

GN )∇L(W )∥.

Step 7: Comparison of Error Norms Using matrix perturbation theory and the fact that H + H̃ ≈
HGN is a better approximation than Bl ≈ HGN, we have:

∥(H + H̃)−1 −H−1
GN∥ ≤ ∥B−1

l −H−1
GN∥.

Thus, we conclude:
EPC ≤ ETP.

E.3 PROOF OF THEOREM 3.9

Theorem E.3. Let DPC and DTP represent two dynamical systems corresponding to predictive cod-
ing (PC) and target propagation (TP), respectively. Assume that both systems have the same equilib-
rium point W ∗, and the loss functions L and residual energy Ẽ are twice differentiable and positive
definite. Furthermore, let the activation functions fl and their derivatives be Lipschitz continuous.
Define the Lyapunov functions:

1. For predictive coding: VPC(W ) = F (W ) = L(W ) + Ẽ(W ).
2. For target propagation: VTP(W ) =

∑L
l=1

1
2∥tl − fl(Wltl−1)∥2.

Then, it follows that PC is more stable than TP according to the following criteria:

1. Convergence Rate: DPC converges faster to its equilibrium point compared to DTP.
2. Deviation from Equilibrium: DPC exhibits a smaller deviation from the equilibrium com-

pared to DTP for the same initial perturbation.
3. Region of Attraction: The region of attraction for DPC is larger than that of DTP.

Proof. Let DPC and DTP represent the two dynamical systems for Predictive Coding (PC) and Target
Propagation (TP), respectively, with a shared equilibrium point W ∗. Define the Lyapunov functions
for each system as:

1. For Predictive Coding (PC):

VPC(W ) = F (W ) = L(W ) + Ẽ(W ),
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where L(W ) is the backpropagation loss, and Ẽ(W ) is the residual energy. Both L and Ẽ are
positive definite and twice differentiable, satisfying F (W ) > 0 for W ̸= W ∗ and F (W ∗) = 0.

2. For Target Propagation (TP):

VTP(W ) =

L∑
l=1

1

2
∥tl − fl(Wltl−1)∥2,

where tl is the target at layer l, and fl is the activation function. VTP(W ) measures the sum of
squared errors across layers, and is also positive definite, satisfying VTP(W ) > 0 for W ̸= W ∗ and
V (W ∗) = 0.

Step 1: Convergence Rate Analysis To analyze convergence, we evaluate the time derivative of
each Lyapunov function along the trajectories of DPC and DTP.

1. For Predictive Coding: The PCN dynamics follow:

Ẇ = − ∂F

∂W
= −

(
∂L

∂W
+

∂Ẽ

∂W

)
.

The time derivative of VPC along the system’s trajectory is:

V̇PC(W ) =
∂F

∂W
· Ẇ = −

∥∥∥∥∥ ∂L

∂W
+

∂Ẽ

∂W

∥∥∥∥∥
2

.

Because Ẽ(W ) is positive definite and its derivative ∂Ẽ
∂W is Lipschitz continuous, ∂L

∂W + ∂Ẽ
∂W is

smoother and the gradient descent is more directed, resulting in faster convergence.

2. For Target Propagation: The TP dynamics are given by:

Ẇ = −
L∑

l=1

∂

∂W

(
1

2
∥tl − fl(Wltl−1)∥2

)
.

The time derivative of VTP is:

V̇TP(W ) = −
L∑

l=1

∥∥∥∥ ∂

∂W

(
1

2
∥tl − fl(Wltl−1)∥2

)∥∥∥∥2 .
Since the updates are layer-wise and the errors are not adjusted by residual terms, V̇TP(W ) decreases
more slowly, resulting in a slower convergence rate.

Step 2: Deviation from Equilibrium Let W (t) represent the trajectory of the system starting from
W (0). We want to show that ∥W (t)−W ∗∥ is smaller for DPC than for DTP.

1. Predictive Coding: Because Ẽ(W ) introduces additional regularization, the effective gradient at
any point is:

∂F

∂W
=

∂L

∂W
+

∂Ẽ

∂W
.

This sum reduces oscillations and aligns the gradient directions of L and Ẽ, causing W (t) to move
more directly toward W ∗ with fewer deviations.

To formalize this, consider a small perturbation δW from W ∗. Then:

∥W (t)−W ∗∥ ≈ ∥δW (t)∥ ≈ ∥δW (0)∥e−λt,

where λ = min(λ1, λ2), the smallest eigenvalue of the Hessians of L and Ẽ. Since Ẽ is positive
definite and its Hessian is non-zero, λ is larger for DPC, resulting in a smaller deviation.

2. Target Propagation: For TP, without the residual correction, the deviation behaves as:

∥W (t)−W ∗∥ ≈ ∥δW (0)∥e−µt,

where µ is determined by the smallest eigenvalue of the Hessian of L. Because µ < λ, the deviation
∥W (t)−W ∗∥ remains larger over time.
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Step 3: Region of Attraction The region of attraction is defined as the set of initial points W (0)
such that the system converges to W ∗.

1. Predictive Coding: With the stabilizing term Ẽ(W ), the energy landscape is smoother, increasing
the region of attraction. Mathematically, the region of attraction is defined as:

RPC =
{
W
∣∣F (W ) ≤ c for some c > 0

}
.

2. Target Propagation: Without the smoothing effect of Ẽ(W ), the region of attraction is:

RTP =
{
W
∣∣L(W ) ≤ c′ for some c′ > 0

}
,

which is smaller because L(W ) alone does not account for complex dependencies between layers.

This analysis shows that Predictive Coding has a faster convergence rate, smaller deviation, and
larger region of attraction than Target Propagation, making DPC more stable, which proves the the-
orem.
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