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Abstract

Text-to-SQL is a fundamental yet challenging
task in the NLP area, aiming at translating
natural language questions into SQL queries.
While recent advances in large language mod-
els have greatly improved performance, most
existing approaches depend on models with
tens of billions of parameters or costly APIs
(e.g. ChatGPT or Gemini), limiting their ap-
plicability in resource-constrained real-world
environments. Therefore, enabling the light-
weight models for Text-to-SQL is of great prac-
tical significance. However, smaller LLMs of-
ten struggle with complex user intent under-
standing, schema linking and syntax correct-
ness. To address these challenges, we pro-
pose MCTS-SQL, a novel framework that uses
Monte Carlo Tree Search (MCTS) to guide
SQL generation through multi-step refinement.
Since the light-weight models’ weak perfor-
mance of single-shot prediction, we generate
better results through several trials with feed-
back. From another perspective, this mecha-
nism also improve the model’s reasoning ability
to solve harder examples. Moreover, to further
filter irrelevant information of databases, we
designed an additional schema selector. Experi-
ments results on the SPIDER and BIRD bench-
marks demonstrate the effectiveness of our ap-
proach. Using a small open-source Qwen2.5-
Coder-Instruct-1.5B, our method outperforms
ChatGPT-3.5. And when we use GPT-40 as the
base model, our method achieves a new SOTA
execution accuracy 69.40% on BIRD. Notably,
our method achieves a significant performance
improvement(51.48%) on the more challenging
subset, outperforming the previous SOTA by
3.41%.

1 Introduction

Text-to-SQL is a task aimed at converting natural
queries into SQL, which plays a critical role in data
analytics and supports a wide range of real-world
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Figure 1: Execution accuracy comparison of MCTS-
SQL across some existing methods. The results show
that MCTS-SQL significantly enhances the performance
of light-weight models, achieving performance compa-
rable to some larger models. And when using GPT-40
as the base model, we achieve SOTA.

applications(Shi et al., 2024; Liu et al., 2024). Re-
cent advances in LLM(Team et al., 2023; Achiam
et al., 2023) have significantly improved the per-
formance of Text-to-SQL systems. However, most
of these powerful methods(Wang et al., 2024; Lee
et al., 2024; Alp Caferoglu and Ulusoy, 2024) rely
on extremely huge models or costly APIs, making
them expensive and can not be used in real resource-
constrained environments. This raises an impor-
tant challenge: How can we enable lightweight,
poorly performing models to effectively handle
Text-to-SQL tasks in real-world applications?

Most common errors made by these lower-
performing LL.Ms is the mistake understanding of
users’ intent, wrong schema selection and syntax
errors. Due to the poor performance of single-
shot prediction, an intuitive way to address these
challenges is to conduct a trial-and-feedback mech-
anism to iteratively optimize the generated SQL.



However, exploration without any constraints or
guidance is inefficient. Therefore, a more powerful
optimization strategy is needed to direct better solu-
tions.Monte Carlo Tree Search (MCTS) has proven
to be an efficient tool in decision-making and opti-
mization tasks.Recent studies (Pitanov et al., 2023;
Li et al., 2023a; Chen et al., 2024)have demon-
strated that MCTS can be effectively applied to
problems requiring iterative improvements. Given
its strengths, MCTS presents a practical tool for
optimizing SQL generation in Text-to-SQL tasks.

In this paper, we introduce MCTS-SQL, a novel
framework that integrates MCTS with Text-to-SQL
tasks. Our approach consists of three simple com-
ponents:Selector,Direct Generator,and MCTS-
Refiner. The Selector is used to filter the tables
and fields that are most relevant to the users’ intent,
reduce the redundant interference. The Direct Gen-
erator produces the initial SQL, which is directly
output if it meets the requirements. MCTS-refiner
iteratively enhances the SQL through multiple trial-
and-feedback steps.

We evaluate the performance of MCTS-SQL on
two widely-used benchmarks: The Spider (Yuetal.,
2018) and BIRD(Li et al., 2023b). The results
show that MCTS-SQL based on the Qwen-2.5-
Coder-Instruct-1.5B (Hui et al., 2024) outperforms
ChatGPT-3.5, and 3B version achieves even bet-
ter performance than some earlier GPT-40 based
methods. Moreover, to explore the boundaries of
our algorithm, we evaluate results based on GPT-
40. Unsurprisingly, we achieve SOTA, with exe-
cution accuracy of 69.40% on BIRD, particularly
on challenging samples, surpassing existing SOTA
by 3.41%. The comparison across some existing
methods can be seen in Figure 1.

The limitations of our approach are also quite
evident. MCTS-SQL approximates better results
through multiple attempts. Comparing to single-
shot predictions, the method leads to more token
and time consumption inevitably. Therefore, we be-
lieve that the best practice of MCTS-SQL is to use
light-weight models to address Text-to-SQL tasks,
which is also our motivation. And it is undeniable
that even for more powerful models, MCTS-SQL
still enhances their performance.

The main contributions of our proposed MCTS-
SQL can be summarized as follows:

* To our best knowledge, we are the first to
apply Monte Carlo Tree Search(MCTS) to the
Text-to-SQL task, aiming to achieve usable

performance with models that have a small
number of parameters.

* We propose a novel Text-to-SQL framework,
MCTS-SQL, which consists of three key mod-
ules: Selector (to filter relevant tables and
fields), Direct Generator (to generate initial
SQL), and MCTS-Refiner (to iteratively en-
hance SQL).

* Our experiments on the Spider and BIRD
datasets demonstrate that MCTS-SQL outper-
forms existing methods, particularly on diffi-
cult queries. We achieve SOTA performance
with GPT-4o.

2 Related Work

In this section, we provide an overview of related
work on Text-to-SQL and Monte Carlo Tree Search,
highlighting their relevance and main differences
to our proposed research.

2.1 Text-to-SQL

Text-to-SQL aims to bridge natural language
queries and structured database queries, and nu-
merous approaches are proposed to address its chal-
lenges. Early systems, such as LUNAR(Kang et al.,
2012) and NaLIX(Hammami et al., 2021), em-
ployed rule-based methods that manually crafted
grammar rules and heuristics. However, the gen-
eralization performance of these methods across
different tasks or databases is difficult to guarantee.
The deep learning marked a turning point
for Text-to-SQL. End-to-end models like
Seq2SQL(Zhong et al., 2017) and SQL-
Net(Katsogiannis-Meimarakis and Koutrika,
2021) directly mapped natural language to SQL
but struggled with complex queries, especially
those involving nested structures or intricate
reasoning. Pre-trained Language Models (PLMs),
such as TaBERT(Katsogiannis-Meimarakis and
Koutrika, 2023) and BERT-SQL(Guo and Gao,
2019), enhance cross-domain generalization
and improve the accuracy of SQL generation.
However, these methods require a certain amount
of domain-specific SQL training data, which makes
them difficult to land in practical applications
Recently, Large Language Models (LLMs) such
as GPT-4(Achiam et al., 2023), Palm-2(Anil et al.,
2023), and LLaMA(Touvron et al., 2023) have
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Figure 2: The MCTS-SQL framework consists of three core components: the Selector, the Direct Generator
and the MCTS-Refiner. The Selector is used to filter the most relevant tables and columns based on the user’s
intent. The Direct Generator aims to produce an initial SQL query. And the MCTS-Refiner is activated when the
initial SQL fails to meet the requirement, which adopts iterative trial-and-feedback optimization to refine the query

progressively.

revolutionized Text-to-SQL tasks. These meth-
ods excel in zero-shot and few-shot settings with-
out any extensive training data.(Lee et al., 2024;
Talaei et al., 2024; Alp Caferoglu and Ulusoy,
2024). DAIL-SQL(Gao et al., 2023) optimized
prompt engineering, focusing on question repre-
sentation, prompt structure, and example selection
to enhance SQL accuracy with minimal supervi-
sion. Frameworks like C3-SQL(Dong et al., 2023),
DIN-SQL(Pourreza and Rafiei, 2024), and Struct-
GPT(Jiang et al., 2023) further advanced the field
by addressing complex queries through database
simplification, query decomposition, and structured
data access. Additionally, MAC-SQL(Wang et al.,
2024) introduced a collaborative framework inte-
grating decomposer, auxiliary selector, and refiner
modules for iterative SQL refinement.

From the analysis of existing methods, it be-
comes clear that advancing Text-to-SQL perfor-
mance relies on the models’ understanding and
reasoning capabilities. However, these models are
often of large scale and costly, making them im-
practical for real-world resource-constrained appli-
cation. Our core motivation is to enable lightweight
models to achieve practical performance in Text-
to-SQL tasks. To this end, we incorporate Monte

Carlo Tree Search (MCTS) to guide the generation.

2.2 Monte Carlo Tree Search

MCTS is widely used for planning complex prob-
lems, and a large number of downstream exper-
iments have demonstrated its effectiveness. For
example, (Pitanov et al., 2023) demonstrates its
benefits in multi-agent path search, highlighting the
advantages over traditional heuristic search meth-
ods. Similarly, (Li et al., 2023a) use MCTS to
effectively address various types of SAT problems.
Recently, combining MCTS with large-scale lan-
guage models has been a great trend. (Chen et al.,
2024) proposed IMCTS, an approach designed to
enhance the mathematical reasoning capabilities
of fine-tuned LLMs. (Xu, 2023) integrated MCTS
with a lightweight energy function, demonstrating
notable performance improvements. In addition,
MCTSr(Di Zhang et al., 2024) introduced system-
atic exploration and heuristic self-refinement mech-
anisms, further advancing its applications in com-
plex decision-making tasks.

Building on these successes, our work is the
first to introduce Monte Carlo Tree Search (MCTS)
into the Text-to-SQL domain.The core idea is very
simple: reduce errors through iterative trial and



error. However, naive exhaustive attempts are inef-
ficient and impractical. To address this, we lever-
age MCTS to find a more efficiently and reliable
exploration path.

3 MCTS-SQL Framework

As shown in Figure 2, the MCTS-SQL framework
consists of three key components: the Selector,
Direct Generator, and MCTS-Refiner. The Selector
filter relevant tables and schema elements based on
the user query, while the Direct Generator produces
an initial SQL query. Queries that fail or yield
errors are refined by the MCTS-Refiner through
iterative tree search. A detailed explanation of each
component is provided in the subsequent section.
Moreover, all three components use the training-
free fresh shot agent method.

The collaboration process of our MCTS-SQL is
presented in Algorithm 1:

Algorithm 1 The algorithm of MCTS-SQL
Input: query q, database schema db, knowledge
kg
Output: SQL statement

1. db’ = LLMSelector(q, db, kg)

2: Sql,err = LLMDirectGenerator(qy db, kg)

3: ver = LLMy ¢rifier(sql,q.db.kg,)

4: if err is NULL and ver is ok then

5:  return sql

6: else

7:  count=0

8:  while count < maxRollout do

9: select a node
10: cri = LLMcritiquer(sql, err, q, db, kg)
11: ref = LLMpcfiner(sql, err, q, db, kg, cri)
12: score = LL M gyaiuater(ref, err, q, db, kg)
13: back-propagation
14: update the UCT value

15:  end while

16:  sql = ref with best score
17:  return sql

18: end if

3.1 Schema

Before introducing the specific components, we
would like to describe the special design of effec-
tively translating database structures. Combining
the database schema information in the prompt is
essential for enabling the LLM to comprehend the

Schema

[ Database schema]
# Table: frpm

[
(CDSCode, CDSCode, TEXT, Value examples:

['01100170109835','01100170112607'].),

(Charter School (Y/N), Charter School (Y/N), TINYINT,
Value examples: [1, 0, None]. And 0: N;. 1: Y)]
# Table: satscores

[
(cds, California Department Schools, TEXT, Value

examples: ['10101080000000', '10101080109991'].),
(sname, school name. TEXT, Value examples: ['None',
'Middle College High', 'John F. Kennedy High',
'Independence High', 'Foothill High'].),
(NumTstTakr, INTEGER,Number of Test Takers in this
school. Value examples: [24305, 4942, 1, 0, 280]),

1
[Foreign keys]
frpm.’CDSCode’ = satscores. cds’

Figure 3: An example of proposed database schema
format.The format consists of table names, descriptions
and column level details(name, data type, description,
and examples) to represent the hierarchical information
of databases.

database structure accurately and generate precise
queries. We present a novel method that illustrates
the hierarchical relationships between databases,
tables, and columns using a semi-structured format.

To be specific, we provide the table name and
corresponding description for each table(which can
be omitted if not necessary). The table informa-
tion is converted into a list where each entry is
a tuple containing a column of details. Each col-
umn includes the name, data type, description, and
example values, thus providing a comprehensive
view of its contents. In addition, foreign keys must
be included to represent the relationships between
tables accurately. Understanding hierarchical rela-
tionships is critical for query generation. An exam-
ple of proposed schema format is shown in Figure
3. All the agents in this paper introduce database
information through this schema.

3.2 Selector

The role of the Selector can be formally described
as follows. Given an input triplet X = (Q, S, ),
where @ is the query, S = T, C is the database
schema consisting of tables (1") and columns (C'),
and /C denotes the knowledge provided. The Se-



lector aims to identify a minimal subset of tables
and columns, denoted as S’ = T",C’, which are
necessary to answer the query ). The behavior of
the Selector is formally defined as follows:

Sl = .]cSelector(QvSulC ‘ M) (1)

Where fselector(+ | M) represents the Selec-
tor’s function, implemented via prompt engineering
powered by a large language model M.

The design of the Selector is motivated by
two key considerations: (i) Including unnecessary
schema elements in the prompt increases the risk of
irrelevant or extraneous items being incorporated
into the generated SQL, which can degrade output
quality; (ii) Directly utilizing the entire database
schema may result in excessively long prompts,
which could lead to higher computational costs and
potentially exceed the input length limitations of
the language model.

3.3 Direct Generator

The purpose of the Direct Generator is to gener-
ate SQL queries directly through an end-to-end
process. It can be described as follows, where R
represents the generated SQL query.

R= fDirect Generator(Qa S,a K ‘ M) (2)

After the SQL is generated, it follows two steps
of evaluation. First, an executor checks its syntac-
tic correctness and successful execution. Then, an
LLM verifies if the SQL meets the user’s require-
ments. The LLM-based verifier can be formalized
as:

V = fVeriﬁer(Rastvi ’ M) (3)

Specifically, the Direct Generator employs chain-
of-thought prompting. (Wei et al., 2022) We assem-
ble the relevant table and field information obtained
from the Selector mentioned above with the user in-
put. The LLM processes this input to generate SQL
queries, accompanied by a detailed rationale. Ad-
ditionally, we employ a few-shot learning strategy,
using several in-context examples to improve the
LLM’s understanding of task-specific instructions
and enhance its generalization capabilities.

3.4 MCTS-Refiner

Typically, SQL queries generated by the Direct
Generator fail to meet task requirements due to
syntactic errors or mismatch with the user’s intent.

Pre-SQL Expansion
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Figure 4: The main workflow of our proposed MCTS-
refiner. The SQL generated in the last step is firstly get
a critique. Then, based on the critique, a refinement
is provided. The search tree is now expanded.If the
iteration is complete, the node with best score is selected
as the final output, otherwise, the node will be added to
the search tree and backpropagation.

The MCTS-Refiner aims to refine SQL queries us-
ing the self-critique mechanism to optimize the
query iteratively. The main workflow of the pro-
posed method consists of several stages, detailed
as follows:

Initialization: The root node is initialized with
the suboptimal SQL generated by the Direct Gen-
erator as a reference for step-by-step optimization
to reduce the complexity of the search process.

Selection: Following the existing practices, we
define a function P to rank all generated SQL
queries that are not fully expanded. The node with
the highest value is selected for further refinement.
The function P of a node a can be defined as fol-
lows, where r, represents the set of results associ-
ated with node a.

|7al

1 1 :
P(a) =< |minrg + — > 7} @)
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Self-Refine: The SQL query a is initially ex-
ecuted by the executor to get the error informa-
tion E,, which is then used to refine the query
through the self-refine framework. In this process,
the LLM generates a critique ¢, serving as the guid-
ance for refining the query and producing an im-
proved SQL query a'. Specifically, E, represents
the error details related to the initial SQL query a,
and I denotes the prompt used in the Direct Genera-
tor, which includes the input query (), the database



schema S’, and relevant knowledge K. The details
can be formally described as follows:

cC= fCritiquer<a7 E,, 1 ‘ M) (5)
a = fReﬁner(aa ¢, E(MI | M) (6)

The Self-refine module designed a refinement
mechanism using error feedback and critique gen-
eration to enhance the accuracy and robustness of
SQL queries.

Self-Evaluation: The refined SQL query is eval-
uated to obtain a reward value, denoted as r, and
its corresponding P-value is computed. To be spe-
cific, we proposed a model-based self-reward feed-
back mechanism, with the reward value constrained
within the range of -95 to 95. To ensure the reliabil-
ity and fairness, the highest scores are deliberately
suppressed. The reward r is formally defined as:

Ta = vaaluater(a,a Ey, I | M) @)

Backpropagation: The value r of the refined
SQL query is back-propagated through the search
tree, updating the value information of the parent
node and other relevant nodes. If the P-value of
any child node is changed, the corresponding P-
value of its parent node is recalculated accordingly.
The process can be described as follows:

o) = 1
P (Q) - 2 P(a) + iEa.IcIilL?z)éren

Pi) ®

UCT update: Following the existing practice
(Di Zhang et al., 2024), after updating the P val-
ues for all nodes, we choose the UCT function to
measure the combined value of each node, which
is used as an important basis for expansion in the
next selection stage. The UCT value of a node a is
formally defined as:

In N (Father(a)) + 1
N(a) +e€

UCT, = P(a) + c\/ 9)

In this formulation, N (.) denotes the total num-
ber of visits to a given node, and c is a constant that
balances the trade-off between P-value and visit
times. The term € is a small constant to prevent
division by zero.

The algorithm proceeds through all these steps
iteratively until the maximum rollout numbers are
reached. And the SQL queries with the highest
score r is chosen as the final output.

4 Experiments

To evaluate the performance of our MCTS-SQL,
we present the implementation details, explain the
experiments performed, and offer a thorough anal-
ysis of the results.

4.1 Datasets

We evaluate our MCTS-SQL framework using two
Text-to-SQL benchmarks: Spider and BIRD. The
Spider contains 7000 training question-query pairs
and 1038 development pairs, which are from 200
different databases across 138 domains. In this
study, we only concentrate on the development set.
In contrast, BIRD includes 95 large-scale databases
with high-quality Text-to-SQL pairs, covering 37
specialized domains. Unlike Spider, BIRD focuses
on real-world database content and provides exter-
nal knowledge reasoning to bridge natural language
queries and database contextual information.

4.2 Evaluation Metrics

To evaluate our proposed method’s performance,
we use two metrics: Execution Accuracy(EX)
and Valid Efficiency Score(VES).(Li et al., 2023b;
Zhong et al., 2020) The Execution Accuracy(EX)
calculates the percentage of queries where the pre-
dicted SQL queries match the correct SQL queries
when executed. Valid Efficiency Score(VES) mea-
sures the percentage of predicted SQL queries
that output sets consisting of the results from the
ground-truth SQL queries.

4.3 Base Models

In this paper, we adopt Qwen2.5-Coder-Instruct se-
ries as our base models, given their leading perfor-
mance in the filed of code generation. We evaluate
the effectiveness of our framework across multi-
ple model sizes, including 1.5B, 3B and 14B, to
demonstrate its ability to enhance lightweight mod-
els. To further explore the boundary of our method,
we also conduct experiment using more powerful
closed APIs, including GPT-40-mini and GPT-4o0.
In future work, we aim to distill the reasoning pre-
cess into a lightweight model, which currently im-
plemented through MCTS refinement.

4.4 Hyper-parameters

In order to ensure the stability of our experiment
results, we standardized the hyper-parameters as
follows. The temperature is fixed at 0.1, the top-p
parameter is set to 1.0, and the max-token length is



32168. As for the hyper-parameters in the MCTS-
Refiners, the child nodes of a node are set to 2, and
the max-rollout numbers are 5.

4.5 Experimental Results
4.5.1 A.BIRD Results

Table 1 presents a performance comparison of our
method in the BIRD dataset against existing ap-
proaches. When using lightweight models(1.5B
and 3B), MCTS-SQL outperforms ChatGPT-3.5
and even rivals some earlier methods based on GPT-
4. This demonstrates that our method can be de-
ployed on resource-constrained edge devices, with-
out relying on large-scale models or costly APIs.
Furthermore, when combined with the most pow-
erful GPT-40 seties, MCTS-SQL achieves state-
of-the-art performance, reaching 69.4% execution
accuracy (EX) and 66.24 % value execution score
(VES) on the development set, confirming its su-
periority over existing methods and its practical
utility.

Table 2 shows the detailed performance across
different complexity levels. Compared to the base-
line, our method achieve significant improvements.
Analyzing the results, we observe that the model
improves more on simpler examples. This may
because mistakes in these cases are mostly about
syntax, and the MCTS-Refiner can fix them easily
using its feedback-based editing process. However,
with a stronger base model, MCTS can still bring
clear improvements on harder examples by explor-
ing different ways to fix the errors.

Method dev EX test EX dev VES
Palm-2 27.38 33.04 -
ChatGPT-3.5 36.64 40.08 42.30
DIN-SQL+GPT-4 50.72 55.09 58.79
DAIL-SQL+GPT-4 54.76 57.41 56.08
MAC-SQL+GPT-4 59.39 59.59 66.39
PB-SQL,v1 60.50 64.84 60.36
MCS-SQL+GPT-4 63.36 65.45 61.23
CHESS 65.00 66.69 62.77
ByteBrain 65.45 68.87 -
ASKData+GPT-40 65.19 65.62 60.25
E-SQL+GPT-40 65.58 66.29 62.43
Ours+Qwen-1.5B 40.69 43.72 44.87
Ours+Qwen-3B 46.71 48.37 48.19
Ours+Qwen-7B 53.61 51.79 52.21
Ours+GPT-40-mini 63.15 61.39 60.78
Ours+GPT-40 69.40 68.91 66.24

Table 1: Comparison with the results of existing meth-
ods on BIRD of the Execution accuracy and Valid Effi-
ciency Score.The Qwen models in this table are Qwen-
Coder-Instruct.

Method Simp. Mod. Chall All

Qwen-1.5B 1536 1496 9.78 14.71
Qwen-3B 19.24 16.18 1249 17.68
Ours + Qwen-1.5B 4636 3496 22.78  40.69
Ours + Qwen-3B 53.74 39.62 2455 46.71
Ours + Qwen-7B 6298 4221 30.28 53.61
Ours+GPT-40-mini  68.56 57.76  45.83  63.15
Ours+GPT-40 7432 65.17 5148 69.40

Table 2: Execution accuracy in BIRD development set.
The Qwen models in this table are Qwen-Coder-Instruct.

4.5.2 B. Spider Results

Table 3 presents the performance comparison on
the Spider dataset. When using lightweight models,
our method achieves results that are already prac-
tically usable. Furthermore, when equipped with
GPT-40 as the base model, MCTS-SQL achieves
outstanding performance, reaching 88.71% on the
development set and 86.63 % on the test set. While
existing approaches have already demonstrated
strong results on this benchmark, our method con-
tinues to deliver highly competitive performance.

Method EX(Dev) EX(Test)
C3+ChatGPT 81.80 82.30
DIN-SQL+GPT-4 82.80 85.30
DAIL-SQL+GPT-4 84.40 86.60
MAC-SQL+GPT-4 86.75 82.80
CHESS 87.2 -
MCS-SQL+GPT-4 89.5 89.6
Ours + Qwen-1.5B 67.45 71.68
Ours + Qwen-3B 74.03 73.98
Ours+GPT-40-mini 86.16 83.74
Ours+GPT-40 88.71 86.63

Table 3: Execution accuracy on both dev and test set of
spider. The Qwen models in this table are Qwen-Coder-
Instruct.

4.6 Ablation study

We conduct the ablation study to evaluate the con-
tributions of the key components in our proposed
MCTS-SQL. As shown in Table 4, each component
plays a critical role in the overall performance. To
better show the effects of each module, we use GPT-
4o0-mini as the base model, as lightweight models
are often too weak to produce stable and meaning-
ful performance differences. Specifically, replacing
our structured Schema representation with a con-



Pipeline Simp. Mod. Chall. All

Ours + GPT-40-mini  68.56 57.76 45.83 63.15
w/o schema 6698 56.27 43.82 61.56
w/o Selector 66.71 5540 40.18 60.79
w/o Direct Generator 67.15 56.63 4482 61.86
w/o MCTS-Refiner 64.46 52.00 3544 56.75

Table 4: Ablation study using GPT-40-mini with EX on
the development set.

Pipeline Simp. Mod. Chall. All

Ours + GPT-40-mini 68.56 57.76 45.83 63.15
max-rollouts-5 68.56 57.76 4583 63.15
max-rollouts-6 68.14 57.81 4491 62.83
max-rollouts-7 6842 57.12 4593 62.88
child nodes-2 68.56 57.76 4583  63.15
chile nodes-3 68.62 57.57 4583 63.13

Table 5: Ablation study of hyper-parameters in MCTS
with EX on the development set.

ventional DDL format leads to a slight performance
drop. The Selector proves especially useful on both
the moderate and challenging subsets, effectively
filtering irrelevant schema information. The most
significant degradation occurs when the MCTS-
Refiner is removed, highlighting its essential role
in enhance performance.

In addition, we analyze the sensitivity of two key
hyper-parameters in the Monte Carlo Tree Search:
the number of child nodes and the maximum num-
ber of rollouts. Table 5 presents the detailed results.
We observe that variations in these parameters have
minimal impact on overall performance—for ex-
ample, increasing the number of rollouts or child
nodes leads to only marginal changes. Based on
these findings, we adopt the most efficient configu-
ration to reduce token consumption.

5 Discussion

We conducted an error analysis of the single-
prediction model and found that 42% of the errors
were caused by syntax mistakes, wrong field selec-
tion, or misunderstanding of the schema. MCTS-
SQL improves Text-to-SQL performance by using
a trial-and-error feedback mechanism to guide the
search for better SQL queries. Instead of relying
on single-shot generation process, it explores multi-
ple candidate SQL queries and keeps those that are
actually effective based on execution results. This
allows the method to recover from some generation
eITorS.

6 Conclusion

In conclusion, this paper introduce MCTS-SQL, a
novel framework to improve the Text-to-SQL per-
formance of light-weight models. By using Monte
Carlo Tree search, we design an iterative mech-
anism to enhance the qualities of SQL. Our ap-
proach, consisting of three modules-Selector, Di-
rect Generator, and MCTS-Refiner, achieves signif-
icant improvements over existing methods. Experi-
ments on the SPIDER and BIRD benchmarks show
that, using only a 1.5B model, MCTS-SQL outper-
forms ChatGPT-3.5. And when we use the latest
GPT-40, we achieve SOTA. These results demon-
strate that MCTS-SQL can significantly enhance
the performance of small, resource-efficient mod-
els, making it a practical solution for real-world
applications.

7 Limitations

Although MCTS-SQL is effective in enabling light-
weight models to be practically applied into the
Text-to-SQL task, its limitations are also evident.

The trial-and-error feedback mechanism of
Monte Carlo Tree Search is essentially an approach
that approximates better results through multiple
attempts, which inevitably leads to significantly
token consumption and longer inference time. Ta-
ble 6 shows the average tokens consumption and
inference time per task for single-shot inference
and MCTS-SQL based on the Qwen-2.5-Coder-
instruct-1.5B.

Method Tokens Time Exon BIRD
single-shot 197 0.63s 14.71
MCTS-SQL 2274  6.12s 40.69

Table 6: Comparison of tokens consumption and infer-
ence time per task.

MCTS-SQL uses significantly more tokens and
inference time compared to single-shot prediction,
but is also achieves substantial performance im-
provement. We believe this overhead is unavoid-
able if lightweight models are to be truly applied
in real-world.

Moreover, the reasoning steps of MCTS rely
heavily on prompt engineering, requiring a careful
design and showing limited capability for rapid
adaptation across tasks.

With the rise of reasoning models (Guo et al.,
2025), implicit reasoning has become possible.



In future work, we plan to use MCTS-SQL to
collect a set of data that contains reasoning pro-
cesses, and distill a model with reasoning capabili-
ties through reinforcement learning. This approach
aims to develop a specialized Text-to-SQL model
that achieves fast inference and strong robustness
with fewer trial-and-error steps.
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