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Abstract

Randomised Controlled Trials (RCTs) are a fun-
damental aspect of data-driven decision-making.
RCTs often assume that the units are not influenced
by each other. Traditional approaches addressing
such effects assume a fixed network structure be-
tween the interfering units. However, real-world
networks are rarely static, and treatment assign-
ments can actively reshape the interference struc-
ture itself, as seen in financial access interventions
that alter informal lending networks or healthcare
programs that modify peer influence dynamics.
This creates a novel and unexplored problem: es-
timating treatment effects when the interference
network is determined by treatment allocation. In
this work, we address this gap by proposing two
single-experiment estimators for scenarios where
network edges depend on nodal treatments con-
structed from instrumental variables derived from
neighbourhood treatments. We prove their unbi-
asedness and experimentally validate the proposed
estimators both on synthetic and real data.

1 INTRODUCTION

Randomized controlled trials (RCTs), or A/B testing, is
a fundamental tool for assessing the effectiveness of in-
terventions across multiple disciplines, including health-
care[Antman et al., 1992], and digital platforms[Siroker and
Koomen, 2015]. In such a test, treatment (group A) and
control (group B) assignments are made independently of
other variables, including potentially unknown ones. The
outcomes from the two groups can be compared to estimate
the desired causal effects. Such an experimentation-based
approach empowers data-driven decision-making about the
most effective treatments [Aral and Walker, 2011].

Despite its basic soundness, A/B testing is not without chal-

lenges, particularly in large-scale experiments where key
assumptions may not hold [Pouget-Abadie, 2018, Shankar
et al., 2025]. One major issue is interference between sub-
jects, where individuals in the control group are indirectly
affected by the treatment assigned to others. This spillover
can distort the estimated treatment effect and lead to biased
conclusions. For instance, in social networks, recommenda-
tions made to users in the treatment group may be shared
with those in the control group, reducing the observed differ-
ence between the two groups [Brennan et al., 2022, Pouget-
Abadie et al., 2017]. Similarly, in public health studies, herd
immunity can lead to a spillover effect, making it challeng-
ing to isolate the direct impact of a vaccination program
[Randolph and Barreiro, 2020, Fine, 1993].

This phenomenon, where treatment of a unit affects out-
comes for other units, has been studied in the causal litera-
ture [Hudgens and Halloran, 2008, LeSage and Pace, 2009]
under the name of interference. A common assumption in
such studies is that the structure of interference is encoded
by an apriori known network [Ogburn et al., 2017, Leung,
2020]. This is the neighbourhood interference assumption,
where interference is confined within neighbours in a graph.
This dependence graph is typically inferred using observable
data like social connections [Aronow et al., 2017], historical
user interactions [Bakshy et al., 2012, Karrer et al., 2021])
or from a user linking model [Sinha et al., 2014, Saha Roy
et al., 2015].

However, in practice, the network structure obtained for
post-experimentation analysis is rarely static [Heckman and
Pinto, 2015, Sävje, 2024, Sweet and Adhikari, 2020]. Fur-
thermore, the interference graph itself may be affected by
the treatment [Gao, 2024, Rogowski and Sinclair, 2012].
A classic example comes from a case study of the intro-
duction of financial and banking access to households in
an underdeveloped village [Prina, 2015]. In such commu-
nities, families and friends often serve as informal lenders
when facing financial hardships. However, the introduction
of banking access can lead to changes in these informal
lending connections. For example, those units with access
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to banks may not borrow from each other as previously. On
the other hand, there may be increased lending between
peers among whom only one has bank access. Similarly,
in healthcare interventions, individuals encouraged to join
peer support groups will experience different levels of social
influence than those unaware of such networks, making the
interference structure dynamic rather than fixed [Arminen,
1998]. These cases introduce a new scenario, requiring the
estimation of treatment effects when the network structure
of interference depends on the treatment allocation.

Contribution . In this work, we consider a network inter-
ference scenario in which the existence of edges between
nodes is determined by the treatments assigned to those
nodes. We provide two different single-experiment estima-
tors for this problem. We show them to be unbiased and
experimentally validate their performance.

2 RELATED WORK

Network Interference Network interference is a well-
studied topic in causal inference literature [Basse and
Airoldi, 2018, Cai et al., 2015, Chin, 2019, Gui et al., 2015,
Toulis and Kao, 2013]. First, formally identified by Cox
[1958], interference relates to a violation of the Stable Unit
Treatment Value Assumption (SUTVA) [Rubin, 1978]. Net-
work interference [Hudgens and Halloran, 2008] relates to
the idea that the effects on a unit can be encapsulated in a
neighbourhood structure. Most approaches include assump-
tions about the interference neighbourhood [Bargagli-Stoffi
et al., 2020, Frank and Xu, 2020]. Hudgens and Halloran
[2008] proposed a method based on clustered interference,
which was later extended by Zhang et al. [2023], Ogburn
et al. [2024], Shankar et al. [2024a] to allow more flexi-
ble network structures. Some other methods focus on using
graphical causal models to directly adjust for interference
[Ogburn and VanderWeele, 2014, Spohn et al., 2023, Sh-
pitser et al., 2017]. Shankar et al. [2024b] have extended the
work on interference to other distributional quantities such
as median and CVar. Linear interference model [Sussman
and Airoldi, 2017, Jiang and Wang, 2023, Pouget-Abadie,
2018] or exposure mappings [Aronow et al., 2017, Sävje
et al., 2021a] are common assumptions for incorporating
heterogeneity in interference. O’Riordan and Gilligan-Lee
[2025] extend methods based on linearity assumptions to
include semi-parametric models. We summarize some com-
mon approaches and how our method differs from them in
Table 1. A detailed discussion of these is in the Appendix.

Misspecified and Uncertain Interference A major chal-
lenge in network interference analysis is dealing with noisy
or misspecified networks [Carroll et al., 2006, Ogburn and
Vanderweele, 2013, Lockwood and McCaffrey, 2016]. Re-
cently, some methods have been developed to handle the
strong assumptions often made in network interference liter-

ature (e.g., Leung [2022], Wang et al. [2020], Sävje [2024],
Auerbach et al. [2024], Shankar et al. [2023b]). In a re-
lated direction, research has also focused on settings where
the underlying network structure is unknown or only par-
tially known (e.g., Chin [2019], Sävje et al. [2021a], Cortez-
Rodriguez et al. [2023], Shankar et al. [2025]). Most of
these methods are based on multiple measurements [Shankar
et al., 2023b, Cortez et al., 2022, Yu et al., 2022], though
some other approaches exist based on outcome assumptions
[Shankar et al., 2024c] and on uncertainty estimates for the
network structure [Zhang et al., 2023]. Other approaches
include methods based on measurement error [Miao et al.,
2018, Kuroki and Pearl, 2014] and confounding models
[Shpitser et al., 2021]. When networks are uncertain, meth-
ods for obtaining partial identification bounds for treatment
effects have been proposed [Zhao et al., 2017, Yadlowsky
et al., 2018].

However, these methods still assume a static network, i.e. a
network which is fixed though perhaps unknown. Depart-
ing from prior work, our study analyzes the scenario where
the observed edges which characterize the interference are
themselves dependent on the treatment assignments. This
introduces a unique challenge, as the very structure of inter-
ference becomes treatment-dependent.

PseudoInverse Estimators Network interference is also
related to a problem in slate and combinatorial bandits [Jia
et al., 2024, Xu et al., 2024]. Several works have addressed
this challenge by assuming specific parametric models, such
as linear relationships, to link slate features to outcomes
[Auer, 2002, Chu et al., 2011, Qin et al., 2014]. A valu-
able tool in these settings is the Pseudoinverse estimation
Cesa-Bianchi and Lugosi [2012], Rusmevichientong and
Tsitsiklis [2010], Dani et al. [2007]. Other studies adopt a
similar assumption but operate under a semi-bandit feedback
model [Kale et al., 2010, Kveton et al., 2015, Krishnamurthy
et al., 2015]. Our solution inspires from these pseudoinverse
estimators, but is solving a fundamentally different problem,
as the problem of treatment dependent interference is not
directly addressable by these methods.

3 NOTATION

We are given a population of n units. Let Z be the
treatment assignment vector of the entire population
and let Z denote the treatments’ space, e.g., for binary
treatments Z = {0, 1}n (see Figure 1). We use the
Neyman potential outcome framework [Neyman, 1923,
Rubin, 1974], and denote by Yi(z) the potential out-
come for each z ∈ Z . We make observations at unit
level and denote these observations as Yi for unit i.

We will consider randomized Bernoulli designs, i.e., each
unit i gets allotted the treatment zi = 1 independently with
probability pi ∈ (0, 1). This is natural and easy to imple-
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Figure 1: Z = 1 denotes the units in the treatment group and Z = 0 denotes units in the control group. (a) Standard A/B
testing where there is no interaction between the treatment and the control units.(b) Network interference due to fixed (static)
interaction between the units. (c) We have network interference however all the red edges are potential edges, and only
occured due to specific treatment allocation.

Table 1: Literature Summary. We list a few important works, a few desiderata and whether they are met ✓ or not ×. Our
work focuses on the problem of treatment dependent interference which the other methods do not handle.

General
Graph

Uncertain
Edges

Single
Trial

Treatment
Dependent
Network

[Hudgens and Halloran, 2008, Liu and Hudgens, 2014] × ✓ ✓ ×
[Yuan et al., 2022, Yu et al., 2022] ✓ × ✓ ×
[Cortez et al., 2022, Shankar et al., 2023b] ✓ ✓ × ×
[Aronow et al., 2017, Sävje et al., 2021b, Toulis and Kao, 2013] ✓ × ✓ ×
Ours (Section 5.4.1) ✓ ✓ ✓ ✓
Ours (Section 5.4.2) ✓ ✓ ✓ ✓

ment and satisfies standard randomization and positivity
assumptions in causal inference.

Standard Causal Assumptions

Positivity: P (z) > 0 ∀z (A1)
Consistency: Yi = Yi(z) if Z = z (A2)

We assume that the unit outcome is not determined just by
the treatment at the unit but potentially also by treatments
allocated to other units. This is a violation of the SUTVA
assumption [Cox, 1958, Hudgens and Halloran, 2008] and
is commonly called interference.

This dependence can be represented as a graph (Figure 1b),
where each node represents a unit and the presence of an
edge indicates a possible influence between each other. The
underlying graph is given by its adjacency matrix A ∈
Rn×n, with Aij = 1 only if an edge exists between from
unit j to unit i, and by convention Aii = 1. Let Ni = {j :
Aij = 1} be the set of neighbours of unit i in the unit-unit
graph. We assume that the outcomes depend only on the

node’s neighbours in the unit-unit graph. This is similar to
the classic network neighbourhood interference assumption
[Hudgens and Halloran, 2008, Sussman and Airoldi, 2017].
However, the classic network interference is not a valid
assumption in the scenario we are considering.

Instead, we have a two-stage generative process. We first
have a treatment-dependent network formation. Next, con-
ditioned on the network thus formed, the standard network
interference assumption is assumed to be valid. To model
the network-dependent behaviour, we consider the variables
Aij(z) as an additional set of potential outcome variables
for each possible edge in the network. Corresponding to
the potential network edges, we also have neighbourhoods
Ni(z). The fundamental interference assumption in our case
can be stated as:

Treatment Dependent Network Interference

∀z, z′ s.t. zi = z′i and Ni(z) = Ni(z
′)

and zj = z′j ∀j ∈ Ni(z) :

Yi(z) = Yi(z
′). (A3)



Our primary focus is on estimating the Global Average Treat-
ment Effect (GATE) under the previously outlined scenario,
where the network structure itself may change based on the
chosen treatments. The desired causal effect is the mean dif-
ference between the outcomes when z = 1⃗ i.e., zi = 1∀i
and when z = 0⃗ i.e., zi = 0∀i. Under the aforementioned
notations, this causal effect is given by:

τ (⃗1, 0⃗) =
1

n

n∑
i=1

E[Yi(⃗1)− Yi(⃗0)] (1)

where the expectation E marginalizes over the different
networks. Correspondingly we can also define the individual
global treatment effect τi = E[Yi(⃗1)− Yi(⃗0)]

SUTVA Estimate The SUTVA estimate (or the DM esti-
mate) is given by

τ̂SUTVA = Ȳ 1 − Ȳ 0 =

∑
YiI[Zi = 1]∑
I[Zi = 1]

−
∑

YiI[Zi = 0]∑
I[Zi = 0]

where Ȳ 0/1 are the average of observed outcomes for units
where Zi = 0/1 respectively. This estimator, while simple
and practical, requires the SUTVA assumption, and hence
can be misleading in our scenario.

4 CHALLENGE AND FORMULATION

Inverse Propensity/Horvitz-Thompson Estimate A clas-
sic method to estimate treatment effects is the Horvitz
Thompson estimator [Horvitz and Thompson, 1952] (also
called IPW or IS estimator). When all treatment decisions
are independent Bernoulli variables with probability pi, the
Horvitz Thompson (HT) estimator as follows:

τHT =
1

n

∑
i

Yi

(∏
j∈Ni

zj∏
j∈Ni

pj
−
∏

j∈Ni
(1− zj)∏

j∈Ni
(1− pj)

)

=
1

n

∑
i

Yi

∏
j∈Ni

zj
pj

−
∏
j∈Ni

(1− zj)

(1− pj)

 (2)

If the network is fixed the IPW estimate (and its variants) do
not require any further assumption other than randomization
and positivity. Unfortunately, when the network is dependent
on the treatment vector Z, the HT estimator is not unbiased.

For example, consider 3 node graph with nodes L, R, and U.
Each node is a binary treatment node (can be only 0 or 1)
(shown in Figure 2 )

Edge UL exists if and only if ZU = 1 otherwise the edge
UR will exist. However outcomes at L and R, i.e. (YL, YR)
respectively are independent of treatment at U and only
depend on treatment at self with the effect being constant

U

L R

Figure 2: Counterexample demonstrating bias of the stan-
dard HT estimate. The figure shows two edges one between
U and L, and another between U and R. However, these
are potential edges and when treatment allocation happens,
only one of the edges will be observed while the other will
vanish. The shifting of the edge between counterfactuals
causes the bias in HT estimate.

α i.e. the outcomes are YL/R(1) = YL/R(0) + αL/R. All
treatments are randomized with probability q = 0.5.

We consider the total treatment effect (TTE) or global
average treatment effect (GATE) between Z = 0⃗ and
Z = 1⃗ with the HT estimate here. By symmetry we can
consider only U,L with the U,R case analogous. Con-
sider the standard HT estimator: we have 4 possibilities
for the relevant treatments each with probability 0.25. When
ZU = 0, the observed network and counterfactual net-
work is the same; and hence the value of the τHT is un-
biased ( = YL(1) − YL(0). However when ZU = 1, the
HT estimator takes into account the edge UL. Thus when
ZU = 1, ZL = 0, the propensity terms in the estimator
zero out, leading to 0 value. Thus the expected value of
the HT estimator from node L over all treatment alloca-
tions is given by (YL(1) +

YL(1)−YL(0)
2 ). 1. Similarly, the

contribution from node R is (−YR(0) +
YR(1)−YR(0)

2 ).

Hence, the expected value of the estimator for all nodes
together is given by YL(1)−YR(0)

2 + αL+αR

4 . On the other
hand, the true treatment effect is, the mean of Y (1)− Y (0)
over all nodes i.e. (αL + αR)/2. Thus, we can see that the
HT estimator is biased.

The problem arose because if one does not observe the edge
between the nodes (L/R) and U, the HT estimator does
not include it in the inverse probability weights (since they
are dependent on the network) ratio. And between the 2
possibilities the weight ratio moved from L to R (because
the edge moved from L to R) in the HT estimate, which
caused the bias. We discuss more formally the issue with
HT estimation in the Appendix.

Outcome Model (Additive Interference):

Yi(Z) = bi + ciiZi +
∑

cijZ̃ij

1More detailed case analysis is in the Appendix



where bi is the baseline effect, cii is the direct effect of
treatment, Z̃ij refers to individual factors arising from the
treatment vector, and ci,j is the influence of factor j on
node i. In the case of standard linear network interference
Z̃ij = Zj . Higher order network dependence can also be
modeled here by having multiplicative interaction terms
between the components of Z, but for this paper we will
focus on the linear case.

Linear Additive Interference

∀i, Yi(z) = bi + ciizi +
∑

cijAijzj (A4)

Remark 4.1. We have not yet assumed anything about ci,j ,
and thus our method supports heterogeneous effects.

Remark 4.2. The presented counter-example presented ear-
lier does satisfy an additive interference. Thus this specific
assumption is not enough to solve the problem.

The GATE is defined as: τ = E[Yi(⃗1)]− E[Yi(⃗0)], where 1⃗
and 0⃗ represent the all 1 (all treated) and all 0 (all untreated)
treatment vectors. Substituting this in the outcome model
we get

τi = cii +
∑
j

cijE[Aij |z = 1⃗]

5 ESTIMATION

In this section we first present a general matrix represen-
tation framework to estimate the treatment effect τ based
on matrix pseudoinverses. We then show how this design
fails in the treatment dependent network case, because of
a hidden endogeneity. We next discuss how this suggests a
solution to the problem by introducing instrument variables.

5.1 MATRIX REPRESENTATION

The discussion in this section follows the presentation of
Cesa-Bianchi and Lugosi [2012] Let Ni be the fixed set of
neighbours of a specific ego node i. Consider a hypothetical
scenario, where we observe a collection of r experiments,
each time conducted with a different vector Z. Let Y r

i be
the observed outcome at node i in the r-th trial. Under the
linear-additive assumption, we can write:

Y r
i = bi + cii +

(
Zr
N (i)

)⊤
ci,

where Zr
N (i) is the vector of treatments corresponding to the

neighbors of i (or nodes from which i receives interference)
in trial r, cii is the direct effect of treating i, and ci is the vec-
tor of marginal effects of each neighbor’s treatment on i. We
can formally express the variables from these hypothetical
trials as in matrix form as follows:


Y 1
i

Y 2
i
...
Y r
i


︸ ︷︷ ︸
r×1

=


1
(
Z1
N (i)

)⊤
1
(
Z2
N (i)

)⊤
...

...
1
(
Zr
N (i)

)⊤


︸ ︷︷ ︸

r×d

 bicii
c⃗i


︸ ︷︷ ︸
d×1

⇒ Yi = Zi ci.

Here, d is the dimension of the parameter vector ci, which
includes the direct treatment effect cii and the vector of
neighbor-treatment effects ci. If we have results from many
such random assignments of z make the least square esti-
mator unbiased for c.

5.2 TREATMENT DEPENDENT GRAPH

:

Now in our scenario, where the network edges depended on
treatment allocation, the network structure may change from
trial to trial. Consequently, for each experiment r, the set
of neighbors N (i) can vary, leading to different observed
components in Zr

N (i).

Hence, we need to modify the previous approach to include
the the variables Aij . We consider the situation in which
the node j has an effect on i depends only on zj , that is,
Aij(z) = Aij(zj).

The structural equation becomes

Yi =

n∑
j=1

Aij(Zj) cij Zj + ciZi. (3)

Define the ideal (but unobserved) regressors Xij :=
Aij(Zj)Zj . we have the relation Yi = Xi ci Once again
if we have sufficient number of trials this can be estimated,
however that is not feasible in a standard RCT.

With limited number of trials, one cannot observe all the
network configurations. Instead one uses the Z based on the
network observed in the trial, but the corresponding design
matrix ignores the ’counterfactual’ edges under alternate
treatment allocation.

For simplicity consider the network as obtained from a
single trial with the treatment allocation being Z1. If we
naively regress using Zj from the observed network, then
we have

Xij = Aij(Z
1
j )Zj+qij , qij := (Aij(Zj)−Aij(Z

1
j ))Zj .

Hence the observed design matrix is W = Z = X − Q
with Q = [qij ], and (3) can be rewritten as

Yi =
∑
j

cijZj +
∑
j

cij(Aij(Zj)−Aij(Z
1
j ))Zj︸ ︷︷ ︸

εi

.



Because εi contains functions of Zj ,

E
[
W⊤ε

]
= E

[
Zj cij(Aij(Zj)−Aij(Z

1
j ))Zj

]
̸= 0.

Thus the standard regression assumption of orthogonality
fails: Zj is correlated with the regression error, just as in
the standard error–in–variables or endogenous regressor
problem. Thus if we attempt to apply “static” network in-
terference methods (which assume a fixed set of neighbors
and fully observed edges), we end up effectively estimating
a regression with an endogenous error term [Sargan, 1958,
Bowden and Turkington, 1990].

The presence of the unobserved or “missing” edges shifts
part of the structure into an unobserved confounding term,
rendering a naive regression approach potentially biased. As
detailed, this is reminiscent of endogenous error encoun-
tered in classical econometrics: the missing (or unobserved)
regressors are subsumed into the error term, potentially vi-
olating standard exogeneity assumptions. This connection
also hints at a solution: the standard method to address en-
dogeneity in econometrics is to use instrumental variables
(IV). We propose a similar approach of using IVs. In the next
section, we illustrate how IV based methods yield consistent
estimates of the treatment (and spillover) effects despite
partial observation of the complete network structure.

5.3 IV BASED ESTIMATION

Suppose we have access to mean zero instrumental variables
V . From the outcome model

Yi = bi + cii + (ZN (i))
⊤ci,

we multiply both sides by V and take expectations:

E[V Yi] = E[V ], cii + E[V (ZN (i))
⊤]ci.

Since E[V ] = 0, the term E[V bi] vanishes. Solving for ci
yields:

ci =
(
E
[
V (ZN (i))

⊤])−1

E
[
V Yi

]
.

Hence, provided E[V (ZN (i))
⊤] is invertible, we can re-

cover ci consistently by using this moment equation.

Single-Sample Estimation While the above equation
holds for expected values, one can obtain consistent es-
timators by using sample version. Suppose we run R exper-
iments indexed by r, observe {V r, Zr

N (i), Y
r
i }, and form:

ĉRi =
[
1
R

R∑
r=1

V r
(
Zr
N (i)

)⊤]−1[
1
R

R∑
r=1

V r Y r
i

]
.

By construction, ĉi is a consistent estimator of ci. Moreover,
if the matrix E[V (ZN (i))

⊤] is known (or can be computed
from external information), then even a single experiment r
could suffice. In that scenario,

ĉi =
(
E
[
V (ZN (i))

⊤])−1 (
V Yi

)
,

and since V Yi is an unbiased estimate of E[V Yi], ĉi re-
mains unbiased.

In the above argument, the matrix E[V (ZN i)
T ] was consid-

ered invertible. However this in general will not be the case.
For a non-invertible matrix one can use the Moore-Penrose
pseudo-inverse. If E[V (ZNi)

T ] has full column rank, the
estimates remain unbiased. Thus we have the following
estimator

ĉi = E[V (ZN i)
T ]+[

∑
V rY r

i ] (4)

5.3.1 Identification Condition

For identification,we require the following conditions

• Relevance: V is correlated with ZNi ,

• Exclusion: V affects Yi only through ZNi
.

Both of these conditions are natural in the standard IV lit-
erature [Angrist et al., 1996, Sargan, 1958, Bowden and
Turkington, 1990, Bonet, 2013]. Relevance ensures that V
captures enough variation in Z to ensure E[V (ZN i)

T ] is
non singular. Exclusion ensures that V Yi does not have any
systematic Z dependent component.

A common instrument in network settings is the treatment
of neighbours [Drago et al., 2020, Rogowski and Sinclair,
2012]. In our setting also, these variables can serve as valid
instrument variables [Rogowski and Sinclair, 2012]. Specif-
ically, we will use for each node j we can create an instru-
ment Vj =

Zj

p − (1−Zj)
(1−p) . By construction, Vj it is corre-

lated with the ZN (i) if j ∈ N (i), thus satisfying relevance.
However, exclusion is not always satisfied, specifically if j
appears in N (i) for one allocation but not in a different one.
Next, we describe detail two specific methods leveraging
the aforementioned idea of IV based pseudoinverse estima-
tor, by using two different constructions of neighbourhood
based IVs.

5.4 ESTIMATORS

5.4.1 Overcomplete Estimator

Consider the scenario, when for each node i we know a su-
perset of all possible neighbours under all possible treatment
allocations. Lets denote this set as Mi.



Neighbourhood Superset: Mi ⊇ Ni(z) ∀i, z
(A5)

In such a case, the treatment of all units in M provides an
overcomplete set of instruments.

The estimator is present in Equation (5)In this setting, the
GATE estimator becomes the estimator of Sussman and
Airoldi [2017], which itself can be seen as a version of
the standard pseudo-inverse estimator [Swaminathan et al.,
2017, Cesa-Bianchi and Lugosi, 2012].

τ̂OIV =
1

n

∑
i

Yi

∑
j∈Mi

(
zj
p

− (1− zj)

(1− p)

)
. (5)

The derivation of the above estimator from Equation (4) is
in the Appendix (Lemma A.5).

Proposition 5.1. Under assumptions A1-4,A5 , τ̂OIV is an
unbiased estimate of the treatment effect τ

Remark 5.2. While Assumption A5 can be a strong assump-
tion, in many scenarios this can be satisfied. As a simple
example, consider all nodes which share a geographic loca-
tion ( or in case of units being mobile devices, IP). This is
very likely to be a superset of all interactions this unit can
have. In other cases, user modeling and device-linking meth-
ods are used to identify neighbours based on confidence
scores i.e. they have a probabilistic version of the adjacency
matrix A. Such a method can usually be adapted to obtain a
superset of neighbours with high probability ( by including
even low confidence nodes as neighbours.

We now turn to the case when we do not have enough IVs.
For the linear case we would have required as many instru-
ments as nodes. This along with the relevance criteria can
be hard to satisfy, and so a method which works with fewer
instruments is more valuable for some applications.

5.4.2 Undercomplete Estimator

In this section we consider the case of undercomplete V .
As earlier the treatment of neighbouring nodes are used to
create the instrument. However, the set of observed neigh-
bours do not qualify as valid instruments 2. The method
from the previous section used a superset Mi of all possible
neighbours; or equivalently a set which is the union of all
the neighbouring sets under all possible treatments.

Now we present an alternative which instead relies on the
intersection of all the neighbouring sets under all possible
treatments. Equivalently consider the set of edges j → i
such that Aij(Z) is a constant function independent of Z.

2Using only the observed neighbours is the same as assuming
static interference, which as shown earlier leads to biased estima-
tion

These set of edges will continue to exist regardless of treat-
ment assignments, and thus we call them conserved edges.
Let use denote such a set of edges as Mc

i The knowledge
of a large enough set of pre-experiment edges that are con-
served, allows us to circumvent the difficulties posed by not
observing edges under counterfactual treatments.

Conserved Set: Mc
i ⊆ Ni(z) ∀i, z (A6)

Remark 5.3. The existence of such a conserved edges is
analogous to the classical “compliance” assumption used
for instrumental variables estimation[Angrist et al., 1996].

We propose to use the IV pseudo-inverse estimator 4, but
will adjust the estimate obtained, by noting that it only cov-
ers a subset of the variables. Such a set is almost always
by construction undercomplete. However we also note that
we do not need the entire vector ci. Instead we care only
about the total treatment effect which is cTi 1⃗. Under certain
assumptions, the estimate obtained by using the undercom-
plete pseudo-inverse can be adjusted to be unbiased.

One such assumption is the assumption of homogenous
neighbours (A7). Under this assumption cij does not depend
on j. Hence, this is also called anonymous interference as
the effect does not depend on the identity of the neighour.

Anonymous Interference: cij = cij′∀j, j′ ∈ Ni \ i
(A7)

Remark 5.4. cij can still depend on i, so we still have some
heterogeneity.

Let Ci =
1
p

∑
j ZjAij , then

E[Ci] =
∑
j

1

p
E[ZjAij ] =

∑
j

E[Aij |Zj = 1] (6)

One key result that (see the Appendix) is that, if we use
Mc

i as the instrument, the pseudo-inverse provides an un-
biased estimate of the indirect effect of nodes in Mc

i . That
is we have E[

∑
ĉi] =

∑
j∈Mc

i
cijE[Aij(1)] which under

anonymity is just ci
∑

j∈Mc
i
E[Aij(1)] which further under

conserved edges becomes ci|Mc
i |. Thus we can rescale this

estimate by Ci to get an unbiased estimate of τi.

τ̂UIV =
1

n

∑
i

Yi

[(
zi
p
− 1− zi

1− p

)
+ (7)

∑
j∈Mc

i

(
zj
p

− (1− zj)

(1− p)

)(∑
j zj

p|Mc
i |

)]
. (8)

Proposition 5.5. Under assumptions A1-4,A6-7 , τ̂UIV is
an unbiased estimate of the treatment effect τ



We would like to bring a crucial detail to the attention of
the reader. As mentioned before τ̂OIV is very similar to the
HATE estimator of Sussman and Airoldi [2017]. Similarly
τ̂UIV is a scaled version of the same estimator. The critical
difference between them lies in the set of neighbours used.
This is because under treatment dependent networks, the
neighbourhood itself also becomes a function of treatment,
and using the observed neighbourhood will cause errors.
How τ̂OIV ,τ̂UIV specifically handle this is discussed in
more detail in Appendix A.2.
Remark 5.6. In Appendix A.1, we derive bounds for the
variance of the UIV and OIV estimator which can be used to
provide conservative intervals for a Wald-style hypothesis
test [Wasserman, 2006].
Remark 5.7. We present another estimator based on the
insight from (Equation (6)) in the Appendix. This estima-
tor, while efficient and with quite low variance, requires
multiple independent trials. Due to these conditions, this
estimator is not applicable for many real datasets where we
conduct the experiment once. That said for certain appli-
cations, researchers have access to baseline results [Cortez
et al., 2022] which can be used as a trial.

6 EXPERIMENTS

6.1 SYNTHETIC GRAPHS

In this section, we experimentally demonstrate the validity
of our proposed methods by experimenting with synthetic
data obtained from a model which satisfies our assump-
tions exactly. We experiment with both Erdős-Rényi (ER)
graphs and stochastic block model (SBM) graphs to com-
pare the performance of our estimator with other estimators.
We simulate 100 different random graphs and run repeated
experiments on each graph with random treatment assign-
ments. We set a independence parameter e which determines
the fraction of these edges which will not show a treatment
dependent behaviour. Specifically each treatment dependent
edge acts as a bernoulli variable and will be activated if its
source node has treatment 1. A subset of the non-varying
neighbourhood is take as the conserved edges for (Mc

i ). On
the other hand the base network itself is taken to be the su-
perset neighbourhood (Mi). The potential outcomes Yi(z)
are obtained by applying a function g on the exposure and
adding a mean zero noise. The exposure are computed using
the procedure in Cortez et al. [2022]. For each experiment,
we varied the treatment probability p, the size of the graphs
n to assess the efficacy of estimation across different ranges
of parameters and the strength of interference r. Similar to
Cortez et al. [2022] we measure the strength of interference
r as the ratio of norms of the self or direct influence and the
indirect influence (more details in Appendix C.1).

We gauge the effectiveness of MEX by benchmarking it
against commonly employed estimators such as polynomial

regression (Poly), ReFeX [Han and Ugander, 2023], and
the difference-in-means (DM) estimators (τ̂SUTVA). Due to
the size of neighbourhoods, Horwitz-Thompson estimators
failed to yield non-meaningful results in these trials.

The results are presented in Figure 3. The first row contains
results from the ER model. From the figure it is clear that
our model produces unbiased estimates. On the other hand,
all other methods produce highly biased estimates. Note
that in Figure 3a, when r = 0, there is no interference,
and hence most estimators are unbiased. However, when
interference increases these methods clearly show strong
bias. Secondly, for a given interference strength, our method
shows consistency in the form of decreasing variance with
increasing number of nodes. Finally we also show bias due
to treatment dependence in all methods, while we remains
unbiased. Similar results are obtained on the SBM model as
well.

6.2 APPLICATION: ASSESSING IMPACT OF
BANKING ACCESS INTERVENTION

Next, we demonstrate an application of observational data.
We focus on the application mentioned in the introduction,
which introduces access to financial accounts. We use the
data from the field study conducted by Prina [2015], Comola
and Prina [2021] in the region around Pokhara in Nepal. The
experiment involves a randomized trial of providing access
to formal savings accounts to a random sample of poor
households. The authors surveyed all poor households with
an adult and working female head to identify their social
connections. The initial social network was sparse and mini-
mally clustered. Half of the families were offered access to
a savings bank account. After the treatment, another survey
was conducted with the families. Comola and Prina [2021]
have reported a significant fraction of treated units using the
savings bank account. They also found a significant change
in social connections, with around 50% of the connections
changing post-treatment. The outcomes Yi correspond to
measured household consumption. Literature has shown
strong peer effects for this variable [Cruwys et al., 2015].
We used the intersection of the two networks as Mc for the
UIV estimate and their union as M for the OIV estimate.

As this is observational data, we do not know the ground
truth effect and consider the results of Comola and Prina
[2021] as a reference. Figure 4 shows that our method pro-
vides similar estimates as the the reference, but other in-
terference aware methods like RefeX method, while better
than no-interference model do not do as well.

7 CONCLUSION

We presented a major limitation of current interference-
aware GATE methods. We show that the standard HT esti-
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Figure 3: Plots visualizing the performance of various GATE estimators under Bernoulli design on Erdős-Rényi networks
(first row) and SBM networks (second row). The lines represent the empirical relative bias, i.e., τ̂−τ

τ of the estimators across
different settings, with the shaded width corresponding to the experimental standard error.
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Figure 4: Estimates for GATE of financial access on house-
hold consumption for the [Prina, 2015] experiment. The box
plot depicts the mean and the 95% confidence interval. HT
and ReFeX methods use post-treatment neighbourhoods,
and Ref is the method from Comola and Prina [2021]

mate is biased when the interference network is treatment-
dependent. We then provide two different solutions to this
problem by combining the ideas of pseudoinverse estima-
tion with the concept of instrumental variables. We show
that our estimators are unbiased and provide a statistical
inference method. Finally, we experiment with both real and
synthetic data to show the validity of our estimators. Our
results have immediate implications for randomized trials in
social networks, public health, and economics, where ignor-
ing endogenous interference can lead to severely misleading
conclusions.

A limitation of our work is that the variance of the esti-
mate grows with the size of the neighbourhoods, and so
for practical applications, one needs to balance the risk of
higher variance against potential bias. Future research direc-
tions include incorporating temporal data and longitudinal
studies.
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A RELATED WORK

Network Interference Network interference is a well
studied topic in causal inference literature, with a variety of
methods proposed for the problem. Existing works in this
area incorporate various sets of assumptions to provide an
estimate of treatment effects. A common approach is the
exposure mapping framework which allows defines a degree
of "belonging" of a unit to either the treatment or control
group [Aronow et al., 2017, Auerbach and Tabord-Meehan,
2021, Li et al., 2021, Viviano, 2020]. Typically linearity
with respect to neighbouring treatments is also assumed
[Eckles et al., 2017, Leung, 2022, Zhang et al., 2023, Wang
et al., 2017] but is not neccessary [Sussman and Airoldi,
2017]. A limitation of these approaches is that they require
complete knowledge of the network structure.

Treatment effect estimation with unknown network interfer-
ence has been studied beginning with the seminal work of
Hudgens and Halloran [2008]. Other works such as Auer-
bach and Tabord-Meehan [2021], Bhattacharya et al. [2020],
Liu and Hudgens [2014], Tchetgen Tchetgen and Vander-
Weele [2012], VanderWeele et al. [2014] have extended
this idea further. Often the bias of these estimators depends
on the the number of edges between the clusters, but con-
structing good clusters is also known to be computationally
intractable[Pouget-Abadie, 2018]. This has led to develop-
ment of various heuristic methods for constructing clus-
ters [Eckles et al., 2017, Gui et al., 2015]. However, this
still requires the graph to be static and not treatment depen-
dent. On the other hand, our method can handle treatment
dependence in general unstructured graphs.

Estimation with Misspecifications and Mismeasure-
ments The estimation of treatment effects in the pres-
ence of model misspecification is an important problem
in causal inference, with numerous methods and heuristics
proposed to address this challenge [Carroll et al., 2006, Og-
burn and Vanderweele, 2013, Lockwood and McCaffrey,
2016]. A comprehensive overview on this problem can be
found in Yi et al. [2021], Vansteelandt et al. [2012]. Various
approaches have been proposed towards handling misspec-
ification in noise model Dukes and Vansteelandt [2021],
propensity weights [Kreif et al., 2016], confounders Pearl
[2012], Schuster et al. [2023], and mediators Valeri and
Vanderweele [2014], Dukes et al. [2023].

A related problem to misspecifed models is noisy measure-
ments. In general access to noisy variables is not sufficient
to identify causal effects [Kuroki and Pearl, 2014, Hernán
and Robins, 2021]. Some research in solving this prob-
lem [Dukes et al., 2023, Cui et al., 2024] uses ideas from
proximal causal inference [Tchetgen Tchetgen et al., 2020].
However these require knowledge of multiple . A different
approach has been to focus on bounding for treatment ef-
fects rather than estimate them precisely. This line of work

includes methods for sensitivity analysis [Imbens, 2003,
Veitch and Zaveri, 2020, Dorie et al., 2016] and partial
identification under various assumptions [Zhao et al., 2017,
Yadlowsky et al., 2018, Zhang and Bareinboim, 2021, Yin
et al., 2021, Guo et al., 2022]. Similar analysis for miss-
ing data has been conducted for missing mediators [Li and
Zhou, 2017] and outcomes [Cornelisz et al., 2020]

Existing methods for causal effect estimation under impre-
cise networks often require additional information to miti-
gate bias. For example, some approaches leverage repeated
measurements to reduce the impact of noise [Shankar et al.,
2023b, Cortez et al., 2022], while others rely on a gold
standard sample of measurements to calibrate or correct
noisy data [Shankar et al., 2023a]. These strategies however
do not apply when the networks are treatment dependent.
This is because compared to these earlier works, the noise
acts as an endogenous variable, which needs specialized
techniques.

Inverse Propensity/Horvitz-Thompson Estimate If the
graph is known and when all treatment decisions indepen-
dently set with probability p, one can use the classic Horvitz
Thompson estimator (or inverse propensity estimator) as:

τHT =
1

n

∑
i

Yi

(∏
j∈Ni

zj∏
j∈Ni

p
−
∏

j∈Ni
(1− zj)∏

j∈Ni
(1− p)

)

A similar formula exists for the Hajek style estimator with
the denominators

∏
j∈Ni

p and
∏

j∈Ni
(1− p), replaced by

their self normalized values. This estimator filters out any
units for which all neighbours are not in control or treatment
groups, and is not be meaningful, when there do not not
exist units for which all the neighbours are in control or
treatment groups. For example, with a k-regular interference
graph with k = 20 and p = 0.5, we need around a million
nodes for the HT estimate to even have a meaningful value.

However even when HT estimates provide reasonable val-
ues, they do not work with dynamic or treatment dependent
graphs.



A PROOFS

Lemma A.1. Suppose that {zi}i=1..n are mutually independent, with zi ∼ Bernoulli(p). Then, for any set of indices
S, S′ ⊂ [n], and stochastic function f we have

E
[∏
i∈S

(zi
p
− 1− zi

1− p

) ∏
j∈S′

f(zj)
]
=

{
(E[f(1)]− E[f(0)])|S∩S′|E[f(z)]|S′\S| if S ⊆ S′

0 otherwise

Proof. Fix S, S′. A given index (node) i can either be only in S or only in S′ or in both, with only one of the possibilities
being true. Correspondingly the product,

∏
i∈S

(
zi
p − 1−zi

1−p

)∏
j∈S′ f(zj) can be factored into three exclusive products:

∏
i∈S

(zi
p
− 1− zi

1− p

) ∏
j∈S′

f(zj) =
∏

i∈S\S′

(zi
p
− 1− zi

1− p

) ∏
k∈S∩S′

f(zk)
(zk
p

− 1− zk
1− p

) ∏
j∈S′\S

f(zj)

Applying expectations and noting that zi are mutually independent, we get:∏
i∈S\S′

E
[zi
p
− 1− zi

1− p

] ∏
k∈S∩S′

E
[
f(zk)

(zk
p

− 1− zk
1− p

)] ∏
j∈S′\S

Ef(zj) =
∏

i∈S\S′

0
∏

k∈S∩S′

E[zkf(zk)]− pE[f(zk)]
p(1− p)

∏
j∈S′\S

E[f(zj)]

The RHS can only be non zero if S \ S′ = {} i.e. S ⊆ S′.

Since E
[
f(zk)

(
zk
p − 1−zk

1−p

)]
= p ∗ E[f(1)] ∗ 1

p + (1− p) ∗ E[f(0)] ∗ ( −1
1−p ) = E[f(1)]− E[f(0)]; the RHS when it is

non zero simplifies to
(E[f(1)]− E[f(0)])|S∩S′|E[f(z)]|S

′\S|

Corollary A.2. By putting f(z) = z in Lemma A.1we get

E
[∏
i∈S

(zi
p
− 1− zi

1− p

) ∏
j∈S′

zj

]
=

{
p|S

′\S| if S ⊆ S′

0 otherwise

Lemma A.3. Suppose that {zi}i=1..n are mutually independent, with zj ∼ Bernoulli(p). Then, for any subsets S, S′,
E[
∏

i∈S fi(zi)
∏

j∈§′
zj−p
p ] =

∏
i∈S\S′ E[fi(zi)]

∏
k∈S∩S′ ((1− p)(E[fk|zk = 1]− E[fk|zk = 0])) I[S′ ⊆ S]

Proof. Fix S, S′. A given index (node) i can either be only in S or only in S′ or in both, with only one of the possibilities
being true. Correspondingly the product,

∏
i∈S fi(zi)

∏
j∈§′

zj−p
p can be factored into three exclusive products:

E[
∏
i∈S

fi(zi)
∏
j∈§′

zj − p

p
] = E[

∏
i∈S\S′

fi(zi)
∏

k∈S∩S′

fk(zk)
zk − p

p

∏
j∈S′\S

zj − p

p
]

=
∏

i∈S\S′

E[fi(zi)]
∏

k∈S∩S′

E[fk(zk)
zk − p

p
]
∏

j∈S′\S

E[
zj − p

p
]

=
∏

i∈S\S′

E[fi(zi)]
∏

k∈S∩S′

((1− p)(E[fk|zk = 1]− E[fk|zk = 0]))
∏

j∈S′\S

0

=
∏

i∈S\S′

E[fi(zi)]
∏

k∈S∩S′

((1− p)(E[fk|zk = 1]− E[fk|zk = 0])) I[S′ ⊆ S]

The exact same argument can be applied to E[
∏

i∈S zi
∏

j∈S′
p−zj
1−p ]

Lemma A.4. For any sets S′,Mi such that S′ ⊆ Ni ⊆ Mi and |S′| ≤ β and stochastic functions fi

E

∏
k∈S′

zkf(zk)
∑

S⊆Mi

|S|≤β

(∏
j∈S

zj − p

p
−
∏
j∈S

p− zj
1− p

) =
∏
i∈S′

E[fi(1)]



Proof.

E

∏
k∈S′

zkf(zk)
∑

S⊆Mi

|S|≤β

(∏
j∈S

zj − p

p
−
∏
j∈S

p− zj
1− p

) =
∑

S⊆Mi

|S|≤β

E

∏
k∈S′

zkf(zk)
∏
j∈S

zj − p

p
−
∏
k∈S′

zkf(zk)
∏
j∈S

p− zj
1− p


Applying Lemma A.3 with fi(z) = zi we get

=
∑

S⊆Mi

|S|≤β

[
p|S

′/S]
∏

i∈S\S′

E[fi(1)](1− p)|S
′∩S|

∏
i∈S∩S′

E[fi(1)]I[S ⊆ S′]

− p|S
′/S]

∏
i∈S\S′

E[fi(1)](−p)|S
′∩S|

∏
i∈S∩S′

E[fi(1)]I[S ⊆ S′]

]
(b)
=
∏
i∈S′

E[fi(1)]
∑
S⊆S′

|S|≤β

[
p|S

′/S](1− p)|S
′∩S| − p|S

′/S](−p)|S
′∩S|

]
(S1)

(b) follows from that fact that Mi ⊇ Ni for any node i and I[S ⊆ S′] will filter any non subset of S′

=
∏
i∈S′

E[fi(1)]
∑
S⊆S′

|S|≤β

p|S
′|
[
p−|S|(1− p)|S| − p−|S|(−p)|S|

]

=
∏
i∈S′

E[fi(1)]
∑
S⊆S′

|S|≤β

p|S
′|
[
(
1

p
− 1)|S| − (−1)|S|

]
(S2)

If |S′| ≤ β, the constraint of ≤ β is redundant. Then by applying binomial theorem we get.

= p|S
′|
∏
i∈S′

E[fi(1)]

[(
1 + (

1

p
− 1)

)|S′|

− (1 + (−1))
|S′|

]
=
∏
i∈S′

E[fi(1)]

Lemma A.5. If the set of instrumental variables V is chosen such that Vj =
Zj

p − 1−Zj

1−p , then for the pseudo-inverse

estimator (ĉ) in Equation 3, the jth component is given by ĉi(j) = Yi
Zj

p − 1−Zj

1−p .

Proof. Note that we are setting Vj =
Zj

p − 1−Zj

1−p . Let X = E[V ZT
Ni

].

Note that Xji = (
Zj

p − 1−Zj

1−p )Zi. By Lemma A.1, we know that the the E[Xji] = 1I[j = i]. Thus the matrix E[X] is
diagonal with 1 for every variable shared between V and ZNi

, and 0 everywhere else. The pseudoinverse of such a matrix is
the matrix itself.

The V Yi component of ĉ is (Zj

p − 1−Zj

1−p )Yi. Since the pseudo-inverse of X is just diagonal with 1 and 0, with 1 for every

variable shared between V and Z; only those components remain. Thus ĉi(j) = Yi
Zj

p − 1−Zj

1−p for every index j shared

between V and ZNi . Thus the treatment effect estimate τ =
∑

ĉ = 1
n

∑
i Yi

∑
j∈V

(
zj
p − (1−zj)

(1−p)

)
We prove a more general result than the statement in the paper.

Theorem A.1. Consider a additive model of the form Yi(z) =
∑

S′⊂Ni
ci,S′

∏
j∈S′ I[zjAij = 1]. Here each subset of

neighbours has an influence which only occurs when all those edges connect to i. Under such a model the GATE effect is
given by τ =

∑
S′⊂Ni

ci,S′
∏

j∈S′ E[Aij |z = 1]. If Mi ⊇ Ni, then τ̂β = 1
n

∑
i Yi

∑
S⊆Mi

|S|≤β

(∏
j∈S

zj−p
p −

∏
j∈S

p−zj
1−p

)
is unbiased



Proof. If Yi(z) =
∑

S′⊂Ni
ci,S′

∏
j∈S′ I[zjAij = 1] then for τ̂β we get

E[τ̂β ] = E

 1

n

∑
i

Yi

∑
S⊆Mi

|S|≤β

(∏
j∈S

zj − p

p
−
∏
j∈S

p− zj
1− p

)

= E

 1

n

∑
i

∑
S′⊂Ni

ci,S′

∏
j∈S′

I[zjAij = 1]
∑

S⊆Mi

|S|≤β

(∏
j∈S

zj − p

p
−
∏
j∈S

p− zj
1− p

)

=
1

n

∑
i

E

 ∑
S′⊂Ni

ci,S′

∏
j∈S′

zjAij

∑
S⊆Mi

|S|≤β

(∏
j∈S

zj − p

p
−
∏
j∈S

p− zj
1− p

)
Now applying Lemma A.4 on E1 we get

=
1

n

∑
i

∑
S′⊂Ni

ci,S′

∏
j∈S′

E[Aij(1)] [1] = τ (⃗1, 0⃗)

Proof of Proposition 5.2 Unbiasedness of τ̂OIV follows directly from Theorem A.1 by noting that a) the Mi in the
statement of Proposition 5.2 satisifies the superset criteria in A.1 and b) when β = 1, τ̂β = τ̂OIV .

Lemma A.6. Consider the linear outcome model Yi(z) = bi + ciiZi +
∑

cijI[Aij = 1]Zj . For any sets S, consider

Q = Yi

∑
j∈S

[( zj
p − 1−zj

1−p

)]
, we have

E[Q] =
∑
j∈S

cijE[Aij |Zj = 1] + I[i ∈ S]cii

Proof.

E[Q] = E
[
Yi

∑
j∈S

[(zj
p

− 1− zj
1− p

)]]
= E

[(
bi + ciiZi +

∑
cijI[Aij = 1]Zj

)∑
j∈S

[(zj
p

− 1− zj
1− p

)]]
= E

[
bi
∑
j∈S

[(zj
p

− 1− zj
1− p

)]]
+ E

[
ciiZi

∑
j∈S

[(zj
p

− 1− zj
1− p

)]]
+ E

[∑
cijI[Aij = 1]Zj

∑
j∈S

[(zj
p

− 1− zj
1− p

)]]
Now applying Lemma A.4 we get

= 0 + ciiI[i ⊆ S] +
∑
j

cijE[Aij(1)]I[j ⊆ S] =
∑
j∈S

cijE[Aij |Zj = 1] + I[i ∈ S]cii

Proof of Proposition 5.6 Applying Lemma A.5, we get that Yi

∑
j∈Mc

i

[( zj
p − 1−zj

1−p

)]
=
∑

j∈Mc
i
cijE[Aij |Zj = 1] By

the homogeneity assumption, we know that cij are same. Let it be denoted by ki. Furthermore by conservation of Mc
i , the

edges are always present Thus Yi

∑
j∈Mc

i

[( zj
p − 1−zj

1−p

)]
= ki|Mc

i |. Next as argued in Section 5.3, to get the treatment

effect we can rescale this quantity by Ci =
1
p

∑
j ZjAij to get unbiased τ̂



A.1 STATISTICAL INFERENCE

The results till now were focused with providing point-estimates of the treatment effect. However, in practice, one needs
reasonable confidence intervals around these estimates, to handle statistical uncertainty and perform hypothesis tests to
verify assumptions. For this purpose, we first argue that these estimators are asymptotically normal.

The generalized central limit theorems [Ross, 2011] assures us that the sum of n bounded random variables Ri, asymptotically
behaves like a gaussian distribution if they are mostly independent ; specifically if we construct the dependency graph,
then it is not too dense 3. The dependency graph in out case is provided by the network itself. Hence as long as the
underlying interference network is sparse, these estimators are asymptotically normal. The normality of these estimator
results suggests a way to do statistical inference. If we can get an upper bound for the variance then we can construct
conservative Wald-type intervals [Wasserman, 2006]. We should note however, that since the convergence is asymptotic, the
use of the aforementioned variance for confidence intervals is only approximately valid.

Next we provide such conservative bounds for variance of these estimators.

Let the matrix A ∈ {0, 1}n×n denote the dependency graph. We are considering the linear additive model (A4). Since we
Aij is dependent on Zj , we can formulate them as Aij ∼ Bernoulli(q1) if Zj = 1, and Aij ∼ Bernoulli(q0) if Zj = 0. We
assume that the max degree of any node is ∆, . Thus for each node the aforementioned Bernoulli model only applies to ∆
nodes. Furthermore we also assume that |Mc

i | is bounded by ∆Mc . Finally we have Zj ∼ Bernoulli(p).

Outcomes Yi are given by Yi = c⊤i AZ, where ci is ∆-sparse (only ∆ non-zero entries). We assume that we know an
upperbound C for |cij |. We focus on the UIV Case as it is more complex and the bound for OIV case can be derived from
the bounds in this Section.

The estimator τ̂UIV is given by:

τ̂UIV =
1

n

n∑
i=1

Yi

 ∑
j∈Mc

i

(
Zj

p
− 1− Zj

1− p

) n∑
r=1

ZrAir

 .

Let Si =
∑(

Zj

p − 1−Zj

1−p

)
and R =

∑n
r=1 Air. Then:

τ̂UIV =
1

n

n∑
i=1

YiSiRi.

Now

Var(τ̂UIV ) =
1

n2

 n∑
i=1

Var(YiSiRi) + 2
∑
i<j

Cov(YiSiRi, YjSjRj)

 . (9)

First we go about bounding Var(YiSiRi). Since Yi =
∑

m∈Ni
cim

∑n
l=1 AmlZl (with |Ni| ≤ ∆):

|Yi| ≤ C
∑
m∈Ji

n∑
l=1

AmlZl ≤ C∆.

The second moment satisfies:

E[Y 2
i ] ≤ C2E

( n∑
l=1

AmlZl

)2
 ≤ C2∆2p2q21 .

Next we consider bounding Si: Each term in Si is mean 0 and has variance bounded by

Var(Si) =
∑
i

Var
(
Zj

p
− 1− Zj

1− p

)
≤ ∆Mcmax(

1

p
,

1

1− p
)

3For the exact statement we refer the readers to Theorem 3.6 from Ross [2011]



The sum Ri =
∑k

r=1 ZrAir involves ∆ terms instead of n. gives:

E[Ri] = ∆pq1,

Var(Ri) ≤ ∆pq1(1− pq1).

Using Cauchy-Schwarz:

Var(YiSiRi) ≤ E[(YiSiRi)
2] ≤ C2∆3∆Mcp5q41(1− pq1)

1

min(p, 1− p)

Next we try bounding Covariance Terms in Equation (9). For i ̸= j, the covariance Cov(YiSiRi, YjSjRj) is non-zero only
if Yi and Yj share dependencies. That happens only if there is overlap in Ni and Nj). Given ∆-sparsity, each Yi interacts
with at most ∆ other terms. Thus: ∑

i<j

Cov(YiSiRi, YjSjRj) ≤ n∆ · Var(YiSiRi).

Combining terms we get:

Var(τ̂UIV ) ≤
1

n2
[n · Var(YiSiRi) + 2n∆ · Var(YiSiRi)] .

Substituting the bound we get:

Var(τ̂UIV ) ≤
1

n
(2∆ + 1)C2∆3∆Mcp5q41(1− pq1)

1

min(p, 1− p)

We can follow a similar argument for OIV case, except in that case Ri = 1. Following the same math as before we get the
following result

Var(τ̂UIV ) ≤
1

n
(2∆ + 1)C2∆2∆2

Mp4q31
1

min(p, 1− p)

A.2 MULTI-TRIAL ESTIMATION

By a similar argument as in Section 5.4 (Equation (6)) we can see that under linear additive interference:

E[Yi] = bi + ciip+
∑
j

cijE[Aij(1)]p

which is very similar to the treatment effect, except for the additional term bi and the scaling by factor of p. We further note
that while individual Yi might be very stochastic and far from their expected value, we can still obtain a good estimate of
E[
∑

Yi].

For this we rely on a classic result in generalized central limit theorems [Ross, 2011]. Informally, for a set of n bounded
random variables Ri, if their dependency graph is not too dense, then the variance normalized sum approaches a normal
distribution. If we consider Yi to be these random variables, their dependency graph is represented by the matrix A. If A is
not too dense under any counterfactual, then 1

n

∑n
i Yi is asymptotically normal with mean 1

n

∑n
i E[Yi].

On the other hand we know that E[Yi] is linear in p. Let F (Y ) = 1
n

∑
i Y , then E[F (Y )] = 1

n

∑
i[cii+

∑
j cijE[Aij(1)]p] =

1
n (
∑

cii) + τp

Remark A.7. This holds true for more complex interaction models. More specifically if the set of all possible neighbours
under all possible interactions (i.e. Mc

i ) )is bounded by a number β, then 1
n

∑n
i Yi asymptotically converges to a polynomial

of order β in p.

Under the linear interference model, we can conduct two experiments at two different randomization probabilities p1 and p2,
and fit a linear function in p. Let that function be F̂ . By the earlier argument F̂ (p) is unbiased and consistent estimate of
F (p). By definition, global treatment effect τ is given by (F (1)− F (0)). Thus we have the following estimator

τ̂MULTI = F̂ (1)− F̂ (0)

Proposition A.8. Under assumptions A1-4, and assuming multiple independent trials, τ̂MULTI is an unbiased estimate of
the treatment effect τ



B TREATMENT DEPENDENT NETWORKS

B.1 FAILURE OF HT ESTIMATION

U

L R

Figure 5

edge UL exists if and only if ZU = 1 otherwise the edge UR will exist. However outcomes at L and R, i.e. (YL, YR)
respectively are independent of treatment at U and only depend on treatment at self with the effect being constant α i.e. the
outcomes are YL/R(1) = YL/R(0) + αL/R. All treatments are perfectly randomized with probability q = 0.5.

We consider the TTE (GATE) between Z = 0⃗ and Z = 1⃗ with the HT estimate here. By symmetry, we can consider only
U,L with the U,R case analogous. We have 4 potential treatments with corresponding values for the HT estimator being

For ZU = 1, ZL = 1 we have YL(1)(
1

0.25
)

For ZU = 1, ZL = 0 we have YL(0)(
1 ∗ 0
0.25

− 0 ∗ 1
0.25

) = 0

For ZU = 0, ZL = 1 we have YL(1)(
1

0.5
)

For ZU = 0, ZL = 0 we have YL(0)(−
1

0.5
)

The expected value for the contribution of node L in all possibilities is (YL(1) +
YL(1)−YL(0)

2 ).

Similarly, the contribution from node R is (−YR(0) +
YR(1)−YR(0)

2 ).

Hence, the expected value of the estimator is given by YL(1)−YR(0)
2 + αL+αR

4 .

B.2

We explain here a bit more formally the issue with HT estimation. For simplicity we will consider the linear interference
model. First we would like to begin with the following result from Sussman and Airoldi [2017].

Under assumption A1-2,A4, the expected value of the HT estimate and the HATE estimator τ̂HATE =
1
n

∑
i Yi

∑
j∈Ni

(
zj
p − (1−zj)

(1−p)

)
is the same.

We first have a look at how assumption A4 affects τHT. Substituting A4 in Equation (2), τHT can be expressed as

1

n

∑
i

ci + ∑
j∈Ni

ci,jzj ]

 ∏
k∈Ni

zk
p

−
∏

k∈Ni

(1− zk)

(1− p)

 .

Now observe that as allocation at each unit is independent, for any functions g and h: E[h(zi)g(zj)] = E[h(zi)]E[g(zj)].
Furthermore, as E[zk/p] = E[(1−zk)/(1−p)] = 1, we can ignore all the ratio terms for k ̸= j (see Lemma A.1). Therefore,
τHT can be simplified as

E[τHT] =
1

n

∑
i

E

[ci + ∑
j∈Ni

ci,jzj ]

(
zj
p

− (1− zj)

(1− p)

) ,



which is a linear combination of in the terms zj/p and (1− z)/(1− p); however this expression cannot be computed from
only the graph and observed outcomes Yi.

We will rewrite this expression in terms of Yi. Observe that since zj ⊥⊥ zi ∀i ̸= j, we can add terms of the form

zi

(
zj
p − 1−zj

1−p

)
with i ̸= j without changing the expected value. Adding in such terms to include every node in Ni, we get

E[τHT] =
1

n

∑
i

E

ci +
∑
j∈Ni

ci,jzj

(∑
k∈Ni

zk
p

− (1− zk)

(1− p)

)
which motivates the following estimator:

τ̂ =
1

n

∑
i

Yi

∑
j∈Mi

(
zj
p

− (1− zj)

(1− p)

)
. (10)

Now comes the crucial issue: the above derivation obscures the fact that Ni depended on z. Specifically a node j ∈ Ni if
Aij = 1. But since Aij are themselves potential outcome functions dependent on z, this neighbourhood is not static. One
includes node j in the above sum if the edge was observed, and the probability of observing the edge is different for zj = 0
and zj = 1. Hence the more appropriate expression is

τ̂ =
1

n

∑
i

Yi

∑
j

(
I[Aij = 1|zj = 1]

(
zj
p

)
− I[Aij = 1|zj = 0]

(
(1− zj)

(1− p)

))
. (11)

Unlike
(

zj
p − 1−z

1−p

)
this term is not necessarily mean 0, but is instead E[Aij |zj = 1] − E[Aij |zj = 0], and including

this term in the regression ends up biasing the estimate. This is why we needed either Mi (superset) or Mc
i (subset). In

either case the neighbourhood over which the
(

zj
p − 1−z

1−p

)
terms are added is not dependent on z. τ̂OIV includes edges

irrespective of their Aij value ( or more specifically skips terms only if Aij(zj) = 0 always). On the other hand τ̂UIV only
includes edges if Aij(zj) = 1 always (and hence independent of z).

C EXPERIMENTAL DETAILS

C.1 SYNTHETIC GRAPHS

We sample different random Graphs and run repeated experiments on these graphs with randomized bernoulli treatment
assignment. The baselines include the POLY(Prop/Num) estimator is a polynomial regression on the exposure as computed
by the fraction/number of treated nodes in the neighbourhood. The DM estimator signifies the classic difference in mean/
SUTVA estimator which is is simply the average outcomes on treated vs un-treated units. The ER graphs are made with an
expected neighbourhood of size 20. The outcome model is similar to the potential outcomes model as in Cortez et al. [2022]:

Yi(z) = ci,∅ +
∑
j∈Ni

c̃i,1zj +

β∑
ℓ=2

(∑
j∈Ni

c̃ij,2aijzj∑
j∈Ni

c̃ij,2

)ℓ

, (12)

where i ̸= j, c̃ij,2 = vi,2|Ni|/
∑

k:(k,j)∈E |Nk|. The coefficient ci,∅, c̃i,1, vi,2 are obtained as random variables.
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