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Abstract001

Text-to-SQL is a fundamental yet challenging002
task in the NLP area, aiming at translating003
natural language questions into SQL queries.004
While recent advances in large language mod-005
els have greatly improved performance, most006
existing approaches depend on models with007
tens of billions of parameters or costly APIs008
(e.g. ChatGPT or Gemini), limiting their ap-009
plicability in resource-constrained real-world010
environments. Therefore, enabling the light-011
weight models for Text-to-SQL is of great prac-012
tical significance. However, smaller LLMs of-013
ten struggle with complex user intent under-014
standing, schema linking and syntax correct-015
ness. To address these challenges, we pro-016
pose MCTS-SQL, a novel framework that uses017
Monte Carlo Tree Search (MCTS) to guide018
SQL generation through multi-step refinement.019
Since the light-weight models’ weak perfor-020
mance of single-shot prediction, we generate021
better results through several trials with feed-022
back. From another perspective, this mecha-023
nism also improve the model’s reasoning ability024
to solve harder examples. Moreover, to further025
filter irrelevant information of databases, we026
designed an additional schema selector. Experi-027
ments results on the SPIDER and BIRD bench-028
marks demonstrate the effectiveness of our ap-029
proach. Using a small open-source Qwen2.5-030
Coder-Instruct-1.5B, our method outperforms031
ChatGPT-3.5. And when we use GPT-4o as the032
base model, our method achieves a new SOTA033
execution accuracy 69.40% on BIRD. Notably,034
our method achieves a significant performance035
improvement(51.48%) on the more challenging036
subset, outperforming the previous SOTA by037
3.41%.038

1 Introduction039

Text-to-SQL is a task aimed at converting natural040

queries into SQL, which plays a critical role in data041

analytics and supports a wide range of real-world042
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Figure 1: Execution accuracy comparison of MCTS-
SQL across some existing methods. The results show
that MCTS-SQL significantly enhances the performance
of light-weight models, achieving performance compa-
rable to some larger models. And when using GPT-4o
as the base model, we achieve SOTA.

applications(Shi et al., 2024; Liu et al., 2024). Re- 043

cent advances in LLM(Team et al., 2023; Achiam 044

et al., 2023) have significantly improved the per- 045

formance of Text-to-SQL systems. However, most 046

of these powerful methods(Wang et al., 2024; Lee 047

et al., 2024; Alp Caferoğlu and Ulusoy, 2024) rely 048

on extremely huge models or costly APIs, making 049

them expensive and can not be used in real resource- 050

constrained environments. This raises an impor- 051

tant challenge: How can we enable lightweight, 052

poorly performing models to effectively handle 053

Text-to-SQL tasks in real-world applications? 054

Most common errors made by these lower- 055

performing LLMs is the mistake understanding of 056

users’ intent, wrong schema selection and syntax 057

errors. Due to the poor performance of single- 058

shot prediction, an intuitive way to address these 059

challenges is to conduct a trial-and-feedback mech- 060

anism to iteratively optimize the generated SQL. 061
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However, exploration without any constraints or062

guidance is inefficient. Therefore, a more powerful063

optimization strategy is needed to direct better solu-064

tions.Monte Carlo Tree Search (MCTS) has proven065

to be an efficient tool in decision-making and opti-066

mization tasks.Recent studies (Pitanov et al., 2023;067

Li et al., 2023a; Chen et al., 2024)have demon-068

strated that MCTS can be effectively applied to069

problems requiring iterative improvements. Given070

its strengths, MCTS presents a practical tool for071

optimizing SQL generation in Text-to-SQL tasks.072

In this paper, we introduce MCTS-SQL, a novel073

framework that integrates MCTS with Text-to-SQL074

tasks. Our approach consists of three simple com-075

ponents:Selector,Direct Generator,and MCTS-076

Refiner. The Selector is used to filter the tables077

and fields that are most relevant to the users’ intent,078

reduce the redundant interference. The Direct Gen-079

erator produces the initial SQL, which is directly080

output if it meets the requirements. MCTS-refiner081

iteratively enhances the SQL through multiple trial-082

and-feedback steps.083

We evaluate the performance of MCTS-SQL on084

two widely-used benchmarks: The Spider (Yu et al.,085

2018) and BIRD(Li et al., 2023b). The results086

show that MCTS-SQL based on the Qwen-2.5-087

Coder-Instruct-1.5B (Hui et al., 2024) outperforms088

ChatGPT-3.5, and 3B version achieves even bet-089

ter performance than some earlier GPT-4o based090

methods. Moreover, to explore the boundaries of091

our algorithm, we evaluate results based on GPT-092

4o. Unsurprisingly, we achieve SOTA, with exe-093

cution accuracy of 69.40% on BIRD, particularly094

on challenging samples, surpassing existing SOTA095

by 3.41%. The comparison across some existing096

methods can be seen in Figure 1.097

The limitations of our approach are also quite098

evident. MCTS-SQL approximates better results099

through multiple attempts. Comparing to single-100

shot predictions, the method leads to more token101

and time consumption inevitably. Therefore, we be-102

lieve that the best practice of MCTS-SQL is to use103

light-weight models to address Text-to-SQL tasks,104

which is also our motivation. And it is undeniable105

that even for more powerful models, MCTS-SQL106

still enhances their performance.107

The main contributions of our proposed MCTS-108

SQL can be summarized as follows:109

• To our best knowledge, we are the first to110

apply Monte Carlo Tree Search(MCTS) to the111

Text-to-SQL task, aiming to achieve usable112

performance with models that have a small 113

number of parameters. 114

• We propose a novel Text-to-SQL framework, 115

MCTS-SQL, which consists of three key mod- 116

ules: Selector (to filter relevant tables and 117

fields), Direct Generator (to generate initial 118

SQL), and MCTS-Refiner (to iteratively en- 119

hance SQL). 120

• Our experiments on the Spider and BIRD 121

datasets demonstrate that MCTS-SQL outper- 122

forms existing methods, particularly on diffi- 123

cult queries. We achieve SOTA performance 124

with GPT-4o. 125

2 Related Work 126

In this section, we provide an overview of related 127

work on Text-to-SQL and Monte Carlo Tree Search, 128

highlighting their relevance and main differences 129

to our proposed research. 130

2.1 Text-to-SQL 131

Text-to-SQL aims to bridge natural language 132

queries and structured database queries, and nu- 133

merous approaches are proposed to address its chal- 134

lenges. Early systems, such as LUNAR(Kang et al., 135

2012) and NaLIX(Hammami et al., 2021), em- 136

ployed rule-based methods that manually crafted 137

grammar rules and heuristics. However, the gen- 138

eralization performance of these methods across 139

different tasks or databases is difficult to guarantee. 140

The deep learning marked a turning point 141

for Text-to-SQL. End-to-end models like 142

Seq2SQL(Zhong et al., 2017) and SQL- 143

Net(Katsogiannis-Meimarakis and Koutrika, 144

2021) directly mapped natural language to SQL 145

but struggled with complex queries, especially 146

those involving nested structures or intricate 147

reasoning. Pre-trained Language Models (PLMs), 148

such as TaBERT(Katsogiannis-Meimarakis and 149

Koutrika, 2023) and BERT-SQL(Guo and Gao, 150

2019), enhance cross-domain generalization 151

and improve the accuracy of SQL generation. 152

However, these methods require a certain amount 153

of domain-specific SQL training data, which makes 154

them difficult to land in practical applications 155

Recently, Large Language Models (LLMs) such 156

as GPT-4(Achiam et al., 2023), Palm-2(Anil et al., 157

2023), and LLaMA(Touvron et al., 2023) have 158
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Figure 2: The MCTS-SQL framework consists of three core components: the Selector, the Direct Generator
and the MCTS-Refiner. The Selector is used to filter the most relevant tables and columns based on the user’s
intent. The Direct Generator aims to produce an initial SQL query. And the MCTS-Refiner is activated when the
initial SQL fails to meet the requirement, which adopts iterative trial-and-feedback optimization to refine the query
progressively.

revolutionized Text-to-SQL tasks. These meth-159

ods excel in zero-shot and few-shot settings with-160

out any extensive training data.(Lee et al., 2024;161

Talaei et al., 2024; Alp Caferoğlu and Ulusoy,162

2024). DAIL-SQL(Gao et al., 2023) optimized163

prompt engineering, focusing on question repre-164

sentation, prompt structure, and example selection165

to enhance SQL accuracy with minimal supervi-166

sion. Frameworks like C3-SQL(Dong et al., 2023),167

DIN-SQL(Pourreza and Rafiei, 2024), and Struct-168

GPT(Jiang et al., 2023) further advanced the field169

by addressing complex queries through database170

simplification, query decomposition, and structured171

data access. Additionally, MAC-SQL(Wang et al.,172

2024) introduced a collaborative framework inte-173

grating decomposer, auxiliary selector, and refiner174

modules for iterative SQL refinement.175

From the analysis of existing methods, it be-176

comes clear that advancing Text-to-SQL perfor-177

mance relies on the models’ understanding and178

reasoning capabilities. However, these models are179

often of large scale and costly, making them im-180

practical for real-world resource-constrained appli-181

cation. Our core motivation is to enable lightweight182

models to achieve practical performance in Text-183

to-SQL tasks. To this end, we incorporate Monte184

Carlo Tree Search (MCTS) to guide the generation. 185

2.2 Monte Carlo Tree Search 186

MCTS is widely used for planning complex prob- 187

lems, and a large number of downstream exper- 188

iments have demonstrated its effectiveness. For 189

example, (Pitanov et al., 2023) demonstrates its 190

benefits in multi-agent path search, highlighting the 191

advantages over traditional heuristic search meth- 192

ods. Similarly, (Li et al., 2023a) use MCTS to 193

effectively address various types of SAT problems. 194

Recently, combining MCTS with large-scale lan- 195

guage models has been a great trend. (Chen et al., 196

2024) proposed IMCTS, an approach designed to 197

enhance the mathematical reasoning capabilities 198

of fine-tuned LLMs. (Xu, 2023) integrated MCTS 199

with a lightweight energy function, demonstrating 200

notable performance improvements. In addition, 201

MCTSr(Di Zhang et al., 2024) introduced system- 202

atic exploration and heuristic self-refinement mech- 203

anisms, further advancing its applications in com- 204

plex decision-making tasks. 205

Building on these successes, our work is the 206

first to introduce Monte Carlo Tree Search (MCTS) 207

into the Text-to-SQL domain.The core idea is very 208

simple: reduce errors through iterative trial and 209

3



error. However, naive exhaustive attempts are inef-210

ficient and impractical. To address this, we lever-211

age MCTS to find a more efficiently and reliable212

exploration path.213

3 MCTS-SQL Framework214

As shown in Figure 2, the MCTS-SQL framework215

consists of three key components: the Selector,216

Direct Generator, and MCTS-Refiner. The Selector217

filter relevant tables and schema elements based on218

the user query, while the Direct Generator produces219

an initial SQL query. Queries that fail or yield220

errors are refined by the MCTS-Refiner through221

iterative tree search. A detailed explanation of each222

component is provided in the subsequent section.223

Moreover, all three components use the training-224

free fresh shot agent method.225

The collaboration process of our MCTS-SQL is226

presented in Algorithm 1:227

Algorithm 1 The algorithm of MCTS-SQL
Input: query q, database schema db, knowledge
kg
Output: SQL statement

1: db’ = LLMSelector(q, db, kg)
2: sql,err = LLMDirectGenerator(q, db, kg)
3: ver = LLMV erifier(sql,q,db,kg,)
4: if err is NULL and ver is ok then
5: return sql
6: else
7: count = 0
8: while count < maxRollout do
9: select a node

10: cri = LLMCritiquer(sql, err, q, db, kg)
11: ref = LLMRefiner(sql, err, q, db, kg, cri)
12: score = LLMEvaluater(ref, err, q, db, kg)

13: back-propagation
14: update the UCT value
15: end while
16: sql = ref with best score
17: return sql
18: end if

3.1 Schema228

Before introducing the specific components, we229

would like to describe the special design of effec-230

tively translating database structures. Combining231

the database schema information in the prompt is232

essential for enabling the LLM to comprehend the233

Schema

【Database schema】
# Table: frpm
[
  (CDSCode, CDSCode, TEXT, Value examples: 
['01100170109835', '01100170112607'].),
  (Charter School (Y/N), Charter School (Y/N), TINYINT，
Value examples: [1, 0, None]. And 0: N;. 1: Y)]
# Table: satscores
[
  (cds, California Department Schools, TEXT, Value 
examples: ['10101080000000', '10101080109991'].),
  (sname, school name. TEXT, Value examples: ['None', 
'Middle College High', 'John F. Kennedy High', 
'Independence High', 'Foothill High'].),
  (NumTstTakr, INTEGER,Number of Test Takers in this 
school. Value examples: [24305, 4942, 1, 0, 280]),
  ]
【Foreign keys】
frpm.`CDSCode` = satscores.`cds`

Figure 3: An example of proposed database schema
format.The format consists of table names, descriptions
and column level details(name, data type, description,
and examples) to represent the hierarchical information
of databases.

database structure accurately and generate precise 234

queries. We present a novel method that illustrates 235

the hierarchical relationships between databases, 236

tables, and columns using a semi-structured format. 237

To be specific, we provide the table name and 238

corresponding description for each table(which can 239

be omitted if not necessary). The table informa- 240

tion is converted into a list where each entry is 241

a tuple containing a column of details. Each col- 242

umn includes the name, data type, description, and 243

example values, thus providing a comprehensive 244

view of its contents. In addition, foreign keys must 245

be included to represent the relationships between 246

tables accurately. Understanding hierarchical rela- 247

tionships is critical for query generation. An exam- 248

ple of proposed schema format is shown in Figure 249

3. All the agents in this paper introduce database 250

information through this schema. 251

3.2 Selector 252

The role of the Selector can be formally described 253

as follows. Given an input triplet X = (Q,S,K), 254

where Q is the query, S = T,C is the database 255

schema consisting of tables (T ) and columns (C), 256

and K denotes the knowledge provided. The Se- 257
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lector aims to identify a minimal subset of tables258

and columns, denoted as S′ = T ′, C ′, which are259

necessary to answer the query Q. The behavior of260

the Selector is formally defined as follows:261

S′ = fSelector(Q,S,K | M) (1)262

Where fSelector(· | M) represents the Selec-263

tor’s function, implemented via prompt engineering264

powered by a large language model M.265

The design of the Selector is motivated by266

two key considerations: (i) Including unnecessary267

schema elements in the prompt increases the risk of268

irrelevant or extraneous items being incorporated269

into the generated SQL, which can degrade output270

quality; (ii) Directly utilizing the entire database271

schema may result in excessively long prompts,272

which could lead to higher computational costs and273

potentially exceed the input length limitations of274

the language model.275

3.3 Direct Generator276

The purpose of the Direct Generator is to gener-277

ate SQL queries directly through an end-to-end278

process. It can be described as follows, where R279

represents the generated SQL query.280

R = fDirect Generator(Q,S′,K | M) (2)281

After the SQL is generated, it follows two steps282

of evaluation. First, an executor checks its syntac-283

tic correctness and successful execution. Then, an284

LLM verifies if the SQL meets the user’s require-285

ments. The LLM-based verifier can be formalized286

as:287

V = fVerifier(R,Q, S′,K | M) (3)288

Specifically, the Direct Generator employs chain-289

of-thought prompting. (Wei et al., 2022) We assem-290

ble the relevant table and field information obtained291

from the Selector mentioned above with the user in-292

put. The LLM processes this input to generate SQL293

queries, accompanied by a detailed rationale. Ad-294

ditionally, we employ a few-shot learning strategy,295

using several in-context examples to improve the296

LLM’s understanding of task-specific instructions297

and enhance its generalization capabilities.298

3.4 MCTS-Refiner299

Typically, SQL queries generated by the Direct300

Generator fail to meet task requirements due to301

syntactic errors or mismatch with the user’s intent.302

Pre-SQL Expansion

Evaluate

RefineCritique

Complete

Success！
Choose best node

Incomplete

Add to Tree
Backpropagation

Figure 4: The main workflow of our proposed MCTS-
refiner. The SQL generated in the last step is firstly get
a critique. Then, based on the critique, a refinement
is provided. The search tree is now expanded.If the
iteration is complete, the node with best score is selected
as the final output, otherwise, the node will be added to
the search tree and backpropagation.

The MCTS-Refiner aims to refine SQL queries us- 303

ing the self-critique mechanism to optimize the 304

query iteratively. The main workflow of the pro- 305

posed method consists of several stages, detailed 306

as follows: 307

Initialization: The root node is initialized with 308

the suboptimal SQL generated by the Direct Gen- 309

erator as a reference for step-by-step optimization 310

to reduce the complexity of the search process. 311

Selection: Following the existing practices, we 312

define a function P to rank all generated SQL 313

queries that are not fully expanded. The node with 314

the highest value is selected for further refinement. 315

The function P of a node a can be defined as fol- 316

lows, where ra represents the set of results associ- 317

ated with node a. 318

P (a) =
1

2

min ra +
1

|ra|

|ra|∑
i=1

ria

 (4) 319

Self-Refine: The SQL query a is initially ex- 320

ecuted by the executor to get the error informa- 321

tion Ea, which is then used to refine the query 322

through the self-refine framework. In this process, 323

the LLM generates a critique c, serving as the guid- 324

ance for refining the query and producing an im- 325

proved SQL query a′. Specifically, Ea represents 326

the error details related to the initial SQL query a, 327

and I denotes the prompt used in the Direct Genera- 328

tor, which includes the input query Q, the database 329
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schema S′, and relevant knowledge K. The details330

can be formally described as follows:331

c = fCritiquer(a,Ea, I | M) (5)332
333

a′ = fRefiner(a, c, Ea, I | M) (6)334

The Self-refine module designed a refinement335

mechanism using error feedback and critique gen-336

eration to enhance the accuracy and robustness of337

SQL queries.338

Self-Evaluation: The refined SQL query is eval-339

uated to obtain a reward value, denoted as r, and340

its corresponding P -value is computed. To be spe-341

cific, we proposed a model-based self-reward feed-342

back mechanism, with the reward value constrained343

within the range of -95 to 95. To ensure the reliabil-344

ity and fairness, the highest scores are deliberately345

suppressed. The reward r is formally defined as:346

ra = fEvaluater(a
′, Ea′ , I | M) (7)347

Backpropagation: The value r of the refined348

SQL query is back-propagated through the search349

tree, updating the value information of the parent350

node and other relevant nodes. If the P -value of351

any child node is changed, the corresponding P -352

value of its parent node is recalculated accordingly.353

The process can be described as follows:354

P ′(a) =
1

2

(
P (a) + max

i∈a.children
P (i)

)
(8)355

UCT update: Following the existing practice356

(Di Zhang et al., 2024), after updating the P val-357

ues for all nodes, we choose the UCT function to358

measure the combined value of each node, which359

is used as an important basis for expansion in the360

next selection stage. The UCT value of a node a is361

formally defined as:362

UCTa = P (a) + c

√
lnN(Father(a)) + 1

N(a) + ϵ
(9)363

In this formulation, N(.) denotes the total num-364

ber of visits to a given node, and c is a constant that365

balances the trade-off between P -value and visit366

times. The term ϵ is a small constant to prevent367

division by zero.368

The algorithm proceeds through all these steps369

iteratively until the maximum rollout numbers are370

reached. And the SQL queries with the highest371

score r is chosen as the final output.372

4 Experiments 373

To evaluate the performance of our MCTS-SQL, 374

we present the implementation details, explain the 375

experiments performed, and offer a thorough anal- 376

ysis of the results. 377

4.1 Datasets 378

We evaluate our MCTS-SQL framework using two 379

Text-to-SQL benchmarks: Spider and BIRD. The 380

Spider contains 7000 training question-query pairs 381

and 1038 development pairs, which are from 200 382

different databases across 138 domains. In this 383

study, we only concentrate on the development set. 384

In contrast, BIRD includes 95 large-scale databases 385

with high-quality Text-to-SQL pairs, covering 37 386

specialized domains. Unlike Spider, BIRD focuses 387

on real-world database content and provides exter- 388

nal knowledge reasoning to bridge natural language 389

queries and database contextual information. 390

4.2 Evaluation Metrics 391

To evaluate our proposed method’s performance, 392

we use two metrics: Execution Accuracy(EX) 393

and Valid Efficiency Score(VES).(Li et al., 2023b; 394

Zhong et al., 2020) The Execution Accuracy(EX) 395

calculates the percentage of queries where the pre- 396

dicted SQL queries match the correct SQL queries 397

when executed. Valid Efficiency Score(VES) mea- 398

sures the percentage of predicted SQL queries 399

that output sets consisting of the results from the 400

ground-truth SQL queries. 401

4.3 Base Models 402

In this paper, we adopt Qwen2.5-Coder-Instruct se- 403

ries as our base models, given their leading perfor- 404

mance in the filed of code generation. We evaluate 405

the effectiveness of our framework across multi- 406

ple model sizes, including 1.5B, 3B and 14B, to 407

demonstrate its ability to enhance lightweight mod- 408

els. To further explore the boundary of our method, 409

we also conduct experiment using more powerful 410

closed APIs, including GPT-4o-mini and GPT-4o. 411

In future work, we aim to distill the reasoning pre- 412

cess into a lightweight model, which currently im- 413

plemented through MCTS refinement. 414

4.4 Hyper-parameters 415

In order to ensure the stability of our experiment 416

results, we standardized the hyper-parameters as 417

follows. The temperature is fixed at 0.1, the top-p 418

parameter is set to 1.0, and the max-token length is 419
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32168. As for the hyper-parameters in the MCTS-420

Refiners, the child nodes of a node are set to 2, and421

the max-rollout numbers are 5.422

4.5 Experimental Results423

4.5.1 A. BIRD Results424

Table 1 presents a performance comparison of our425

method in the BIRD dataset against existing ap-426

proaches. When using lightweight models(1.5B427

and 3B), MCTS-SQL outperforms ChatGPT-3.5428

and even rivals some earlier methods based on GPT-429

4. This demonstrates that our method can be de-430

ployed on resource-constrained edge devices, with-431

out relying on large-scale models or costly APIs.432

Furthermore, when combined with the most pow-433

erful GPT-4o seties, MCTS-SQL achieves state-434

of-the-art performance, reaching 69.4% execution435

accuracy (EX) and 66.24% value execution score436

(VES) on the development set, confirming its su-437

periority over existing methods and its practical438

utility.439

Table 2 shows the detailed performance across440

different complexity levels. Compared to the base-441

line, our method achieve significant improvements.442

Analyzing the results, we observe that the model443

improves more on simpler examples. This may444

because mistakes in these cases are mostly about445

syntax, and the MCTS-Refiner can fix them easily446

using its feedback-based editing process. However,447

with a stronger base model, MCTS can still bring448

clear improvements on harder examples by explor-449

ing different ways to fix the errors.450

Method dev EX test EX dev VES

Palm-2 27.38 33.04 -
ChatGPT-3.5 36.64 40.08 42.30
DIN-SQL+GPT-4 50.72 55.09 58.79
DAIL-SQL+GPT-4 54.76 57.41 56.08
MAC-SQL+GPT-4 59.39 59.59 66.39
PB-SQL,v1 60.50 64.84 60.36
MCS-SQL+GPT-4 63.36 65.45 61.23
CHESS 65.00 66.69 62.77
ByteBrain 65.45 68.87 -
ASKData+GPT-4o 65.19 65.62 60.25
E-SQL+GPT-4o 65.58 66.29 62.43

Ours+Qwen-1.5B 40.69 43.72 44.87
Ours+Qwen-3B 46.71 48.37 48.19
Ours+Qwen-7B 53.61 51.79 52.21

Ours+GPT-4o-mini 63.15 61.39 60.78
Ours+GPT-4o 69.40 68.91 66.24

Table 1: Comparison with the results of existing meth-
ods on BIRD of the Execution accuracy and Valid Effi-
ciency Score.The Qwen models in this table are Qwen-
Coder-Instruct.

Method Simp. Mod. Chall. All

Qwen-1.5B 15.36 14.96 9.78 14.71
Qwen-3B 19.24 16.18 12.49 17.68

Ours + Qwen-1.5B 46.36 34.96 22.78 40.69
Ours + Qwen-3B 53.74 39.62 24.55 46.71
Ours + Qwen-7B 62.98 42.21 30.28 53.61

Ours+GPT-4o-mini 68.56 57.76 45.83 63.15
Ours+GPT-4o 74.32 65.17 51.48 69.40

Table 2: Execution accuracy in BIRD development set.
The Qwen models in this table are Qwen-Coder-Instruct.

4.5.2 B. Spider Results 451

Table 3 presents the performance comparison on 452

the Spider dataset. When using lightweight models, 453

our method achieves results that are already prac- 454

tically usable. Furthermore, when equipped with 455

GPT-4o as the base model, MCTS-SQL achieves 456

outstanding performance, reaching 88.71% on the 457

development set and 86.63% on the test set. While 458

existing approaches have already demonstrated 459

strong results on this benchmark, our method con- 460

tinues to deliver highly competitive performance. 461

Method EX(Dev) EX(Test)

C3+ChatGPT 81.80 82.30
DIN-SQL+GPT-4 82.80 85.30
DAIL-SQL+GPT-4 84.40 86.60
MAC-SQL+GPT-4 86.75 82.80
CHESS 87.2 -
MCS-SQL+GPT-4 89.5 89.6

Ours + Qwen-1.5B 67.45 71.68
Ours + Qwen-3B 74.03 73.98

Ours+GPT-4o-mini 86.16 83.74
Ours+GPT-4o 88.71 86.63

Table 3: Execution accuracy on both dev and test set of
spider. The Qwen models in this table are Qwen-Coder-
Instruct.

4.6 Ablation study 462

We conduct the ablation study to evaluate the con- 463

tributions of the key components in our proposed 464

MCTS-SQL. As shown in Table 4, each component 465

plays a critical role in the overall performance. To 466

better show the effects of each module, we use GPT- 467

4o-mini as the base model, as lightweight models 468

are often too weak to produce stable and meaning- 469

ful performance differences. Specifically, replacing 470

our structured Schema representation with a con- 471
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Pipeline Simp. Mod. Chall. All

Ours + GPT-4o-mini 68.56 57.76 45.83 63.15

w/o schema 66.98 56.27 43.82 61.56
w/o Selector 66.71 55.40 40.18 60.79
w/o Direct Generator 67.15 56.63 44.82 61.86
w/o MCTS-Refiner 64.46 52.00 35.44 56.75

Table 4: Ablation study using GPT-4o-mini with EX on
the development set.

Pipeline Simp. Mod. Chall. All

Ours + GPT-4o-mini 68.56 57.76 45.83 63.15

max-rollouts-5 68.56 57.76 45.83 63.15
max-rollouts-6 68.14 57.81 44.91 62.83
max-rollouts-7 68.42 57.12 45.93 62.88

child nodes-2 68.56 57.76 45.83 63.15
chile nodes-3 68.62 57.57 45.83 63.13

Table 5: Ablation study of hyper-parameters in MCTS
with EX on the development set.

ventional DDL format leads to a slight performance472

drop. The Selector proves especially useful on both473

the moderate and challenging subsets, effectively474

filtering irrelevant schema information. The most475

significant degradation occurs when the MCTS-476

Refiner is removed, highlighting its essential role477

in enhance performance.478

In addition, we analyze the sensitivity of two key479

hyper-parameters in the Monte Carlo Tree Search:480

the number of child nodes and the maximum num-481

ber of rollouts. Table 5 presents the detailed results.482

We observe that variations in these parameters have483

minimal impact on overall performance—for ex-484

ample, increasing the number of rollouts or child485

nodes leads to only marginal changes. Based on486

these findings, we adopt the most efficient configu-487

ration to reduce token consumption.488

5 Discussion489

We conducted an error analysis of the single-490

prediction model and found that 42% of the errors491

were caused by syntax mistakes, wrong field selec-492

tion, or misunderstanding of the schema. MCTS-493

SQL improves Text-to-SQL performance by using494

a trial-and-error feedback mechanism to guide the495

search for better SQL queries. Instead of relying496

on single-shot generation process, it explores multi-497

ple candidate SQL queries and keeps those that are498

actually effective based on execution results. This499

allows the method to recover from some generation500

errors.501

6 Conclusion 502

In conclusion, this paper introduce MCTS-SQL, a 503

novel framework to improve the Text-to-SQL per- 504

formance of light-weight models. By using Monte 505

Carlo Tree search, we design an iterative mech- 506

anism to enhance the qualities of SQL. Our ap- 507

proach, consisting of three modules-Selector, Di- 508

rect Generator, and MCTS-Refiner, achieves signif- 509

icant improvements over existing methods. Experi- 510

ments on the SPIDER and BIRD benchmarks show 511

that, using only a 1.5B model, MCTS-SQL outper- 512

forms ChatGPT-3.5. And when we use the latest 513

GPT-4o, we achieve SOTA. These results demon- 514

strate that MCTS-SQL can significantly enhance 515

the performance of small, resource-efficient mod- 516

els, making it a practical solution for real-world 517

applications. 518

7 Limitations 519

Although MCTS-SQL is effective in enabling light- 520

weight models to be practically applied into the 521

Text-to-SQL task, its limitations are also evident. 522

The trial-and-error feedback mechanism of 523

Monte Carlo Tree Search is essentially an approach 524

that approximates better results through multiple 525

attempts, which inevitably leads to significantly 526

token consumption and longer inference time. Ta- 527

ble 6 shows the average tokens consumption and 528

inference time per task for single-shot inference 529

and MCTS-SQL based on the Qwen-2.5-Coder- 530

instruct-1.5B. 531

Method Tokens Time Ex on BIRD

single-shot 197 0.63s 14.71
MCTS-SQL 2274 6.12s 40.69

Table 6: Comparison of tokens consumption and infer-
ence time per task.

MCTS-SQL uses significantly more tokens and 532

inference time compared to single-shot prediction, 533

but is also achieves substantial performance im- 534

provement. We believe this overhead is unavoid- 535

able if lightweight models are to be truly applied 536

in real-world. 537

Moreover, the reasoning steps of MCTS rely 538

heavily on prompt engineering, requiring a careful 539

design and showing limited capability for rapid 540

adaptation across tasks. 541

With the rise of reasoning models (Guo et al., 542

2025), implicit reasoning has become possible. 543
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In future work, we plan to use MCTS-SQL to544

collect a set of data that contains reasoning pro-545

cesses, and distill a model with reasoning capabili-546

ties through reinforcement learning. This approach547

aims to develop a specialized Text-to-SQL model548

that achieves fast inference and strong robustness549

with fewer trial-and-error steps.550
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