
Published in Transactions on Machine Learning Research (02/2024)

The Slingshot Effect: A Late-Stage Optimization Anomaly
in Adam-Family of Optimization Methods

Vimal Thilak vthilak@apple.com
Apple

Etai Littwin elittwin@apple.com
Apple

Shuangfei Zhai szhai@apple.com
Apple

Omid Saremi osaremi@apple.com
Apple

Roni Paiss paiss.roni@gmail.com

Joshua Susskind jsusskind@apple.com
Apple

Reviewed on OpenReview: https: // openreview. net/ forum? id= OZbn8ULouY

Abstract

Adam (Kingma & Ba, 2014) and Adam-family (Loshchilov & Hutter, 2017; Tieleman &
Hinton, 2012) of adaptive gradient methods have become indispensable for optimizing neural
networks, particularly in conjunction with Transformers (Vaswani et al., 2017; Dosovitskiy
et al., 2020). In this paper, we present a novel optimization anomaly called the Slingshot
Effect, which manifests during extremely late stages of training. We identify a distinctive
characteristic of this phenomenon through cyclic phase transitions between stable and
unstable training regimes, as evidenced by the cyclic behavior of the norm of the last
layer’s weights. Although the Slingshot Effect can be easily reproduced in more general
settings, it does not align with any known optimization theories, emphasizing the need
for in-depth examination. Moreover, we make a noteworthy observation that Grokking, as
reported by Power et al. (2021), occurs predominantly during the onset of the Slingshot
Effects and is absent without it, even in the absence of explicit regularization. This finding
suggests a surprising inductive bias of adaptive gradient optimizers at late training stages,
urging a revised theoretical analysis of their origin. Our study sheds light on an intriguing
optimization behavior that has significant implications for understanding the inner workings
of Adam-family of gradient methods.

1 Introduction

Adaptive optimizers (Kingma & Ba, 2014; Loshchilov & Hutter, 2017; Tieleman & Hinton, 2012) are widely
used to train deep neural networks including ResNets (Wightman et al., 2021; Dosovitskiy et al., 2020)
and Transformers (Vaswani et al., 2017; Dosovitskiy et al., 2020) as they empirically demonstrate strong

1

https://openreview.net/forum?id=OZbn8ULouY

Published in Transactions on Machine Learning Research (02/2024)

Norm
growth

Loss
spike

Norm
plateau

Slingshot

Figure 1: Slingshot Effects observed with a fully-connected ReLU network (FCN). The FCN is trained with 200
randomly chosen CIFAR-10 samples with Adam. Multiple Slingshot Effects occur in a cyclic fashion as indicated by
the dotted red boxes. Each Slingshot Effect is characterized by a period of rapid growth of the last layer weights, an
ensuing training loss spike, and a period of curtailed norm growth.

performance. Recently, several works (Chowdhery et al., 2022; Molybog et al., 2023; Wortsman et al., 2023;
Courtois et al., 2023; Zhu et al., 2023) have reported optimization instability of Adam or AdamW (Kingma &
Ba, 2014; Loshchilov & Hutter, 2017) when used to train deep neural networks. Specifically, the training
instabilities are characterized by several spikes in the loss during optimization. This curious behavior has
motivated studies that attempt to understand and explain the source of these instabilities (Molybog et al.,
2023) or provide mitigation strategies to stabilize training (Chowdhery et al., 2022; Wortsman et al., 2023).

In this paper, we present an optimization anomaly that we call the Slingshot Effect wherein the training loss
of neural networks optimized with Adam-family of adaptive gradient methods (see Algorithm 1 for a generic
description of methods used in this work) exhibit loss spikes. Figure 1 shows an example of the training
loss spikes observed during neural network optimization. As can be seen from Figure 1, the instabilities are
observed at extremely late stages of training or in the so-called Terminal Phase of Training (TPT) . In detail,
leveraging the basic setup in Power et al. (2021) with Adam (Kingma & Ba, 2014) and without weight decay,
we make the following additional observations visualized in Figure 2:

1. During the TPT, training exhibits a cyclic behaviour between stable and unstable regimes. A
prominent artifact of this behaviour can be seen in the norm of the classification layer’s weights,
which exhibits a cyclical behavior with distinct, sharp phase transitions that alternate between rapid
growth and growth curtailment over the course of training.

2. The norm grows rapidly sometime after the model has perfect classification accuracy on training data.
A sharp phase transition then occurs in which the model misclassifies training samples. This phase
change is accompanied by a sudden spike in training loss, and a deceleration in the norm growth of
the final classification layer.

3. The features (pre-classification layer) show rapid evolution as the weight norm transitions from rapid
growth phase to growth curtailment phase, and change relatively little at the norm growth phase.

4. Phase transitions between norm growth and norm curtailment phases are typically accompanied
by a sudden bump in generalization as measured by classification accuracy on a validation set, as
observed in a dramatic fashion in Power et al. (2021).

5. It is empirically observed with the setup described above (Adam with no weight decay) that grokking
as reported in Power et al. (2021) almost exclusively happens at the onset of Slingshots, and is absent
without it.

2

Published in Transactions on Machine Learning Research (02/2024)

We denote the observations above as the Slingshot Effect (or simply slingshot), which is defined to be the full
cycle starting from the rapid norm growth phase, and ending in the curtailed norm growth phase. Empirically,
a single training run typically exhibits multiple Slingshots. Moreover, while grokking as described in Power
et al. (2021) might be data dependent, we find that the Slingshot Effect is pervasive, and can be easily
reproduced in multiple scenarios, encompassing a variety of models (Transformers and MLPs) and datasets
(both vision, algorithmic and synthetic datasets). Since we only observe Slingshots when training classification
models with adaptive optimization methods such as Adam Kingma & Ba (2014) and RMSProp (Tieleman
& Hinton, 2012), our work can be seen as empirically characterizing an implicit bias of such optimizers.
Finally, we focus on Adam (Kingma & Ba, 2014) optimization method in the main paper, and relegate all
experiments with additional optimizers to the appendix that suggest that our observations and conclusions
hold for other methods under the Adam-family of optimizers 1. We note here that we limit our empirical
analysis of Slingshot Effects with Adam (Kingma & Ba, 2014), RMSProp (Tieleman & Hinton, 2012) and
Adagrad (Duchi et al., 2011) while acknowledging that there are a vast number of other adaptive optimization
methods including AMSGrad (Reddi et al., 2018), Adax (Li et al., 2020), AdaBound (Luo et al., 2019) and
AdaBelief (Zhuang et al., 2020) that are not used in our analysis.

Algorithm 1 Adam-family of Adaptive Gradient Methods
Input: x1 ∈ F initial parameters,
Input: step size µ,
Input: β1 and β2 ∈ [0, 1),
Input: ϵ ∈ R+,
Output: Optimized parameters xT +1.

1 Initialize m0 and V0 to 0
2 for t = 1..., T do
3 gt = ∇ft(xt). (Get gradients g w.r.t function f)
4 mt = β1mt−1 + (1 − β1)gt

5 mt = mt

1−βt
1

6 Vt = β2Vt−1 + (1 − β2)g2
t

7 Vt = Vt

1−βt
2

8 xt+1 = xt − µmt√
Vt+ϵ

(Update parameters)

1.1 Implications of Our Findings

The findings in this paper have both theoretical and practical implications that go beyond characterizing
the effect. A prominent feature of the Slingshot Effect is the repeating phase shifts between stable and
unstable training regimes, where the unstable phase is characterized by extremely large gradients, and
spiking training loss. Furthermore, we find that learning at late stages of training have a cyclic property,
where non trivial feature adaptation only takes place at the onset of a phase shift. This abrupt feature
learning characteristic is observed in a dramatic fashion when considering the grokking phenomena, where we
observe the slingshot effect at the onset of grokking, pointing towards possible generalization benefits of the
effect. From a theoretical perspective, this is contradictory to common assumptions made in the literature of
convergence of adaptive optimizers, which typically require L smooth cost functions, and bounded stochastic
gradients, either in the L2 or L∞ norm, decreasing step sizes and stable convergence (Zhang et al., 2020;
Allen-Zhu et al., 2019; Barakat & Bianchi, 2021). The generalization behavior observed with the grokking
setup (Power et al., 2021) casts doubt on the ability of current working theories to explain the Slingshot
Effect.
Practically, our work presents additional evidence for the growing body of work indicating the importance of
the TPT stage of training for optimal performance (Hoffer et al., 2017; Power et al., 2021; Papyan et al.,
2020). In an era where the sheer size of models are quickly becoming out of reach for most practitioners,
our work suggests focusing on improved methods to prevent excessive norm growth either implicitly through
Slingshot Effects or through other forms of explicit regularization or normalization which we study in the
appendix.

1We use the term “Adam-family” to refer to those methods whose update equations are defined in Kingma & Ba (2014)

3

Published in Transactions on Machine Learning Research (02/2024)

2 Related Work

The Slingshot Effect we uncover here is reminiscent of the catapult mechanism described in Lewkowycz et al.
(2020). Lewkowycz et al. (2020) show that loss of a model trained via gradient descent with an appropriately
large learning rate shows a non-monotonic behavior —the loss initially increases and starts decreasing once the
model “catapults” to a region of lower curvature —early in training. However, the catapult phenomenon differs
from Slingshot Effects in several key aspects. The catapult mechanism is observed with vanilla or stochastic
gradient descent unlike the Slingshot Effect that is seen with adaptive optimizers including Adam (Kingma
& Ba, 2014) and RMSProp (Tieleman & Hinton, 2012). Furthermore, the catapult phenomenon relates to
a large initial learning rate, and does not exhibit a repeating cyclic behavior. More intriguingly, Slingshot
Effects only emerge late in training, typically long after the model reaches perfect accuracy on the training
data.

Cohen et al. (2021) describe a “progressive sharpening” phenomenon in which the maximum eigenvalue of
the loss Hessian increases and reaches a value that is at equal to or slightly larger than 2/η where η is the
learning rate. This “progressive sharpening” phenomenon leads the model to enter a regime Cohen et al.
(2021) call Edge of Stability (EoS) where-in the model shows non-monotonic training loss behavior over short
time spans. In a recent work, Cohen et al. (2022) demonstrate a similar phenomenon with full-batch (or
with large batch empirically) adaptive optimizers called Adaptive Edge of Stability (AEoS) where-in the “raw”
sharpness quantified by the maximum eigenvalue of the loss Hessian increases and oscillates around a certain
value for a version of Adam Cohen et al. (2021) call “Frozen Adam”. However, Cohen et al. (2022) observe
that the ‘raw” sharpness continues to increase during training with regular Adam (Kingma & Ba, 2014).
Edge of Stability and Adaptive Edge of Stability are similar to Slingshot Effects in that the instablities are
observed later on in training. However, while EoS Cohen et al. (2021) and AEoS (Cohen et al., 2022) aim to
shed light on neural network training dynamics they do not show or analyze the cyclic behavior of the last
layer norm weights and do not examine generalization that we observe in our experiments.

As noted above, the Slingshot Effect emerges late in training, typically longer after the model reaches perfect
accuracy and has low loss on training data. The benefits of continuing to training a model in this regime has
been theoretically studied in several works including (Soudry et al., 2018; Lyu & Li, 2019). Soudry et al.
(2018) show that training a linear model on separable data with gradient using the logistic loss function leads
to a max-margin solution. Furthermore, Soudry et al. (2018) prove that the loss decreases at a rate of O(1

t)
while the margin increases much slower O(1

log t), where t is the number of training steps. Soudry et al. (2018)
also note that the weight norm of the predictor layer increases at a logarithmic rate, i.e., O(log(t)). Lyu &
Li (2019) generalize the above results to homogeneous neural networks trained with exponential-type loss
function and show that loss decreases at a rate of O(1/t(log(t))2−2/L) where L is defined as the order of
the homogenous neural network. Although these results indeed prove the benefits of training models, their
analyses are limited to gradient descent. Moreover, the analyses developed by Soudry et al. (2018) do not
predict any phenomenon that resembles the Slingshot Effect. Wang et al. (2021) show that homogenous
neural networks trained with RMSProp (Tieleman & Hinton, 2012) or Adam (Kingma & Ba, 2014) without
momentum converge in direction to the max-margin solution. However, none of these papers can explain the
Slingshot Effect and specifically the cyclical behavior of the norm of the last layer weights.

Understanding Grokking The grokking phenomenon (Power et al., 2021) has been studied in several
recent works that aim to understand and explain the empirical findings by Power et al. (2021). Liu et al.
(2022) use a toy model to study grokking and show four phases of learning and that feature learning occurs
at a slower rate that leads to delayed generalization. In a follow-up work, Liu et al. (2023) analyze the train
and test loss landscapes and suggest that grokking occurs due to mismatch between the train and test loss
landscapes. Nanda et al. (2023) analyze the modular addition example proposed by Power et al. (2021) and
identify three phases of learning and propose a “hidden measure” that track the development of structure
in the weights of a model. Barak et al. (2022) analyzes the behavior of neural networks on subset parity
task and show that a grokking-like phenomenon can be seen in that setup even with multi-layer perceptrons
(MLPs). We empirically analyze grokking (Power et al., 2021; Barak et al., 2022) in a setup that does not
include any explicit regualarization like weight decay unlike the other works that use weight decay.

4

Published in Transactions on Machine Learning Research (02/2024)

Relationship to Training Instability or Loss Spikes Several papers (Chowdhery et al., 2022; Molybog
et al., 2023; Wortsman et al., 2023; Zhu et al., 2023; Lobacheva et al., 2021) and references therein have
reported optimization instability of Adam (Kingma & Ba, 2014) or AdamW (Loshchilov & Hutter, 2017)
that is characterized by spikes in the loss during training. Molybog et al. (2023) theoretically analyze the
unstable behavior observed while training large scale models with Adam (Kingma & Ba, 2014) and propose
several mitigation approaches to stabilize training. Wortsman et al. (2023) also report loss spikes while
training large scale vision models and observe that the loss spikes occur due to either an out-of-date second
order gradient moment estimate or due to lower precision floating point (16-bit) training. Wortsman et al.
(2023) provide mitigation strategies based on these observations. We note here that most literature related
to training instability is focused on stabilizing optimization with the notable exception of Zhu et al. (2023)
who provide empirical evidence that training instabilities may lead to better generalization. While Zhu et al.
(2023) use stochastic gradient descent (SGD) in their work, we empirically analyze the optimization and
generalization behavior of neural networks that exhibit training loss spikes with adaptive optimizers.

3 The Slingshot Effect

3.1 Experimental Setup

We use the training setup studied by Power et al. (2021) in the main paper as a working example to illustrate
the Slingshot Effect. In this setup, we train decoder-only Transformers (Vaswani et al., 2017) on a modular
division dataset (Power et al., 2021) of the form a ÷ b = c, where a, b and c are discrete symbols and ÷ refers
to division modulo p for some prime number p, split into training and validation sets. The task consists
of calculating c given a and b. The algorithmic operations and details of the datasets considered in our
experiments are described in Appendix B. The Transformer consists of 2 layers, of width 128 and 4 attention
heads with approximately 450K trainable parameters and is optimized by Adam (Kingma & Ba, 2014;
Loshchilov & Hutter, 2017). For these experiments we set learning rate to 0.001, weight decay to 0, β1 = 0.9,
β2 = 0.98, ϵ = 10−8, linear learning rate warmup for the first 10 steps and minibatch size to 512 which are in
line with the hyperparameters considered in (Power et al., 2021).

3.2 Experimental Observations

Figure 2 shows the metrics of interest that we record on training and validation samples for modular division
dataset. Specifically, we measure 1) train loss; 2) train accuracy; 3) validation loss; 4) validation accuracy; 5)
last layer norm: denoting the norm of the classification layer’s weights and 6) feature change: the relative
change of features of the l-th layer (hl) after the t-th gradient update step ∥hl

t+1−hl
t∥

∥hl
t∥ . We observe from

Figure 2b that the model is able to reach high training accuracy around step 300 while validation accuracy
starts improving after 105 steps as seen in Figure 2d. Power et al. (2021) originally showed this phenomenon
and refer to it as grokking. We observe that while the validation accuracy does not exhibit any change until
much later in training, the validation loss shown in Figure 2c exhibits a double descent behavior with an
initial decrease, then a growth before rapidly decreasing to zero.
Seemingly, some of these observations can be explained by the arguments in (Soudry et al., 2018) and their
extensions to adaptive optimizers (Wang et al., 2021). Namely, at the point of reaching perfect classification
of the training set, the cross-entropy (CE) loss by design pressures the classification layer to grow in norm at
relatively fast rate. Simultaneously, the implicit bias of the optimizer coupled with the CE loss, pushes the
direction of the classification layer to coincide with that of the maximum margin classifier, albeit at a much
slower rate.

These insights motivate us to measure the classifier’s last layer norm during training. We observe in Figure 2a
that once classification reaches perfect accuracy on the training set, the classification layer norm exhibits
a distinct cyclic behavior, alternating between rapid growth and growth curtailment, with a sharp phase
transition between phases. Simultaneously, the training loss retains a low value in periods of rapid norm
growth, and then wildly fluctuates in time periods when there is a curtailment of norm growth. Figure 2e
and Figure 2f shows the evolution of the relative change in features output by each layer in the Transformer.
We observe that the feature maps are not updated much during the norm growth phase. However, at the

5

Published in Transactions on Machine Learning Research (02/2024)

101 102 103 104 105 106

step

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train loss last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(a)

101 102 103 104 105 106

step

0

20

40

60

80

100

ac
cu

ra
cy

train accuracy last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(b)

101 102 103 104 105 106

step

10 2

10 1

100

101

lo
ss

validation loss last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(c)

101 102 103 104 105 106

step

0

20

40

60

80

100

ac
cu

ra
cy

validation accuracy last layer norm

0.0

0.5

1.0

1.5

2.0
la

st
 la

ye
r n

or
m

(d)

104 105 106

step

0.00

0.02

0.04

0.06

0.08

fe
at

ur
e

ch
an

ge

layer1 feature last layer norm

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(e)

104 105 106

step

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

fe
at

ur
e

ch
an

ge

layer2 feature last layer norm

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(f)

Figure 2: Division dataset: Last layer weight norm growth versus a) loss on training data b) accuracy on training data
(c) loss on validation data d) accuracy on validation data e) normalized relative change in features of first Transformer
layer (f) normalized relative change in features of second Transformer layer. Note that the feature change plots are
shown starting at 10K step to emphasize the feature change behavior during rapid norm growth and norm growth
curtailment phases, revealing that the features stop changing during the norm growth phase and resume changing
during the curtailed norm growth phase.

phase transition, we observe that the feature maps receive a rapid update, which suggests that the internal
representation of the model is updating.

Are Slingshot Effects a general phenomenon? In an attempt to ascertain the generality of Slingshot
Effects as an optimization artifact, we run similar experiments with additional architectures, datasets,
optimizers, and hyperparameters. We use all algorithmic datasets as proposed in (Power et al., 2021), as well
as frequently used vision benchmarks such as CIFAR-10 (Krizhevsky, 2009), and even synthetic Gaussian
dataset. For architectures, we use Transformers, MLPs and deep linear models (see figure 1). We find
abundant evidence of Slingshot Effects in all of our experiments with Adam and RMSProp. We are unable to
observe Slingshot Effects with Adagrad (Duchi et al., 2011) and also with stochastic gradient descent (SGD)
or SGD with momentum, pointing to the generality of the effect across architectures and datasets. We refer
the reader to Appendix A for the full, detailed description of the experiments.

Why do Slingshot Effects happen? We hypothesize that the norm growth continues until the curvature
of the loss surface becomes large, effectively “flinging” the weights to a different region in parameter space
as small gradient directions get amplified, reminiscent of the mechanics of a slingshot flinging a projectile.
We attempt to quantify how far a model is flung by measuring the cosine distance between a checkpoint
during optimization and initial parameters. Specifically, we divide the model parameters into representation
(pre-classifier) parameters and classifier (last layer) parameters and calculate how far these parameters have
moved from initialization. We show that checkpoints collected after a model experiences Slingshot have a
larger representation cosine distance. We defer the reader to the appendix for further details.

By design, adaptive optimizers adapt the learning rate on a per parameter basis. In toy, convex scenarios,
the ϵ parameter provably determines whether the algorithm will converge stably. To illustrate this, we
take inspiration from Cohen et al. (2021), and consider a quadratic cost function L(A, B, C) = 1

2 x⊤Ax +
B⊤x + C, A ∈ Rd×d, x, B ∈ Rd, C ∈ R, where we assume A is symmetric and positive definite. Note that
the global minimum of this cost is given by x⋆ = −A−1B. The gradient of this cost with respect to x is

6

Published in Transactions on Machine Learning Research (02/2024)

0 2000 4000 6000 8000 10000
epoch

0

10

20

30

40
sh

ar
pn

es
s

update sharpness last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

la
st

 la
ye

r n
or

m

(a)

0 2000 4000 6000 8000 10000
epoch

0

10

20

30

40

50

60

70

80

sh
ar

pn
es

s

update sharpness last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(b)

0 2000 4000 6000 8000 10000
epoch

0

10

20

30

40

sh
ar

pn
es

s

update sharpness last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

la
st

 la
ye

r n
or

m

(c)

0 2000 4000 6000 8000 10000
epoch

0

50

100

150

200

250

sh
ar

pn
es

s

update sharpness last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

la
st

 la
ye

r n
or

m

(d)

Figure 3: Curvature metric (denoted as “update sharpness”) evolution vs norm growth on (a) addition, (b) subtraction,
(c) multiplication, and (d) division dataset. Note the spike in the sharpness metric near the phase transitions between
rapid and curtailed norm growth.

given by g = Ax + B. Consider optimizing the cost with adaptive optimization steps of the simple form
xt+1 = xt − µ g

|g|+ϵ = xt − µ Axt+B
|Axt+B|+ϵ where µ is a learning rate, and the division and absolute operations

are taken element wise. Starting from some x0, the error et = xt − x⋆ evolves according to:

et+1 =
(
I − µdiag(1

|Aet| + ϵ
)A

)
et

def= Mtet (1)

Note that the condition ∥A∥s < 2ϵ
µ where ∥ · ∥s denotes the spectral norm, implies that the mapping Mt is a

contraction for all values of t, and hence convergence to the global optimum is guaranteed (This is in contrast
to gradient descent, where the requirement is ∥A∥s < 2

µ). Note that the choice of ϵ crucially controls the
requirement on the curvature of the cost, represented by the the spectrum of A in this case. In other words,
the smaller ϵ, the more restrictive the requirements on the top eigenvalue of A. Cohen et al. (2021) observed
that full batch gradient descent increases the spectral norm of the Hessian to its maximum allowed value. We
therefore hypothesize that for deep networks, a small value for ϵ requires convergence to a low curvature local
minimum, causing a Slingshot Effect when this does not occur. Moreover, we may reasonably predict that
increasing the value of ϵ would lift the restriction on the curvature, and with it evidence of Slingshot Effects.

Figure 3 shows evidence consistent with the hypothesis that Slingshot Effects occur in the vicinity of high
loss curvature, by measuring the local loss surface curvature along the optimization trajectory. Let Ht denote
the local Hessian matrix of the loss, and ut the parameter update at time t given the optimization algorithm
of choice. We use the local curvature along the trajectory of the optimizer, given by 1

∥ut∥2 u⊤
t Htut, as a

curvature measure. Across the arithmetic datasets from (Power et al., 2021), whenever the last layer weight
norm growth is curtailed, the curvature measure momentarily peaks and settles back down.

Varying ϵ We next observe from Figure 2a that the training loss value also spikes up around the time step
when the weight norm change transitions from rapid growth to curtailed growth phase. A low training loss

7

Published in Transactions on Machine Learning Research (02/2024)

value suggests that the gradients (and their moments) used as inputs to the optimizer are small, which in
turn can cause the ϵ hyperparameter value to play a role in calculating updates. Our hypothesis here is that
the Slingshot Effect should eventually disappear with a sufficiently large ϵ. To confirm this hypothesis, we
run an experiment where we vary ϵ while retaining the rest of the setup described in the previous section.

Figure 4 shows the results for various values of ϵ considered in this experiment. We first observe that the
number of Slingshot Effect cycles is higher for smaller values of ϵ. Secondly, smaller values of ϵ cause grokking
to appear at an earlier time step when compared to larger values. More intriguingly, models that show
signs of grokking also experience Slingshot Effects while models that do not experience Slingshot Effects
do not show any signs of grokking. Lastly, the model trained with the largest ϵ = 10−5 shows no sign of
generalization even after receiving 500K updates.

3.3 Effects on Generalization

In order to understand the relationship between Slingshot Effects and neural networks generalization, we
experiment with various models and datasets. We observe that models that exhibit Slingshot tend to
generalize better, which suggests the benefit of training models for a long time with Adam (Kingma & Ba,
2014). More surprisingly, we observe that Slingshots and grokking tend to come in tandem.

Transformers with algorithmic datasets We follow the setting studied by Power et al. (2021) and
generate several datasets that represent algorithmic operations and consider several training and validation
splits. This dataset creation approach is consistent with the methodology used to demonstrate grokking (Power
et al., 2021). The Transformer is trained with Adam (Kingma & Ba, 2014; Loshchilov & Hutter, 2017) with a
learning rate of 0.001, weight decay set to 0, and with learning rate warmup for 500K steps. We consider ϵ of
Adam as a hyperparameter in this experiment. Figure 5 summarizes the results for this experiment where the
x-axis indicates the algorithmic operation followed by the training data split size. As can be seen in Figure 5,
Slingshot Effects are seen with lower values of ϵ and disappear with higher values of ϵ which confirms the
observations made in Section 3 with modular division dataset. In addition, models that exhibit Slingshot
Effects and grokking (shown in green) tend to generalize better than models that do not experience Slingshot
Effects and grokking (shown in red).

ViT with CIFAR-10 For further validation of Slingshot Effects and generalization, we train a Vision
Transformer (ViT) (Dosovitskiy et al., 2020) on CIFAR-10 (Krizhevsky, 2009). The ViT consists of 12 layers,
width 384 and 12 attention heads trained on fixed subsets of CIFAR-10 dataset (Krizhevsky, 2009). The
ViT model described above is trained with 10K, 20K, 30K, 40K and 50K (full dataset) training samples. We
train the models with the following learning rates: 0.0001, 0.00031 and 0.001 and with a linear learning rate
warmup for the 1 epoch of optimization. We consider multiple learning rates to study the impact of this
hyperparameter on Slingshot taking inspiration from Power et al. (2021) where the authors report observing
grokking over a narrow range of learning rates . Figure 6 shows a plot of the highest test accuracy for a set of
hyperparameters (learning rate, number of training samples) as a function of the number of training samples
from which we make the following observations. The best test accuracy for a given set of hyperparameters
is typically achieved after Slingshot phase begins during optimization. The checkpoints that achieve the
highest test accuracy are labeled as “post-slingshot” and shown in green in Figure 6. While post-Slingshot
checkpoints seem to enjoy higher test accuracy, there are certain combinations of hyperparameters that lead to
models that show better test accuracy prior to the start of the first Slingshot phase. We label these points as
“pre-slingshot” (shown in blue) in Figure 6. The above observations appear to be consistent with our finding
that training long periods of time may lead to better generalization seen with grokking datasets (Power et al.,
2021).

Non-Transformer models with subset parity We train MLPs with Adam on the (n, k) subset parity
task. This family of tasks is notoriously challenging since it poses strict computational lower bounds on
learning (see (Barak et al., 2022) for more details). We refer the reader to Appendix A.6 for a full description of
the dataset and the model used in this setup. We observe multiple Slingshot Effects in Figure 13. Additionally,
we observe an improvement in the test accuracy around the vicinity of each Slingshot effect until the loss
stops changing deep into optimization. We empirically study the dynamics of the effective step size and

8

Published in Transactions on Machine Learning Research (02/2024)

ϵ = 10−8 ϵ = 10−7 ϵ = 10−5

0 10000 20000 30000 40000 50000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train loss last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

la
st

 la
ye

r n
or

m

0 10000 20000 30000 40000 50000
epoch

10 9

10 7

10 5

10 3

10 1

101

lo
ss

train loss last layer norm

0.0

0.2

0.4

0.6

0.8

1.0

la
st

 la
ye

r n
or

m

0 10000 20000 30000 40000 50000
epoch

10 7

10 5

10 3

10 1

101

lo
ss

train loss last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

la
st

 la
ye

r n
or

m

(a) (b) (c)
training loss vs epochs

0 10000 20000 30000 40000 50000
epoch

10 2

10 1

100

101

lo
ss

validation loss last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

la
st

 la
ye

r n
or

m

0 10000 20000 30000 40000 50000
epoch

10 2

10 1

100

101
lo

ss

validation loss last layer norm

0.0

0.2

0.4

0.6

0.8

1.0

la
st

 la
ye

r n
or

m

0 10000 20000 30000 40000 50000
epoch

3 × 100

4 × 100

6 × 100

lo
ss

validation loss last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

la
st

 la
ye

r n
or

m

(d) (e) (f)
validation loss vs epochs

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train accuracy last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

la
st

 la
ye

r n
or

m

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train accuracy last layer norm

0.0

0.2

0.4

0.6

0.8

1.0

la
st

 la
ye

r n
or

m

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train accuracy last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

la
st

 la
ye

r n
or

m

(g) (h) (i)
training accuracy vs epochs

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

validation accuracy last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

la
st

 la
ye

r n
or

m

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

validation accuracy last layer norm

0.0

0.2

0.4

0.6

0.8

1.0

la
st

 la
ye

r n
or

m

0 10000 20000 30000 40000 50000
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

ac
cu

ra
cy

validation accuracy last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

la
st

 la
ye

r n
or

m

(j) (k) (l)
validation accuracy vs epochs

Figure 4: Varying ϵ in Adam on the Division dataset. Observe that as ϵ increases, there is no Slingshot Effect or
grokking behavior. Figure (a) corresponds to default ϵ suggested in (Kingma & Ba, 2014) where the model trained
with smallest value undergoes multiple Slingshot cycles.

curvature in Appendix A.6.1 to understand what occurs during a phase transition from an optimization
perspective.

9

Published in Transactions on Machine Learning Research (02/2024)

No Slingshot Effects, no grokking Slingshot Effects and grokkingSlingshot Effects, no grokking

Figure 5: Extended analysis on multiple grokking datasets. Points shown in green represent both Slingshot Effects
and grokking, points shown blue indicate Slingshot Effects but not grokking while points in red indicate no Slingshot
Effects and no grokking. ϵ in Adam is varied as shown in text. Observe that as ϵ increases, there are no Slingshot
Effects or grokking behavior.

Non-Transformer Models with synthetic data We conduct experiments with MLPs on synthetic
data where the synthetic data is a low dimensional embedding projected to higher dimensions via random
projections. With this dataset, we show that generalization occurs late in training with Adam. Specifically,
we tune ϵ in Adam and show that the optimizer is highly sensitive to this hyperparameter. These observations
are consistent with the behavior reported above with Transformers and on algorithmic datasets as well as
standard vision benchmark such as CIFAR-10. We refer the reader to Appendix A.9 for complete description
and details of these experiments.

3.4 Drawbacks and Limitations

While the Slingshot Effect exposes an interesting implicit bias of Adam that often promotes generalization, due
to its arresting of the norm growth and ensuing feature learning, it also leads to some training instability and
prolonged training time. In the Appendix we show that it is possible to achieve similar levels of generalization
with Adam on the modular division dataset (Power et al., 2021) using the same Transformer setup as above,
while maintaining stable learning, in regimes that do not show a clear Slingshot Effect. First we employ weight
decay, which causes the training loss values to converge to a higher value than the unregularized model. In this
regime the model does not become unstable, but instead regularization leads to comparable generalization,
and much more quickly. However, it is important to tune the regularization strength appropriately. Similarly,
we find that it is possible to normalize the features and weights using the following scheme to explicitly control
norm growth: w = w

∥w∥ , f(x) = f(x)
∥f(x)∥ , where w and f(x) are the weights and inputs to the classification

layer respectively, the norm used above is the L2 norm, and x is the input to the neural network. This
scheme also results in stable training and similar levels of generalization. In all cases the effects rely on
keeping the weight norms from growing uncontrollably, which may be the most important factor for improving
generalization. These results suggest that while the Slingshot Effect may be an interesting self-correcting
scheme for controlling norm growth, there are likely more efficient ways to leverage adaptive optimizers to

10

Published in Transactions on Machine Learning Research (02/2024)

10 15 20 25 30 35 40 45 50
number of training samples (x1000)

55

60

65

70

75

te
st

 a
cc

ur
ac

y

1e-04
3e-04

1e-03

1e-04

3e-04
1e-03

1e-04
3e-04

1e-03

1e-043e-04

1e-03

1e-04
3e-04

1e-03

no slingshot
pre-slingshot
post-slingshot

Figure 6: Slingshot Effects on subsets of CIFAR-10 dataset. We train ViTs with multiple learning rates to verify
the impact this parameter has on Slingshot. Power et al. (2021) note that grokking occurs over a narrow range of
learning rates. Note that the points marked in: (i) green correspond to test accuracy for an experiment after the
Slingshot Effect begins, (ii) blue are for trials where best checkpoint is observed prior to start of a Slingshot Effect
and (iii) red are for trials with no Slingshot Effect.

similar levels of generalization without requiring the instability that is a hallmark of the Slingshot effect.
Finally, we lack a satisfactory theoretical explanation for the Slingshot Effect, and hence removed all attempts
at a more rigorous mathematical definition. It is an open problem to formally define and mathematically
analyze the mechanism behind Slingshot Effects.

4 Conclusion

We have empirically shown that optimizing deep networks with cross entropy loss and adaptive optimizers
produces the Slingshot Effect, a curious optimization anomaly unlike anything described in the literature.
We have provided ample evidence that Slingshot Effects can be observed with different neural architectures
and datasets. Furthermore, we find that Grokking (Power et al., 2021) almost always occurs in the presence
of Slingshot Effects and associated regions of instability in the Terminal Phase of Training (TPT). These
results in their pure form absent explicit regularization, reveal an intriguing inductive bias of Adam-family
of optimizers that becomes salient in the TPT, characterized by cyclic stepwise effects on the optimization
trajectory. These effects often promote generalization in ways that differ from non-adaptive optimizers
like SGD, and warrant further study to be able to harness efficiently. There are open question remaining
to be answered, for instance 1) What is the causal factor for the weight norm to exit rapid growth and
enter a curtailed growth phase? 2) Are there better ways of promoting generalization without relying on
this accidental training instability? Answering these questions will allow us to decouple optimization and
regularization, and ultimately to control and improve them independently.

Acknowledgments

We thank Preetum Nakkiran for insightful feedback and discussions and the Apple Machine Learning Research
team for supporting and engaging with this work.

References
Kwangjun Ahn, Jingzhao Zhang, and Suvrit Sra. Understanding the unstable convergence of gradient descent.

arXiv preprint arXiv:2204.01050, 2022.

11

Published in Transactions on Machine Learning Research (02/2024)

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. ArXiv, abs/1811.03962, 2019.

Sanjeev Arora, Zhiyuan Li, and Abhishek Panigrahi. Understanding gradient descent on edge of stability in
deep learning. arXiv preprint arXiv:2205.09745, 2022.

Boaz Barak, Benjamin L. Edelman, Surbhi Goel, Sham M. Kakade, eran malach, and Cyril Zhang. Hidden
progress in deep learning: SGD learns parities near the computational limit. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=8XWP2ewX-im.

Anas Barakat and Pascal Bianchi. Convergence and dynamical behavior of the adam algorithm for nonconvex
stochastic optimization. SIAM J. Optim., 31:244–274, 2021.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs. 2018. URL http://github.com/google/jax.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar
Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael
Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk
Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito,
David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor
Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck,
Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways, 2022.

Jeremy M. Cohen, Simran Kaur, Yuanzhi Li, J. Zico Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of stability. arXiv preprint arXiv: Arxiv-2103.00065, 2021.

Jeremy M. Cohen, Behrooz Ghorbani, Shankar Krishnan, Naman Agarwal, Sourabh Medapati, Michal Badura,
Daniel Suo, David Cardoze, Zachary Nado, George E. Dahl, and Justin Gilmer. Adaptive gradient methods
at the edge of stability. arXiv preprint arXiv: Arxiv-2207.14484, 2022.

Adrien Courtois, Damien Scieur, Jean-Michel Morel, Pablo Arias, and Thomas Eboli. Sing: A plug-and-play
dnn learning technique, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:
Arxiv-2010.11929, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011. URL http:
//jmlr.org/papers/v12/duchi11a.html.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the generalization gap
in large batch training of neural networks. ArXiv, abs/1705.08741, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pp. 448–456. PMLR, 2015.

Jeevesh Juneja, Rachit Bansal, Kyunghyun Cho, João Sedoc, and Naomi Saphra. Linear connectivity reveals
generalization strategies. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=hY6M0JHl3uL.

12

https://openreview.net/forum?id=8XWP2ewX-im
http://github.com/google/jax
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
https://openreview.net/forum?id=hY6M0JHl3uL

Published in Transactions on Machine Learning Research (02/2024)

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:
Arxiv-1412.6980, 2014.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large learning
rate phase of deep learning: the catapult mechanism. arXiv preprint arXiv:2003.02218, 2020.

Wenjie Li, Zhaoyang Zhang, Xinjiang Wang, and Ping Luo. Adax: Adaptive gradient descent with exponential
long term memory. arXiv preprint arXiv:2004.09740, 2020.

Ziming Liu, Ouail Kitouni, Niklas Nolte, Eric J Michaud, Max Tegmark, and Mike Williams. Towards
understanding grokking: An effective theory of representation learning. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=6at6rB3IZm.

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data. In The
Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=zDiHoIWa0q1.

Ekaterina Lobacheva, Maxim Kodryan, Nadezhda Chirkova, Andrey Malinin, and Dmitry P Vetrov.
On the periodic behavior of neural network training with batch normalization and weight de-
cay. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 21545–21556. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
b433da1b32b5ca96c0ba7fcb9edba97d-Paper.pdf.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

Ekdeep Singh Lubana, Eric J. Bigelow, Robert P. Dick, David Scott Krueger, and Hidenori Tanaka. Mechanistic
mode connectivity. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023, 23-
29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pp.
22965–23004. PMLR, 2023. URL https://proceedings.mlr.press/v202/lubana23a.html.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic bound of
learning rate. arXiv preprint arXiv:1902.09843, 2019.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks. arXiv
preprint arXiv:1906.05890, 2019.

Igor Molybog, Peter Albert, Moya Chen, Zachary DeVito, David Esiobu, Naman Goyal, Punit Singh Koura,
Sharan Narang, Andrew Poulton, Ruan Silva, Binh Tang, Diana Liskovich, Puxin Xu, Yuchen Zhang,
Melanie Kambadur, Stephen Roller, and Susan Zhang. A theory on adam instability in large-scale machine
learning, 2023.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for grokking
via mechanistic interpretability. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=9XFSbDPmdW.

Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural collapse during the terminal phase of
deep learning training. Proceedings of the National Academy of Sciences of the United States of America,
117:24652 – 24663, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach,

13

https://openreview.net/forum?id=6at6rB3IZm
https://openreview.net/forum?id=zDiHoIWa0q1
https://openreview.net/forum?id=zDiHoIWa0q1
https://proceedings.neurips.cc/paper_files/paper/2021/file/b433da1b32b5ca96c0ba7fcb9edba97d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/b433da1b32b5ca96c0ba7fcb9edba97d-Paper.pdf
https://proceedings.mlr.press/v202/lubana23a.html
https://openreview.net/forum?id=9XFSbDPmdW

Published in Transactions on Machine Learning Research (02/2024)

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Informa-
tion Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Generalization
beyond overfitting on small algorithmic datasets. In ICLR MATH-AI Workshop, 2021.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. ArXiv,
abs/1904.09237, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv: Arxiv-1409.1556, 2014.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit bias of
gradient descent on separable data. The Journal of Machine Learning Research, 19(1):2822–2878, 2018.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop, coursera: Neural networks for machine learning.
University of Toronto, Technical Report, 6, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv: Arxiv-1706.03762, 2017.

Bohan Wang, Qi Meng, Wei Chen, and Tie-Yan Liu. The implicit bias for adaptive optimization algorithms
on homogeneous neural networks. In International Conference on Machine Learning, pp. 10849–10858.
PMLR, 2021.

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training procedure in
timm. arXiv preprint arXiv:2110.00476, 2021.

Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig Schmidt. Stable
and low-precision training for large-scale vision-language models, 2023.

J. Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates training: A
theoretical justification for adaptivity. arXiv: Optimization and Control, 2020.

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo. Adam can converge without
any modification on update rules. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 28386–28399. Cur-
ran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
b6260ae5566442da053e5ab5d691067a-Paper-Conference.pdf.

Libin Zhu, Chaoyue Liu, Adityanarayanan Radhakrishnan, and Mikhail Belkin. Catapults in sgd: spikes in
the training loss and their impact on generalization through feature learning, 2023.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Papademetris,
and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed gradients. Advances
in neural information processing systems, 33:18795–18806, 2020.

14

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b6260ae5566442da053e5ab5d691067a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b6260ae5566442da053e5ab5d691067a-Paper-Conference.pdf

Published in Transactions on Machine Learning Research (02/2024)

The Slingshot Effect: A Late-Stage Optimization
Anomaly in Adam-Family of Optimization Methods -

Appendix
Contents

1 Introduction 1

1.1 Implications of Our Findings . 3

2 Related Work 4

3 The Slingshot Effect 5

3.1 Experimental Setup . 5

3.2 Experimental Observations . 5

3.3 Effects on Generalization . 8

3.4 Drawbacks and Limitations . 10

4 Conclusion 11

Appendix A Slingshot Effects across Architectures, Optimizers and Datasets 17

A.1 Vision Transformers on 1000 samples from CIFAR-10 . 17

A.2 CNN on 200 samples from CIFAR-10 . 17

A.3 MLPs on 200 samples from CIFAR-10 . 18

A.4 Shallow models . 19

A.5 Deep linear models . 20

A.6 Learning Subset Parities . 21

A.6.1 Effective Step Size and Curvature Dynamics . 21

A.7 Different Optimizers . 23

A.8 Vision Transformers and Full CIFAR-10 . 24

A.9 Slingshot with MLP and Synthetic Dataset . 24

A.9.1 Ablation Study . 24

Appendix B Slingshot and Grokking 26

B.1 Analysis of Parameter Dynamics . 27

B.2 SGD Optimization . 28

B.3 Tuning Adam Optimizer’s β2 Hyperparameter . 28

B.4 Slingshots with Additional Datasets . 28

Appendix C Controlling Instability Through Normalization and Norm Constraints 44

C.1 Weight decay . 44

15

Published in Transactions on Machine Learning Research (02/2024)

C.2 Features and parameter normalization . 47

Appendix D Slingshot Effects and Linear Mode Connectivity 51

16

Published in Transactions on Machine Learning Research (02/2024)

1000 1200 1400 1600 1800 2000
epoch

10 8

10 6

10 4

10 2

lo
ss

train loss last layer norm

0.12

0.14

0.16

0.18

0.20

la
st

 la
ye

r n
or

m

(a) Norm growth versus loss on training data

1000 1200 1400 1600 1800 2000
epoch

98.25

98.50

98.75

99.00

99.25

99.50

99.75

100.00

ac
cu

ra
cy

train acc last layer norm

0.12

0.14

0.16

0.18

0.20

la
st

 la
ye

r n
or

m

(b) Norm growth versus accuracy on training data

Figure 7: Vision Transformer trained on 1000 samples from CIFAR-10.

A Slingshot Effects across Architectures, Optimizers and Datasets

This section provides further evidence of the prevalence of Slingshot across architectures and optimizers
on subsets of CIFAR-10, testing setups beyond the specific setup consider by Power et al. (2021). In these
experiments, we focus solely on characterizing the optimization properties of various setups described below.
The small sample sizes are used in order to more easily find regimes where different architectures can converge
to fit the training data fairly quickly.

We use cross-entropy loss to optimize the models with Adam (Kingma & Ba, 2014) in the following experiments.
The following experiments are implemented in PyTorch (Paszke et al., 2019).

A.1 Vision Transformers on 1000 samples from CIFAR-10

For further validation, we train a Vision Transformer (ViT) (Dosovitskiy et al., 2020) with 12 layers that has
10 million parameters on a small sample of the CIFAR-10 dataset (Krizhevsky, 2009). In this setup, we use a
learning rate to 0.001, no weight decay, β1 = 0.9, β2 = 0.95, ϵ = 10−8 and minibatch size of 128. We choose
a sample size of 1000 training samples for computational reasons, as we wish to observe multiple cycles of
the Slingshot Effect extremely late in training. The input images are standardized to be in the range [0, 1].
No data augmentation is used in our training pipeline. Due to the extremely small sample size, we focus
our attention on the training metrics since no generalization is expected. Figure 7a (respectively Figure 7b)
shows a plot of training loss (respectively training accuracy) and last layer norm evolution during the latter
stages of training. Multiple Slingshot stages are observed in these plots (5 clear cycles), which can be seen by
the sharp transition of the weight norm from high growth to a curtailed growth phase.

A.2 CNN on 200 samples from CIFAR-10

We consider a VGG-like architecture (Simonyan & Zisserman, 2014) that has been adapted for CIFAR-10
dataset.2 The model is trained with 200 randomly chosen samples from CIFAR-10 training split and with
full-batch Adam (Kingma & Ba, 2014; Loshchilov & Hutter, 2017). The hyperparameters used for the
optimizer include a learning rate of 0.001, weight decay= 0, β1 = 0.9, β2 = 0.95, and ϵ = 10−8. As with ViT,
no data augmentation is used in these experiments other than standardizing the input to be in the range
[0, 1]. We observe the presence of multiple Slingshot stages with CNN from Figure 8a and Figure 8b. These
experiments suggest that Slingshot effect is not restricted to Transformers architecture alone.

2We use the VGG11 architecture without batch normalization (Ioffe & Szegedy, 2015) from https://github.com/kuangliu/
pytorch-cifar in this experiment.

17

https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar

Published in Transactions on Machine Learning Research (02/2024)

0 1000 2000 3000 4000 5000
epoch

10 8

10 6

10 4

10 2

100

102
lo

ss
train loss last layer norm

3

4

5

6

7

8

9

la
st

 la
ye

r n
or

m

(a) Norm growth versus loss on training data

0 1000 2000 3000 4000 5000
epoch

20

40

60

80

100

ac
cu

ra
cy

train acc last layer norm

3

4

5

6

7

8

9

la
st

 la
ye

r n
or

m

(b) Norm growth versus accuracy on training data

Figure 8: CNN without batch nomralization trained on 200 samples from CIFAR-10.

0 1000 2000 3000 4000 5000
epoch

10 8

10 6

10 4

10 2

100

lo
ss

train loss last layer norm

0

200

400

600

800

1000

1200
la

st
 la

ye
r n

or
m

(a) Norm growth versus loss on training data

0 1000 2000 3000 4000 5000
epoch

20

40

60

80

100
ac

cu
ra

cy

train acc last layer norm

0

200

400

600

800

1000

1200

la
st

 la
ye

r n
or

m

(b) Norm growth versus accuracy on training data

Figure 9: CNN with batch nomralization trained on 200 samples from CIFAR-10.

With BatchNorm We repeat the CNN-based described above but with a VGG-like model that includes
batch normalization (Ioffe & Szegedy, 2015).3 The training setup is identical to the one described for CNN
wihtout batch normalization. We observe the presence of multiple Slingshot stages with CNN from Figure 9a
and Figure 9b. The weight norm does not decrease during training as opposed to the weight norm dynamics
for CNN without batch normalization seen in Figure 8. These experiments suggest that Slingshot Effects can
be seen with standard neural network training components including batch normalization.

A.3 MLPs on 200 samples from CIFAR-10

The next architecture we consider is a deep (6 layers) fully connected network trained on a small sample of
200 samples belonging to the CIFAR-10 dataset (Krizhevsky, 2009) with full-batch Adam (Kingma & Ba,
2014; Loshchilov & Hutter, 2017) optimizer. The optimizer’s hyperparameters are set as following: learning
rate = 0.001, weight decay = 0, β1 = 0.9, β2 = 0.95, and ϵ = 10−8. As with the ViT setup above we do no use
data augmentation for training this model. Figure 10a (respectively Figure 10b) shows a plot of training loss
(respectively training accuracy) and last layer norm evolution during the latter stages of training. Multiple
Slingshot stages are observed in this setup as well. These experiments further suggest that the Slingshot
Effect is prevalent in simple models as well.

3We use the VGG11 architecture with batch normalization (Ioffe & Szegedy, 2015) from https://github.com/kuangliu/
pytorch-cifar in this experiment.

18

https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar

Published in Transactions on Machine Learning Research (02/2024)

1000 1200 1400 1600 1800 2000
epoch

10 8

10 6

10 4

10 2

100
lo

ss
train loss last layer norm

0.0765

0.0770

0.0775

0.0780

0.0785

la
st

 la
ye

r n
or

m

(a) Norm growth versus loss on training data

1000 1200 1400 1600 1800 2000
epoch

85.0

87.5

90.0

92.5

95.0

97.5

100.0

ac
cu

ra
cy

train acc last layer norm

0.0765

0.0770

0.0775

0.0780

0.0785

la
st

 la
ye

r n
or

m

(b) Norm growth versus accuracy on training data

Figure 10: MLP trained on 200 samples from CIFAR-10.

0 1000 2000 3000 4000 5000
epoch

10 8

10 6

10 4

10 2

100

lo
ss

train loss last layer norm

0

500

1000

1500

2000

2500

la
st

 la
ye

r n
or

m

(a) Training loss for 1 layer model

0 1000 2000 3000 4000 5000
epoch

10 8

10 6

10 4

10 2

100

lo
ss

train loss last layer norm

0

200

400

600

800

1000

la
st

 la
ye

r n
or

m

(b) Training loss for 2 layer model

0 1000 2000 3000 4000 5000
epoch

10 8

10 6

10 4

10 2

100

lo
ss

train loss last layer norm

5

10

15

20

25

30

35

40

la
st

 la
ye

r n
or

m

(c) Training loss for 3 layer model

0 1000 2000 3000 4000 5000
epoch

20

40

60

80

100

ac
cu

ra
cy

train acc last layer norm

0

500

1000

1500

2000

2500

la
st

 la
ye

r n
or

m

(d) Training accuracy for 1 layer model

0 1000 2000 3000 4000 5000
epoch

20

40

60

80

100

ac
cu

ra
cy

train acc last layer norm

0

200

400

600

800

1000

la
st

 la
ye

r n
or

m

(e) Training accuracy for 2 layer model

0 1000 2000 3000 4000 5000
epoch

20

40

60

80

100

ac
cu

ra
cy

train acc last layer norm

5

10

15

20

25

30

35

40

la
st

 la
ye

r n
or

m

(f) Training accuracy for 3 layer model

Figure 11: Effect of depth on Slingshots. Norm growth behavior versus training metrics for models whose depth is
indicated above. All models are trained with full-batch Adam with learning rate 0.001 on 200 CIFAR-10 samples.

A.4 Shallow models

We consider the behavior of shallow models including linear, 2- and 3-layer MLPs with Adam optimizer.
As with the previous setup, we train these models on a small sample of 200 samples belonging to the
CIFAR-10 dataset (Krizhevsky, 2009) with full-batch Adam (Kingma & Ba, 2014) optimizer. The optimizer’s
hyperparameters are set as following: learning rate = 0.001, weight decay = 0, β1 = 0.9, β2 = 0.95, and
ϵ = 10−8. No data augmentation is used in these experiments as well. Figure 11a, Figure 11b, Figure 11c
show the training loss and last layer norm evolution during training for the linear, 2-layer and 3-layer models
respectively while Figure 11d, Figure 11e, Figure 11f show the training accuracy and last layer norm evolution.
Slingshot Effects are observed in 2-layer and 3-layer MLPs whereas no Slingshot Effects are seen with the
linear model. These experiments suggest that depth appears to be a necessary condition to observe Slingshots.

19

Published in Transactions on Machine Learning Research (02/2024)

0 2500 5000 7500 10000 12500 15000 17500 20000
epoch

10 8

10 6

10 4

10 2

100

lo
ss

train loss last layer norm

3

4

5

6

7

8

la
st

 la
ye

r n
or

m

(a) Training loss Adam

0 2500 5000 7500 10000 12500 15000 17500 20000
epoch

10 8

10 6

10 4

10 2

100

102

lo
ss

train loss last layer norm

4

6

8

10

12

la
st

 la
ye

r n
or

m

(b) Training loss for RMSProp

0 2500 5000 7500 10000 12500 15000 17500 20000
epoch

10 4

10 3

10 2

10 1

100

lo
ss

train loss last layer norm

4

6

8

10

12

la
st

 la
ye

r n
or

m

(c) Training loss for SGD

0 2500 5000 7500 10000 12500 15000 17500 20000
epoch

20

40

60

80

100

ac
cu

ra
cy

train acc last layer norm

3

4

5

6

7

8
la

st
 la

ye
r n

or
m

(d) Training accuracy for Adam

0 2500 5000 7500 10000 12500 15000 17500 20000
epoch

20

40

60

80

100

ac
cu

ra
cy

train acc last layer norm

4

6

8

10

12

la
st

 la
ye

r n
or

m

(e) Training accuracy for RMSProp

0 2500 5000 7500 10000 12500 15000 17500 20000
epoch

20

40

60

80

100

ac
cu

ra
cy

train acc last layer norm

4

6

8

10

12

la
st

 la
ye

r n
or

m

(f) Training accuracy for SGD

Figure 12: Optimizer choice and Slingshots. All optimizers train a 6-layer linear model full-batch on 200 CIFAR-10
samples.

A.5 Deep linear models

We train a 6 layer linear model with 200 samples belonging to CIFAR-10 (Krizhevsky, 2009) with full-batch
Adam (Kingma & Ba, 2014; Loshchilov & Hutter, 2017). The optimizer’s hyperparameters are set as following:
learning rate = 0.001, weight decay = 0, β1 = 0.9, β2 = 0.95, and ϵ = 10−8. Figure 12a and Figure 12d show
the training loss and accuracy behavior observed during optimization. Multiple Slingshot stages are observed
with this architecture as well.

20

Published in Transactions on Machine Learning Research (02/2024)

A.6 Learning Subset Parities

In this section we use the k-sparse parities of n bits task as a test bed. Theoretically, this family of tasks
is notoriously challenging since it poses strict computational lower bounds on learning (see (Barak et al.,
2022) for more details). For the (n, k) subset parity task, each input is a random n dimensional vector such
that each component is randomly sampled from ∼ Unif{−1, 1}. The label is then given by a parity function
over a predefined sparse set of k ≪ n bits. For the following experiments, we use k = 3, n = 50. For the
model, we use a 3 layer MLP with relu activations, and the cross entropy loss. We use a dataset of 1000
samples, and a test set of 8000 samples. We train each network with Adam using a batch size of 32, a learning
rate of η = {0.004, 0.003, 0.002} and ϵ ∈ {10−8, 10−7, 10−6}. Our results are summarized in Figures 13, 14
and 15. For ϵ = 10−8, multiple Slingshots appear past the perfect fitting of the training set, with a bump in
generalization post most Slingshots. For larger values of ϵ, no Slingshots are observed, while generalization
remains poor.

0 2000 4000 6000 8000 10000 12000 14000
epoch

50

60

70

80

90

100

ac
cu

ra
cy

train test

0 2000 4000 6000 8000 10000 12000 14000
epoch

50

60

70

80

90

100

ac
cu

ra
cy

train test

0 2000 4000 6000 8000 10000 12000 14000
epoch

50

60

70

80

90

100

ac
cu

ra
cy

train test

(a) (b) (c)

0 2000 4000 6000 8000 10000 12000 14000
epoch

10 7

10 5

10 3

10 1

101

lo
ss

train test

0 2000 4000 6000 8000 10000 12000 14000
epoch

10 7

10 5

10 3

10 1

101

lo
ss

train test

0 2000 4000 6000 8000 10000 12000 14000
epoch

10 7

10 5

10 3

10 1

101

lo
ss

train test

(d) (e) (f)

Figure 13: Learning a (3, 50) subset parity with Adam with ϵ = 10−8 and a learning rate of (a),(d) η = 0.004, (b),(e)
η = 0.003 and (c),(f) η = 0.002. Multiple Slingshots are visible, resulting in improved generalization.

A.6.1 Effective Step Size and Curvature Dynamics

A classical results pertaining to optimizing smooth functions with gradient descent states that a sufficient
condition for convergence requires that the learning rate does not exceed 2

L , where L is the Lipschitz constant
of the gradient. Due to the sufficiency of the condition, we expect it to be violated at the phase transitions of
the slingshots, when the training loss spikes. We quantify the effective step size of a parameter as η√

V 2
t +ϵ

where the terms are defined in Algorithm 1. To approximate L in a local region, we use the maximum
eigenvalue of the loss Hessian in this analysis as is done by a series of recent works including Cohen et al.
(2021), Ahn et al. (2022) and Arora et al. (2022). We use the same setup described for training parity
dataset to conduct this empirical analysis. The hyperparameters used for the optimizer include η = 0.004,
ϵ = 10−8 and β1 = 0.9 and β2 = 0.999. Figure 16a shows the dynamics of the training and validation loss
while Figures 16b, Figure 16c and Figure 16d shows the evolution of the effective step size as well as the
maximum allowable step size for a few parameters chosen randomly from the three layers in the neural
network. We observe from these plots that the effective step size is smaller than the maximum allowed step
size in the vicinity of SlingShot Effects. however, at the phase transitions we clearly see that the effective step

21

Published in Transactions on Machine Learning Research (02/2024)

0 2000 4000 6000 8000 10000 12000 14000
epoch

50

60

70

80

90

100

ac
cu

ra
cy

train test

0 2000 4000 6000 8000 10000 12000 14000
epoch

50

60

70

80

90

100

ac
cu

ra
cy

train test

0 2000 4000 6000 8000 10000 12000 14000
epoch

50

60

70

80

90

100

ac
cu

ra
cy

train test

(a) (b) (c)

0 2000 4000 6000 8000 10000 12000 14000
epoch

10 7

10 5

10 3

10 1

101

lo
ss

train test

0 2000 4000 6000 8000 10000 12000 14000
epoch

10 7

10 5

10 3

10 1

101

lo
ss

train test

0 2000 4000 6000 8000 10000 12000 14000
epoch

10 7

10 5

10 3

10 1

101

lo
ss

train test

(d) (e) (f)

Figure 14: Learning a (3, 50) subset parity with Adam with ϵ = 10−7 and a learning rate of (a),(d) η = 0.004, (b),(e)
η = 0.003 and (c),(f) η = 0.002. No Slingshots are visible.

0 2000 4000 6000 8000 10000 12000 14000
epoch

50

60

70

80

90

100

ac
cu

ra
cy

train test

0 2000 4000 6000 8000 10000 12000 14000
epoch

50

60

70

80

90

100

ac
cu

ra
cy

train test

0 2000 4000 6000 8000 10000 12000 14000
epoch

50

60

70

80

90

100
ac

cu
ra

cy

train test

(a) (b) (c)

0 2000 4000 6000 8000 10000 12000 14000
epoch

10 7

10 5

10 3

10 1

101

lo
ss

train test

0 2000 4000 6000 8000 10000 12000 14000
epoch

10 7

10 5

10 3

10 1

101

lo
ss

train test

0 2000 4000 6000 8000 10000 12000 14000
epoch

10 7

10 5

10 3

10 1

101

lo
ss

train test

(d) (e) (f)

Figure 15: Learning a (3, 50) subset parity with Adam with ϵ = 10−6 and a learning rate of (a),(d) η = 0.004, (b),(e)
η = 0.003 and (c),(f) η = 0.002. No Slingshots are visible.

size is larger than the maximum allowed, causing the loss to spike. After a few Slingshot cycles, we observe
that the maximum allowed step size increase dramatically, and no additional Slingshots follow.

22

Published in Transactions on Machine Learning Research (02/2024)

0 2000 4000 6000 8000 10000 12000 14000
epoch

10 7

10 5

10 3

10 1

101

train loss validation loss

(a)

0 2000 4000 6000 8000 10000 12000 14000
epoch

100

103

106

109

1012

1015

maximum stepsize
effective step size (param 0)

effective step size (param 10)
effective step size (param 20)

(b)

0 2000 4000 6000 8000 10000 12000 14000
epoch

100

103

106

109

1012

1015

maximum stepsize
effective step size (param 5100)

effective step size (param 10000)
effective step size (param 13000)

(c)

0 2000 4000 6000 8000 10000 12000 14000
epoch

100

103

106

109

1012

1015

maximum stepsize
effective step size (param 15200)

effective step size (param 15230)
effective step size (param 15260)

(d)

Figure 16: Empirical analysis of the relationship between Slingshot Effects and loss surface sharpness. Above plots
include (a) training and validation loss; evolution of effective step size and curvature of parameters from (b) first
layer, (c) second layer and (d) classification layer in a 3-layer MLP trained with Adam. At the phase transitions,
effective step size is larger than 2

L
, initiating the slingshots. After a few cycles, the Lipschitz constant of the gradients

decreases substantially, and the Slingshots cease.

Table 1: Optimizers hyperparameters. Learning rate is set to 0.001 and weight decay to 0 for all optimizers

Optimizer Other hyperparameters
Adam β1 = 0.9, β2 = 0.95

RMSProp α = 0.95, momentum=0.0
GD momentum=0.9

A.7 Different Optimizers

In this set of experiments, we study the training loss behavior of deep linear models optimized full-batch
with Adam (Kingma & Ba, 2014; Loshchilov & Hutter, 2017), RMSProp (Tieleman & Hinton, 2012) and
full-batch gradient descent (GD). The six layer model is trained with 200 samples. The hyperparameters used
for optimizing the model with various optimizers are described in Table 1. Figure 12 shows the training loss
and accuracy behavior of the three optimizers considered in this experiment. We observe Slingshot behavior
with Adam and RMSProp from Figure 12 while Slingshot behavior is absent with standard gradient descent.
This observation suggests that the normalization used in adaptive optimizers to calculate the update from
gradients may lead to Slingshot behavior.

23

Published in Transactions on Machine Learning Research (02/2024)

A.8 Vision Transformers and Full CIFAR-10

In Appendix A, we have empirically shown that the existence of the Slingshot phenomenon on a small subset
of CIFAR-10 dataset (Krizhevsky, 2009) with Vision Transformers (ViTs). We now study the impact that
Slingshot has on the generalization ability of ViTs by training a model on all 50000 samples in CIFAR-10
training dataset. The ViT used here is a larger model than the one considered in A to account for larger
dataset size. The ViT model consists of 12 layers, width 384 and 12 attention heads and is optimized by
Adam (Kingma & Ba, 2014; Loshchilov & Hutter, 2017). For this experiment, we set the learning rate to
0.0001, weight decay to 0, β1 = 0.9, β1 = 0.95 and ϵ = 10−8, minibatch size of 512 and linear learning rate
warmup for 1 epoch of optimization. Figure 17 shows the results of experiment with full CIFAR-10 dataset.
Multiple Slingshots can be observed in these plots similar to the plots described in Appendix A. We observe
from Figure 17d that the test accuracy peaks in epochs following a Slingshot with the maximum recorded
test accuracy occurring very late in optimization. This observation suggests that the Slingshot can have
a favorable effect on generalization consistent with the behavior observed in the main paper with division
dataset.

0 2000 4000 6000 8000 10000
epoch

10 11

10 9

10 7

10 5

10 3

10 1

lo
ss

train loss last layer norm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
la

st
 la

ye
r n

or
m

(a)

0 2000 4000 6000 8000 10000
epoch

30

40

50

60

70

80

90

100

ac
cu

ra
cy

train acc last layer norm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

la
st

 la
ye

r n
or

m

(b)

0 2000 4000 6000 8000 10000
epoch

100

101

lo
ss

test loss last layer norm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

la
st

 la
ye

r n
or

m

(c)

0 2000 4000 6000 8000 10000
epoch

40

45

50

55

60

65

70

75

80

ac
cu

ra
cy

test acc last layer norm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

la
st

 la
ye

r n
or

m

(d)

Figure 17: Slingshot generalization on full CIFAR-10 dataset: Norm growth versus a) loss on training data b) accuracy
on training data (c) loss on test data d) accuracy on test data.

A.9 Slingshot with MLP and Synthetic Dataset

In this section, we provide empirical evidence that Slingshot Effects are observed with a synthetic dataset
in a fully-connected architecture. The small dimensional dataset, like the Grokking dataset of Power et al.
(2021), allows us to easily measure of sharpness, given by 1

∥ut∥2 u⊤
t Htut where ut is the optimizer’s update

vector and Ht is the Hessian at step t, to examine the interplay between Slingshot Effects and generalization.

A.9.1 Ablation Study

In this section, we train a toy model on a synthetically generated dataset with the aim of analysing the
effect of different hyper parameters on the Slingshot Effect. We construct a 128-dimensional dataset with

24

Published in Transactions on Machine Learning Research (02/2024)

0.0 0.5 1.0 1.5 2.0 2.5
epoch 1e6

10 8

10 6

10 4

10 2

100

lo
ss

train loss last layer norm

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

la
st

 la
ye

r n
or

m

0.0 0.5 1.0 1.5 2.0 2.5
epoch 1e6

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

train acc last layer norm

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

la
st

 la
ye

r n
or

m

0.0 0.5 1.0 1.5 2.0 2.5
epoch 1e6

10 9

10 6

10 3

100

103

106

sh
ar

pn
es

s

gradient sharpness last layer norm

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

la
st

 la
ye

r n
or

m

(a) (c) (e)

0.0 0.5 1.0 1.5 2.0 2.5
epoch 1e6

101

lo
ss

val loss last layer norm

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

la
st

 la
ye

r n
or

m

0.0 0.5 1.0 1.5 2.0 2.5
epoch 1e6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

val acc last layer norm

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

la
st

 la
ye

r n
or

m

0.0 0.5 1.0 1.5 2.0 2.5
epoch 1e6

10 14

10 11

10 8

10 5

10 2

101

104

sh
ar

pn
es

s

update sharpness last layer norm

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

la
st

 la
ye

r n
or

m

(b) (d) (f)

Figure 18: Slingshot generalization on synthetic dataset: Norm growth versus a) loss on training data b) accuracy on
training data (c) loss on validation data d) accuracy on validation data. Note that the vertical line in green shows
location of maximum test accuracy. Adam hyperparameters are β1 = 0.9, β1 = 0.95, ϵ = 10−8

Scikit-learn (Pedregosa et al., 2011) that has 3 informative dimensions that represents a 8-class classification
problem. The class centers are the edges of a 3-dimensional hypercube around which clusters are data are
sampled from a standard normal distribution. The other 125-dimensions are also filled at random to create a
high-dimensional dataset used in our experiments. We generate 256 training and validation samples for this
dataset and use a minibatch size of 128 in all the experiments described in the following.

Architecture and Optimizer Figure 18 shows the training and validation metrics when we optimize a
4-layer fully-connected network (FCN) with Adam using a learning rate of 0.001, β1 = 0.9, β1 = 0.95, no
weight decay and ϵ = 10−8. Note that we use this value of ϵ in our first experiment as this is the default value
proposed in Kingma and Ba (Kingma & Ba, 2014). These experiments are implemented in JAX (Bradbury
et al., 2018).

Tuning ϵ In the next set of experiments with synthetic data, we tune ϵ value for Adam to understand its
impact on test accuracy. Figure 19 shows a plot of the maximum validation accuracy achieved by models
trained with Adam as a function of time (epoch). We observe that Adam reaches its best test accuracy late
in optimization with ϵ = 10−5 yielding the highest validation accuracy. Furthermore, the best accuracy is
achieved with a model that experiences Slingshot during optimization. This observation is consistent with
our findings for ViT training with CIFAR-10 dataset described in the main paper and Appendix A.8.

Influence of β1 and β2 In these experiments, we aim to study the impact of Adam optimizer’s β1 and
β2 hyperparameters on Slingshot. We use the synthetic data described above and set the learning rate of
0.001 and ϵ = 10−8 for this analysis. Figure 20 and Figure 21 shows the results of this study. We observe
from Figure 20 that the Slingshot Effect is fairly robust to the values of β1 and β2. Figure 20a-Figure 20c
show that Slingshot is even observed with β1 and β2 set to 0 which effectively disables exponential moving
averaging of gradient moments in Adam (Kingma & Ba, 2014). Figure 20g-Figure 20i provide an example
of hyperparameters that fail to induce Slingshot. We observe from Figure 20 that models that experience
Slingshot tend to reach their best test accuracy during the later stages of training. Specifically, we observe
from Figure 20b, Figure 20e and Figure 20k that the best validation accuracy occurs after 60000 epochs.
These examples provide further evidence about an interesting implicit bias of Adam. Figure 21 shows more

25

Published in Transactions on Machine Learning Research (02/2024)

104 105 106

epoch

0.68

0.70

0.72

0.74

0.76

0.78

0.80

va
lid

at
io

n
ac

cu
ra

cy

adam eps 1e-02

adam eps 1e-03

adam eps 1e-04

adam eps 1e-05

adam eps 1e-06

adam eps 1e-07

adam eps 1e-08

Figure 19: Slingshot on syntehtic dataset. Note that the points marked in: (i) green correspond to Adam-trained
models that undergo Slingshot, (ii) red correspond to Adam-trained models that do not experience Slingshot; Adam’s
hyperparameters are given by β1 = 0.9, β2 = 0.95, no weight decay and ϵ shown in parentheses.

examples of hyperparameters that do not induce Slingshot Effects. Finally, we observe from Figure 21 that
hyperparameters that provide higher validation accuracy are from models that experience Slingshot Effects.

B Slingshot and Grokking

We use the empirical setup described by Power et al. (2021) to describe the Slingshot Effect. The following
section describes relevant details including datasets, architecture and optimizer used in our experiments.

Architecture The model used a decoder-only Transformer (Vaswani et al., 2017) with causal attention
masking. The architecture used in all our experiments consists of 2 decoder layers with each layer of width
128 and 4 attention heads.

Optimization We train the architecture described above with Adam optimizer (Kingma & Ba, 2014;
Loshchilov & Hutter, 2017) in most of our experiments unless noted otherwise. The learning rate is set to
0.001 and with linear learning rate warmup for the first 10 steps. We use β1 = 0.9, β2 = 0.98 for Adam’s
hyperparameters. The Transformers are optimized with cross-entropy (CE) loss that is calculated on the
output tokens for a given binary operation.

Algorithmic Datasets The Transformer is trained on small algorithmic datasets that consists of sequences
that represent a mathematical operation. The following operations are used in our experiments:

c = a + b (mod p) for 0 ≤ a, b < p

c = a − b (mod p) for 0 ≤ a, b < p

c = a ∗ b (mod p) for 0 ≤ a, b < p

c = a ÷ b (mod p) for 0 ≤ a, b < p

c = a2 + b (mod p) for 0 ≤ a, b < p

26

Published in Transactions on Machine Learning Research (02/2024)

c = a3 + b (mod p) for 0 ≤ a, b < p

c = a2 + b2 (mod p) for 0 ≤ a, b < p

c = a2 + b2 + ab (mod p) for 0 ≤ a, b < p

c = a2 + b2 + ab + b (mod p) for 0 ≤ a, b < p

c = a3 + ab (mod p) for 0 ≤ a, b < p

c = a3 + ab2 + b (mod p) for 0 ≤ a, b < p

c = [a ÷ b (mod p) if b is odd, otherwise a − b (mod p)] for 0 ≤ a, b < p

c = a · b for a, b ∈ S5

c = a · b · a−1 for a, b ∈ S5

c = x · b · a for a, b ∈ S5

c = [a + b (mod p) if a is even, otherwise a ∗ b (mod p)] for 0 ≤ a, b < p

c = [a + b (mod p) if a is even, otherwise a − b (mod p)] for 0 ≤ a, b < p

where p = 97 and with the dataset split in training and validation data. Each equation in the dataset is of
the form (a)(op)(b)(=)c where (x) represents the token used to represent x. We refer to Power et al. (2021)
for a detailed description of the datasets

B.1 Analysis of Parameter Dynamics

A common observation is that intermediate representations tend to evolve beyond simple scale increase during
phase transitions from rapid norm growth phase to curtailed norm growth phase. In order to empirically
quantify this effect, we train the Transformer described in Appendix B with modular addition, multiplication
and division datasets using Adam with learning rate set to 0.001 and β1 = 0.9 and β2 = 0.98. We calculate
the cosine distance between the representation and classification parameters from their initial values where
the cosine distance is given by

drepr = 1.0 − wrepr
t

∥wrepr
t ∥

· wrepr
0

∥wrepr
0 ∥

dclf = 1.0 − wclf
t

∥wclf
t ∥

· wclf
0

∥wclf
0 ∥

where drepr (dclf) denotes cosine distance for representation (respectively classification) parameters, wrepr
t

(resp. wclf
t) denotes representation (resp. classification) parameters at time t with wrepr

0 (wclf
t) indicating

the initial representation (resp. classification) parameters where the norm used above is the Euclidean norm.

Figure 22 shows the dynamics of the loss, accuracy and cosine distance recorded during training. We
observe that the classification parameters move farther away from initialization faster than the representation
parameters. More interestingly, we observe from Figure 22c and Figure 22f that the representation parameters
travel farther from initialization for training runs that experience Slingshot. These trials use ϵ = 10−8 and
ϵ = 10−7 and experience Slingshot Effects. In contrast, we see from Figure 22i and Figure 22l that the
representation distance remains low for models trained with ϵ = 10−5 and ϵ = 10−4. The models trained
with higher ϵ values do not experience Slingshot Effects. These results suggest that Slingshot may have a
beneficial effect in moving the representation parameters away from initialization which eventually helps with
model generalization. Figure 23 and Figure 24 show a similar trend for multiplication and division datasets
respectively.

27

Published in Transactions on Machine Learning Research (02/2024)

B.2 SGD Optimization

In this appendix, we show that Slingshot Effects are not seen during Transformer training with stochastic
gradient descent (SGD) with momentum to support our claim in the main paper. To this end, we use train
the Transformer described in in Appendix B on modular division dataset with a 50/50 train/validation split
using SGD with momentum. We use a mini-batch size of 512 which requires the optimizer to take 10 steps per
epoch for dataset split described above. We set momentum to 0.9 and use the following learning rates: 0.001,
0.01 and 0.1 and run the optimizer for 1500000 steps. The number of steps used here is 3 times larger than
the steps used to run Adam in this work which is chosen to give SGD additional time to reach convergence.
Figure 25 shows the usual loss and accuracy metrics calculated on training and validation data as well as the
weight norm of the classifier layer. We observe that there is no evidence of Slingshot with SGD. Lastly, we do
not see any evidence of Grokking or generalization with this setup as well.

B.3 Tuning Adam Optimizer’s β2 Hyperparameter

Zhang et al. (2022) showed in a recent paper that vanilla Adam (Kingma & Ba, 2014) can converege
without any modifications to its update equations. A key message in (Zhang et al., 2022) is to tune the β
hyperparameters that are used to smooth momentum and second order moment terms in Adam (Kingma &
Ba, 2014) with a focus on tuning β2 which controls the denominator in the update equations. We study the
behavior of Adam optimizer (Kingma & Ba, 2014) by training a Transformer described in Appendix B with
modular division dataset split evenly into training and validation datasets. Figure 26 shows the behavior of
optimizing Transformers with Adam for three values of β2 including 0.98 which is the default used both by
Power et al. (2021) and in this paper as well as very high β2 values including 0.9995 and 0.9997. We observe
training instabilities and Slingshot Effects in all of these experiments from Figure 26. These observations
suggest that Slingshots can occur during neural networks optimization despite careful tuning of β2 hypermater.

B.4 Slingshots with Additional Datasets

In this appendix, we provide evidence of Slingshot Effects on additional datasets from Power et al. (2021)
Grokking work. The datasets are created by a subset of mathematical operations defined in Appendix B.
Each operation can have multiple datasets that depends on the train/validation split ratio. We use the
training setup described in B on 18 separate datasets. Figure 27 - Figure 44 shows the results the datasets
described in this appendix. We observe Slingshot Effects and generalization with all 18 datasets. These
results suggest the prevalence of Slingshot Effects when large models are trained with adaptive optimizers,
specifically Adam (Kingma & Ba, 2014).

28

Published in Transactions on Machine Learning Research (02/2024)

loss accuracy sharpness

0 20000 40000 60000 80000 100000
epoch

10 8

10 6

10 4

10 2

100

lo
ss

train val last layer norm

4

6

8

10

12

14

la
st

 la
ye

r n
or

m

(a)

0 20000 40000 60000 80000 100000
epoch

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

train val last layer norm

4

6

8

10

12

14

la
st

 la
ye

r n
or

m

(b)

0 20000 40000 60000 80000 100000
epoch

0

10000

20000

30000

40000

50000

60000

70000

sh
ar

pn
es

s

gradient update last layer norm

4

6

8

10

12

14

la
st

 la
ye

r n
or

m

(c)

β1 = 0, β2 = 0. Observe multiple Slingshots

0 20000 40000 60000 80000 100000
epoch

10 8

10 6

10 4

10 2

100

lo
ss

train val last layer norm

4

6

8

10

12

14

16

la
st

 la
ye

r n
or

m

(d)

0 20000 40000 60000 80000 100000
epoch

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

train val last layer norm

4

6

8

10

12

14

16

la
st

 la
ye

r n
or

m

(e)

0 20000 40000 60000 80000 100000
epoch

0

20000

40000

60000

80000

100000

120000

sh
ar

pn
es

s

gradient update last layer norm

4

6

8

10

12

14

16

la
st

 la
ye

r n
or

m

(f)

β1 = 0.5, β2 = 0.5. Observe multiple Slingshots

0 20000 40000 60000 80000 100000
epoch

10 8

10 6

10 4

10 2

100

lo
ss

train val last layer norm

3.0

3.5

4.0

4.5

5.0

5.5

la
st

 la
ye

r n
or

m

(g)

0 20000 40000 60000 80000 100000
epoch

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

train val last layer norm

3.0

3.5

4.0

4.5

5.0

5.5

la
st

 la
ye

r n
or

m

(h)

0 20000 40000 60000 80000 100000
epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

sh
ar

pn
es

s

gradient update last layer norm

3.0

3.5

4.0

4.5

5.0

5.5

la
st

 la
ye

r n
or

m

(i)

β1 = 0.9, β2 = 0.8. Observe no Slingshot

0 20000 40000 60000 80000 100000
epoch

10 8

10 6

10 4

10 2

100

lo
ss

train val last layer norm

4

6

8

10

12

14

16

la
st

 la
ye

r n
or

m

(j)

0 20000 40000 60000 80000 100000
epoch

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

train val last layer norm

4

6

8

10

12

14

16

la
st

 la
ye

r n
or

m

(k)

0 20000 40000 60000 80000 100000
epoch

0

20000

40000

60000

80000

100000

120000

140000

160000

sh
ar

pn
es

s

gradient update last layer norm

4

6

8

10

12

14

16

la
st

 la
ye

r n
or

m

(l)

β1 = 0.9, β2 = 0.95. Observe multiple Slingshots

Figure 20: Varying β1, β2 in Adam on synthetic dataset. FCN is trained with Adam using learning rate 0.001 and
ϵ = 10−6. The validation accuracy of models that experience Slingshot reach their highest accuracy later in training.

29

Published in Transactions on Machine Learning Research (02/2024)

0

10

20

30

40

50

60

70

1

2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.65

0.8

0.95

0.999

Figure 21: Extended analysis of β1, β2 in Adam on synthetic dataset. Plot shows the highest validation accuracy
achieved with various values of β1, β2 with learning rate set to 0.001 and ϵ = 10−6. Hyperparameters that do not
induce Slingshot Effects are marked with a diagonal line in black. Models trained with β1 > 0.2 and β2 = 0 diverged
during training due to instability. These trials have their validation accuracy set to chance level.

30

Published in Transactions on Machine Learning Research (02/2024)

loss accuracy cosine distance

0 10000 20000 30000 40000 50000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

2.5

la
st

 la
ye

r n
or

m

(a)

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

2.5

la
st

 la
ye

r n
or

m

(b)

0 10000 20000 30000 40000 50000
epoch

0.0

0.2

0.4

0.6

0.8

co
sin

e
di

st
an

ce

representation classification last layer norm

0.0

0.5

1.0

1.5

2.0

2.5

la
st

 la
ye

r n
or

m

(c)

epsilon = 10−8

0 10000 20000 30000 40000 50000
epoch

10 9

10 7

10 5

10 3

10 1

101

lo
ss

train validation last layer norm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

la
st

 la
ye

r n
or

m

(d)

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

la
st

 la
ye

r n
or

m

(e)

0 10000 20000 30000 40000 50000
epoch

0.0

0.2

0.4

0.6

0.8

co
sin

e
di

st
an

ce

representation classification last layer norm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

la
st

 la
ye

r n
or

m

(f)

epsilon = 10−7

0 10000 20000 30000 40000 50000
epoch

10 7

10 5

10 3

10 1

101

lo
ss

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

la
st

 la
ye

r n
or

m

(g)

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

la
st

 la
ye

r n
or

m

(h)

0 10000 20000 30000 40000 50000
epoch

0.0

0.1

0.2

0.3

0.4
co

sin
e

di
st

an
ce

representation classification last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

la
st

 la
ye

r n
or

m

(i)

epsilon = 10−5

0 10000 20000 30000 40000 50000
epoch

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

la
st

 la
ye

r n
or

m

(j)

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

la
st

 la
ye

r n
or

m

(k)

0 10000 20000 30000 40000 50000
epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

co
sin

e
di

st
an

ce

representation classification last layer norm

0.06

0.08

0.10

0.12

0.14
la

st
 la

ye
r n

or
m

(l)

epsilon = 10−4

Figure 22: Cosine distance evolution for Transformer described in Appendix B trained on modular addition. Observe
that the cosine distance from initialization increases with models that experience Slingshot Effects.

31

Published in Transactions on Machine Learning Research (02/2024)

loss accuracy cosine distance

0 10000 20000 30000 40000 50000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(a)

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(b)

0 10000 20000 30000 40000 50000
epoch

0.0

0.2

0.4

0.6

0.8

co
sin

e
di

st
an

ce

representation classification last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(c)

epsilon = 10−8

0 10000 20000 30000 40000 50000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

la
st

 la
ye

r n
or

m

(d)

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

la
st

 la
ye

r n
or

m

(e)

0 10000 20000 30000 40000 50000
epoch

0.0

0.2

0.4

0.6

0.8

co
sin

e
di

st
an

ce

representation classification last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

la
st

 la
ye

r n
or

m

(f)

epsilon = 10−7

0 10000 20000 30000 40000 50000
epoch

10 7

10 5

10 3

10 1

101

lo
ss

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

la
st

 la
ye

r n
or

m

(g)

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

la
st

 la
ye

r n
or

m

(h)

0 10000 20000 30000 40000 50000
epoch

0.0

0.1

0.2

0.3

0.4
co

sin
e

di
st

an
ce

representation classification last layer norm

0.06

0.08

0.10

0.12

0.14

la
st

 la
ye

r n
or

m

(i)

epsilon = 10−5

0 10000 20000 30000 40000 50000
epoch

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.06

0.08

0.10

0.12

la
st

 la
ye

r n
or

m

(j)

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.06

0.08

0.10

0.12

la
st

 la
ye

r n
or

m

(k)

0 10000 20000 30000 40000 50000
epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

co
sin

e
di

st
an

ce

representation classification last layer norm

0.06

0.08

0.10

0.12

la
st

 la
ye

r n
or

m

(l)

epsilon = 10−4

Figure 23: Cosine distance evolution for Transformer described in Appendix B trained on modular multiplication.
Observe that the cosine distance from initialization increases with models that experience Slingshot Effects.

32

Published in Transactions on Machine Learning Research (02/2024)

loss accuracy cosine distance

0 10000 20000 30000 40000 50000
epoch

10 10

10 8

10 6

10 4

10 2

100

102

lo
ss

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

2.5

la
st

 la
ye

r n
or

m

(a)

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

2.5

la
st

 la
ye

r n
or

m

(b)

0 10000 20000 30000 40000 50000
epoch

0.0

0.2

0.4

0.6

0.8

co
sin

e
di

st
an

ce

representation classification last layer norm

0.0

0.5

1.0

1.5

2.0

2.5

la
st

 la
ye

r n
or

m

(c)

epsilon = 10−8

0 10000 20000 30000 40000 50000
epoch

10 8

10 6

10 4

10 2

100

102

lo
ss

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(d)

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(e)

0 10000 20000 30000 40000 50000
epoch

0.0

0.2

0.4

0.6

0.8

co
sin

e
di

st
an

ce

representation classification last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(f)

epsilon = 10−7

0 10000 20000 30000 40000 50000
epoch

10 7

10 5

10 3

10 1

101

lo
ss

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

la
st

 la
ye

r n
or

m

(g)

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

la
st

 la
ye

r n
or

m

(h)

0 10000 20000 30000 40000 50000
epoch

0.0

0.1

0.2

0.3

0.4
co

sin
e

di
st

an
ce

representation classification last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

la
st

 la
ye

r n
or

m

(i)

epsilon = 10−5

0 10000 20000 30000 40000 50000
epoch

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

la
st

 la
ye

r n
or

m

(j)

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

la
st

 la
ye

r n
or

m

(k)

0 10000 20000 30000 40000 50000
epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

co
sin

e
di

st
an

ce

representation classification last layer norm

0.06

0.08

0.10

0.12

0.14
la

st
 la

ye
r n

or
m

(l)

epsilon = 10−4

Figure 24: Cosine distance evolution for Transformer described in Appendix B trained on modular division. Observe
that the cosine distance from initialization increases with models that experience Slingshot Effects.

33

Published in Transactions on Machine Learning Research (02/2024)

0 20000 40000 60000 80000 100000120000140000
epoch

10 4

10 3

10 2

10 1

100

101

lo
ss

train validation last layer norm

0.05

0.06

0.07

0.08

0.09

0.10

0.11

la
st

 la
ye

r n
or

m

0 20000 40000 60000 80000 100000120000140000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.05

0.06

0.07

0.08

0.09

0.10

0.11

la
st

 la
ye

r n
or

m

(a) (b)

0 20000 40000 60000 80000 100000120000140000
epoch

10 5

10 4

10 3

10 2

10 1

100

101

lo
ss

train validation last layer norm

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

la
st

 la
ye

r n
or

m

0 20000 40000 60000 80000 100000120000140000
epoch

0

20

40

60

80

100
ac

cu
ra

cy
train validation last layer norm

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

la
st

 la
ye

r n
or

m

(c) (d)

0 20000 40000 60000 80000 100000120000140000
epoch

10 6

10 5

10 4

10 3

10 2

10 1

100

101

lo
ss

train validation last layer norm

0.06

0.08

0.10

0.12

la
st

 la
ye

r n
or

m

0 20000 40000 60000 80000 100000120000140000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.06

0.08

0.10

0.12
la

st
 la

ye
r n

or
m

(e) (f)

Figure 25: Optimizing a Transformer with SGD on modular division dataset: Norm growth vs (a), (c), (e) training
and validation loss, (b), (d), (f) training and validation accuracy. Note the lack of Slingshot Effects, Grokking and
generalization seen with Adam optimizer.

34

Published in Transactions on Machine Learning Research (02/2024)

loss validation accuracy

0 20000 40000 60000 80000 100000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train loss last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(a)

0 20000 40000 60000 80000 100000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

validation accuracy last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(b)

β2 = 0.98, ϵ = 10−8 β2 = 0.98, ϵ = 10−8

0 20000 40000 60000 80000 100000
epoch

10 8

10 6

10 4

10 2

100

lo
ss

train loss last layer norm

0.1

0.2

0.3

0.4

0.5

0.6

la
st

 la
ye

r n
or

m

(c)

0 20000 40000 60000 80000 100000
epoch

0

20

40

60

80

100
ac

cu
ra

cy

validation accuracy last layer norm

0.1

0.2

0.3

0.4

0.5

0.6

la
st

 la
ye

r n
or

m

(d)

β2 = 0.9995, ϵ = 10−8 β2 = 0.9995, ϵ = 10−8

0 20000 40000 60000 80000 100000
epoch

10 7

10 5

10 3

10 1

101

lo
ss

train loss last layer norm

0.2

0.4

0.6

0.8

1.0

la
st

 la
ye

r n
or

m

(e)

0 20000 40000 60000 80000 100000
epoch

0

10

20

30

40

50

60

70

ac
cu

ra
cy

validation accuracy last layer norm

0.2

0.4

0.6

0.8

1.0

la
st

 la
ye

r n
or

m

(f)

β2 = 0.9997, ϵ = 10−8 β2 = 0.9997, ϵ = 10−8

Figure 26: Effect of varying Adam optimizer’s β2 hyperprameter. Plot shows train loss and validation accuracy of a
Transformer trained on modular division dataset described in Appendix B. Observe that Slingshot Effects and training
spikes still persists at very high values of β2.

35

Published in Transactions on Machine Learning Research (02/2024)

0 10000 20000 30000 40000 50000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

la
st

 la
ye

r n
or

m

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

la
st

 la
ye

r n
or

m

(a) (b)

Figure 27: Addition dataset with 50/50 train/validation split. Training and validation (a) loss and (b) accuracy.

0 10000 20000 30000 40000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

0 10000 20000 30000 40000
epoch

0

20

40

60

80

100
ac

cu
ra

cy

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(a) (b)

Figure 28: Addition dataset with 60/40 train/validation split. Training and validation (a) loss and (b) accuracy.

0 5000 10000 15000 20000 25000 30000 35000 40000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

2.5

la
st

 la
ye

r n
or

m

0 5000 10000 15000 20000 25000 30000 35000 40000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

2.5
la

st
 la

ye
r n

or
m

(a) (b)

Figure 29: Addition dataset with 70/30 train/validation split. Training and validation (a) loss and (b) accuracy.

36

Published in Transactions on Machine Learning Research (02/2024)

0 10000 20000 30000 40000 50000
epoch

10 10

10 8

10 6

10 4

10 2

100

102

lo
ss

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

2.5

la
st

 la
ye

r n
or

m

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

2.5

la
st

 la
ye

r n
or

m

(a) (b)

Figure 30: Cubepoly dataset with 50/50 train/validation split. Cubepoly operation is given by (a3 + b (mod p) for
0 ≤ a, b < p). Training and validation (a) loss and (b) accuracy.

0 10000 20000 30000 40000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

la
st

 la
ye

r n
or

m

0 10000 20000 30000 40000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

la
st

 la
ye

r n
or

m

(a) (b)

Figure 31: Cubepoly dataset with 60/40 train/validation split. Cubepoly operation is given by (a3 + b (mod p) for
0 ≤ a, b < p). Training and validation (a) loss and (b) accuracy.

37

Published in Transactions on Machine Learning Research (02/2024)

0 5000 10000 15000 20000 25000 30000 35000 40000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

la
st

 la
ye

r n
or

m

0 5000 10000 15000 20000 25000 30000 35000 40000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

la
st

 la
ye

r n
or

m

(a) (b)

Figure 32: Cubepoly dataset with 70/30 train/validation split. Cubepoly operation is given by (a3 + b (mod p) for
0 ≤ a, b < p). Training and validation (a) loss and (b) accuracy.

0 5000 10000 15000 20000 25000 30000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

la
st

 la
ye

r n
or

m

0 5000 10000 15000 20000 25000 30000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

la
st

 la
ye

r n
or

m

(a) (b)

Figure 33: Cubepoly dataset with 80/20 train/validation split. Cubepoly operation is given by (a3 + b (mod p) for
0 ≤ a, b < p). Training and validation (a) loss and (b) accuracy.

38

Published in Transactions on Machine Learning Research (02/2024)

0 10000 20000 30000 40000 50000
epoch

10 10

10 8

10 6

10 4

10 2

100

102

lo
ss

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

la
st

 la
ye

r n
or

m

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

la
st

 la
ye

r n
or

m

(a) (b)

Figure 34: Division dataset with 50/50 train/validation split. Training and validation (a) loss and (b) accuracy.

0 10000 20000 30000 40000
epoch

10 10

10 8

10 6

10 4

10 2

100

102

lo
ss

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

la
st

 la
ye

r n
or

m

0 10000 20000 30000 40000
epoch

0

20

40

60

80

100
ac

cu
ra

cy

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

la
st

 la
ye

r n
or

m

(a) (b)

Figure 35: Division dataset with 60/40 train/validation split. Training and validation (a) loss and (b) accuracy.

0 5000 10000 15000 20000 25000 30000 35000 40000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

2.5

la
st

 la
ye

r n
or

m

0 5000 10000 15000 20000 25000 30000 35000 40000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

2.5
la

st
 la

ye
r n

or
m

(a) (b)

Figure 36: Division dataset with 70/30 train/validation split. Training and validation (a) loss and (b) accuracy.

39

Published in Transactions on Machine Learning Research (02/2024)

0 5000 10000 15000 20000 25000 30000 35000 40000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

la
st

 la
ye

r n
or

m

0 5000 10000 15000 20000 25000 30000 35000 40000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

la
st

 la
ye

r n
or

m

(a) (b)

Figure 37: Even-add-odd-subtraction dataset with 70/30 train/validation split. Even-add-odd-subtraction operation
is given by [a + b (mod p) if a is even, otherwise a − b (mod p)] for 0 ≤ a, b < p. Training and validation (a) loss and
(b) accuracy.

0 10000 20000 30000 40000 50000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(a) (b)

Figure 38: Multiplication dataset with 50/50 train/validation split. Training and validation (a) loss and (b) accuracy.

40

Published in Transactions on Machine Learning Research (02/2024)

0 10000 20000 30000 40000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

la
st

 la
ye

r n
or

m

0 10000 20000 30000 40000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

la
st

 la
ye

r n
or

m

(a) (b)

Figure 39: Multiplication dataset with 60/40 train/validation split. Training and validation (a) loss and (b) accuracy.

0 5000 10000 15000 20000 25000 30000 35000 40000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

2.5

la
st

 la
ye

r n
or

m

0 5000 10000 15000 20000 25000 30000 35000 40000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

2.5

la
st

 la
ye

r n
or

m

(a) (b)

Figure 40: Squarepoly dataset with 70/30 train/validation split. Squarepoly operation is given by a2 + b (mod p) for
0 ≤ a, b < p. Training and validation (a) loss and (b) accuracy.

41

Published in Transactions on Machine Learning Research (02/2024)

0 5000 10000 15000 20000 25000 30000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

0 5000 10000 15000 20000 25000 30000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(a) (b)

Figure 41: Squarepoly dataset with 80/20 train/validation split. Squarepoly operation is given by a2 + b (mod p) for
0 ≤ a, b < p. Training and validation (a) loss and (b) accuracy.

0 10000 20000 30000 40000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

0 10000 20000 30000 40000
epoch

0

20

40

60

80

100
ac

cu
ra

cy
train validation last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(a) (b)

Figure 42: Subtraction dataset with 60/40 train/validation split. Training and validation (a) loss and (b) accuracy.

0 5000 10000 15000 20000 25000 30000 35000 40000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

la
st

 la
ye

r n
or

m

0 5000 10000 15000 20000 25000 30000 35000 40000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
la

st
 la

ye
r n

or
m

(a) (b)

Figure 43: Subtraction dataset with 70/30 train/validation split. Training and validation (a) loss and (b) accuracy.

42

Published in Transactions on Machine Learning Research (02/2024)

0 5000 10000 15000 20000 25000 30000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

la
st

 la
ye

r n
or

m

0 5000 10000 15000 20000 25000 30000
epoch

0

20

40

60

80

100
ac

cu
ra

cy

train validation last layer norm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

la
st

 la
ye

r n
or

m

(a) (b)

Figure 44: Subtraction dataset with 80/20 train/validation split. Training and validation (a) loss and (b) accuracy.

43

Published in Transactions on Machine Learning Research (02/2024)

C Controlling Instability Through Normalization and Norm Constraints

Training instability is the hallmark of the Slingshot Effect, yet as seen in previous sections, the Slingshot Effect
typically results in improved performance, and Grokking. In this section, we explore whether it is possible
to maintain stable training, without sacrificing performance. To this end, we explore how constraining and
regularizing the weights of the network affect the Slingshot behaviour, and overall performance.

C.1 Weight decay

weight decay = 0 weight decay = 0.1 weight decay = 1.0

0 10000 20000 30000 40000 50000
epoch

10 10

10 8

10 6

10 4

10 2

100

102

lo
ss

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
la

st
 la

ye
r n

or
m

(a)

0 5000 10000 15000 20000 25000 30000
epoch

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

0.18

la
st

 la
ye

r n
or

m

(b)

0 5000 10000 15000 20000 25000 30000
epoch

10 2

10 1

100

lo
ss

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

la
st

 la
ye

r n
or

m

(c)

train and validation loss vs epochs

0 10000 20000 30000 40000 50000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

la
st

 la
ye

r n
or

m

(d)

0 5000 10000 15000 20000 25000 30000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

0.18

la
st

 la
ye

r n
or

m

(e)

0 5000 10000 15000 20000 25000 30000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

la
st

 la
ye

r n
or

m

(f)

train and validation accuracy vs epochs

Figure 45: Division dataset: Norm behavior with different weight decay values. Training and validation loss vs epochs
with weight decay (a) 0.0, (b) 0.1, (c) 1.0; Training and validation accuracy vs epochs shown in (d), (e) and (f). The
evolution of classifier weight norm shows instability as increase in weight decay strength.

Weight decay is a commonly used regularization approach to improve the generalization performance of
neural networks. Power et al. (2021) show that weight decay has the largest positive effect on alleviating
Grokking. Weight decay naturally controls the size of the parameters and consequently their norm growth.
We study the effect of weight decay on stability of training Transformers with Grokking datasets in this
section. We use weight decay values from 0, 0.1, 0.2, 0.4, 0.6, 0.8and1.0 with AdamW (Loshchilov & Hutter,
2017) optimizer. Figure 45 shows the results for division dataset. We observe from Figure 45 that as weight
decay strength increases, both Slingshot Effects and Grokking phenomenon disappear with the model reaching
high validation accuracy quickly as seen in Figure 45e and Figure 45f. However, we observe that the model
experiences instability as can been seen with the loss plots in Figure 45b and Figure 45c or the accuracy
plots in Figure 45e and Figure 45f. A similar trend is observed for addition and multiplication datasets in
Figure 46 and Figure 47 respectively.

The results shown above indicate that Slingshot may not be the only way to achieve good generalization.
Both Slingshot and weight decay prevent the norms from growing unbounded and achieve high validation
accuracy as seen in plots described above. While weight decay shows different weight norm dynamics, this

44

Published in Transactions on Machine Learning Research (02/2024)

weight decay = 0 weight decay = 0.1 weight decay = 1.0

0 5000 10000 15000 20000 25000 30000 35000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

2.5

la
st

 la
ye

r n
or

m

(a)

0 5000 10000 15000 20000 25000 30000 35000
epoch

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

0.18

la
st

 la
ye

r n
or

m

(b)

0 5000 10000 15000 20000 25000 30000 35000
epoch

10 2

10 1

100

lo
ss

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

la
st

 la
ye

r n
or

m

(c)

train and validation loss vs epochs

0 5000 10000 15000 20000 25000 30000 35000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

2.5

la
st

 la
ye

r n
or

m

(d)

0 5000 10000 15000 20000 25000 30000 35000
epoch

0

20

40

60

80

100
ac

cu
ra

cy

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

0.18

la
st

 la
ye

r n
or

m

(e)

0 5000 10000 15000 20000 25000 30000 35000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

la
st

 la
ye

r n
or

m

(f)

train and validation accuracy vs epochs

Figure 46: Addition dataset: Norm behavior with different weight decay values. Training and validation loss vs epochs
with weight decay (a) 0.0, (b) 0.1, (c) 1.0; Training and validation accuracy vs epochs shown in (d), (e) and (f). The
evolution of classifier weight norm shows instability as increase in weight decay strength.

regularization does not decrease training instability. These results suggest the need for alternative approaches
to improve training stability.

45

Published in Transactions on Machine Learning Research (02/2024)

weight decay = 0 weight decay = 0.1 weight decay = 1.0

0 10000 20000 30000 40000
epoch

10 10

10 8

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(a)

0 5000 10000 15000 20000 25000
epoch

10 6

10 4

10 2

100

lo
ss

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

la
st

 la
ye

r n
or

m

(b)

0 5000 10000 15000 20000 25000 30000 35000
epoch

10 2

10 1

100

lo
ss

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

0.18

la
st

 la
ye

r n
or

m

(c)

train and validation loss vs epochs

0 10000 20000 30000 40000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.0

0.5

1.0

1.5

2.0

la
st

 la
ye

r n
or

m

(d)

0 5000 10000 15000 20000 25000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

0.16
la

st
 la

ye
r n

or
m

(e)

0 5000 10000 15000 20000 25000 30000 35000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.06

0.08

0.10

0.12

0.14

0.16

0.18

la
st

 la
ye

r n
or

m

(f)

train and validation accuracy vs epochs

Figure 47: Multiplication dataset: Norm behavior with different weight decay values. Training and validation loss vs
epochs with weight decay (a) 0.0, (b) 0.1, (c) 1.0; Training and validation accuracy vs epochs shown in (d), (e) and
(f). The evolution of classifier weight norm shows instability as increase in weight decay strength.

46

Published in Transactions on Machine Learning Research (02/2024)

C.2 Features and parameter normalization

A second approach that we use to explicitly control weights and feature norm is by normalizing the features
and weights via the following scheme: w = w

∥w∥ , f(x) = f(x)
∥f(x)∥ , where w and f(x) are the weights and

inputs to the classification layer respectively, the norm used above is the L2 norm, and x is the input to
the neural network. We take the cosine similarity of the normalized weights and features and divide this
value by a temperature value that we treat as a hyperparameter in these experiments. The operation is
given by: y = w·f(x)

τ where τ represents the temperature hyperparameter. We use temperature values from
0.1, 0.25, 0.5, 0.75, 1.0 for these experiments.

Figure 48 shows the results of Transformer training on division dataset described in Appendix B that is split
evenly into train and validation sets. We observe that the model displays training instability evidenced by
norm behavior and also loss behavior in Figure 48a at lower temperature values. We observe that τ = 0.25
provides a good compromise between fitting training data while showing no training instability as seen in
Figure 48b. This hyperparameter value also results in Grokking as validation accuracy improves late in
training as can be seen from Figure 48e. These together suggest that bounding weights and features norm
helps stabilize training without sacrificing training performance.

We validate the normalization scheme with two additional datasets namely multiplication and division from
Appendix B. Figure 49 shows the results for training Transformers with multiplication dataset that is split
evenly into train and validation sets. We observe from Figure 49 that a proper temperature value can stabilize
training and with some tuning can provide a compromise between training stability and generalization.
Specifically, τ = 0.25 allows the model to fit the training data and reach almost perfect validation accuracy
as seen from Figure 49b and Figure 49e.

Finally, we repeat the above experiments with subtraction dataset and show the results in Figure 50.
This dataset shows that while a properly tuned temperature can help the model achieve almost perfect
generalization, training instability shows up very late in optimization. This observation can be seen from
Figure 50b and Figure 50d. This result suggests that more work remains to be done with understanding and
stabilizing the training behavior of large neural networks.

47

Published in Transactions on Machine Learning Research (02/2024)

temperature = 0.1 temperature = 0.25 temperature = 1.0

0 2000 4000 6000 8000 10000 12000 14000
epoch

10 2

10 1

100

lo
ss

train validation last layer norm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

la
st

 la
ye

r n
or

m

(a)

0 5000 10000 15000 20000 25000
epoch

100

2 × 100

3 × 100

4 × 100

6 × 100
lo

ss
train validation last layer norm

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

la
st

 la
ye

r n
or

m

(b)

0 10000 20000 30000 40000 50000
epoch

4.2 × 100

4.4 × 100

4.6 × 100

4.8 × 100

5 × 100

5.2 × 100

5.4 × 100

lo
ss

train validation last layer norm

0.05

0.10

0.15

0.20

0.25

0.30

la
st

 la
ye

r n
or

m

(c)

train and validation loss vs epochs

0 2000 4000 6000 8000 10000 12000 14000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

la
st

 la
ye

r n
or

m

(d)

0 5000 10000 15000 20000 25000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
la

st
 la

ye
r n

or
m

(e)

0 10000 20000 30000 40000 50000
epoch

0

2

4

6

8

ac
cu

ra
cy

train validation last layer norm

0.05

0.10

0.15

0.20

0.25

0.30

la
st

 la
ye

r n
or

m

(f)

train and validation accuracy vs epochs

Figure 48: Division dataset: Features and parameters normalization. Observe that a smaller temperature allows the
model to fit the data better but experiences training instability. Temperature = 0.25 allows the model to fit and
achieve high validation accuracy without suffering training instability.

48

Published in Transactions on Machine Learning Research (02/2024)

temperature = 0.1 temperature = 0.25 temperature = 1.0

0 10000 20000 30000 40000
epoch

10 2

10 1

100

lo
ss

train validation last layer norm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

la
st

 la
ye

r n
or

m

(a)

0 10000 20000 30000 40000
epoch

100

2 × 100

3 × 100

4 × 100

6 × 100
lo

ss
train validation last layer norm

0.1

0.2

0.3

0.4

0.5

0.6

la
st

 la
ye

r n
or

m

(b)

0 5000 10000 15000 20000 25000 30000 35000 40000
epoch

4.2 × 100

4.4 × 100

4.6 × 100

4.8 × 100

5 × 100

5.2 × 100

5.4 × 100

lo
ss

train validation last layer norm

0.05

0.10

0.15

0.20

0.25

0.30

la
st

 la
ye

r n
or

m

(c)

train and validation loss vs epochs

0 10000 20000 30000 40000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

la
st

 la
ye

r n
or

m

(d)

0 10000 20000 30000 40000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.1

0.2

0.3

0.4

0.5

0.6
la

st
 la

ye
r n

or
m

(e)

0 5000 10000 15000 20000 25000 30000 35000 40000
epoch

0

2

4

6

8

ac
cu

ra
cy

train validation last layer norm

0.05

0.10

0.15

0.20

0.25

0.30

la
st

 la
ye

r n
or

m

(f)

train and validation accuracy vs epochs

Figure 49: Multiplication dataset: Features and parameters normalization. Observe that a smaller temperature allows
the model to fit the data better but experiences training instability. Temperature = 0.25 allows the model to fit and
achieve high validation accuracy without suffering training instability.

49

Published in Transactions on Machine Learning Research (02/2024)

temperature = 0.1 temperature = 0.25 temperature = 1.0

0 10000 20000 30000 40000
epoch

10 2

10 1

100

lo
ss

train validation last layer norm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

la
st

 la
ye

r n
or

m

(a)

0 5000 10000 15000 20000 25000 30000 35000
epoch

100

2 × 100

3 × 100

4 × 100

6 × 100
lo

ss
train validation last layer norm

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

la
st

 la
ye

r n
or

m

(b)

0 5000 10000 15000 20000 25000
epoch

4.2 × 100

4.4 × 100

4.6 × 100

4.8 × 100

5 × 100

5.2 × 100

5.4 × 100

lo
ss

train validation last layer norm

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

la
st

 la
ye

r n
or

m

(c)

train and validation loss vs epochs

0 10000 20000 30000 40000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

la
st

 la
ye

r n
or

m

(d)

0 5000 10000 15000 20000 25000 30000 35000
epoch

0

20

40

60

80

100

ac
cu

ra
cy

train validation last layer norm

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
la

st
 la

ye
r n

or
m

(e)

0 5000 10000 15000 20000 25000
epoch

0

1

2

3

4

5

ac
cu

ra
cy

train validation last layer norm

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

la
st

 la
ye

r n
or

m

(f)

train and validation accuracy vs epochs

Figure 50: Subtraction dataset: Features and parameters normalization. Observe that a smaller temperature allows
the model to fit the data better but experiences training instability. Temperature = 0.25 allows the model to fit and
achieve high validation accuracy. However, we observe training instability as can seen with weight norm dynamics.

50

Published in Transactions on Machine Learning Research (02/2024)

D Slingshot Effects and Linear Mode Connectivity

Recent works (Lubana et al., 2023; Juneja et al., 2023) have used mode connectivity analysis to explore the
loss landscapes of neural networks. These works suggest the existence of multiple basins in the loss surface
each with its own generalization behavior (Lubana et al., 2023; Juneja et al., 2023). Given the empirical
observations we make with Slingshot Effects, one hypothesis to explore is that each Slingshot Effect leads the
model to a different basin in the loss landscape that shows potentially differeing generalization behavior. In
this section, we explore whether Adam optimizer (Kingma & Ba, 2014) explores different basins in the loss
landscape by plotting the loss along the linear path between different model checkpoints collected during
optimization. We defer a thorough study of the above hypothesis to future work.

0 2000 4000 6000 8000 10000
epoch

10 7

10 5

10 3

10 1

101

lo
ss

train loss
validation loss

(a)

0 2000 4000 6000 8000 10000
epoch

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

train accuracy
validation accuracy

(b)

Figure 51: Subset parity dataset: train and validation (a) loss and (b) accuracy.

We train a 3-layer MLP with hidden layer width 100 on a (50, 3) subset-parity dataset described in Ap-
pendix A.6. The training dataset consists of 1000 samples while the test dataset consists of 8192 samples. We
optimize the network with Adam and cross-entropy loss using a learning rate of 0.004, β1 = 0.9, β2 = 0.999,
ϵ = 10−8 and batch size set to 32. The model is optimized with Adam (Kingma & Ba, 2014) for 10000 epochs.
Figure 51 shows the train and validation loss and accuracy metrics for this experiment.

The linear mode connectivity (LMC) analysis is conducted by using two checkpoints as input and interpolating
between the checkpoints to generate model weights. We choose two checkpoints that are equidistant (as
measured in epochs) from a Slingshot Effect event or training loss spike. Specifically, we use two checkpoints
that are 25 epochs on either slide of a Slingshot Effect as this value allows us to include periods of low train
loss on either side of the loss spike. We tested other values for the number of epochs going as low as 10
epochs and found that this hyperparameter has a negligible effect on our analysis.

We linearly interpolate between the two checkpoints chosen using the method described above and use the
interpolated weights to calculate train and validation metrics. Figure 52 shows an example LMC plot that
includes the train loss calculated via interpolation (top-left). We observe that the LMC train loss shows a
peak that suggests a loss barrier4 that in turn suggests that the model checkpoints are in different basins.
Figure 53 and Figure 54, captured at different points during training, show additional examples of LMC
analysis that intuitively suggest that the model jumps between different loss basins.

4We borrow this terminology from (Lubana et al., 2023; Juneja et al., 2023)

51

Published in Transactions on Machine Learning Research (02/2024)

0.0 0.2 0.4 0.6 0.8 1.0
linear interpolation coefficient

10 7

10 5

10 3

10 1

lo
ss

Weights obtained by interpolating checkpoints
 at epoch 3448 & epoch 3498

train loss
validation loss

3450 3460 3470 3480 3490
epoch

10 7

10 5

10 3

10 1

101

lo
ss

Weights obtained using Adam optimizer

train loss
validation loss

0.0 0.2 0.4 0.6 0.8 1.0
linear interpolation coefficient

0.92

0.94

0.96

0.98

1.00

ac
cu

ra
cy train accuracy

validation accuracy

3450 3460 3470 3480 3490
epoch

0.900

0.925

0.950

0.975

1.000

ac
cu

ra
cy

train accuracy
validation accuracy

Figure 52: Train and validation metrics calculated with model weights generated via linear interpolation (left) and via
Adam optimization (right).

0.0 0.2 0.4 0.6 0.8 1.0
linear interpolation coefficient

10 7

10 5

10 3

10 1

lo
ss

Weights obtained by interpolating checkpoints
 at epoch 6320 & epoch 6370

train loss
validation loss

6320 6330 6340 6350 6360 6370
epoch

10 7

10 5

10 3

10 1

101

lo
ss

Weights obtained using Adam optimizer

train loss
validation loss

0.0 0.2 0.4 0.6 0.8 1.0
linear interpolation coefficient

0.990

0.995

1.000

ac
cu

ra
cy

train accuracy
validation accuracy

6320 6330 6340 6350 6360 6370
epoch

0.94

0.96

0.98

1.00

ac
cu

ra
cy

train accuracy
validation accuracy

Figure 53: Train and validation metrics calculated with model weights generated via linear interpolation (left) and via
Adam optimization (right).

52

Published in Transactions on Machine Learning Research (02/2024)

0.0 0.2 0.4 0.6 0.8 1.0
linear interpolation coefficient

10 7

10 5

10 3

10 1

lo
ss

Weights obtained by interpolating checkpoints
 at epoch 7301 & epoch 7351

train loss
validation loss

7300 7310 7320 7330 7340 7350
epoch

10 7

10 5

10 3

10 1

101

lo
ss

Weights obtained using Adam optimizer

train loss
validation loss

0.0 0.2 0.4 0.6 0.8 1.0
linear interpolation coefficient

0.990

0.992

0.994

0.996

0.998

1.000

ac
cu

ra
cy

train accuracy
validation accuracy

7300 7310 7320 7330 7340 7350
epoch

0.97

0.98

0.99

1.00

ac
cu

ra
cy

train accuracy
validation accuracy

Figure 54: Train and validation metrics calculated with model weights generated via linear interpolation (left) and via
Adam optimization (right).

53

	Introduction
	Implications of Our Findings

	Related Work
	The Slingshot Effect
	Experimental Setup
	Experimental Observations
	Effects on Generalization
	Drawbacks and Limitations

	Conclusion
	Appendix Slingshot Effects across Architectures, Optimizers and Datasets
	Vision Transformers on 1000 samples from CIFAR-10
	CNN on 200 samples from CIFAR-10
	MLPs on 200 samples from CIFAR-10
	Shallow models
	Deep linear models
	Learning Subset Parities
	Effective Step Size and Curvature Dynamics

	Different Optimizers
	Vision Transformers and Full CIFAR-10
	Slingshot with MLP and Synthetic Dataset
	Ablation Study

	Appendix Slingshot and Grokking
	Analysis of Parameter Dynamics
	SGD Optimization
	Tuning Adam Optimizer's 2 Hyperparameter
	Slingshots with Additional Datasets

	Appendix Controlling Instability Through Normalization and Norm Constraints
	Weight decay
	Features and parameter normalization

	Appendix Slingshot Effects and Linear Mode Connectivity

