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ABSTRACT

Composed Image Retrieval (CIR) requires retrieving a target image based on a
composed query consisting of an image and accompanying text that modifies or
instructs changes to the visual reference. This task is particularly challenging as
it demands the model effectively follow modification instructions for accurate re-
trieval. Additionally, the difficulty in data acquisition hinders training models for
specific tasks. To address these challenges, recent approaches explore Zero-Shot
CIR (ZS-CIR), mainly leveraging CLIP-based models with tailored projections
to compose images and textual modifications. However, these base models are
not trained on instruction-aware data, limiting their ability to effectively combine
visual and textual cues. In this paper, we propose a novel embedding method uti-
lizing an instruction-tuned Multimodal Large Language Model (MLLM) to gener-
ate unified embeddings that seamlessly integrate images and modification instruc-
tions. Instruction-tuned MLLMs inherently align vision and text while exhibiting
strong instruction-following capabilities, though they are primarily used in text
generation. We introduce a two-stage training strategy to efficiently transform
the MLLM’s text generation capabilities into embedding extraction, and further
refining its ability to follow modification instructions in CIR. Our model demon-
strates significant advancements in ZS-CIR, outperforming state-of-the-art base-
lines across four public datasets: FashionIQ, CIRR, GeneCIS, and CIRCO. Our
model highlights the potential of instruction-tuned MLLMs in capturing detailed
instruction comprehension and advancing CIR systems.

1 INTRODUCTION

Composed Image Retrieval (CIR) is a challenging task within the field of multimodal retrieval,
wherein a target image is retrieved based on a composed query consisting of both an image and
accompanying text (Saito et al., 2023; Gu et al.; Agnolucci et al., 2024). The textual input typically
serves as a modification or instruction applied to the visual reference, guiding the retrieval process.
Such tasks are prevalent in practical applications, particularly in e-commerce scenarios (Barbany
et al., 2024; Zhu et al., 2024), where users might wish to find visually similar items with slight
modifications, such as a change in color or style. However, unlike conventional image-text retrieval
tasks, CIR presents unique challenges in data acquisition, as it necessitates the creation of triplet
data <source image, modifier text, target image>. This requirement significantly increases the
complexity and cost of data collection, as human annotators are often needed to generate appropriate
textual descriptions that link relevant images. Consequently, existing CIR datasets are limited in size
and diversity, hindering the generalization ability of current models (Bai et al., 2023; Baldrati et al.,
2022; Delmas et al., 2022; Ma et al., 2021; Vo et al., 2019). To address the limitations in CIR, recent
research (Baldrati et al., 2023b; Ventura et al., 2024) has focused on Zero-Shot Composed Image
Retrieval (ZS-CIR) as a scalable approach that can generalize to diverse contexts.

Most existing ZS-CIR models build on CLIP-based architectures (Radford et al., 2021), leveraging
their robust visual-text representation capabilities. For example, Pic2Word (Saito et al., 2023) and
SEARLE (Agnolucci et al., 2024) utilize lightweight projection modules to map visual embeddings
into the textual space, enhancing the interaction between visual and textual modalities within CLIP’s
framework. Similarly, LinCIR (Gu et al.) introduces a language-only training strategy, utilizing key-
words in text to represent images and circumvent the need for extensive triplet datasets. While these
methods are effective, they are fundamentally constrained by the limitations of the CLIP model,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The dog is running.

MLLM

Vision 
Encoder

VLM

Image Candidates

Adapter

Query 
Image

Modifier 
Text

InstructCIR Previous SOTAsfrozen trainable

🔥

🔥

🔥

Figure 1: Comparison of Existing CIR Approaches vs. InstructCIR. Current state-of-the-art
CIR methods typically rely on frozen VLMs, such as CLIP, which are augmented with adapters or
by replacing the text encoder with a frozen LLM. These methods are constrained by the limited
of instruction-following capabilities due to their frozen components. In contrast, our approach em-
ploys instruction-tuned MLLMs specifically designed for instruction-following tasks like CIR. We
introduce a two-stage training strategy that more effectively adapts the model to CIR, resulting in
significant improvements in flexibility and performance.

which inherently lacks the instruction-following capability needed to understand composed queries.
As they are trained solely on image-text pair data, this often results in a performance bottleneck.

Recently, the advent of Large Language Models (LLMs) (Zhao et al., 2023) has opened new
possibilities for improving CIR by incorporating richer instruction understanding. For instance,
CIReVL (Karthik et al., 2023) leverages GPT-3.5 Brown (2020) to combine detailed image captions
and textual instructions, thereby enabling a more flexible retrieval process without the need for direct
model training. However, this method encounters high computational costs and rigidity during in-
ference. VDG (Jang et al., 2024) proposes generating triplet data using a trained Multimodal LLMs
(MLLMs) (Yin et al., 2023), but the MLLM itself remains peripheral to the retrieval process, limit-
ing its direct impact on model performance. Approaches such as FROMAGe (Koh et al., 2023) and
MCL (Li et al.) employ image captioning and contrastive learning to integrate LLMs with visual
encoders, yet they freeze the LLMs to function purely as static encoders. As a result, these models
do not fully exploit the adaptability and instruction awareness that LLMs can offer for more detailed
query comprehension in ZS-CIR tasks.

Inspired by recent advances in using LLMs for text embedding benchmarks (Wang et al., 2023;
Muennighoff et al., 2024), we introduce a novel embedding method based on pure instruction-tuned
MLLMs for CIR in this paper. MLLMs, such as LLaVA (Liu et al., 2024c), which are trained
through visual instruction tuning, offer two key advantages. First, they provide a solid vision-text
alignment, crucial for multimodal tasks like CIR. Second, they are designed to follow complex
instructions, a capability learned during training. However, despite their potential, MLLMs have
been primarily used for text generation tasks, and their application to CIR has not been thoroughly
explored. A related concurrent work (Jiang et al., 2024) trains such a model with pure text pair
data. But their training does not introduce instruction awareness and is limited to the text modality,
leading to sub-optimal solutions. To fully exploit the capability of MLLMs in ZS-CIR, we introduce
a two-stage training strategy to adapt MLLMs for CIR. In the first stage, we perform contrastive
learning (Chen et al., 2020) using pure image-text pairs to shift the MLLM’s function from text
generation to representation extraction, enabling it to produce multimodal embeddings suitable for
retrieval. In the second stage, we enhance the MLLM’s instruction-awareness by tuning it on a triplet
dataset derived from an existing pair-wise dataset using GPT-4o (Achiam et al., 2023). The MLLM
is trained to produce unified embeddings that align with the altered caption based on the composition
of the image and query. Our approach, called InstructCIR, enhances model performance on ZS-
CIR benchmarks, surpassing current state-of-the-art baselines. The differences between InstructCIR
and prior methods are depicted in Figure 1.

In summary, our contributions are threefold: (1) To enable better image-instruction compositions, we
propose an embedding strategy based on instruction-tuned MLLMs, providing superior instruction-
following capabilities over previous approaches. (2) We propose a two-stage training strategy that
not only transforms an MLLM’s strong text generation capabilities to effective embedding extraction
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Figure 2: The Two-Stage Training Strategy for InstructCIR. The diagram illustrates our two-
stage approach. Stage 1: The model is trained on image-caption pairs (i, c) to align multimodal
embeddings. The image is encoded by the MLLM to hi, while the caption is processed to generate
hc. This stage establishes a shared embedding space for both modalities. Stage 2: The model is
fine-tuned with triplet data (i, t, cr). The image and modifier text are composed into an embedding
hit, while the modified caption is encoded as hcr . The objective is to align hit and hcr , enhancing
instruction-following abilities. The visual module includes the visual encoder and adapter. The
strategy effectively handles CIR tasks by integrating visual and textual information.

but also optimally adapts it for ZS-CIR tasks. (3) Our model demonstrates significant advancements
in Zero-Shot Composed Image Retrieval across four public datasets: FashionIQ, CIRR, GeneCIS,
and CIRCO, outperforming existing state-of-the-arts baselines by a significant margin.

2 METHODOLOGY

In this section, we first outline the preliminaries of CIR and introduce the notations used in this pa-
per. We then present InstructCIR, an MLLM-based embedding model capable of processing images,
text, or a combination of both to generate a unified embedding. This unified embedding captures the
composition of reference images and textual instructions, which is then used to retrieve the target
images. To train this model, we propose a two-stage training strategy, as shown in Figure 2. The first
stage focuses on embedding alignment, where we utilize pure image-text pairs to train the MLLM
as an effective embedding model. This step is crucial for transitioning the MLLM from a text gener-
ation role to that of representation extraction, ensuring that it can generate high-quality embeddings
suitable for retrieval tasks. In the second stage, we train the model to produce instruction-aware
embeddings. We construct a triplet dataset <source image, modifier text, target caption> from an
existing <image, caption> dataset by prompting GPT-4o to generate altering instructions and cor-
responding modified captions. The model is then trained using a contrastive learning approach, aim-
ing to align the image-instruction embeddings with the target caption embeddings. This two-stage
framework allows the MLLM to learn both modality alignment and instruction-following capabili-
ties, which are essential for effective CIR.

2.1 PRELIMINARY

Composed Image Retrieval (CIR) involves retrieving target images based on a combination of a
reference image and a modifier text which we term instruction or prompt. Formally, given a ref-
erence image i ∈ I and an instruction t ∈ T that describes the desired modification, the com-
posed query q = (i, t) is used to search for the closest target image ir within an image database
D = {i1, i2, · · · , iN}. The primary challenge in CIR lies in generating unified embeddings that
can effectively represent the composition of both visual and textual information. Existing CIR mod-
els (Saito et al., 2023; Gu et al.; Agnolucci et al., 2024) often address this challenge by employing
projection techniques on top of CLIP, where the visual representation is transformed into text tokens.
These tokens, along with the instruction, are encoded into a unified embedding space. However, this
approach can be limited by the modality gap that exists between visual and textual latent spaces in
the joint embedding. Furthermore, the representation learning capability of these models is funda-
mentally constrained by the capacity of the pretrained CLIP model, which can act as a bottleneck in
capturing the complex semantics required for effective CIR.
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2.2 CONSTRUCTING INSTRUCTION-AWARE DATASET

Our training pipeline involves a two-stage strategy, where one phase is dedicated to generating
instruction-aware embeddings using triplet data. In this subsection, we outline the process of con-
structing such a dataset. Drawing inspiration from MCL (Li et al.), we induce triplet data from
the pair data available in the existing dataset CC3M (Sharma et al., 2018). Specifically, for each
image-caption pair (i, c), we utilize the caption c to represent the image i. Unlike MCL, we propose
leveraging GPT-4o (Achiam et al., 2023) using the Chain of Thought method (Wei et al., 2022).
This involves providing GPT with the original caption c and two few-shot examples. In each exam-
ple, GPT brainstorms an instruction by first identifying key concepts in the caption, then deriving
a modified caption based on the instruction. For instance, given the caption “A husky is lying on
the grass,” we identify the object husky, the action lying, and the background grass. By changing
the action to running, the modified caption becomes “A husky is running on the grass.” The query
caption c is given to GPT followed by examples, resulting in a triplet (i, t, cr) where t is the brain-
stormed instruction and cr is the modified caption. Due to space limitations, figures illustrating the
processing pipeline and difference from the MCL data processing are included in Appendix B.

Notably, acquiring the modified image ir is often more complex and costly. Therefore, we use the
constructed triplet (i, t, cr) directly for model training. Since the ultimate retrieval target in CIR is
an image, rather than text, we propose aligning the joint embedding space of images and text in the
first stage. This alignment ensures that, when the model is trained to retrieve the modified caption
in the second stage, the resulting embeddings are consistent with those of the modified images. This
approach facilitates effective training for CIR by aligning textual modifications with visual changes.

2.3 INSTRUCTION-AWARE CONTRASTIVE LEARNING

LLM

Adapter

Visual Encoder

Image 𝑖 Instruction 𝑡

Tokenizer

[EOS]

ℎ
Model Architecture

Figure 3: Model Architecture: The image i is
processed by a visual encoder and adapter, while
the instruction t is tokenized. Both are concate-
nated and fed into the LLM along with the [EOS]
token. The final output at the [EOS] token pro-
vides the unified embedding h.

Model Architecture. We utilize the MLLM as
the embedding model due to its ability to gen-
erate unified embeddings for both images and
text. In common MLLMs, images are first pro-
cessed by the visual encoder, such as a Vision
Transformer (ViT) (Alexey, 2020). The result-
ing patch embeddings are then projected into
the LLM embedding space via an adapter, al-
lowing them to be concatenated with the input
text embeddings. The concatenated sequence is
subsequently fed into the LLM component to
produce the final output. When only textual in-
put, such as captions and prompts, is provided,
it is directly tokenized and processed by the
LLM, bypassing the visual encoder. To extract
a comprehensive embedding from the MLLM,
we append a special token [EOS] at the end of
the input sequence, ensuring that the model’s
final output captures the entire context. The
input sequence, including this [EOS] token, is
forwarded through the model, and the embed-
ding corresponding to the [EOS] token in the
output sequence is used as the global represen-
tation h. This forward process is illustrated in Figure 3. We use subscripts to denote representations
from different inputs in later sections.

Embedding Alignment. Although MLLMs have achieved alignment between vision and text in-
puts, they are typically not optimized for embedding extraction. In the first stage of our training
process, we aim to learn a joint retrieval embedding space tailored for multimodal inputs. Specif-
ically, we employ an image-caption pair dataset (i, c) ∈ D1 for contrastive learning. Similar to
Jiang et al. (2023) for text embedding extraction, a unified instruction is used to prompt the model
to summarize each image or text, formulated as: Summarize the image (text) in one word:. Both the
image and the text, along with their respective instructions, are then fed into the model to obtain the
embeddings (hi, hc). The model is trained using an InfoNCE loss (Oord et al., 2018), as defined
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in Equation 1. During this stage, all components of the MLLM, including the visual encoder, the
adapter, and the LLM, are trainable. This comprehensive training approach is designed to facilitate
the learning of a unified embedding space.

L1 = −1

2

log
ϕ(hi, hc)

ϕ(hi, hc) +
∑

n∈N1

ϕ(hi, hnc)
+ log

ϕ(hc, hi)

ϕ(hc, hi) +
∑

n∈N1

ϕ(hc, hni)

 (1)

Here, ϕ(hi, hc) = exp
(
1
τ cos(hi, hc)

)
represents the scaled cosine similarity, where τ is the temper-

ature parameter. N1 denotes the set of negative samples for the current batch, and hni
(hnc

) refers
to negative image (caption) correspondences. We utilize in-batch samples as well as hard negative
samples (if exist) to construct the negative set. Details are shown in the left part of Figure 2.

Instruction Contrastive Tuning. From the previous stage, we have obtained an MLLM-based em-
bedding model capable of encoding both images and text into a joint embedding space. In this stage,
our objective is to train the model to generate instruction-aware embeddings that generalize effec-
tively to different instructions. To enhance the model’s zero-shot performance on unseen composed
image retrieval, we incorporate two distinct prompt templates during training.

Given the generated triplet data (i, t, cr) ∈ D2, we use the first template to integrate the modification
instruction t. This template, such as “Using this prompt: {}, describe the conditioned image: ”, is
sampled from a predefined set and is designed to guide the model in understanding how the image
should be modified according to the instruction. The reference image i and the formatted instruction
are encoded by the model into a composed embedding hit.

The second template is employed to guide the model in retrieving the modified caption. We use a
summary prompt, such as “Summarize the image for retrieval: ”, sampled from another predefined
set, to encode the modified caption cr. This template helps the model learn to distill key information
into a retrieval-friendly representation. The model encodes the prompt and the modified caption to
generate the embedding hcr . Details of the prompt template sets are provided in Appendix C.

By using two different templates, we encourage the model to distinguish between the task of un-
derstanding modification instructions and the task of generating embeddings that are optimal for
retrieval. This distinction is crucial for enhancing the model’s ability to generalize to unseen data
in a zero-shot setting. Finally, we compute the InfoNCE loss between the composed embedding
hit and the target embedding hcr as shown in Equation 2. During this stage, the visual encoder
and adapter are frozen, and only the LLM is trained to refine its instruction-following capabilities.
Details of this stage is shown in the right part of Figure 2.

L2 = −log
ϕ(hit, hcr )

ϕ(hit, hcr ) +
∑

n∈N2

ϕ(hit, hn)
(2)

Here, ϕ represents the scaled cosine similarity. The negative set N2 consists of other in-batch modi-
fied captions and the original caption c of the current sample, serving as a hard negative.

3 EXPERIMENTS

3.1 SETTINGS

For our experiments, we adopt the xtuner/llava-phi-3-mini-hf (Contributors, 2023) as the base model
for InstructCIR, chosen for two key reasons: (1) LLaVA-based models (Liu et al., 2024c) represent
a widely-used paradigm in current MLLMs, and testing on such a model provides valuable insights
that can be generalized to similar architectures. (2) Computational efficiency is a significant con-
cern with general LLMs due to their high memory demands. By utilizing a lightweight, on-device
variant like Phi-3-mini (Abdin et al., 2024), we mitigate these computational challenges. To ensure
consistency with the baseline models, we do not directly apply the checkpoint from xtuner/llava-
phi-3-mini-hf. Instead, we re-train a variant, denoted as LLaVA-Phi, by modifying the visual en-
coder from the original openai/clip-vit-large-patch14-336 (which uses a 336 × 336 resolution) to

5
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Method
CIRR CIRCO

R@1 R@5 R@10 Rs@1 Rs@2 Rs@3 mAP@5 mAP@10 mAP@25 mAP@50

Pic2word 23.90 51.70 65.30 53.76 74.46 87.08 8.72 9.51 10.64 11.29
SEARLE 24.24 52.48 66.29 53.76 75.01 88.19 11.68 12.73 14.33 15.12

KEDs 26.40 54.80 67.20 - - - - - - -
Context-I2W 25.60 55.10 68.50 - - - - - - -

CIReVL 24.55 52.31 64.92 59.54 79.88 89.69 18.57 19.01 20.89 21.80
LinCIR 25.04 53.25 66.68 57.11 77.37 88.89 12.59 13.58 15.00 15.85

FROMAGe 10.96 31.40 - 34.07 - - 4.00 4.44 5.26 5.73
MCL 26.22 56.84 - 61.45 - - 17.67 18.86 20.80 21.68

InstructCIR 35.18 65.12 77.61 67.54 84.77 93.61 22.32 23.80 26.25 27.32

Table 1: Comparison of Zero-Shot CIR Models on CIRCO and CIRR Test Sets. Baseline
results are directly taken from original papers. Results not reported are marked as “-”. Our model
significantly outperforms baseline ZS-CIR models across various metrics and datasets.

Most smiling dog in 

a car

Change view to a large 

open studio area, must 

include deep green couch

has two of them and a 

beer instead of a coke

is on a track and has 

the front wheel in 

the air

Figure 4: Examples from CIRR (top) and CIRCO (bottom) validation sets. Results are ranked
from highest (left) to lowest (right) similarity. InstructCIR effectively retrieves images across a
wide variety of modifier instructions from source images.

openai/clip-vit-large-patch14 with a 224× 224 resolution. Additionally, we upgrade the LLM com-
ponent to the latest Phi-3.5-mini. Note that the goal of training such a variant is solely to make our
experiments consistent with the baselines. In ablation studies, we show our training strategy can be
directly applied to existing MLLMs, such as microsoft/Phi-3.5-vision-instruct (Abdin et al., 2024),
and explore cutting-edge techniques like dynamic high-resolution for CIR tasks.

For the first stage of training, we utilize two image-caption datasets: LLaVA-Pretrain (Liu et al.,
2024a) and FOIL (Shekhar et al., 2017), an extension of the MSCOCO 2014 dataset (Lin et al.,
2014), where each image-caption pair includes hard negative captions to enhance learning. In the
second stage, we derive a 2M triplet dataset from the CC3M, termed CC3M-Instruct. The more
data details are provided in Appendix B.2. We randomly select a 300K subset from CC3M-Instruct,
as it provides efficient training without loss in performance compared to the full dataset. The impact
of training data scale is explored in the ablation studies. Both stages are trained for one epoch. To
optimize efficiency, we employ LoRA (Hu et al., 2021)and DeepSpeed ZeRO-2 (Rajbhandari et al.,
2020) during training. The first stage takes approximately 1.5 hours, while the second stage requires
around 2.5 hours on a cluster of four H100 GPUs. More hyperparameters and configuration details
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Method
Shirt Dress Toptee Average

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

Pic2word 26.20 43.60 20.0 40.2 27.90 47.40 24.70 43.70
SEARLE 26.89 45.58 20.48 43.13 29.32 49.97 25.56 46.23

KEDs 28.90 48.00 21.70 43.80 29.90 51.90 26.80 47.90
Context-I2W 29.70 48.60 23.10 45.30 30.60 52.90 27.80 48.90

CIReVL 29.49 47.40 24.79 44.76 31.36 53.65 28.55 48.57
LinCIR 29.10 46.81 20.92 42.44 28.81 50.18 26.28 46.49

InstructCIR 30.96 50.10 25.11 46.18 32.32 54.22 29.46 50.16

Table 2: Comparison of Zero-Shot CIR Models on FashionIQ. Our model significantly outper-
forms state-of-the-art methods across all FashionIQ sub-benchmarks.

are included in Appendix D. All codes, processed datasets, and model checkpoints will be released
to the public to ensure reproducibility.

3.2 DATASETS AND BASELINES

We evaluate our model using four well-established zero-shot CIR benchmarks: FashionIQ (Wu et al.,
2021), CIRR (Liu et al., 2021a), CIRCO (Baldrati et al., 2023a), and GeneCIS (Vaze et al., 2023).
While FashionIQ is an early benchmark for CIR, its domain is restricted to fashion e-commerce
images. In contrast, CIRR and CIRCO focus on more general natural images. CIRR is the first
CIR dataset centered on natural images, but it suffers from the limitation of having only one target
image per query, leading to potential false negatives. On the other hand, CIRCO improves upon this
by providing multiple target images per query, which reduces the likelihood of false negatives and
offers a more comprehensive evaluation of retrieval accuracy. GeneCIS is a dataset for conditional
image retrieval. It defines four types of conditions as focusing or changing attributes or objects
in images. In line with common practice, we report Recall@k (R@k) for FashionIQ, CIRR, and
GeneCIS, with an additional subset metric for CIRR denoted as Rs@k. For CIRCO, where multiple
correct images can correspond to a single query, we use mean Average Precision (mAP@k) to
capture both precision and recall across different retrieval positions. Importantly, although some
benchmarks, specifically CIRCO and GeneCIS, utilize images from MSCOCO, they are sourced
from different versions and dataset splits with FOIL (2017 vs. 2014, and Unlabeled/Validation
vs. Training sets). Moreover, aside from the images, FOIL does not include the modifier texts
and corresponding targets from these benchmarks but contains only captions. Therefore, there is
no overlap between our training and testing settings. We also report full results using only LLaVA-
Pretrain in the first stage in Appendix E. Note that CIRR and CIRCO have hidden test sets accessible
only through server submissions. We report the main results on these test sets following baseline
protocols but conduct ablations on the corresponding validation sets except Section 3.4.3.

We compare our approach against state-of-the-art CIR models, focusing on those that use ViT-L
(224 × 224) as the visual backbone. These baselines can be divided into two primary categories:
(1) CLIP-based models, including Pic2Word (Saito et al., 2023), CIReVL (Karthik et al., 2023),
Context-I2W (Tang et al., 2024), KEDs (Suo et al., 2024), SEARLE (Agnolucci et al., 2024), and
LinCIR (Gu et al.); and (2) LLM-based models, such as FROMAGe (Koh et al., 2023) and MCL (Li
et al.). We exclude baselines (Zhang et al., 2024) that rely on proprietary data, as their distribution
and overlap with public benchmarks are unknown.

3.3 MAIN RESULTS

For the CIRCO benchmark, Table 1 reports performance on the hidden test set, which is acces-
sible via the submission server provided by Baldrati et al. (2023b). Our approach demonstrates
substantial improvements over existing methods, such as Pic2Word and SEARLE, achieving an
mAP@5 of 22.32%. This represents a notable increase of 13.60% over Pic2Word and 10.64%
over SEARLE. Additionally, when compared to the strongest baseline, CIReVL— which leverages
BLIP-2 (partially trained on MSCOCO 2014) and GPT-3.5-turbo—our model achieves an improve-
ment of 4.79% in mAP@5. These results are particularly significant given that CIRCO is the most
rigorously annotated dataset in the CIR field. Unlike other datasets, CIRCO incorporates multiple
correct target images for each query, addressing the inherent ambiguity of the CIR task, where tex-
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Method
Focus Attribute Change Attribute Focus Object Change Object Average

R@1 R@2 R@3 R@1 R@2 R@3 R@1 R@2 R@3 R@1 R@2 R@3 R@1

Pic2Word 15.65 28.16 38.65 13.87 24.67 33.05 8.42 18.01 25.77 6.68 15.05 24.03 11.15
SEARLE 17.10 29.60 40.70 16.30 25.20 34.20 12.00 22.20 30.90 12.00 24.10 33.90 14.35
LinCIR 16.90 29.95 41.45 16.19 27.98 36.84 8.27 17.40 26.22 7.40 15.71 25.00 12.19
CIReVL 19.50 31.80 42.00 14.40 26.00 35.20 12.30 21.80 30.50 17.20 28.90 37.60 15.85

InstructCIR 21.25 34.55 46.85 16.15 28.74 39.73 17.55 28.01 36.94 17.04 28.98 37.70 18.00

Table 3: Comparison of Zero-Shot CIR Models on GeneCIS. Our model shows superior perfor-
mance over state-of-the-art methods across four different scenarios of GeneCIS.

tual modifications of an image can yield multiple valid outcomes. The strong performance of our
model on this dataset provides key evidence of its robustness and ability to handle complex retrieval
tasks with greater precision than current state-of-the-art methods.

For the CIRR dataset, the results from the hidden test set, returned by the submission server as
in Liu et al. (2021b), are presented in Table 1. CIRR presents unique challenges due to its noisy
nature, where the modifying instruction plays a much larger role in the retrieval process, while the
reference image often has less direct correlation with the target image. Despite this noise, our model
achieves substantial improvements, surpassing Pic2Word and SEARLE by 11.28% and 10.94% in
R@1, respectively. Among the baselines, the most competitive result comes from MCL, an LLM-
based model also trained on triplet data. However, our model surpasses MCL by 8.96% in R@1 and
6.09% in Rs@1, underscoring the effectiveness and flexibility of our approach in handling complex
CIR tasks where the relationship between images and instructions is ambiguous.

Figure 4 visualizes retrieval examples from CIRR and CIRCO with instructions impacting different
semantic elements of the reference image such as viewpoint, layouts, object counts, poses, and
background changes. This provides further indication about the diverse applicability of our setup.

For the FashionIQ dataset, Table 2 highlights the performance of our model compared to previous
zero-shot methods. Our model achieves impressive improvements, with 4.76% and 3.9% increases
in average R@10 over Pic2Word and SEARLE, respectively. It is important to note that our training
data primarily consists of natural images, whereas FashionIQ is a domain-specific dataset focused
on fashion e-commerce images. This significant performance on FashionIQ demonstrates the strong
generalization capability of our model, which can effectively transfer knowledge from natural image
domains to more specialized image retrieval tasks. These results illustrate the proficiency of our
model in addressing the diverse challenges posed by both fashion-specific and general natural image
datasets in zero-shot settings.

For the GeneCIS dataset, Table 3 demonstrates the superiority of our model. It surpasses Pic2Word
and SEARLE by 61.43% and 20.27% in average R@1, and outperforms all baselines in R@2 and
R@3, demonstrating its outstanding capability in processing conditional image retrieval.

3.4 ABLATIONS

Our ablation studies aim to address the following key questions regarding the effectiveness and
robustness of our proposed method: Q1: How do different training stages contribute to model
performance? Q2: What is the impact of training data on model effectiveness? Q3: Can our
approach be easily adapted to sophisticated MLLM mechanisms?

3.4.1 Q1: HOW DO DIFFERENT TRAINING STAGES CONTRIBUTE TO MODEL PERFORMANCE?

To assess the impact of each stage in our training strategy, we conducted ablation studies, isolat-
ing the contributions of Stage 1 and Stage 2. As presented in Table 4, the combination of both
stages consistently yields superior performance, with the second stage contributing more signifi-
cantly. Stage 1 establishes a robust joint embedding space for images and text through contrastive
learning on image-caption pairs. Though not directly related to CIR, it reduces the modality gap,
which is crucial for handling complex compositional queries in Stage 2. In contrast, Stage 2 directly
aligns the model’s training objective with the CIR task by using triplet-based contrastive learning.
Here, the model is explicitly trained to match the image-modification pair to the modified caption,
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Stage 1 Stage 2 CIRCO CIRR FashionIQ Avg.
LLaVA-Pretrain FOIL CC3M-Instruct mAP@5 R@10 R@10

! % % 5.10 46.90 19.91 23.97
% ! % 5.22 47.12 19.13 23.82
! ! % 5.92 50.25 23.16 26.44
% % ! 19.43 73.20 24.19 38.94
! % ! 20.10 75.80 28.90 41.60
% ! ! 20.43 77.04 26.09 41.18
! ! ! 21.27 76.23 29.46 42.32

Table 4: Results of different stages. LLaVA-Pretrain and/or FOIL are used in the first stage, which
contain image-caption pairs. The triplet dataset CC3M-Instruct is used in the second stage. Bold
indicates the highest scores and Underline indicates the second highest scores.

Figure 5: Effectiveness of the triplet data by scale. The baseline is our model trained with the
whole original CC3M pair data. The plot demonstrates the performance curve on validation sets by
steps. We see that the performance improves rapidly at beginning steps.

which mirrors the actual CIR task during inference. This stage fine-tunes the model to follow mod-
ification instructions and adapt its embeddings accordingly. By directly optimizing for the target
task, Stage 2 has a more substantial influence on final performance. We observe that Stage 2 alone,
without the pre-alignment from Stage 1, performs suboptimally, indicating that the initial feature
alignment plays a critical supporting role. This interplay between stages highlights the importance
of a progressive learning strategy that first handles modality discrepancies before transitioning to
task-specific fine-tuning. Additionally, the combination of LLaVA-Pretrain and FOIL in the first
stage performs better than using either dataset alone, emphasizing the importance of exposing the
model to diverse data during feature alignment. We also observe that the larger scale of LLaVA-
Pretrain (560K samples) outperforms FOIL (60K samples), likely due to the data scale advantage.

3.4.2 WHAT IS THE IMPACT OF TRAINING DATA ON MODEL EFFECTIVENESS?

To evaluate the effectiveness of the triplet dataset and the training scale, we conducted experiments
using different dataset sizes of the CC3M-Instruct and the original pair-wise CC3M datasets. Figure
5 shows the performance across varying training steps. We observe that using the entire original
pair data yields results similar to those obtained in the first-stage datasets, whereas the use of triplet
data significantly improves performance. The recall grows rapidly up to around 1200 steps (ap-
proximately 300K triplets), after which it stabilizes. Continued training introduces fluctuations and
potential overfitting. This pattern suggests that MLLMs quickly adapt to the training data, empha-
sizing the importance of carefully managing training data scale. We find that a 300K subset balances
efficiency and performance, and recommend using diverse, regular-sized datasets for future training.

In the second stage of training, we use the original caption c as the hard negative of a triplet (i, t, cr).
In Table 5, we show the effectiveness of incorporating hard negatives. It can be observed that the
incorporation of hard negatives improve the performance because the modified caption and original
caption may look similar and contrasting them in training can enhance the model ability to under-
stand the difference. In addition, the first row in the table shows the opposite strategy that uses the
original image-caption pair with the modified caption as the hard negative. Results again signify the
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effectiveness of training with the modification query and modified caption against the original pair.
Furthermore, in the second training stage, we utilize randomly selected prompt templates, whereas
row 3 demonstrates the opposite approach by using fixed prompts for training. The results reveal the
necessity of employing diverse templates.

Hard Neg. &
Template Strategy

CIRR FashionIQ

R@1 R@5 R@10 R@10 R@50

(i, c), cr as hard neg. 10.79 33.10 46.04 8.12 19.20
(i, t, cr) w/o hard neg. 33.08 63.98 75.58 27.29 48.81

Fixed templates 33.60 63.81 74.85 27.10 47.53

Ours 34.63 64.90 76.23 29.46 50.16

Table 5: Results of Different Hard Negative and Template Strategies. “Ours” denotes the use
of (i, t, cr) triplets with c as hard negatives and randomly selected templates during training, as
opposed to fixed templates. (i, c) indicates using the original image-caption pairs.

3.4.3 CAN OUR APPROACH BE EASILY ADAPTED TO SOPHISTICATED MLLM MECHANISMS?

In this section, we analyze sophisticated MLLM mechanisms with a latest MLLM microsoft/Phi-3.5-
vision-instruct on our training strategies. The difference between microsoft/Phi-3.5-vision-instruct
and xtuner/llava-phi-3-mini-hf are two folds: (1) The former is trained with three stages including
the feature alignment, instruction tuning, and preference optimization (Rafailov et al., 2024) while
the latter is only trained with the first two stages; (2) Phi-3.5-vision leverages the dynamic high
resolution (Liu et al., 2024b; Dong et al., 2024). An input image that is oversize will not only be
resized but also chunked into several parts. The resized image and image parts will be encoded by
the visual encoder and fed to the LLM together. While such an operation is powerful, it also suffers
from higher computational cost in both training and inference as more patches are fed to the LLM.

Method
CIRR CIRCO

R@1 R@5 R@10 Rs@1 Rs@2 Rs@3 mAP@5 mAP@10 mAP@25 mAP@50

E5-V 34.17 64.39 75.98 64.02 83.35 92.70 20.44 22.06 24.25 25.26
InstructCIR 35.18 65.12 77.61 67.54 84.77 93.61 22.32 23.80 26.25 27.32

InstructCIR+ 37.93 69.40 80.36 70.72 87.18 94.34 26.12 27.18 29.50 30.53

Table 6: Results of sophisticated MLLMs on CIRR and CIRCO test sets. InstructCIR uses
LLaVA-Phi as the base model, consistent with the main experiments, while InstructCIR+ uses
microsoft/Phi-3.5-vision-instruct as the base model.

We use the microsoft/Phi-3.5-vision-instruct model as the base to conduct ablations on the CIRR and
CIRCO test sets, referring to this variant as InstructCIR+. We compare it with a concurrent work,
E5-V (Jiang et al., 2024), which utilizes LLaVA-NeXT (Liu et al., 2024b; 2023) as the backbone—a
twice larger MLLM equipped with dynamic high resolution. Our method differs from E5-V in that
our training strategy is multimodal and instruction-aware, whereas E5-V trains the MLLM only
on pure text pair data. Results are shown in Table 6. As observed, Phi-3.5-Vision improves upon
LLaVA-Phi despite both using Phi-3.5-mini as LLMs. These findings indicate that these techniques
can benefit CIR and that our training strategy can be directly applied to existing MLLMs. Notably,
both InstructCIR and InstructCIR+ outperform E5-V, even without LLaVA-Phi using dynamic high
resolution, highlighting the effectiveness of our instruction-aware training strategy.

4 CONCLUSION

In this paper, we present InstructCIR, a ZS-CIR model built on instruction-tuned MLLMs. Our
approach highlights the potential of MLLMs in CIR systems, leveraging their robust instruction-
following abilities and strong vision-language alignment to address the lack of instruction-awareness
in previous methods. The proposed two-stage training strategy effectively refines the MLLM’s text
generation capabilities for embedding extraction while enhancing its instruction-following within
the CIR context. We believe this work provides valuable insights into model selection and training
strategies, paving the way for future advancements in ZS-CIR.
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A RELATED WORKS

A.1 INSTRUCTION TUNING

Instruction tuning (Zhang et al., 2023; Ouyang et al., 2022; Chung et al., 2024; Zheng et al., 2023)
is a strategy commonly adopted in modern LLM training to enhance model generalization by ex-
posing models to various prompts. In the realm of multimodal large language models (MLLMs),
visual instruction tuning (Liu et al., 2024c) has significantly improved their instruction-following
capabilities when processing multimodal data. This process typically involves two stages: the first
stage trains an adapter between the visual encoder and the LLM using image captioning data; in
the second stage, the LLM and the adapter are jointly trained with instruction-following data that
encompasses multiple tasks in a question-answer format. While previous MLLMs have primarily
focused on text generation, recent research is exploring the use of LLMs for representation learning.
Specifically, E5-Mistral (Wang et al., 2023) leverages LLMs as embedding models by training them
on various retrieval tasks specified by instructions. E5-V (Jiang et al., 2024) extends this approach
to multimodal domains; however, its training remains based on pure text pairs, and the full poten-
tial of MLLMs for multimodal embeddings is not fully realized. In this paper, we propose a novel
approach to train an instruction-aware model that generates multimodal embeddings through two
stages: embedding alignment and instruction contrastive learning.

A.2 COMPOSED IMAGE RETRIEVAL

Composed Image Retrieval (CIR) involves finding images related to a source image under a spec-
ified condition, typically provided as a modifier text. This task has practical applications in e-
commerce, recommendation systems, and more. Due to the difficulty of acquiring specific datasets
for various CIR tasks, recent research has focused on Zero-Shot CIR (ZS-CIR). Previous methods
primarily represent the reference image as specific tokens and concatenate them with text tokens for
retrieval (Saito et al., 2023; Karthik et al., 2023; Tang et al., 2024; Suo et al., 2024; Agnolucci et al.,
2024; Gu et al.). With the advent of Multimodal Large Language Models (MLLMs), researchers
have begun incorporating LLMs into this domain. For instance, CIReVL (Karthik et al., 2023)
leverages two MLLMs: one for generating image captions and another for combining captions with
modifier texts for retrieval. FROMAGe (Koh et al., 2023) and MCL (Li et al.) explore using LLMs
for embeddings, but the LLMs are mainly used as text encoders. Despite the rapid development of
MLLMs exhibiting strong generalization, instruction-following, and zero-shot capabilities in multi-
modal data, their applications to CIR tasks are rarely explored. In this paper, we leverage MLLMs
as embedding models for CIR tasks, enabling direct encoding of images and modifier texts within a
single model.

B TRIPLET DATA GENERATION

B.1 DATA PROCESSING

We utilize GPT-4o (Achiam et al., 2023) to process and generate triplet data. Given an image and
its caption, we use the caption as a prompt to GPT, which then derives the modifier text and the
modified caption. The detailed prompt structure is shown in Figure 6. Specifically, the prompt is
divided into three parts: task definition, requirements, and few-shot examples.

Our data generation process differs from MCL (Li et al.) in several aspects. First, we leverage
GPT-4o (Achiam et al., 2023) instead of LLAMA2 (Touvron et al., 2023), allowing for more gener-
alizable and creative content generation. Second, GPT-4o has a larger context window, enabling us
to incorporate more complex techniques within the prompt. Unlike MCL, which directly presents
the output modifier text and corresponding caption in few-shot examples, we divide the generation
process into several steps using the Chain of Thought method (Wei et al., 2022). We instruct GPT to
first identify key points in the example caption, then selectively alter some of them as modifications,
and finally derive the modified caption. This step-by-step generation ensures that the generated
modifier text and corresponding caption are reasonable and closely related to the original caption.
At the time the major work of this paper is finished, the MCL dataset has not been released. We will
deffer the comparison between two datasets in the future work.
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Our pipeline differs from the training set derivation in (Vaze et al., 2023). While they use text
scene graphs to identify subjects, predicates, and objects, their modifier instruction is generated by
simply replacing one element with another concept from the dataset, leading to limited creativity
and diversity.

I am creating a multi-modal dataset for Composed Image Retrieval (CIR). The goal is to 
generate pairs of source and target images, along with a modification instruction that describes 
how to transform the source image into the target image.

Your Task: 
1. Input: I will provide you with a source image caption. 
2. Instruction Generation: Brainstorm a modification instruction based on the source caption. 
This instruction should be a clear, concise description of a plausible change that can be applied 
to the source image. 
3. Modified Caption Generation: Apply the modification instruction to the source caption to 
create a modified caption that describes the target image after the change. 
4. You should output the modification instruction and modified caption only.

Requirements: 
1. The modification instruction should focus on a single, significant change (e.g., changing an 
object’s color, altering the setting, modifying an action). 
2. The modified caption should reflect only the changes specified in the instruction while 
keeping the rest of the description consistent with the source caption. 
3. Ensure that the instruction and modified caption are coherent and plausible.

Example #1: 
Input: 
Source Caption: A Husky is lying on the grass. 
Brainstorming: 
The caption contains an object husky, an action lying, and a background grass. One plausible 
change is altering the action of the dog from lying to running. The modified caption then 
becomes: a husky is running on the grass.
Output: 
Modification Instruction: The dog is running. 
Modified Caption: A husky is running on the grass. 

Example #2: ……

Input: 
Source Caption: a very typical bus station

Brainstorming: 
The caption describes a location, "a very typical bus station". One significant change could be 
altering the time of day, which affects the lighting and activity at the location. Transitioning 
from day to night can introduce new elements like artificial lighting and perhaps a quieter 
atmosphere.

Output: 
Modification Instruction: Change the time of day to night. 
Modified Caption: A very typical bus station at night.

Figure 6: We prompt GPT-4o to generate triplet data from CC3M. Our prompt consists of three
parts: the first part (orange) defines the task we aim to complete; the second part (blue and purple)
specifies the details and requirements of the task; and the third part (black) provides examples for
triplet generation, where the modifier text is brainstormed step by step. The key concepts in the
captioned are identified and subsequently selected concepts are altered. The modified caption is
derived accordingly. Finally, we provide the input (red). GPT then outputs the modifier text and the
corresponding caption based on the query caption (green).
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B.2 DATA DETAILS

After filtering invalid images and failed prompts, we acquire the CC3M-Instruct dataset with 2M
triplets. Triplet examples are shown in Figure 7.

C PROMPT TEMPLATES

Templates for training are shown in Table 7.

C.1 TEMPLATES FOR TRAINING

Task Instruction Template

Image
Modification

<Image> The image is conditioned on the following prompt: {modifier text},
summarize the image and the prompt to retrieve a description of the image
changed by the condition:
<Image> Given the image conditioned by the prompt: {modifier text}, con-
dense the essence of the image and the prompt into a single word to fetch a
description of the altered image:
<Image> Using the prompt to condition the image: {modifier text}, provide
one word that encapsulates the overall concept of the conditioned image to
retrieve its description:
<Image> Based on the image influenced by this prompt: {modifier text},
distill the description of the conditioned image and the prompt into one word
to access the altered description:
<Image> With the image modified according to the prompt: {modifier text},
summarize both the image and the prompt to obtain a description of the condi-
tioned image:
<Image> Condition the image with this condition: {modifier text}. Summa-
rize the result:
<Image>Using this prompt: {modifier text}, describe the conditioned image:
<Image> Apply the prompt: {modifier text} to the image. Provide one word
for the conditioned image:
<Image>Given this prompt: {modifier text}, condense the conditioned image
into one word:
<Image> {modifier text}:

Image
Summary

<Image> Summary:
<Image> Caption:
<Image> Summarize the image for retrieval:
<Image> A short image caption:
<Image> A short image description:
<Image> Provide a description of what is presented in the photo:
<Image> Please provide a short depiction of the picture:
<Image> Using language, provide a short account of the image:
<Image> Use a word to illustrate what is happening in the picture:

Caption
Summary

<Caption> Summary:
<Caption> Summarize the caption for retrieval:
<Caption> A shorter description is:
<Caption> Shorter caption:
<Caption> “”

Table 7: Instruction templates for different tasks. In Image Modification, the modifier text com-
bined with the selected template serves as the formatted prompt. Image and Caption Summary
instruct the model to generate a global representation for images or captions.

C.2 TEMPLATES FOR ZERO-SHOT INFERENCE

CIRR & CIRCO
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Image Captioning

<Image> Describe this image in one word:

Image Modification

<Image> Modify this image with {modifier text}, describe the modified image in one word:

FashionIQ

Image Captioning

<Image> Describe this {data type in fashioniq} in one word based on its style:

Image Modification

<Image> Modify the style of this {data type in fashioniq} based on {modifier text}. describe this
modified {data type in fashioniq} in one word based on its style:

GeneCIS

Image Captioning

<Image> Summarize the image for retrieval:

Image Modification

<Image> Describe the image in one word with a specific focus on the attribute {specific attribute}:

<Image>Describe the image in one word with a specific change of the attribute {specific attribute}:

<Image> Describe the image in one word with a specific focus on the object {specific object}:

<Image> Describe the image in one word with a specific change of on the object {specific object}:

D TRAINING DETAILS

D.1 MLLM TRAINING

We use the code and data from xtuner/llava-phi-3-mini-hf (Contributors, 2023) to train a variant
of LLaVA-Phi. Note that the goal of this step is solely to make our experiments consistent with
the baselines. Section 3.4.3 has demonstrated that our training strategy can be directly applied to
existing MLLMs. The checkpoint of the variant LLaVA-Phi will also be released for reproducibility.
MLLM training and model details are provided as follows.

Config Value
Visual Encoder openai/clip-vit-large-patch14

Image Resolution 224x224
Language Model microsoft/Phi-3.5-mini-instruct

Adapter MLP
Pretraining Strategy Frozen LLM, Frozen ViT
Fine-tuning Strategy Full LLM, Full ViT

Pretrain Dataset ShareGPT4V-PT (1246K) (Chen et al., 2023)
Fine-tune Dataset InternVL-SFT (1268K) (Chen et al., 2024)

Pretrain Epoch 1
Fine-tune Epoch 2

Table 8: Configurations of Training LLaVA-Phi

xtuner/llava-phi-3-mini-hf microsoft/Phi-3.5-vision-instruct E5-V

Size 4.14B 4.15B 8.35B

Table 9: Number of parameters of different models
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D.2 INSTRUCTCIR TRAINING

Detailed training configs are shown in Table 10.

Training Config Value
DeepSpeed ZeRO-2

LoRA R 64
LoRA Alpha 16

Model Max Length 512
Precision FP16

Epochs for both stages 1
Batch Size Per GPU in Stage 1 48
Batch Size Per GPU in Stage 2 64
Gradient Accumulation Steps 1

Learning Rate 2E-05
Weight Decay 0

Warm Up Ratio 0.03
LR Scheduler Type Cosine

Table 10: Configurations of Training InstructCIR.

E MORE EXPERIMENT RESULTS

Table 11, 12, 13 demonstrate the complete results of InstructCIR that is trained with LLaVA-
Pretrain (Liu et al., 2024c) only in the first training stage.

Method
CIRR CIRCO

R@1 R@5 R@10 Rs@1 Rs@2 Rs@3 mAP@5 mAP@10 mAP@25 mAP@50

InstructCIRlp 35.08 65.25 76.53 67.52 84.13 92.08 22.19 23.62 26.01 27.20
InstructCIRfull 35.18 65.12 77.61 67.54 84.77 93.61 22.32 23.80 26.25 27.32

Table 11: Comparison of Zero-Shot CIR Models on CIRCO and CIRR Test Sets. InstructCIRlp

refers to InstructCIR that is trained with LLaVA-Pretrain only in the first training stage.
InstructCIRfull is trained with both LLaVA-Pretrain and FOIL in the first training stage.

Method
Shirt Dress Toptee Average

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

InstructCIRlp 29.85 49.98 25.04 45.60 31.74 53.26 28.90 49.61
InstructCIRfull 30.96 50.10 25.11 46.18 32.32 54.22 29.46 50.16

Table 12: Comparison of Zero-Shot CIR Models on FashionIQ. InstructCIRlp refers to Instruct-
CIR that is trained with LLaVA-Pretrain only in the first training stage. InstructCIRfull is trained
with both LLaVA-Pretrain and FOIL in the first training stage.

Method
Focus Attribute Change Attribute Focus Object Change Object Average

R@1 R@2 R@3 R@1 R@2 R@3 R@1 R@2 R@3 R@1 R@2 R@3 R@1

InstructCIRlp 20.35 33.35 45.05 15.39 28.39 37.69 16.58 26.69 37.19 17.14 27.86 38.62 17.37
InstructCIRfull 21.25 34.55 46.85 16.15 28.74 39.73 17.55 28.01 36.94 17.04 28.98 37.70 18.00

Table 13: Comparison of Zero-Shot CIR Models on GeneCIS. InstructCIRlp refers to InstructCIR
that is trained with LLaVA-Pretrain only in the first training stage. InstructCIRfull is trained with
both LLaVA-Pretrain and FOIL in the first training stage.
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Modification Instruction:
The racecar is now a futuristic hovercraft.

Modified Caption:
Racecar driver steers his futuristic hovercraft during video game subject.

Modification Instruction:
The turtle is swimming in a coral reef.

Modified Caption:
Green sea turtle swimming in a vibrant coral reef.

Modification Instruction:
Include a full moon in the sky.

Modified Caption:
Industrial plants in the distance at night under a full moon in the sky.

Modification Instruction:
Change the boots to sneakers.

Modified Caption:
A fashion look featuring blouses, a pair of leggings, and sneakers.

Modification Instruction:
Describe the cottage during winter.

Modified Caption:
A cottage in the picturesque village covered in snow during winter.

Modification Instruction:
The flowers are replaced with a small potted cactus.

Modified Caption:
Vase with a small potted cactus and book by the window.

Modification Instruction:
During a rainy night.

Modified Caption:
Police officers were highly visible on the streets during a rainy night at the weekend.

Modification Instruction:
Focus on the dancer performing a solo act on stage.

Modified Caption:
The dancer performing a solo act on stage, separate from the cast in the vignette.

Figure 7: Triplet Examples from CC3M-Instruct
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