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ABSTRACT

This paper considers decentralized nonsmooth nonconvex optimization problem
with Lipschitz continuous local functions. We propose an efficient stochastic
first-order method with client sampling, achieving the (δ, ϵ)-Goldstein stationary
point with the overall sample complexity of O(δ−1ϵ−3), the computation rounds
of O(δ−1ϵ−3), and the communication rounds of Õ(γ−1/2δ−1ϵ−3), where γ is
the spectral gap of the mixing matrix for the network. Our results achieve the opti-
mal sample complexity and the sharper communication complexity than existing
methods. We also extend our ideas to zeroth-order optimization. Moreover, the
numerical experiments show the empirical advantage of our methods.

1 INTRODUCTION

The large scale nonsmooth nonconvex optimization covers many applications in fields such as machine
learning (Nair & Hinton, 2010; Xiao et al., 2024), statistics (Fan & Li, 2001; Zhang, 2010a;b), and
economics (Duffie, 2010; Stadtler, 2014). In this paper, we focus on the decentralized stochastic
optimization problem

min
x∈Rd

f(x) ≜
1

n

n∑
i=1

fi(x) (1)

over the network with n clients, where the local function at the ith client has the form of

fi(x) ≜ Eξi∼Di [Fi(x; ξi)] (2)

such that the stochastic component Fi( · ; ξi) is Lipschitz continuous but possibly nonconvex non-
smooth and the random index ξi ∈ Ξi follows the distribution Di. It is well known that achieving
approximate stationary points in terms of the classical Clarke subdifferential (Clarke, 1990) for the
general Lipschitz continuous function is intractable (Jordan et al., 2022; Kornowski & Shamir, 2021;
Tian & So, 2024; Zhang et al., 2020). Instead, we typically target to find (δ, ϵ)-Goldstein stationary
points (Zhang et al., 2020). This criterion suggests studying the convex hull of Clarke subdifferential
at points in the δ-radius neighborhood of the given point.

The stochastic optimization methods for finding (δ, ϵ)-Goldstein stationary points in non-distributed
setting have been widely studied in recent years (Chen et al., 2023; Cutkosky et al., 2023; Davis et al.,
2022; Kornowski & Shamir, 2024; Lin et al., 2022; Tian et al., 2022; Zhang et al., 2020). Specifically,
Tian et al. (2022); Zhang et al. (2020) proposed the (perturbed) stochastic interpolated normalized
gradient descent with the stochastic first-order oracle (SFO) complexity of O(δ−1ϵ−4). In a seminal
work, Cutkosky et al. (2023) established the conversion from nonsmooth nonconvex optimization to
online learning, achieving the SFO complexity of O(δ−1ϵ−3). They also extends the lower bound
of Arjevani et al. (2023) to show their SFO complexity is optimal. Another line of research is the
zeroth-order optimization. Lin et al. (2022) applied the randomized smoothing (Duchi et al., 2012;
Nesterov & Spokoiny, 2017; Shamir, 2017; Yousefian et al., 2012) to design the gradient-free method
with the stochastic zeroth-order oracle (SZO) complexity of O(d3/2δ−1ϵ−4). Later, Chen et al. (2023)
improve this result by incorporating variance reduction techniques (Cutkosky & Orabona, 2019; Fang
et al., 2018; Huang et al., 2022; Ji et al., 2019; Levy et al., 2021; Liu et al., 2018; Nguyen et al., 2017;
Pham et al., 2020; Wang et al., 2019), achieving the SZO complexity of O(d3/2δ−1ϵ−3). Recently,
Kornowski & Shamir (2024) established the optimal dimension-dependence SZO complexity of
O(dδ−1ϵ−3) based on the inclusion property of Goldstein subdifferential.
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In decentralized setting, we have to consider the consensus error among the variables on different
clients in the network. The popular technique of gradient tracking can successfully bound the
consensus error in for smooth optimization problems (Nedic & Ozdaglar, 2009; Qu & Li, 2017; Shi
et al., 2015), while it cannot be directly used in the nonsmooth setting since the Lipschitz continuity
of the gradient (subgradient) may not hold. Kovalev et al. (2024); Lan et al. (2020) proposed efficient
decentralized algorithms based on the primal-dual framework for the nonsmooth objective but only
limit to the convex problem. A natural idea for decentralized nonsmooth optimization is using the
randomized smoothing to establish the smooth surrogate for the original problem, which works for
both the convex (Scaman et al., 2018) and the nonconvex settings (Lin et al., 2024). For example, Lin
et al. (2024) extended gradient-free methods (Chen et al., 2023; Lin et al., 2022) for decentralized
stochastic nonsmooth nonconvex problem, while their SZO complexity bounds depend on the term
of O(d3/2), which does not match the best-known zeroth-order method in non-distributed scenarios
(Kornowski & Shamir, 2024). Later, Sahinoglu & Shahrampour (2024) proposed multi-epoch
decentralized online learning (ME-DOL) method for both first-order and zeroth-order decentralized
stochastic stochastic nonsmooth nonconvex optimization, which incorporates the decentralized online
mirror descent (Shahrampour & Jadbabaie, 2017) into the online-to-nonconvex conversion (Cutkosky
et al., 2023; Kornowski & Shamir, 2024). The ME-DOL with SFO can find (δ, ϵ)-Goldstein stationary
point with the computation and the communication rounds of O(nγ−2δ−1ϵ−3), and the ME-DOL
with SZO requires the computation rounds and the communication rounds of O(ndγ−2δ−1ϵ−3),
where γ ∈ (0, 1] is the spectral gap of the mixing matrix associated with the network.

The objective in distributed optimization problem (1) naturally has the finite-sum structure in the
view of local functions {fi}ni=1. This motivates us to design the partial participated methods, which
performs the client sampling during iterations and only executes the computation/communication
on the selected clients (Chen et al., 2020; Maranjyan et al., 2022; Mishchenko et al., 2022). Some
recent works (Bai et al., 2024; Liu et al., 2024; Luo et al., 2022) studied partial participated methods
by considering the balance among the first-order oracle complexity, the computation rounds, and
the communication rounds in decentralized optimization. However, these results heavily depend on
the smoothness assumptions. To the best of our knowledge, all existing methods (Chen et al., 2020;
Kovalev et al., 2024; Lan et al., 2020; Lin et al., 2024; Sahinoglu & Shahrampour, 2024; Wang et al.,
2023; Zhang et al., 2024) for decentralized nonsmooth optimization require all clients accessing their
local oracle in per computation rounds, which limits the sampling efficiency.

In this paper, we propose the Decentralized Online-to-nonconvex Conversion with Client Sampling
(DOC2S), which integrates the partial participated computation and the multi-consensus steps into
decentralized optimization. We show that DOC2S with local stochastic first-order oracle (LSFO)
can achieve the (δ, ϵ)-Goldstein stationary points with the total LSFO calls of O(δ−1ϵ−3), the
computation rounds of O(δ−1ϵ−3), and the communication rounds of Õ(γ−1/2δ−1ϵ−3). All of
these upper bounds are sharper than the state-of-the-arts results achieved by ME-DOL (Sahinoglu
& Shahrampour, 2024). Recall that ME-DOL requires the computation rounds of O(γ−2δ−1ϵ−3)
and each of its computation round requires all clients to access their local stochastic gradient, which
leads to the total LSFO calls of O(nγ−2δ−1ϵ−3). In contrast, the total LSFO complexity of our
DOC2S does not depend on the number of clients n and spectral gap γ. Additionally, we also show that
DOC2S with local stochastic zeroth-order oracle (LSZO) can achieve the (δ, ϵ)-Goldstein stationary
points with the total LSZO calls of O(dδ−1ϵ−3), the computation rounds of O(dδ−1ϵ−3), and the
communication rounds of Õ(dγ−1/2δ−1ϵ−3), also improving the results of ME-DOL (Sahinoglu &
Shahrampour, 2024). We summarize theoretical results of our methods and related work in Table 1.

2 PRELIMINARIES

In this section, we formalize our problem setting and introduce the background of nonsmooth analysis.

2.1 NOTATION AND ASSUMPTIONS

We use ∥ · ∥ and ∥ · ∥2 to denote the Frobenius norm and the spectral norm of the matrix, respectively,
also the Euclidean norm of the vector. We let 1n = [1, . . . , 1]⊤ ∈ Rn and I be the identity matrix.
The notation conv(·) denotes the convex hull of given set. Additionally, we use notations Bd(x, δ)
and Sd−1 to present the Euclidean ball centered at x ∈ Rd with radius δ > 0 and the unit sphere
centered at the origin, respectively.
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Table 1: We present the upper complexity bounds of our methods and related work for finding
(δ, ϵ)-Goldstein stationary points in stochastic decentralized optimization problem. The sample
complexity refers to the overall LSFO/LZSO complexity on all n clients.

Oracle Methods Sample Complexity Computation Rounds Communication Rounds

1st
§ME-DOL

(Sahinoglu & Shahrampour, 2024)
O
(

n2

γ2δϵ3

)
O
(

n

γ2δϵ3

)
O
(

n

γ2δϵ3

)
1st DOC2S

Theorem 1
O
(

1

δϵ3

)
O
(

1

δϵ3

)
Õ
(

1

γ1/2δϵ3

)
0th

†DGFM
(Lin et al., 2024)

O
(
nd3/2

γpδϵ4

)
O
(

d3/2

γpδϵ4

)
O
(

d3/2

γpδϵ4

)
0th

†DGFM+

(Lin et al., 2024)
O
(
n3/2d1/2

δϵ2

(
1 +

d

nϵ

))
O
(
n1/2d1/2

δϵ2

(
1 +

d

nϵ

)))
O
(
n1/2d1/2

γqδϵ2

)
0th

§ME-DOL
(Sahinoglu & Shahrampour, 2024)

O
(

n2d

γ2δϵ3

)
O
(

nd

γ2δϵ3

)
O
(

nd

γ2δϵ3

)
0th DOC2S

Theorem 3
O
(

d

δϵ3

)
O
(

d

δϵ3

)
Õ
(

d

γ1/2δϵ3

)
†The dependency on γ in the complexity of DGFM and DGFM+ is not provided explicitly (Lin et al., 2024).
§The complexity of ME-DOL (Sahinoglu & Shahrampour, 2024) contains additional dependency on n. Please refer to Appendix D for details.

We impose following assumptions for formulations (1)–(2).
Assumption 1. We suppose each stochastic component Fi(x, ξi) is L(ξi)-Lipschitz continuous
in x for given ξi ∈ Ξi, i.e., it holds that |Fi(x; ξi)− Fi(y; ξi)| ≤ L(ξi) ∥x− y∥, for all x,y ∈ Rd

and i ∈ [n]. Furthermore, we suppose each L(ξi) has a bounded second moment, i.e., there
exists L > 0 such that Eξi [L(ξi)

2] ≤ L2 for all i ∈ [n].

Assumption 2. We suppose the objective function f : Rd → R is lower bounded by f∗, i.e., it
holds f∗ ≜ infx∈Rd f(x) > −∞.

We make the following assumption for the local stochastic first-order oracle (LSFO).
Assumption 3. We suppose the algorithms can access the local function fi : Rd → R via the LSFO
consisting of local gradient estimator Fi : Rd × Ξi → R and the random index ξi ∼ Di such that
Eξi∼Di

[∇Fi(x; ξi)] = ∇fi(x) and Eξi∼Di
[∥∇Fi(x; ξi)−∇fi(x)∥2] ≤ σ2 for some σ ≥ 0. We

further suppose there exists some G ≥ 0 such that Eξi∼Di
[∥∇Fi(x; ξi)∥2] ≤ G2 for all x ∈ Rd

and ξi ∈ Ξi.

Rademacher’s theorem (Evans, 2018) states the Lipschitz continuous function is differentiable almost
everywhere. Thus, the LSFO is well-defined almost everywhere under Assumption 1. Besides, we
also consider the local stochastic first-order oracle (LSZO) as follows.
Assumption 4. We suppose the algorithms can access the local function fi : Rd → R via the LSZO
consisting of local function value estimator Fi : Rd × Ξi → R and the random index ξi ∼ Di such
that Eξi∼Di

[Fi(x; ξi)] = fi(x).

We aim for all n clients in the network to collaborate in solving stochastic decentralized optimization
problem (1). We use the doubly stochastic matrix P = [pij ] ∈ Rn×n to describe the topology
of the network. Specifically, the communication step at the ith client is built upon the weighted
average x+

i =
∑n

j=1 pijxj , where xj is the local variable on the jth client. We impose the following
standard assumption in decentralized optimization for the matrix P ∈ Rn×n (Schmidt et al., 2017;
Scaman et al., 2018).
Assumption 5. We suppose that the mixing matrix P ∈ Rn×n associated with the network satisfies:
(a) The matrix P ∈ Rn×n is symmetric and holds pij ≥ 0 for all i, j ∈ [n]; (b) It holds pij ̸= 0 if
and only if clients i and j are connected or i = j; (c) It holds 0 ⪯ P ⪯ I and P⊤1n = P1n = 1n.

Under Assumption 5, the largest eigenvalue of the mixing matrix P ∈ Rn×n is one. Consequently,
we define the spectral gap of P ∈ Rn×n as γ = 1 − λ2(P) ∈ (0, 1], where λ2(P) is the second
largest eigenvalue of P.
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2.2 GOLDSTEIN STATIONARY POINTS

We present the notion of Clarke subdifferential (Clarke et al., 2008) and its relaxation Goldstein
subdifferential (Goldstein, 1977) for the Lipschitz continuous objective in the nonconvex nonsmooth
problem as follows.
Definition 1 (Clarke et al. (2008)). The Clarke subdifferential of a Lipschitz continuous function
f : Rd → R at a point x ∈ Rd is defined by ∂f(x) := conv

{
g : g = limxk→x ∇f(xk)

}
.

Definition 2 (Goldstein (1977)). For given δ ≥ 0 and a Lipschitz continuous function f : Rd → R,
the Goldstein δ-subdifferential of at point x ∈ Rd is defined by ∂δf(x) := conv

(
∪y∈Bd(x,δ) ∂f(y)

)
,

where the ∂f(y) is Clarke subdifferential.

We are interested in finding the (δ, ϵ)-Goldstein stationary point (Zhang et al., 2020), which is defined
as follows.
Definition 3 (Zhang et al. (2020)). For given Lipschitz continuous function f : Rd → R, δ ≥ 0, and
x ∈ Rd, we denote ∥∇f(x)∥δ := min{∥g∥ : g ∈ ∂δf(x)}. We call the point x a (δ, ϵ)-Goldstein
stationary point of f if ∥∇f(x)∥δ ≤ ϵ holds.

2.3 RANDOMIZED SMOOTHING

Randomized smoothing is a popular technique in stochastic optimization (Duchi et al., 2012; Lin
et al., 2022; Nesterov & Spokoiny, 2017; Shamir, 2017; Yousefian et al., 2012). This paper focuses
on the uniform smoothing as follows.
Definition 4 (Yousefian et al. (2012)). Given a Lipschitz continuous function f : Rd → R, we denote
its smooth surrogate as fδ(x) ≜ Eu∼Unif(Bd(0,1))[f(x+ δu)], where Unif(Bd(0, 1)) is the uniform
distribution on the unit Euclidean ball centered at the origin.

The smooth surrogate fδ has the following properties.
Proposition 1 (Lin et al. (2022, Proposition 2.2), Kornowski & Shamir (2024, Lemma 4)). Suppose
the function f : Rd → R is L-Lipschitz, then its smooth surrogate fδ holds: (a) |fδ(·)− f(·)| ≤ δL;
(b) fδ(·) is L-Lipschitz; (c) fδ(·) is differentiable with c0

√
dLδ−1-Lipschitz gradients for some

numeric constant c0 > 0; (d) ∂µfδ(x) ⊆ ∂µ+δf(x) for all µ ≥ 0.

Based on Proposition 1, we can establish unbiased gradient estimators for the smooth surrogate of
local functions, which is shown in the following lemma.
Lemma 1 (Kornowski & Shamir (2024, Lemma 7)). We let w = x+ s∆ with s ∼ Unif([0, 1]) and
given x,∆ ∈ Rd. Under Assumptions 1 and 4, the random vector

gi =
d

2δ

(
Fi(x+ s∆+ δzi; ξi)− Fi(x+ s∆− δzi; ξi)

)
zi

with zi ∼ Unif(Sd−1), ξi ∼ Di, and given δ ≥ 0 holds that Eξi,zi [gi | s] = ∇(fi)δ(w)

and Eξi,zi

[
∥gi∥2 | s

]
≤ 16

√
2πdL2 for all i ∈ [n].

3 THE ALGORITHM AND MAIN RESULTS

We propose decentralized online-to-nonconvex conversion with client sampling (DOC2S) in Algo-
rithm 1, which incorporates the steps of client sampling and Chebyshev acceleration (Algorithm 2)
(Arioli & Scott, 2014; Liu & Morse, 2011; Song et al., 2024; Ye et al., 2023) into the framework of
online-to-nonconvex conversion (Cutkosky et al., 2023; Sahinoglu & Shahrampour, 2024) to improve
both the computation and the communication efficiency. Furthermore, our DOC2S (Algorithm 1)
supports both the first-order and the zeroth-order oracles through subroutines of Algorithms 3 and 4.

The key idea of DOC2S (Algorithm 1) is to perform the client sampling it ∼ Unif({1, . . . , n}) at
the beginning of each iteration (line 8). Consequently, the local oracle call (line 14) in the iteration
is only required on the itth client, which significantly improve the sample complexity of existing
decentralized nonconvex optimization methods that requires all n clients perform the computation in
each iteration (Chen et al., 2020; Kovalev et al., 2024; Lan et al., 2020; Lin et al., 2024; Sahinoglu &
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Algorithm 1 Decentralized Online-to-Nonconvex Conversion with Client Sampling (DOC2S)
1: Input: OracleType ∈ {0th, 1st}, δ′ ≥ 0, K,T,R ∈ N, η,D > 0, P ∈ Rn×n

2: Initialization: y0,T
i = 0 for all i ∈ [n]

3: for k = 1 to K do
4: parallel for i = 1 to n

5: ∆
k,1/2
i = 0, yk,0

i = yk−1,T
i

6: end parallel for
7: for t = 1 to T do
8: it ∼ Unif({1, . . . , n})
9: parallel for i = 1 to n

10: xk,t
i =

{
yk,t−1
i + n∆

k,t−1/2
i , i = it

yk,t−1
i , i ̸= it

11: sk,ti ∼ Unif([0, 1]), wk,t
i = yk,t−1

i + sk,ti ∆
k,t−1/2
i

12: end parallel for
13:

{
yk,t
i

}n

i=1
= FastGossip

({
xk,t
i

}n

i=1
,P, R

)
14: gk,t

it
=

{
First-Order-Estimator

(
Fit ,Dit ,w

k,t
it

, δ′
)
, OracleType = 1th

Zeroth-Order-Estimator (Fit ,Dit ,w
k,t
it

, δ′), OracleType = 0th

15: parallel for i = 1 to n

16: ∆k,t
i =

nmin

{
1,

D∥∥∆k,t−1/2
i − ηgk,t

i

∥∥
}(

∆
k,t−1/2
i − ηgk,t

i

)
, i = it

0, i ̸= it

17: end parallel for

18:
{
∆

k,t+1/2
i

}n

i=1
= FastGossip

({
∆k,t

i

}n

i=1
,P, R

)
19: end for
20: end for
21: Output: wout

i ∼ Unif
({

ŵ1
i , . . . , ŵ

K
i

})
for all i ∈ [n], where ŵk

i = 1
T

∑T
t=1 w

k,t
i

Shahrampour, 2024; Wang et al., 2023; Zhang et al., 2024). We also include the multi-consensus step
with Chebyshev acceleration (Algorithm 2) (Arioli & Scott, 2014; Liu & Morse, 2011; Song et al.,
2024; Ye et al., 2023) in iterations (lines 13 and 18 of Algorithm 1), which guarantees the consensus
error of the local variables can be well bounded even if only one of the clients performs the local
oracle calls in each iteration.

We present the main theoretical results for proposed DOC2S (Algorithm 1) with the local stochastic
first-order oracle (Algorithm 3) as follows.
Theorem 1. Under Assumptions 1, 2, 3, and 5, Algorithm 1 with the local stochastic first-order oracle
(Algorithm 3) by taking δ′ = δ/2, K = O(δ−1ϵ−1), T = O(ϵ−2), R = Õ(γ−1/2), η = O(δϵ3),
and D = O(δϵ2) can output {wout

i }ni=1 such that Esk,t,ξk,t [∥∇f(wout
i )∥δ] ≤ ϵ for all i ∈ [n].

Corollary 2. Following the setting of Theorem 1, each client can achieve an (δ, ϵ)-Goldstein station-
ary point of the objective within the overall stochastic first-order oracle complexity of O(δ−1ϵ−3),
the computation rounds of O(δ−1ϵ−3), and the communication rounds of Õ(γ−1/2δ−1ϵ−3).

Besides the sharper complexity bounds than ME-DOL (Sahinoglu & Shahrampour, 2024) (see compar-
ison in Table 1), the proposed DOC2S also guarantees every client can achieve a (δ, ϵ)-Goldstein sta-
tionary point in expectation. Recall that the theoretical analysis of ME-DOL (Sahinoglu & Shahram-
pour, 2024, Theorem 2) only indicates that there exists some point w̄k = 1

nT

∑T
t=1

∑n
i=1 w

k,t
i which

is an (δ, ϵ)-Goldstein stationary point, where wk,t
i is generated on the ith client. However, achieving

such mean vector w̄k is non-trivial in practice for the decentralized setting. In contrast, the point wout
i

in our algorithm and theory only depends on its local variables (line 21 of Algorithm 1).

Similarly, we can also achieve the following results for the local stochastic zeroth-order oracle.
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Algorithm 2 FastGossip
({

z
(0)
i

}n
i=1

,P, R
)

1: z
(−1)
i = z

(0)
i for all i ∈ [n]

2: ϕ =
1−

√
1− (λ2(P))2

1 +
√

1− (λ2(P))2

3: parallel for r = 0 to R− 1

4: z
(r+1)
i = (1 + ϕ)

n∑
j=1

pijz
(r)
j − ϕz

(r−1)
i

5: end parallel for

6: Output:
{
z
(R)
i

}n

i=1

Algorithm 3 First-Order-Estimator(Fi,Di,wi, µ)

1: ξi ∼ Di, zi ∼ Unif(Bd(0, 1))

2: gi = ∇Fi(wi + µzi; ξi)

3: Output: gi

Algorithm 4 Zeroth-Order-Estimator(Fi,Di,wi, µ)

1: ξi ∼ Di, zi ∼ Unif(Sd−1)

2: gi =
d

2µ
(Fi(wi+µzi; ξi)− Fi(wi−µzi; ξi))zi

3: Output: gi

Theorem 3. Under Assumptions 1, 2, 4, and 5, Algorithm 1 with the local stochastic zeroth-order
oracle (Algorithm 4) by taking δ′ = δ/2, K = O(δ−1ϵ−1), T = O(dϵ−2), R = Õ(γ−1/2),
η = O(δϵ3), and D = O(δϵ2) can output {wout

i }ni=1 such that Esk,t,ξk,t [∥∇f(wout
i )∥δ] ≤ ϵ for

all i ∈ [n].

Corollary 4. Following the setting of Theorem 1, each client can achieve an (δ, ϵ)-Goldstein station-
ary point of the objective within the overall stochastic zeroth-order oracle complexity of O(dδ−1ϵ−3),
the computation rounds of O(dδ−1ϵ−3), and the communication rounds of Õ(dγ−1/2δ−1ϵ−3).

4 THE COMPLEXITY ANALYSIS

This section provides the brief sketch for the proofs of our main results and the details are deferred in
supplementary materials. In the remains, we use the bold letter with a bar to denote the mean vector,
e.g., x̄k,t = 1

n

∑n
i=1 x

k,t
i , ȳk,t = 1

n

∑n
i=1 y

k,t
i , ḡk,t = Eit [g

k,t
it ], and ∆̄k,t = 1

n

∑n
i=1 ∆

k,t
i .

We first introduce the following proposition for the subroutine of multi-consensus steps with Cheby-
shev acceleration (Algorithm 2) (Ye et al., 2023).

Proposition 2 (Ye et al. (2023, Proposition 1)). For Algorithm 2, we denote z̄ = 1
n

∑n
i=1 z

(0)
i , then

it holds that 1
n

∑n
i=1 z

(R)
i = z̄ and

n∑
i=1

∥z(R)
i − z̄∥2 ≤ 14

(
1−

(
1− 1√

2

)
√
γ

)2R n∑
i=1

∥z(0)i − z̄∥2.

Applying Proposition 2, we achieve upper bounds for variables
{
∆

k,t+1/2
i

}n
i=1

and
{
yk,t
i

}n
i=1

.

Lemma 2. Under Assumptions 3 and 5, Algorithm 1 with

R ≥

⌈
1

(1− 1/
√
2)
√
γ
log

√
14n(n− 1)D

ϵ′

⌉
(3)

satisfies ∥∆k,t+1/2
i − ∆̄k,t+1/2∥ ≤ ϵ′ and ∥∆k,t+1/2

i ∥ ≤ D + ϵ′ for all i ∈ [n] and ϵ′ > 0.

Lemma 3. Under the setting of Lemma 2, Algorithm 1 holds

∥ȳk,t − yk,t
i ∥ ≤ (D + ϵ′)ϵ′

D − ϵ′
,

for all i ∈ [n] and ϵ′ < D.
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We first consider the decrease of the objective function value at the mean vector after one epoch in
the smooth case. The update rule of Algorithm 1 indicates

Esk,t,ξk,t [f(x̄k,T )− f(x̄k,0)]

=

T∑
t=1

Esk,t,ξk,t [⟨∇k,t,∆
k,t−1/2
it − ∆̄k,t−1/2⟩] +

T∑
t=1

Esk,t,ξk,t [⟨∇k,t − ḡk,t, ∆̄k,t−1/2⟩]

+

T∑
t=1

Esk,t,ξk,t [⟨ḡk,t,uk⟩] +
T∑

t=1

Esk,t,ξk,t [⟨ḡk,t, ∆̄k,t−1/2 − uk⟩],

(4)

holds for all uk ∈ Rd, where ∇k,t =
∫ 1

0
∇f(x̄k,t−1 + s∆

k,t−1/2
it ) ds. For the first term of

equation (4), we use Cauchy–Schwarz inequality and Chebyshev acceleration to make the term
sufficiently small, that is

T∑
t=1

Esk,t,ξk,t [⟨∇k,t,∆
k,t−1/2
it − ∆̄k,t−1/2⟩]

≤
T∑

t=1

Esk,t,ξk,t

[∥∥∇k,t
∥∥∥∥∥∆k,t−1/2

it − ∆̄k,t−1/2
∥∥∥] ≤ Lϵ′T.

(5)

For the second term of equation (4), we use the following lemma to provide its upper bound.

Lemma 4. Under Assumptions 1, 2, 3 and 5, we further suppose each fi is H-smooth, then
Algorithm 1 with the local stochastic first-order oracle (Algorithm 3) by taking µ = 0 in Algorithm 3
holds

T∑
t=1

Esk,t,ξk,t [⟨∇k,t − ḡk,t, ∆̄k,t−1/2⟩] ≤ 2D2Hϵ′T

D − ϵ′
. (6)

For the third term of equation (4), we take uk = −D
∑T

t=1

∑n
i=1 ∇fi(w

k,t
i )

∥∑T
t=1

∑n
i=1 ∇fi(w

k,t
i )∥ . Then we can show that

E

[
⟨

T∑
t=1

ḡk,t,uk⟩

]
≤ −DE

[∥∥∥∥∥ 1n
T∑

t=1

n∑
i=1

∇fi(w
k,t
i )

∥∥∥∥∥
]
+

Dσ
√
T√

n
. (7)

For the last term of equation (4), we use the following lemma to provide its upper bound.

Lemma 5. Under the settings of Lemma 4, we have

Esk,t,ξk,t

[
T∑

t=1

⟨ḡk,t, ∆̄k,t−1/2 − uk⟩

]
≤ Gϵ′T +

ηG2T

2
+

D2

2η
+

(4D + ϵ′)ϵ′T

2η
, (8)

for all
∥∥uk

∥∥ ≤ D.

We can also bound the difference between the gradients of the global and local functions as follows.

Lemma 6 (Sahinoglu & Shahrampour (2024, Lemma 2)). Let the functions {fi}ni=1 be H-smooth
and f(x) = 1

n

∑n
i=1 fi(x). For given sequence {wt

i}
T,n
t,i=1, we suppose there exists some r > 0 such

that ∥wt
i − w̄t∥ ≤ r for all i ∈ [n] and t ∈ [T ], then it holds∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f(wt
i)

∥∥∥∥∥ ≤

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇fi(w
t
i)

∥∥∥∥∥+ 2rH,

where w̄t = 1
n

∑n
i=1 w

t
i .

Combing above results of Lemmas 4–6 and equations (4)-(8), we achieve the theoretical guarantee
for our method in the smooth case.

7
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Figure 1: The results of first-order methods for binary classification on dataset “rcv1”.
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Figure 2: The results of zeroth-order methods for binary classification on dataset “rcv1”.

Lemma 7. Under the settings of Lemma 4, running Algorithm 3 with parameters T = O(ϵ−2),
K = O(δ−1ϵ−1), D = O(δϵ2), R = Õ(γ−1/2), and η = O(δϵ3) can output {wout

i }ni=1 such that
E [∥∇f(wout

i )∥δ] ≤ ϵ holds for all i ∈ [n].

Connecting the following lemma with Lemma 7, we can establish our main result for the nonsmooth
case in Theorem 1. The result in Theorem 3 can be achieved in the similar way.
Lemma 8 (Sahinoglu & Shahrampour (2024, Proposition 2)). From Proposition 1 and Definition 3,
we have ∥∇f(x)∥δ ≤ ∥∇faδ(x)∥(1−a)δ for all a ∈ (0, 1).

To the best of our knowledge, client sampling techniques previously have been studied in the context
of smooth optimization, where convergence analysis relies crucially on the Lipschitz continuity of
the gradient (Bai et al., 2024; Liu et al., 2024; Luo et al., 2022). However, in our nonsmooth setting,
the gradient is not Lipschitz continuous, rendering existing convergence analyses inapplicable.

Compared with the full participated method ME-DOL for nonsmooth nonconvex optimization
(Sahinoglu & Shahrampour, 2024), the proposed DOC2S (Algorithm 1) requires only requires one
client to perform its computation per iteration. This results the key step for bounding the consensus
error ∥∆k,t+1/2

i − ∆̄k,t+1/2∥ in our analysis (the proof of Lemma 2 in Appendix A.1) being different
from that of ME-DOL in the following aspects.

• The ME-DOL perform online mirror descent on all clients per iteration (Sahinoglu & Shahrampour,
2024, Algorithm 4), which ensures that ∥∆k,t+1/2

i ∥ ≤ D always holds. This allows the analysis
to directly apply Lemma 1 of Shahrampour & Jadbabaie (2017) to bound the consensus error.

• Our DOC2S only performs online mirror descent on one client per iteration. Consequently,
the updates of xk,t

i and ∆k,t
i (when i = it) in Lines 10 and 16 of Algorithm 1 include an

additional factor of n preceding the term ∆
k,t−1/2
i and the min operator, respectively. Moreover,

Algorithm 1 incorporates an additional communication step in Line 18. These modifications
ensure that ∥∆k,t+1/2

i − ∆̄k,t+1/2∥ can be effectively bounded, even though only one client
participates in the computation and the condition ∥∆k,t+1/2

i ∥ ≤ D (as required by Sahinoglu
& Shahrampour (2024)) is not necessarily satisfied. Specifically, the analysis in Appendix A.1
shows that ∥∆k,t+1/2

i − ∆̄k,t+1/2∥ ≤ ϵ′ and ∥∆k,t+1/2
i ∥ ≤ D + ϵ′. By choosing an appropriate

accuracy ϵ′ and employing Chebyshev acceleration, the consensus error is sufficiently controlled
to achieve the desired theoretical guarantees.
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Figure 3: The results of first-order methods for multi-class classification on dataset “MNIST”.
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Figure 4: The results of zeroth-order methods for multi-class classification on dataset “MNIST”.

5 NUMERICAL EXPERIMENTS

This section empirically compare our DOC2S with baseline methods, including ME-DOL (Shahram-
pour & Jadbabaie, 2017) for both first-order and zeroth-order settings, as well as DGFM (Lin et al.,
2024) for the zeroth-order setting. We conduct experiments on the following two models:

• Nonconvex SVM with capped-ℓ1 penalty for binary classification on datasets “rcv1” and “a9a”.
• Multilayer perceptron with ReLU activation for multi-class classification on datasets “MNIST”

and “fashion-MNIST”.

We provide the detailed descriptions for the models in Appendix E.

We perform our numerical experiments on n = 16 clients associated with the network of the ring
topology. For DOC2S and ME-DOL, we tune the stepsize η and diameter D from {0.01, 0.05, 0.1}
and {0.05, 0.01, 0.005, 0.001}, respectively. For DGFM and DGFM+, we tune the stepsize η
from {0.001, 0.005, 0.01}. Additionally, we set the iteration number of Chebyshev acceleration
as R = 2 in our DOC2S.

We evaluate the performance of our method and baselines through sample complexity, computation
rounds, and communication rounds. We present the experimental results for datasets “rcv1” and
“MINST” in Figures 1–4. Due to the space limitation, we defer the results for datasets “a9a” and
“Fashion-MNIST” (Figures 5–8) to Appendix E. We can observe that the proposed DOC2S performs
better than baselines with respect to all measures. In particular, the client sampling strategy makes
the sample complexity of our method significantly superior to that of baselines. All of the empirical
results support the shaper upper bounds achieved in our theoretical analysis.

6 CONCLUSION

The paper presents a novel stochastic optimization methods for decentralized nonsmooth nonconvex
problem. We provide the theoretical analysis to show involving the steps of client sampling and
Chebyshev acceleration significantly improve the computation and the communication efficiencies.
Additionally, our methods work for both stochastic first-order and zeroth-order oracles. The advantage
of proposed method is also validated by empirical studies. In future work, it is possible to extend our
ideas to solve decentralized nonsmooth nonconvex problem in time varying networks (Kovalev et al.,
2024).
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A UPPER BOUNDS FOR CONSENSUS ERRORS

We present the proofs for Lemmas 2 and 3, which provide upper bounds for consensus errors.

A.1 PROOF OF LEMMA 2

Proof. We let c = 1 − (1 − 1/
√
2)
√
γ. According to the line 18 in Algorithm 1 and applying

Proposition 2, we have
n∑

i=1

∥∥∥∆k,t+1/2
i − ∆̄k,t+1/2

∥∥∥2 ≤ 14c2R
n∑

i=1

∥∥∥∆k,t
i − ∆̄k,t

∥∥∥2 . (9)

Based on the update rule of ∆k,t
i in Algorithm 1 (line 16) and Proposition 2, we have

∆̄k,t+1/2 = ∆̄k,t =
1

n

n∑
i=1

∆k,t
i =

1

n
∆k,t

it .

Therefore, it holds
n∑

i=1

∥∥∥∆k,t
i − ∆̄k,t

∥∥∥2
=

∥∥∥∥∆k,t
it − 1

n
∆k,t

it

∥∥∥∥2 +∑
i̸=it

∥∥∥∥∆k,t
i − 1

n
∆k,t

it

∥∥∥∥2

=

∥∥∥∥∆k,t
it − 1

n
∆k,t

it

∥∥∥∥2 + (n− 1)

∥∥∥∥0− 1

n
∆k,t

it

∥∥∥∥2
=
n− 1

n

∥∥∥∆k,t
it

∥∥∥2 ≤ n(n− 1)D2,

(10)

where the last step is based on the fact
∥∥∥∆k,t

it

∥∥∥ ≤ nD.

Combing above results, we have ∥∥∥∆k,t+1/2
i − ∆̄k,t+1/2

∥∥∥2
≤

n∑
j=1

∥∥∥∆k,t+1/2
j − ∆̄k,t+1/2

∥∥∥2
≤14c2R

n∑
j=1

∥∥∥∆k,t
j − ∆̄k,t

∥∥∥2
≤14c2Rn(n− 1)D2

for all i ∈ [n], where the second inequality is based on equation (9), the third inequality is based on
equation (10). Recall that c = 1 − (1 − 1/

√
2)
√
γ. Therefore, the setting of R and Proposition 2

implies ∥∥∥∆k,t+1/2
i − ∆̄k,t+1/2

∥∥∥ ≤ ϵ′ (11)

for all i ∈ [n]. Consequently, we have∥∥∥∆k,t+1/2
i

∥∥∥
=
∥∥∥∆̄k,t+1/2 + (∆

k,t+1/2
i − ∆̄k,t+1/2)

∥∥∥
≤
∥∥∥∆̄k,t+1/2

∥∥∥+ ∥∥∥∆k,t+1/2
i − ∆̄k,t+1/2

∥∥∥
=

∥∥∥∥ 1n∆k,t
it

∥∥∥∥+ ∥∥∥∆k,t+1/2
i − ∆̄k,t−1/2

∥∥∥
≤D + ϵ′,

where the last step is based on equation (11) and the fact
∥∥∥∆k,t

it

∥∥∥ ≤ nD.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 PROOF OF LEMMA 3

Proof. Based on the update rule of xk,t
i in Algorithm 1 (line 10), we denote

ek,ti = xk,t
i − yk,t−1

i =

{
n∆

k,t−1/2
i , i = it

0, i ̸= it
.

Then we have xk,t
i = yk,t−1

i + ek,ti for all i ∈ [n] and

x̄k,t = ȳk,t−1 + ēk,t, (12)

where ēk,t = 1
n

∑n
i=1 e

k,t
i . Furthermore, we get
n∑

i=1

∥∥∥ek,ti − ēk,t
∥∥∥2

=

n∑
i=1

∥∥∥∥∥ek,ti − 1

n

n∑
i=1

ek,ti

∥∥∥∥∥
2

=
∥∥∥ek,tit −∆

k,t−1/2
it

∥∥∥2 +∑
i̸=it

∥∥∥ek,ti −∆
k,t−1/2
it

∥∥∥2
=
∥∥∥n∆k,t−1/2

it −∆
k,t−1/2
it

∥∥∥2 + (n− 1)
∥∥∥0−∆

k,t−1/2
it

∥∥∥2
=n(n− 1)

∥∥∥∆k,t−1/2
it

∥∥∥2 ≤ n(n− 1)(D + ϵ′)2,

(13)

where the last inequality is based on the fact ∥∆k,t−1/2
it ∥ ≤ D + ϵ′ from Lemma 2.

Applying Proposition 2 and noticing that yk,0
i = 0, we get√√√√ n∑

j=1

∥∥∥yk,t
j − ȳk,t

∥∥∥2

≤
√
14cR

√√√√ n∑
j=1

∥∥∥xk,t
j − x̄k,t

∥∥∥2

=
√
14cR

√√√√ n∑
j=1

∥∥∥yk,t−1
j + ek,tj − x̄k,t

∥∥∥2

=
√
14cR

√√√√ n∑
j=1

∥∥∥yk,t−1
j + ek,tj − ȳk,t−1 − ēk,t

∥∥∥2

≤
√
14cR

√√√√ n∑
j=1

∥∥∥yk,t−1
j − ȳk,t−1

∥∥∥2 +√
14cR

√√√√ n∑
j=1

∥∥∥ek,tj − ēk,t
∥∥∥2,

(14)

where x̄k,t = 1
n

∑n
i=1 x

k,t
i and ȳk,t = 1

n

∑n
i=1 y

k,t
i . In the derivation of equation (15), the second

inequality is based on Proposition 2, the equalities are based on the definition of ek,ti and equation (12),
and the last step is based on the triangle inequality of Frobenius norm. Hence, we achieve the recursion√√√√ n∑

j=1

∥∥∥yk,t
j − ȳk,t

∥∥∥2 ≤
√
14cR

√√√√ n∑
j=1

∥∥∥yk,t−1
j − ȳk,t−1

∥∥∥2 +√
14cR

√√√√ n∑
j=1

∥∥∥ek,tj − ēk,t
∥∥∥2. (15)

We then use induction to prove√√√√ n∑
j=1

∥∥∥yk,t
j − ȳk,t

∥∥∥2 ≤ (D + ϵ′)ϵ′

D − ϵ′

for all t ≥ 1 and ϵ′ < D as follows.
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Induction Base: For t = 0, we have√√√√ n∑
j=1

∥∥∥yk,0
j − ȳk,0

∥∥∥2 = 0 ≤ (D + ϵ′)ϵ′

D − ϵ′
.

Induction Step: We suppose√√√√ n∑
j=1

∥∥∥yk,t−1
j − ȳk,t−1

∥∥∥2 ≤ (D + ϵ′)ϵ′

D − ϵ′
(16)

holds. Substituting the induction hypothesis (16) and equation (13) into equation (15) implies√√√√ n∑
j=1

∥∥∥yk,t
j − ȳk,t

∥∥∥2 (17)

≤
√
14cR · (D + ϵ′)ϵ′

D − ϵ′
+

√
14cR

√
n(n− 1)(D + ϵ′) ≤ (D + ϵ′)ϵ′

D − ϵ′
, (18)

where we take

R ≥

⌈
1

(1− 1/
√
2)
√
γ
log

√
14n(n− 1)D

ϵ′

⌉
.

B PROOFS FOR THE SMOOTH CASE

This section provides proofs for the results of our method with stochastic first-order oracle in the
smooth case. We first provide two basic lemmas.

Lemma 9 ((Parikh et al., 2014, Section 6.5), (Shahrampour & Jadbabaie, 2017, Lemma 6)). For
given g,∆ ∈ Rd and D > 0, the problem

min
∥x∥≤D

{
⟨x,g⟩+ 1

2η
∥x−∆∥2

}
(19)

has the unique solution

x∗ = min

{
1,

D∥∥∆− ηg
∥∥
}
(∆− ηg).

Additionally, we have

⟨g,x∗ − u⟩ ≤ 1

2η
∥∆− u∥2 − 1

2η
∥u− x∗∥2 − 1

2η
∥∆− x∗∥2,

for all u ∈ Rd.

Lemma 10. Under the setting of Lemma 2, we have

1

2η

T∑
t=1

EitEsk,t,ξk,t

∥∥∥∆k,t−1/2
it − uk

∥∥∥2 − ∥∥∥∥∥∆k,t
it

n
− uk

∥∥∥∥∥
2


≤D2

2η
+

(4D + ϵ′)ϵ′T

2η

for all
∥∥uk

∥∥ ≤ D.
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Proof. The left-hand side of the above equation can be decomposed as follows:

1

2η

T∑
t=1

EitEsk,t,ξk,t

∥∥∥∆k,t−1/2
it − uk

∥∥∥2 − ∥∥∥∥∥∆k,t
it

n
− uk

∥∥∥∥∥
2


=
1

2η

T∑
t=1

Ei1,...,iTEsk,t,ξk,t

∥∥∥∆k,t−1/2
it − uk

∥∥∥2 − ∥∥∥∥∥∆k,t
it

n
− uk

∥∥∥∥∥
2


=
1

2η

T∑
t=1

Ei1,...,iTEsk,t,ξk,t

[∥∥∥∆k,t−1/2
it − uk

∥∥∥2 − ∥∥∥∆k,t+1/2
it+1 − uk

∥∥∥2]

+
1

2η

T∑
t=1

Ei1,...,iTEsk,t,ξk,t

∥∥∥∆k,t+1/2
it+1 − uk

∥∥∥2 − ∥∥∥∥∥∆k,t
it

n
− uk

∥∥∥∥∥
2
 .

(20)

For the first term in equation (20), we obtain

1

2η

T∑
t=1

Ei1,...,iTEsk,t,ξk,t

[∥∥∥∆k,t−1/2
it − uk

∥∥∥2 − ∥∥∥∆k,t+1/2
it+1 − uk

∥∥∥2]

=
1

2η
Ei1,...,iTEsk,t,ξk,t

[
T∑

t=1

(∥∥∥∆k,t−1/2
it − uk

∥∥∥2 − ∥∥∥∆k,t+1/2
it+1 − uk

∥∥∥2)]

=
1

2η
Ei1,...,iTEsk,t,ξk,t

[∥∥∥∆k,1/2
i1 − uk

∥∥∥2 − ∥∥∥∆k,T+1/2

iT+1 − uk
∥∥∥2]

≤ 1

2η
Ei1,...,iTEsk,t,ξk,t

[∥∥∥∆k,1/2
i1 − uk

∥∥∥2]
=

1

2η
Ei1,...,iTEsk,t,ξk,t

[∥∥uk
∥∥2] ≤ D2

2η
,

where the last equality due to ∆
k,1/2
i1 = 0 and the last inequality is based on the fact ∥uk∥ ≤ D.

For the second term of equation (20), we notice:∥∥∥∆k,t+1/2
it+1 − uk

∥∥∥2 − ∥∥∥∥∥∆k,t
it

n
− uk

∥∥∥∥∥
2

=

(∥∥∥∆k,t+1/2
it+1 − uk

∥∥∥+ ∥∥∥∥∥∆k,t
it

n
− uk

∥∥∥∥∥
)(∥∥∥∆k,t+1/2

it+1 − uk
∥∥∥− ∥∥∥∥∥∆k,t

it

n
− uk

∥∥∥∥∥
)

then we have

1

2η

T∑
t=1

Ei1,...,iTEsk,t,ξk,t

∥∥∥∆k,t+1/2
it+1 − uk

∥∥∥2 − ∥∥∥∥∥∆k,t
it

n
− uk

∥∥∥∥∥
2


≤ 1

2η

T∑
t=1

Ei1,...,iTEsk,t,ξk,t

[(∥∥∥∆k,t+1/2
it+1

∥∥∥+ ∥∥uk
∥∥+ ∥∥∥∥∥∆k,t

it

n

∥∥∥∥∥+ ∥∥uk
∥∥)∥∥∥∥∥∆k,t+1/2

it+1 −
∆k,t

it

n

∥∥∥∥∥
]

≤ 1

2η

T∑
t=1

Ei1,...,iTEsk,t,ξk,t

[
(4D + ϵ′)

∥∥∥∥∥∆k,t+1/2
it+1 −

∆k,t
it

n

∥∥∥∥∥
]

≤ (4D + ϵ′)ϵ′T

2η
,

where the first inequality follows the triangle inequality ∥a∥−∥b∥ ≤ ∥a−b∥ with a = ∆
k,t+1/2
it+1 −uk

and b = ∆k,t
it /n − uk, the second inequality is based on the fact ∥∆k,t

it /n∥ ≤ D, ∥uk∥ ≤ D,
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and ∥∆k,t+1/2
it+1 ∥ ≤ D + ϵ′ from Lemma 2. The the last inequality in above derivation is achieved as

follows ∥∥∥∥∥∆k,t+1/2
it+1 −

∆k,t
it

n

∥∥∥∥∥ =
∥∥∥∆k,t+1/2

it+1 − ∆̄k,t
∥∥∥ =

∥∥∥∆k,t+1/2
it+1 − ∆̄k,t+1/2

∥∥∥ ≤ ϵ′,

where the first step is based on the update rule of ∆k,t
i (line 16 of Algorithm 1), the second step is

based on the update rule of ∆k,t+1/2
i (line 18 of Algorithm 1) and Proposition 2, and the last step is

based on Lemma 2.

We then provide the proofs of lemmas for the smooth case in Section 4

B.1 PROOF OF LEMMA 5

Proof. The setting it ∼ Unif({1, . . . , n}) indicates

EitEsk,t,ξk,t [gk,t
it ] =

1

n

n∑
i=1

Esk,t,ξk,t [gk,t
i ] = E[ḡk,t],

which implies

Esk,t,ξk,t

[
T∑

t=1

⟨ḡk,t, ∆̄k,t−1/2 − uk⟩

]

=

T∑
t=1

EitEsk,t,ξk,t [⟨gk,t
it , ∆̄k,t−1/2 − uk⟩]

=

T∑
t=1

EitEsk,t,ξk,t

[
⟨gk,t

it , ∆̄k,t−1/2 −∆
k,t−1/2
it ⟩

]
+

T∑
t=1

EitEsk,t,ξk,t

[〈
gk,t
it ,∆

k,t−1/2
it −

∆k,t
it

n

〉]

+

T∑
t=1

EitEsk,t,ξk,t

[
⟨gk,t

it
,
∆k,t

it

n
− uk⟩

]
(21)

We now consider the upper bounds of equation (21). Line 14 of Algorithm 1 with the stochastic
first-order oracle (Algorithm 3) and Assumption 3 imply

Esk,t,ξk,t [∥gk,t
i ∥] ≤

√
Esk,t,ξk,t

[
∥gk,t

i ∥2
]
≤ G. (22)

For the first term in equation (21), we have

Esk,t,ξk,t

[
⟨gk,t

it , ∆̄k,t−1/2 −∆
k,t−1/2
it ⟩

]
≤Esk,t,ξk,t

[∥∥gk,t
it

∥∥∥∥∆̄k,t−1/2 −∆
k,t−1/2
it

∥∥] ≤ Gϵ′,
(23)

where the first step is based on Cauchy–Schwarz inequality and the second step is based on equa-
tion (22) and the result ∥∆k,t−1/2

it − ∆̄k,t−1/2∥ ≤ ϵ′ from Lemma 2.

For the second term in equation (21), we have

Esk,t,ξk,t

[〈
gk,t
it ,∆

k,t−1/2
it −

∆k,t
it

n

〉]

≤η

2
Esk,t,ξk,t

[∥∥gk,t
it

∥∥2]+ 1

2η
Esk,t,ξk,t

∥∥∥∥∥∆k,t−1/2
it −

∆k,t
it

n

∥∥∥∥∥
2


≤ηG2

2
+

1

2η
Esk,t,ξk,t

∥∥∥∥∥∆k,t−1/2
it −

∆k,t
it

n

∥∥∥∥∥
2
 ,

(24)
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where the first step is based on Young’s inequality and the second step is based on equation (22).

For the third term in equation (21), we apply Lemma 9 with g = gk,t
it , ∆ = ∆

k,t−1/2
it , u = uk, and

x∗ = ∆k,t
it /n and the update rule of ∆k,t

it (line 16 of Algorithm 1) to achieve

Esk,t,ξk,t

[
⟨gk,t

it ,
∆k,t

it

n
− uk⟩

]

≤Esk,t,ξk,t

 1

2η

∥∥∆k,t−1/2
it − uk

∥∥2 − 1

2η

∥∥∥∥∥uk −
∆k,t

it

n

∥∥∥∥∥
2

− 1

2η

∥∥∥∥∥∆k,t−1/2
it −

∆k,t
it

n

∥∥∥∥∥
2
 .

(25)

Substituting equations equations (23), (24), and (25) into equation (21), we achive

Esk,t,ξk,t

[
T∑

t=1

⟨ḡk,t, ∆̄k,t−1/2 − uk⟩

]

≤Gϵ′T +
ηG2T

2
+

T∑
t=1

EitEsk,t,ξk,t

 1

2η
∥∆k,t−1/2

it − uk∥2 − 1

2η

∥∥∥∥∥uk −
∆k,t

it

n

∥∥∥∥∥
2


≤Gϵ′T +
ηG2T

2
+

D2

2η
+

(4D + ϵ′)ϵ′T

2η
,

where the last inequality is based on Lemma 10.

B.2 PROOF OF LEMMA 4

Proof. Recall that

∇k,t =

∫ 1

0

∇f(x̄k,t−1 + s∆
k,t−1/2
it ) ds.

We split the left-hand side of equation (6) as

T∑
t=1

Esk,t,ξk,t [⟨∇k,t − ḡk,t, ∆̄k,t−1/2⟩]

=

T∑
t=1

Esk,t,ξk,t [⟨∇̄k,t − ḡk,t, ∆̄k,t−1/2⟩] +
T∑

t=1

Esk,t,ξk,t [⟨∇k,t − ∇̄k,t, ∆̄k,t−1/2⟩],

(26)

where

∇̄k,t =
1

n

n∑
i=1

∇k,t
i and ∇k,t

i =

∫ 1

0

∇fi(y
k,t−1
i + s∆

k,t−1/2
i ) ds.

We now consider the upper bounds of equation (26). Line 14 of Algorithm 1 with the stochastic
first-order oracle (Algorithm 3 with µ = 0) and Assumption 3 imply

Esk,t,ξk,t [gk,t
i ] = ∇k,t

i , (27)

which means

Esk,t,ξk,t [ḡk,t] = ∇̄k,t.

Therefore, the first term of equation (26) equal to 0 so that we only need to consider the second term
in equation (26).
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We have ∥∥∇k,t − ∇̄k,t
∥∥

=

∥∥∥∥ 1n
∫ 1

0

(
∇f
(
x̄k,t−1 + s∆

k,t−1/2
it

)
−∇fi

(
yk,t−1
i + s∆

k,t−1/2
i

))
ds

∥∥∥∥
≤ 1

n

n∑
i=1

∫ 1

0

∥∥∥∇fi
(
ȳk,t−1 + s∆

k,t−1/2
it

)
−∇fi

(
y
k,t−1/2
i + s∆

k,t−1/2
i

)∥∥∥ds
≤H

n

n∑
i=1

∫ 1

0

∥∥∥ȳk,t−1 + s∆
k,t−1/2
it − yk,t−1

i − s∆
k,t−1/2
i

∥∥∥ ds
≤H

n

n∑
i=1

∥∥∥ȳk,t−1 − yk,t−1
i

∥∥∥+ H

2n

n∑
i=1

∥∥∥∆k,t−1/2
it −∆

k,t−1/2
i

∥∥∥ ,

(28)

where the second inequality is based on the H-smoothness of the function fi.

According to Lemma 3, we have

∥ȳk,t−1 − yk,t−1
i ∥ ≤ (D + ϵ′)ϵ′

D − ϵ′
. (29)

According to Lemma 2, we have

∥∆̄k,t−1/2 −∆
k,t−1/2
i ∥ ≤ ϵ′

for all i ∈ [n], which means∥∥∥∆k,t−1/2
it −∆

k,t−1/2
i

∥∥∥ ≤
∥∥∥∆̄k,t−1/2 −∆

k,t−1/2
it

∥∥∥+ ∥∥∥∆̄k,t−1/2 −∆
k,t−1/2
i

∥∥∥ ≤ 2ϵ′. (30)

Substituting equations (29) and (30) into equation (28), we have

∥∇k,t − ∇̄k,t∥ ≤ 2DHϵ′

D − ϵ′
. (31)

Therefore, the second term in equation (26) holds

T∑
t=1

Esk,t,ξk,t [⟨∇k,t − ḡk,t, ∆̄k,t−1/2⟩]

=

T∑
t=1

Esk,t,ξk,t [⟨∇k,t − ∇̄k,t, ∆̄k,t−1/2⟩]

≤
T∑

t=1

Esk,t,ξk,t [∥∇k,t − ∇̄k,t∥∥∆̄k,t−1/2∥]

≤2D2Hϵ′T

D − ϵ′
,

where the first step is based on equations (26) and (27), the second step is based on Cauchy–Schwarz
inequality, and the last step is based on equation (31) and the fact ∥∆̄k,t−1/2∥ = ∥∆k,t−1

it−1 /n∥ ≤ D
from the update rule in line 16 of Algorithm 1.

B.3 PROOF OF LEMMA 7

Proof. According to the update rule of xk,t
i in Algorithm 1 (line 10), we have:

x̄k,t =
1

n

n∑
i=1

yk,t−1
i +∆

k,t−1/2
it = xk,t−1 +∆

k,t−1/2
it ,

where the last step is based on the doubly stochastic assumption of matrix P (Assumption 5).
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Recall that

∇k,t =

∫ 1

0

∇f(x̄k,t−1 + s∆
k,t−1/2
it )ds and ḡk,t = Eit [g

k,t
it ],

then the continuity of the function f means

f(x̄k,t)− f(x̄k,t−1)

=

∫ 1

0

⟨∇f(x̄k,t−1 + s∆
k,t−1/2
it ),∆

k,t−1/2
it ⟩ds

=⟨∇k,t,∆
k,t−1/2
it ⟩

=⟨∇k,t,∆
k,t−1/2
it − ∆̄k,t−1/2⟩+ ⟨∇k,t − ḡk,t, ∆̄k,t−1/2⟩

+ ⟨ḡk,t,uk⟩+ ⟨ḡk,t, ∆̄k,t−1/2 − uk⟩.

(32)

Summing equation (32) over t and taking expectation on ξk,ti ∼ Di and sk,ti ∼ Unif[0, 1] yields

Esk,t,ξk,t [f(x̄k,T )− f(x̄k,0)]

=

T∑
t=1

Esk,t,ξk,t [⟨∇k,t,∆
k,t−1/2
it − ∆̄k,t−1/2⟩] +

T∑
t=1

Esk,t,ξk,t [⟨∇k,t − ḡk,t, ∆̄k,t−1/2⟩]

+

T∑
t=1

Esk,t,ξk,t [⟨ḡk,t,uk⟩] +
T∑

t=1

Esk,t,ξk,t [⟨ḡk,t, ∆̄k,t−1/2 − uk⟩]

(33)

hold for all uk ∈ Rd, where we define xk,0
i = yk,0

i and x̄k,0 = 1
n

∑n
i=1 x

k,0
i = 1

n

∑n
i=1 y

k,0
i .

For the first term of equation (33), we have:

T∑
t=1

Esk,t,ξk,t [⟨∇k,t,∆
k,t−1/2
it − ∆̄k,t−1/2⟩]

≤
T∑

t=1

Esk,t,ξk,t

[∥∥∇k,t
∥∥∥∥∥∆k,t−1/2

it − ∆̄k,t−1/2
∥∥∥] ≤ Lϵ′T,

(34)

where the first step is based on the Cauchy–Schwarz inequality and the second step due to the result
∥∆k,t−1/2

it − ∆̄k,t−1/2∥ ≤ ϵ′ from Lemma 2 and the fact that ∥∇f(x)∥ ≤ L. For the upper bound
of ∥∇f(x)∥, notice that we have

∥∇fi(x)∥ = ∥E[∇Fi(x; ξi)]∥ ≤ E [∥∇Fi(x; ξi)∥] ≤ E[L(ξi)] ≤
√

E[L(ξi)2] ≤ L

for all x ∈ Rd and i ∈ [n], where we use Jensen’s inequality and Assumption 1. Hence, we have

∥∇f(x)∥ =

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x)

∥∥∥∥∥ ≤ 1

n

n∑
i=1

∥∇fi(x)∥ ≤ 1

n

n∑
i=1

L = L.

For the second term of equation (33), we apply Lemma 4 to achieve

T∑
t=1

Esk,t,ξk,t [⟨∇k,t − ∇̄k,t, ∆̄k,t−1/2⟩] (35)

≤2D2Hϵ′T

D − ϵ′
. (36)

For the third term of equation (33), we take

uk = −D

∑T
t=1

∑n
i=1 ∇fi(w

k,t
i )∥∥∥∑T

t=1

∑n
i=1 ∇fi(w

k,t
i )
∥∥∥ ,
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which means

Esk,t,ξk,t

[〈
T∑

t=1

ḡk,t,uk

〉]

=Esk,t,ξk,t

[〈
1

n

T∑
t=1

n∑
i=1

∇fi(w
k,t
i ),uk

〉]

+ Esk,t,ξk,t

[〈
T∑

t=1

ḡk,t − 1

n

T∑
t=1

n∑
i=1

∇fi(w
k,t
i ),uk

〉]

≤−DEsk,t,ξk,t

[∥∥∥∥∥ 1n
T∑

t=1

n∑
i=1

∇fi(w
k,t
i )

∥∥∥∥∥
]
+

D

n
Esk,t,ξk,t

[∥∥∥∥∥
T∑

t=1

n∑
i=1

(∇fi(w
k,t
i )− gk,t

i )

∥∥∥∥∥
]

≤−DTEsk,t,ξk,t

[∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇fi(w
k,t
i )

∥∥∥∥∥
]
+

Dσ
√
T√

n
, (37)

where the first inequality is based on Cauchy–Schwarz inequality and the fact
∥∥uk

∥∥ ≤ D; the last
step is due to

Esk,t,ξk,t

[∥∥∥∥∥
T∑

t=1

n∑
i=1

(
∇fi(w

k,t
i )− gk,t

i

)∥∥∥∥∥
]

≤

√√√√√Esk,t,ξk,t

∥∥∥∥∥
T∑

t=1

n∑
i=1

(
∇fi(w

k,t
i )− gk,t

i

)∥∥∥∥∥
2


≤

√√√√ T∑
t=1

n∑
i=1

Esk,t,ξk,t

[∥∥∥∇fi(w
k,t
i )− gk,t

i

∥∥∥2]
≤
√
nTσ.

Here, the first inequality is based on Jensen’s inequality, the second inequality is based on the fact

Esk,t,ξk,t [gk,t
i ] = Esk,t,ξk,t [∇Fi(w

k,t
i )] = Esk,t [∇fi(w

k,t
i )],

and third inequality is based on the fact from Assumption 3.

For the last term of equation (33), we apply Lemma 5 to achieve

Esk,t,ξk,t

[
T∑

t=1

⟨ḡk,t, ∆̄k,t−1/2 − uk⟩

]
≤ Gϵ′T +

ηG2T

2
+

D2

2η
+

(4D + ϵ′)ϵ′T

2η
. (38)

Next, we target to bound the distance from {wt,k
i } to wout

i . For all i, j ∈ [n], k ∈ [K], and
t1, t2 ∈ [T ] such that t1 > t2, we have∥∥∥wk,t1

i −wk,t2
j

∥∥∥ ≤
∥∥∥wk,t1

i − w̄k,t1
∥∥∥+ ∥∥w̄k,t1 − w̄k,t2

∥∥+ ∥∥∥w̄k,t2 −wk,t2
j

∥∥∥ . (39)

The update rule of wk,t
i (line 11 of Algorithm 1) implies∥∥∥wk,t

i − w̄k,t
∥∥∥

=

∥∥∥∥∥yk,t−1
i + sk,ti ∆

k,t−1/2
i − ȳk,t−1 − 1

n

n∑
i=1

sk,ti ∆
k,t−1/2
i

∥∥∥∥∥
≤
∥∥∥yk,t−1

i − ȳk,t−1
∥∥∥+ ∥∥∥∆k,t−1/2

i

∥∥∥+ ∥∥∥∥∥ 1n
n∑

i=1

sk,ti ∆
k,t−1/2
i

∥∥∥∥∥
≤ (D + ϵ′)ϵ′

D − ϵ′
+ 2(D + ϵ′)

≤3(D + ϵ′),

(40)
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for all t ∈ [T ] and ϵ′ ≤ D/2, where the first inequality is based on the fact sk,ti ≤ 1 and the second
inequality is based on the result ∥∆k,t−1/2

i ∥ ≤ D+ ϵ′ from Lemmas 2 and 3. Consequently, we have∥∥w̄k,t1 − w̄k,t2
∥∥

≤
t1−1∑
t=t2

∥∥w̄k,t+1 − w̄k,t
∥∥

≤
T∑

t=1

∥∥w̄k,t+1 − w̄k,t
∥∥

=

T−1∑
t=1

∥∥∥∥∥ȳk,t +
1

n

n∑
i=1

sk,t+1
i ∆

k,t+1/2
i − ȳk,t−1 − 1

n

n∑
i=1

sk,ti ∆
k,t−1/2
i

∥∥∥∥∥
=

T−1∑
t=1

∥∥∥∥∥ȳk,t−1 +∆
k,t−1/2
it +

1

n

n∑
i=1

sk,t+1
i ∆

k,t+1/2
i − ȳk,t−1 − 1

n

n∑
i=1

sk,ti ∆
k,t−1/2
i

∥∥∥∥∥
=

T−1∑
t=1

∥∥∥∥∥∆k,t−1/2
it +

1

n

n∑
i=1

sk,t+1
i ∆

k,t+1/2
i − 1

n

n∑
i=1

sk,ti ∆
k,t−1/2
i

∥∥∥∥∥
≤

T∑
t=1

(∥∥∥∆k,t−1/2
it

∥∥∥+ ∥∥∥∥∥ 1n
n∑

i=1

sk,t+1
i ∆

k,t+1/2
i

∥∥∥∥∥+
∥∥∥∥∥ 1n

n∑
i=1

sk,ti ∆
k,t−1/2
i

∥∥∥∥∥
)

≤3(D + ϵ′)(T − 1) ≤ 3(D + ϵ′)T, (41)

where the third step is based on the update rule of wk,t
i in (line 11 of Algorithm 1); the fourth

step is based on the update rule of xk,t
i (line 10 of Algorithm 1) and the fact ȳk,t = x̄k,t from the

update rule of yk,t
i (line 13 of Algorithm 1) and Proposition 2; the last line is based on the result of

∥∆k,t−1/2
i ∥ ≤ D + ϵ′ for all i ∈ [n] from Lemma 2 and the setting sk,ti ∈ [0, 1].

Substituting equations (40) and (41) into equation (39), we have∥∥∥wk,t1
i −wk,t2

j

∥∥∥ ≤ 3(D + ϵ′) + 3(D + ϵ′)T + 3(D + ϵ′) ≤ δ, (42)

where the last inequality is based on taking

D =
δ

4T
, T > 6, and ϵ′ ≤ T − 6

3T + 6
D. (43)

We set η = D/(G
√
T ) for equation (38) to achieve

Esk,t,ξk,t

[
T∑

t=1

⟨ḡk,t, ∆̄k,t−1/2 − uk⟩

]

≤Gϵ′T +
ηG2T

2
+

D2

2η
+

(4D + ϵ′)ϵ′T

2η

≤Gϵ′T +GD
√
T +

(4D + ϵ′)ϵ′GT 3/2

2D
.

(44)

Substituting equations equations (34), (35), (37), (44) into equation (33):

Esk,t,ξk,t [f(x̄k,T )− f(x̄k,0)]

=

T∑
t=1

Esk,t,ξk,t [⟨∇k,t,∆
k,t−1/2
it − ∆̄k,t−1/2⟩] +

T∑
t=1

Esk,t,ξk,t [⟨∇k,t − ḡk,t, ∆̄k,t−1/2⟩]

+

T∑
t=1

Esk,t,ξk,t [⟨ḡk,t,uk⟩] +
T∑

t=1

Esk,t,ξk,t [⟨ḡk,t, ∆̄k,t−1/2 − uk⟩]
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≤Lϵ′T +
2D2Hϵ′T

D − ϵ′
−DTEsk,t,ξk,t

[∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇fi(w
k,t
i )

∥∥∥∥∥
]
+

Dσ
√
T√

n

+Gϵ′T +GD
√
T +

(4D + ϵ′)ϵ′GT 3/2

2D
.

Taking the average on above inequality over k = 1, . . . ,K and dividing DT , we achieve

Esk,t,ξk,t

[
1

K

K∑
k=1

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇fi(w
k,t
i )

∥∥∥∥∥
]

≤
Esk,t,ξk,t [f(x̄1,0)− f(x̄K,T )]

DKT
+

σ√
nT

+
G√
T

+

(
2DH

D − ϵ′
+

G+ L

D
+

(4D + ϵ′)G
√
T

2D2

)
ϵ′,

(45)

Now we start to show the desired approximate stationary point can be achieved at each client.
According to Lemma 6 with r = 3(D + ϵ′), we have∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f(wk,t
i )

∥∥∥∥∥ ≤

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇fi(w
k,t
i )

∥∥∥∥∥+ 6H(D + ϵ′). (46)

Additionally, we have∥∥∥ŵk
i −wk,t

j

∥∥∥ =

∥∥∥∥∥ 1T
T∑

τ=1

wk,τ
i −wk,t

j

∥∥∥∥∥ ≤

∥∥∥∥∥ 1T
T∑

τ=1

(
wk,τ

i −wk,t
j

)∥∥∥∥∥ ≤ δ (47)

for all i, j ∈ [n], k ∈ [K], and t ∈ [T ], where the first step is based on the setting of ŵk
i (line 11 of

Algorithm 1) and the last step is based on equation (42). Combing above results, we have

Esk,t,ξk,t [
∥∥∇f(wout

i )
∥∥
δ
]

=Esk,t,ξk,t

[
1

K

K∑
k=1

∥∥∇f(ŵk
i )
∥∥
δ

]

≤Esk,t,ξk,t

[
1

K

K∑
k=1

∥∥∥∥∥ 1

nT

T∑
t=1

n∑
i=1

∇f(wk,t
i )

∥∥∥∥∥
]

≤
Esk,t,ξk,t [f(x̄1,0)− f(x̄K,T )]

DKT
+

σ√
nT

+
G√
T

+

(
2DH

D − ϵ′
+

G+ L

D
+

(4D + ϵ′)G
√
T

2D2

)
ϵ′ + 6H(D + ϵ′),

where the first step is based on the setting of wout
i (line 25 of Algorithm 1), the second step is

based on the definition of ∥∇f(·)∥δ (Definition 3), and the last step is based on using equations (45)
and (46). We substitute the settings of ϵ′ < D and D = δ/(4T ) (see equation (43)) into above result
and assume δ ≤ 1, then it holds

Esk,t,ξk,t

[∥∥∇f(wout
i )

∥∥
δ

]
≤
4Esk,t,ξk,t [f(x̄1,0)− f(x̄K,T )]

δK
+

σ√
nT

+
G√
T

+
3Hδ

2T

+

(
2DH

D − ϵ′
+

G+ L

D
+

(4D + ϵ′)G
√
T

2D2
+ 6H

)
ϵ′

≤ 4ν

δK
+

1√
T

(
σ√
n
+G+

3H

2

)
+

(
2DH

D − ϵ′
+

G+ L

D
+

5G
√
T

2D
+ 6H

)
ϵ′, (48)

where we define ν = f(x̄1,0)− infx∈Rd f(x) = f(0)− infx∈Rd f(x).
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We denote

h1 =
σ√
n
+G+

3H

2
,

and take

K =

⌈
12ν

δϵ

⌉
and T =

⌈
9h1

2

ϵ2

⌉
,

then the first two terms in the last line of equation (48) holds

4ν

δK
≤ ϵ

3
and

1√
T

(
σ√
n
+G+

3H

2

)
≤ ϵ

3
.

For the last term in the last line of equation (48), equation (43) implies

D =
δ

4T
=

δ

4
⌈
9h1

2/ϵ2
⌉ and ϵ′ ≤ T − 6

3T + 6
D =

(
⌈
9h1

2/ϵ2
⌉
− 6)δ

12
⌈
9h1

2/ϵ2
⌉2

+ 24
⌈
9h1

2/ϵ2
⌉ .

Combining above results, we can take

ϵ′ ≤ min


(
⌈
9h2

1

ϵ2

⌉
− 6)δ

12
(⌈

9h2
1

ϵ2

⌉)2
+ 24

⌈
9h2

1

ϵ2

⌉ ,
9H +

4(G+ L)
⌈
9h2

1

ϵ2

⌉
δ

+
10G

√
T
⌈
9h2

1

ϵ2

⌉3/2
δ


−1

ϵ

3

 .

and R = Õ(1/
√
γ) to guarantee

Esk,t,ξk,t

[∥∥∇f(wout
i )

∥∥
δ

]
≤ ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ.

C PROOFS FOR THE NONSMOOTH CASE

This section follows the proof of Lemma 7 to achieve the results in the nonsmooth case.

C.1 PROOF OF THEOREM 1

Proof. Recall that the setting of Theorem 1 takes µ = δ/2 in the stochastic first-order oracle
(Algorithm 3), then Proposition 1 means the function fδ/2 is δL/2-Lipschitz, and 2c0L

√
d/δ-smooth.

In the view of minimizing the smooth function fδ/2 by Algorithm 1, we can follow the first step in
the derivation of equation (48) (in the proof of Lemma 7) by replacing δ, f , σ, and H by δ/2, fδ/2,
G, and 2c0L

√
d/δ, respectively. This implies

E[∥∇fδ/2(w
out
i )∥δ/2]

≤
8Esk,t,ξk,t [fδ/2(x̄

1,0)− fδ/2(x̄
K,T )]

δK
+

G√
nT

+
G√
T

+
3c0L

√
d

T
(49)

+

(
c0LD

√
d

δ(D − ϵ′)
+

G+ L

D
+

5G
√
T

2D
+

12c0L
√
d

δ

)
ϵ′.

We let ν = f(x̄1,0)− infx∈Rd f(x) = f(0)− infx∈Rd f(x), then we have

fδ/2(x̄
1,0)− fδ/2(x̄

K,T )

≤f(x̄1,0)− f(x̄K,T ) + fδ/2(x̄
1,0)− f(x̄1,0)− fδ/2(x̄

K,T ) + f(x̄K,T )

≤ν + |fδ/2(x̄1,0)− f(x̄1,0)|+ |fδ/2(x̄K,T )− f(x̄K,T )|
≤ν + δL/2 + δL/2 ≤ ν + L
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Let ν′ = ν + L, then combining above results achives

E[∥∇fδ/2(w
out
i )∥δ/2]

≤ 8ν′

δK
+

1√
T

(
G√
n
+G+ 3c0L

)
+

(
c0LD

√
d

δ(D − ϵ′)
+

G+ L

D
+

5G
√
T

2D
+

12c0L
√
d

δ

)
ϵ′,

where we take T ≥ d. We denote

h2 =
G√
n
+G+ 3c0L,

and first consider the first two terms in equation (49) By taking

K =

⌈
24ν′

δϵ

⌉
and T =

⌈
9h2

2

ϵ2

⌉
+ d,

then it holds

8ν′

δK
≤ ϵ

3
and

1√
T

(
G√
n
+G+ 3c0L

)
≤ ϵ

3
.

We then consider the last term in equation (49). Based on the equation (43) that

D =
δ

4T
=

δ

4
⌈
9h2

2/ϵ2
⌉ and ϵ′ ≤ T − 6

3T + 6
D =

(
⌈
9h2

2/ϵ2
⌉
− 6)δ

12
⌈
9h2

2/ϵ2
⌉2

+ 24
⌈
9h2

2/ϵ2
⌉ ,

we take

ϵ′ ≤ min


(
⌈
9h2

2

ϵ2

⌉
− 6)δ

12
(⌈

9h2
2

ϵ2

⌉)2
+ 24

⌈
9h2

2

ϵ2

⌉ ,
27kL

√
d

2δ
+

4(G+ L)
⌈
9h2

2

ϵ2

⌉
δ

+
10G

⌈
9h2

2

ϵ2

⌉ 3
2

δ


−1

ϵ

3

 ,

Based on the fact D − ϵ′ ≤ 2/3, it holds(
c0LD

√
d

δ(D − ϵ′)
+

G+ L

D
+

5G
√
T

2D
+

12c0L
√
d

δ

)
ϵ′

≤

(
3c0L

√
d

2δ
+

G+ L

D
+

5G
√
T

2D
+

12c0L
√
d

δ

)
ϵ′

≤ ϵ

3
.

Finally, by using Lemma 8, we achieve

Esk,t,ξk,t

[∥∥∇f(wout
i )

∥∥
δ

]
≤ Esk,t,ξk,t [∥∇fδ/2(w

out
i )∥δ/2] ≤

ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ

for all i ∈ [n]. Hence, for ϵ < O(
√
d), we can achieve the desired (δ, ϵ)-Goldstein stationary point

on each client with T = O(ϵ−2).

C.2 PROOF OF COROLLARY 2

Proof. According to the proof of Theorem 1, we achieve an (δ, ϵ)-Goldstein stationary point of the
objective within the the computation rounds of KT = O(δ−1ϵ−3). Since we sample one client for
update per round, the overall stochastic first-order oracle complexity is O(δ−1ϵ−3). We perform
R communication rounds each time and R = Õ(γ−1/2) from Lemma 2. Thus the communication
rounds is Õ(γ−1/2δ−1ϵ−3).
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C.3 PROOF OF THEOREM 3

Proof. Recall that the setting of Theorem 1 takes µ = δ/2 in the stochastic first-order oracle
(Algorithm 3), then Proposition 1 means the function fδ/2 is δL/2-Lipschitz, and 2c0L

√
d/δ-smooth.

In the view of minimizing the smooth function fδ/2 by Algorithm 1, we can follow the first step in
the derivation of equation (48) (in the proof of Lemma 7) by replacing δ, f , G and σ, H by δ/2, fδ/2,√
16
√
2πL and 2c0L

√
d/δ, respectively. This implies

E[∥∇fδ/2(w
out
i )∥δ/2]

≤
8Esk,t,ξk,t [fδ/2(x̄

1,0)− fδ/2(x̄
K,T )]

δK
+

√
16

√
2πdL√

nT
+

√
16

√
2πdL√
T

+
3c0L

√
d

T

+

(
c0LD

√
d

δ(D − ϵ′)
+

√
16
√
2πdL+ L

D
+

5
√

16
√
2πdL

√
T

2D
+

12c0L
√
d

δ

)
ϵ′. (50)

Let ν′ = ν + L, then combining above results achives
E[∥∇fδ/2(w

out
i )∥δ/2]

≤ 8ν′

δK
+

√
d√
T

(√
16
√
2πL√
n

+

√
16
√
2πL+ 3c0L

)

+

(
c0LD

√
d

δ(D − ϵ′)
+

√
16
√
2πdL+ L

D
+

5
√

16
√
2πdL

√
T

2D
+

12c0L
√
d

δ

)
ϵ′,

where the inequality is based on
√
T ≤ T .

We denote

h3 =

√
16
√
2πL and h4 =

h3√
n
+ h3 + 3c0L.

We first consider the first two terms in equation (49) By taking

K =

⌈
24ν′

δϵ

⌉
and T =

⌈
9h4

2d

ϵ2

⌉
,

then it holds
8ν′

δK
≤ ϵ

3
and

√
d√
T

(
h3√
n
+ h3 + 3c0L

)
≤ ϵ

3
.

We then consider the last term in equation (49). Based on the equation (43) that

D =
δ

4T
=

δ

4
⌈
9h4

2d/ϵ2
⌉ and ϵ′ ≤

(
⌈
9h4

2d/ϵ2
⌉
− 6)δ

12
⌈
9h4

2d/ϵ2
⌉2

+ 24
⌈
9h4

2d/ϵ2
⌉ .

We take the value of ϵ′ less than or equal to

min


(
⌈
9h2

4d
ϵ2

⌉
− 6)δ

12
⌈
9h2

4d
ϵ2

⌉2
+ 24

⌈
9h2

4d
ϵ2

⌉ ,
27c0L

√
d

2δ
+

4(h3 + L)
⌈
9h2

4d
ϵ2

⌉
δ

+
10h3

⌈
9h2

4d
ϵ2

⌉ 3
2

δ


−1

ϵ

3

 .

Based on the fact D − ϵ′ ≤ 2/3, it holds(
c0LD

√
d

δ(D − ϵ′)
+

h3 + L

D
+

5h3

√
T

2D
+

12c0L
√
d

δ

)
ϵ′

≤

(
3c0L

√
d

2δ
+

h3 + L

D
+

5h3

√
T

2D
+

12c0L
√
d

δ

)
ϵ′ ≤ ϵ

3
.

Finally, by using Lemma 8, we achieve

Esk,t,ξk,t

[∥∥∇f(wout
i )

∥∥
δ

]
≤ Esk,t,ξk,t [∥∇fδ/2(w

out
i )∥δ/2] ≤

ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ.

Thus, we find a (δ, ϵ)-stationary with computation rounds KT = O(dδ−1ϵ−3).
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C.4 PROOF OF COROLLARY 4

Proof. According to the proof of Theorem 3, we obtain an (δ, ϵ)-Goldstein stationary point of the
objective within KT = O(dδ−1ϵ−3) computation rounds. Since we update one client per round, the
overall stochastic first-order oracle complexity is O(dδ−1ϵ−3). We perform R communication rounds
each time, where R = Õ(γ−1/2) from Lemma 2. Therefore, the total number of communication
rounds is Õ(dγ−1/2δ−1ϵ−3).

D REVISITING THE RESULTS OF ME-DOL

This section shows the the iteration numbers of ME-DOL (Sahinoglu & Shahrampour, 2024) indeed
contains the dependency on n, which is not explicitly showed in the presentation of .

We follow the notations of Sahinoglu & Shahrampour (2024). According to the proof of their
Theorem 2 (page 16) for their first-order method case, it requires

c8(δN)−1/3 ≤ ϵ, (51)

where

c8 =
12γ

√
n

1− ρ

(
(1− ρ)(2G+ 2c1

√
n+ cL

√
d(1− ρ)c3)

16γn

)2/3

= Ω(n1/3),

c1 = 4

√
G2(1− ρ) + 4G(L+G)

√
n

2(1− ρ)
= Ω(n1/4),

c3 =
3
√
n

1− ρ
+ 5 = Ω(

√
n ).

Therefore, we require the computation rounds of N = O(n(1− ρ)−2δ−1ϵ−3). Similarly, the other
complexity of ME-DOL also contain the dependency on n.

E MORE DETAILS OF OUR NUMERICAL EXPERIMENTS

This section provides the detailed description of the models used in our experiments, as well as the
additional experimental results on dataset “a9a” and “Fashion-MNIST”.

E.1 NONCONVEX SVM WITH CAPPED-ℓ1 PENALTY

We first consider the model of nonconvex penalized SVM with capped-ℓ1 regularizer (Zhang, 2010b),
which targets to train the binary classifier x ∈ Rd on dataset {(ai, bi)}mi=1, where ai ∈ Rd and
bi ∈ {−1, 1} are the feature vector and label for the i-th sample. We formulate this problem as the
following nonsmooth nonconvex problem

min
x∈Rd

f(x) ≜
1

m

m∑
i=1

gi(x),

where gi(x) = l(bia
⊤
i x) + ν(x), l(z) = max{1 − z, 0}, ν(x) = λ

∑d
j=1 min{|x(j)|, α}, and

λ, α > 0. Here, the notation x(j) means the jth coordinate of x. We evenly divide functions {gi}mi=1
into m clients. We set λ = 10−5/m and α = 2 in our experiments.
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Figure 5: The results of first-order methods for binary classification on dataset “a9a”.
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Figure 6: The results of zeroth-order methods for binary classification on dataset “a9a”.

0 250 500 750 1000 1250 1500 1750 2000
Sample Complexity

0.2

0.4

0.6

0.8

1.0

Fu
nc

tio
n

va
lu

e

DOC2S
ME DOL

0 250 500 750 1000 1250 1500 1750 2000
Computation Rounds

0.2

0.4

0.6

0.8

1.0

Fu
nc

tio
n

va
lu

e

DOC2S
ME DOL

0 250 500 750 1000 1250 1500 1750 2000
Communication Rounds

0.2

0.4

0.6

0.8

1.0

Fu
nc

tio
n

va
lu

e

DOC2S
ME DOL

Figure 7: The results of first-order methods for multi-class classification on dataset “fashion-MNIST”.
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Figure 8: The results of zeroth-order methods for multi-class classification on dataset “fashion-
MNIST”.

E.2 MULTILAYER PERCEPTRON WITH RELU ACTIVATION

We have additionally conducted the applications of image classification on datasets "MNIST" and
"fashion-MNIST" (28× 28 pixels for each image, 10 classes). Specifically, we consider the two-layer
Multilayer Perceptron (MLP) with ReLU activation and a 256-dimensional hidden layer. Specifically,
the local function at the i-th client can be written as

fi(x) ≜
1

mi

mi∑
j=1

ℓ
(
g(x;aji ), b

j
i

)
+ λ∥x∥22,

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

where we organize the parameters of the model as x = (W1, c1,W2, c2) with W1 ∈ R256×784,
c1 ∈ R256, W2 ∈ R10×256, c2 ∈ R10 and denote g(x;aji ) = W2 · ReLU(W1a

j
i + c1) + c2 with

ReLU(x) = max(0, x). Additionally, we let

ℓ(ŷ, y) = −
9∑

k=0

1[y=k] log

(
exp(ŷ[k])∑9
j=0 exp(ŷ[j])

)
,

where ŷj is the j-th coordinate of ŷ. We also denote aji ∈ R784 and bji ∈ {0, 1, . . . , 9} as the feature
(flattened 28× 28 images) of the jth sample on the ith client and its corresponding label.

E.3 ADDITIONAL NUMERICAL RESULTS

We present the experimental results for datasets “a9a” and “Fashion-MNIST” in Figures 5–8. Similar
to the observation in Section 5, the proposed DOC2S also performs better than baselines with respect
to all measures.
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