
Under review as submission to TMLR

Efficient CDF Approximations for Normalizing Flows

Anonymous authors
Paper under double-blind review

Abstract

Normalizing flows model a complex target distribution in terms of a bijective transform
operating on a simple base distribution. As such, they enable tractable computation of a
number of important statistical quantities, particularly likelihoods and samples. Despite
these appealing properties, the computation of more complex inference tasks, such as the
cumulative distribution function (CDF) over a complex region (e.g., a polytope) remains
challenging. Traditional CDF approximations using Monte-Carlo techniques are unbiased but
have unbounded variance and low sample efficiency. Instead, we build upon the diffeomorphic
properties of normalizing flows and leverage the divergence theorem to estimate the CDF
over a closed region in target space in terms of the flux across its boundary, as induced by the
normalizing flow. We describe both deterministic and stochastic instances of this estimator:
while the deterministic variant iteratively improves the estimate by strategically subdividing
the boundary, the stochastic variant provides unbiased estimates. Our experiments on
popular flow architectures and UCI benchmark datasets show a marked improvement in
sample efficiency as compared to traditional estimators.

1 Introduction

Normalizing Flows (Kobyzev et al., 2020; Papamakarios et al., 2021) are a form of generative model
which constructs tractable probability distributions through invertible, differentiable transformations, i.e.,
diffeomorphisms. They admit both efficient and exact density evaluation and sampling and, as valid probability
distributions, theoretically support a range of other probabilistic inference tasks. However, some inference
tasks remain computationally challenging. Here we consider the task of computing cumulative densities
over arbitrary closed regions of distributions represented by a normalizing flow. Cumulative densities are a
fundamental statistical measure that answer the question: what is the probability of a sample in this range of
values? There are a number of different extensions of the traditional one-dimensional definition of a CDF
to higher dimensions. Here we follow conventions in related works (e.g., see Botev (2017); Cunningham
et al. (2013)) which define the CDF in higher dimensions as an integral over a closed region. Example
applications are particularly common in the domain of uncertainty estimation (Liu et al., 2019; Mazaheri
et al., 2020; Abdar et al., 2021), the evaluation of risk in financial settings (Richardson et al., 1997; Mehta
et al., 2012) and actuarial analysis in general (Meneguzzo & Vecchiato, 2004). Other recent examples include
distributional reinforcement learning (Sun et al., 2021), few-shot learning (Ridgeway & Mozer, 2018), and
alternative methods for training normalizing flows (Dai & Seljak, 2021).

Despite the importance of cumulative densities, current techniques for computing them with normalizing
flows are restricted to traditional Monte-Carlo based estimators which, while unbiased, can have unbounded
variance and poor computational efficiency. Further, such approaches fail to exploit the inherent structure of
normalizing flows, namely their construction as a diffeomorphic transformation.

In this paper we describe a novel estimator that exploits the unique characteristics of normalizing flows
to efficiently estimate the cumulative density in closed regions. To do this we exploit the homeomorphic
property of normalizing flow transforms to relate the cumulative density in the target space to volume in the
base space. We then adapt the divergence theorem to show that we only need to consider the boundary of
the region in the target space.
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Figure 1: Overview. We propose an efficient
estimator to compute the cumulative density P
induced by a normalizing flow f over a complex
region V. We show that P corresponds to in-
tegrating over the boundary ∂W = g(∂V) in a
uniform base space w.r.t. a vector field F with
constant divergence 1, which can be expressed
as an integration over the boundary ∂V in the
target space w.r.t. an equivalent vector field G.

We analyze the resulting theoretical estimator to identify best-
case performance scenarios and use this analysis to motivate
an adaptive, approximate estimator. To practically realize
this estimator and evaluate its performance, we explore its
application to computation of cumulative density over convex
regions.

Contributions. The contributions of this paper are as fol-
lows. First, we derive a novel formulation of the cumulative
density of a normalizing flow by relating it to the volume in
a (uniform) base space and the boundary integrals in both
base and data space based on the divergence theorem. Second,
based on this we describe an unbiased, stochastic estimator for
cumulative densities over a closed region. Next, we analyze this
estimator to build an adaptive, deterministic approximation
for cumulative densities over a closed region by strategically
adding points along the boundary of the region. Finally, we
describe a comprehensive evaluation protocol to evaluate CDF
estimators for normalizing flows as a function of region sizes,
architecture families and capacities. The code to reproduce our
results, including training popular normalizing flow architec-
tures, approximating cumulative densities with the proposed
adaptive boundary estimator and other baseline methods will
be made publicly available.

2 Related Work

Our proposed method is principally related to two bodies of ex-
isting work: (1) algorithms for efficient estimation of cumulative
densities for popular distribution functions; and (2) modifica-
tions of popular normalizing flows architectures to allow for
more efficient cumulative density estimation.

Classic Algorithms. Computing cumulative densities is not tractable in higher dimensions even for
distributions such as the multivariate Gaussian which have closed-form density functions. Consequently,
approximations to volume integrals/cumulative density functions have been an important research problem:
for example, Genz & Bretz (2009) discuss methods for approximating integrals over multivariate Gaussian
and t-distributions. Botev & l’Ecuyer (2015) and Botev (2017) propose a tilting method for i.i.d. sampling
and approximating cumulative densities over convex polytopes in multivariate Gaussian and t-distributions
respectively. Approximating integrals over 1D distributions is also challenging for certain distributions;
see Lange (1999) for a discussion on quadrature methods and chapters 4-6 of Press et al. (1988) for a
discussion on numerical methods for estimating 1D integrals. Cunningham et al. (2013) extensively study
Expectation-Propagation (Minka, 2001) as an approximate integration method for computing cumulative
densities over polyhedral or hyperrectangular regions in Gaussian space; if we consider the base space of
a normalizing flow to be Gaussian, one could consider – based on our discussion in the methods section –
applying this method to the region in Gaussian space corresponding to the region V in the target space;
however, it is not easy to ensure that polyhedral regions in target space remain polyhedral in base space
without restricting the expressive power of the flow transform.

Normalizing Flows. Cundy & Ermon (2020) consider the general problem of estimating integrals and
propose an approximate inference procedure that allows explicit control of the bias-variance tradeoff; the
method involves first creating partitions of the base uniform space of the normalizing flow and then training
a separate variational approximator for each partition: when one partition is used for the entire region, the
algorithm reduces to the standard variational approximation resulting in a biased low-variance estimate –
however, for an exact estimate, the number of partitions have to be increased and the algorithm reduces
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to Monte-Carlo sampling. Furthermore, it is not easy to determine the partitioning strategy to arrive at
the exact estimate with as few samples as possible. Similar to our problem setting, Liang et al. (2020)
consider the problem of approximating range densities in a tabular database using auto-regressive models:
in order to efficiently marginalize over data dimensions, they train the model by randomly masking few
data dimensions, which is referred to as variable-skipping. At inference time, they only need to sample the
variables whose ranges are specified to form the estimate; even though the training objective is indeed the
maximum-likelihood objective, the estimate obtained from the model trained with variable-skipping technique
is only an approximate value of the range densities.

Copulas. Introduced in Sklar (1959), copulas are multivariate cumulative density functions which can be
used to define multivariate distributions in terms of their univariate marginals. The univariate marginals and
the dependence between the variables are defined separately allowing one to tractably compute multivariate
axis-aligned CDFs. For example, Chilinski & Silva (2020) suggest an alternative to normalizing flows based on
copula theory wherein CDF estimates are available through a simple forward pass; nonetheless, this approach
has some limitations – most notably, sampling from the learned distribution is not tractable. In contrast, we
focus on computing CDFs over flexibly shaped regions with the more normalizing flows, a broad and flexible
class of distributions.

3 Background

Before we describe our approach we provide a brief review of normalizing flows and traditional sampling-based
methods of estimating their cumulative densities.

3.1 Normalizing Flows

Normalizing flows transform a random variable Y with a simple base distribution pY(y) into a random
variable X with a complex target distribution pX(x) using a bijective mapping f : Rd −→ Rd. Base and
target space are connected by the change-of-variables formula

pX(x) = pY(y)
∣∣∣∣ dgdx

∣∣∣∣ , (1)

where | · | is the determinant, g is the inverse of f , and dg
dx is the (d× d) – Jacobian J of g. We set Y ∼ U[0,1]d ,

which has the important property P (y ∈W) = vol(W) for any compact set W ⊂ [0, 1]d, i.e., the cumulative
density equals the enclosed volume.1 For pre-existing flows f ′ with non-uniform (e.g., Gaussian) base
distribution pY′(y′), we can simply set f := f ′(F−1

Y′ (y)) to align them with the case above. Sampling from a
normalizing flow involves first sampling y ∼ pY and then applying the flow transform f to obtain x = f(y).

Objective. Given a compact set of interest V ⊂ Rd in target space, our goal will be the efficient
computation of

P (x ∈ V) =
∫

V
pX(x) dx. (2)

3.2 Monte-Carlo Estimation

If the volume V admits a tractable membership function, one could estimate P (x ∈ V) from N random
samples from the model as the fraction of points falling into V; we refer to this method as the Monte-Carlo
(MC) estimate. Similarly, if the volume V admits a uniformly distributed random variable U ∼ UV, one
could estimate P (x ∈ V) as∫

V pX(x) dx =
∫

V pU(x) · pX(x)
pU(x) dx = Ex∼pU

[
pX(x)
pU(x)

]
,

which we refer to as the Importance Sampling (IS) estimate. While both of the described estimators are
unbiased, they have unbounded variances for smaller sample sizes and may require several runs to obtain
accurate results (Cunningham et al., 2013).

1We use US to denote the uniform distribution with support S.
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4 Efficient Estimation of Cumulative Densities

Equipped with these tools, we will now describe our technique to efficiently compute the cumulative density
of Eq.(2). We proceed in three steps: first, we leverage the divergence theorem to relate P (x ∈ V) to a
flux – mathematically expressed as the surface integral of a given vector field and a measure of how much
of the vector field passes through a closed surface – through the transformed boundary g(∂V) of V in base
space (Section 4.1). Then, we introduce an equivalent flux through the untransformed boundary ∂V of V to
enable direct integration in target space (Section 4.2). Finally, we propose an iterative protocol that enables
fine-grained control over the quality of the approximation (Section 4.3).

4.1 Cumulative Density as Boundary Flux

We will first show that computing the cumulative density over V in target space is equivalent to computing
the volume of W := g(V) in base space.

Lemma 1. Let V ⊂ Rd be compact and W := g(V). Then P (x ∈ V) = vol(W).

Proof. Noting that p(x) = p(y)
∣∣∣det dg

dx

∣∣∣ and dy =
∣∣∣det dg

dx

∣∣∣dx, we have

P (x ∈ V) =
∫

V
p(x) dx =

∫
V
p(y)

∣∣∣∣det dg
dx

∣∣∣∣ dx

=
∫

W
p(y) dy =

∫
W

dy = vol(W)
(3)

We can control the properties of W through f :

Definition 1 (Diffeomorphism). A differentiable bijection f on Rd is called a diffeomorphism, if it has a
differentiable inverse g = f−1.

Importantly, diffeomorphisms map points on the boundary to points on the boundary and points in the
interior to points in the interior (Armstrong, 2013), implying ∂W = g(∂V) for any diffeomorphic flow f .
This includes popular flow architectures like Glow Kingma & Dhariwal (2018), MAF Papamakarios et al.
(2017), and FFJORD Grathwohl et al. (2019) and ensures that W meets the requirements for the following
theorem relating volume integrals to surface integrals.

Theorem 1 (Divergence Theorem). Let T ⊂ Rd be compact with piecewise smooth boundary ∂T.
Given a vector field B, the volume integral of the divergence ∇ ·B over T and the surface integral of B over
∂T are related by ∫

T
(∇ ·B) dT =

∫
∂T

B · n d(∂T), (4)

where n is the outward-facing unit normal.

Proof. Wade (2017)

Setting A := ∂W, an application of the divergence theorem using the vector field F(x) = d−1x yields
∇ · F = 1 and thus

vol(W) =
∫

W
dW =

∫
W
∇ · F dW =

∫
A

F · n dA, (5)

i.e., we can compute the volume of W in terms of a flux through the boundary of W.2 Now, consider that
the closed region V is given by a simplicial polytope; note that a simplicial polytope can be constructed
with arbitrary accuracy for any closed region of a D dimensional space whose boundary is defined by a
C < D dimensional manifold. The boundary of such a polytope is defined by a set of (d−1)-simplices; for
example, the boundary of a simplicial polytope in 2D is a set of 1-simplices (i.e., line segments). We can

2We note that F is not unique and other choices are possible.
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Figure 2: Estimation in Base Space. A piecewise linear
boundary S defined by points {pi}i in target space has a
complex shape A in base space. The cumulative density en-
closed by S is equivalent to the boundary flux of F through
A (Eq.(5)). As an approximation, we can instead com-
pute the boundary flux of F through the piecewise linear
boundary {Ai}i defined by {g(pi)}i (Eq.(6)).

Figure 3: Equivalencies. We show equivalent expres-
sions for the cumulative density of interest P (x ∈ V)
and their associated spaces. The proposed estimator is
motivated by a counter-clockwise chain of arguments,
ultimately leveraging

∫
S G dS.

approximate the boundary A by flowing the vertices of the (d−1)-simplices defining the boundary of V
through g. Denoting the resulting set of simplices by {Ai}i, we have

vol(W) ≈
∑
Ai

F(A(c)
i ) ·A(n)

i , (6)

where Ai is the i-th simplex, A(c)
i its centroid, and A(n)

i its outward-facing normal. The approximation error
is rooted in the assumption that the true boundary patch in A corresponding to a transformed simplex Ai is
linear. The larger the set of simplices approximating the boundary A the better the estimate; see Fig. 2 for a
summary of this section.

4.2 Stochastic Estimation in Target Space

One drawback of the method described in Eq.(6) is that it requires first constructing the set of simplices
{Ai}i in base space before we can apply the divergence theorem. In particular, we would need to recompute
the centroids A(c)

i and normals A(n)
i every time {Ai}i changes. Preferable is a direct integration over the

boundary S := ∂V in target space using an appropriate transformation of F.

Lemma 2. Let dA and dS be the area vectors in base space and target space, respectively. Then we have∫
A F · dA =

∫
S G · dS, with G := |J |J−1F and J := ∇g.

Proof. Consider a simplex with vertices pi (i = 1, 2, . . . , d) in target space and its corresponding points g(pi)
defining a simplex ∆A ∈ {Ai}i in base space. g can be approximated with a Taylor expansion

g(x + ε) = g(x) + Jε+O(||ε||22), (7)

where J is the (d × d) – Jacobian at the centroid of the simplex (as the transformation g preserves input
size). With F = F(∆A(c)) ∈ Rd denoting the field at the centroid, we can write out F ·∆A(n) as

F ·∆A(n) = 1
(d− 1)!

∣∣∣∣∣∣∣∣∣∣∣


F

J (p2 − p1) + 2O(||ε||22)
J (p3 − p1) + 2O(||ε||22)

...
J (pd − p1) + 2O(||ε||22)



∣∣∣∣∣∣∣∣∣∣∣
. (8)

5



Under review as submission to TMLR

See Appendix A for a general discussion on computing surface normals. In the limit ∆A → 0, we have
∆A(n) → dA and ||ε||22 → 0:

F · dA = 1
(d− 1)!

∣∣∣∣∣∣∣∣∣∣∣
J


J−1F
p2 − p1
p3 − p1

...
pd − p1



∣∣∣∣∣∣∣∣∣∣∣
= G · dS, (9)

where G = |J |J−1F

For notational convenience we assume |J | > 0 so that outward-facing surface normals in base space remain
outward-facing in target space; the general case requires straightforward tracking of their signs. Interestingly,
G has a tractable divergence, paving the way for an application of the divergence theorem in target space.

Lemma 3. With G defined as in Lemma 2, we have ∇·G = |J |.

Proof.

∇ ·G = ∇ · (adj(J)F)
= (∇ · adj(J))F + tr(adj(J)∇x{F})
= d−1tr(adj(J)J) + (∇ · adj(J))F
= |J |+ (∇ · adj(J))F
= |J |,

(10)

because tr(adj(J)J) = d|J |. Furthermore, Evans (2010) shows ∇ · adj(J) = 0 for any C2-map

Lemma 3 allows us to close the loop and tie the field G back to our original objective of computing P (x ∈ V).
Indeed, an application of Eq.(4) and Eq.(1) shows∫

S
G · dS =

∫
V
|J |dV =

∫
V
p(x) dV = P (x ∈ V). (11)

Fig. 1 shows how the flux of a learned vector field G across the boundary ∂V is related to vol(W), which can
be expressed as the flux of a vector field F with ∇ ·F = 1 across the boundary ∂W – obtained by applying a
learned transformation g. See Fig. 3 for an overview of all equivalencies derived.

4.2.1 Stochastic Boundary Flux Estimator

For a simplicial polytope V with boundary S given by non-overlapping simplices {Si}i, we can leverage G to
define a stochastic boundary flux (BF-S) estimator of the cumulative density P (x ∈ V) using points sampled
from the boundary:∫

S
G · dS =

∑
i

∫
Si

G(x) · S(n)
i dx =

∑
i

S(A)
i

∫
Si

G(x)
S(A)

i

· S(n)
i dx =

∑
i

S(A)
i

∫
Si

USi
(x) ·G(x) · S(n)

i dx

=
∑

i

S(A)
i · Ex∼USi

[G(x) · S(n)
i ],

(12)

where Si is the i-th boundary simplex, S(A)
i its area, and S(n)

i its outward-facing unit normal. Alternatively,
multiplying and dividing the surface integral

∫
S G · dS with the total surface area

(∑
i S(A)

i

)
:

∫
S

G · dS =
(∑

i

S(A)
i

)
· Ex∼US [G(x) · n(x)] , (13)
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where n(x) is the outward-facing unit normal at x. Note that US can be decomposed in terms of a categorical
distribution ci = S(A)

i /
∑

j S(A)
j over the simplices Si and the uniform distributions USi . More specifically,

we have US(x) =
∑

i ci · USi
(x), wherein all but one of the terms are zero for a point x on the surface S —

because the simplices are non-overlapping and the point x belongs to exactly one of them.

4.3 Adaptive Estimation in Target Space

While the stochastic boundary flux estimator introduced in Section 4.2.1 is unbiased, it does not allow for a
strategic placement of evaluation points in an iterative fashion. We can turn Eq.(12) into a sequential process
by first approximating Ex∼USi

[G(x) · S(n)
i ] with a deterministic estimate and then performing prioritized

iterative refinements.

4.3.1 Deterministic Boundary Flux Estimator

Given a set of boundary simplices {Si}i, we can approximate the expected dot-product in Eq.(12) by the
average dot-product over the vertices of Si. Formally, this adaptive boundary flux (BF-A) estimator of
P (x ∈ V) is given by ∫

S
G · dS ≈

∑
i

S(A)
i ·G(Si) · S(n)

i , (14)

where G(Si) is the average G-field over all vertices of Si. While Eq.(14) is a biased estimate of the cumulative
density P (x ∈ V), its deterministic nature and inherent structure increase sample efficiency (e.g., prudent
placement, reuseable computations) and enable strategic refinements to arbitrary precision.

4.3.2 Iterative Refinement

A B

C D

h

Figure 4: Splitting Criterion (Total
Edge Length). For two simplices (e.g.,
triangles ABC and ABD) with equal area,
the uncertainty about the dot-product
within a simplex grows with a point’s dis-
tance to its closest vertex, motivating the
use of total edge length as a splitting cri-
terion.

The quality of the approximation in Eq.(14) can be controlled via
iterative refinement of the initial set of boundary simplices {Si}i.
Each refinement step consists of a splitting operation that first intro-
duces one new vertex at the midpoint of a boundary line segment3

and then splits all simplices sharing that edge. The key component
of this splitting process is a priority queue Q managing the next
boundary line segment l to split, where l is the longest edge of the
simplex with highest priority according to a priority function Pr.

Pr is designed such that it gives high priority to simplices which
probably have high error. As a general rule, the larger the simplex
the larger the variation in the dot-products, and hence the larger
the estimation bias. Although the area S(A)

i of a simplex squarely
fits the definition of size, it can be a misleading measure that should
not be used in isolation — see Fig. 4 for an illustrated explanation.
Therefore, we also use the total edge length as a measure of size.
While this approach works well in lower dimensions, we saw marked
improvements in terms of sample efficiency in higher dimensions after
complementing these two criteria with the standard deviation of the dot-products at the vertices. Taken
together, we define the priority of the i-th simplex Si as

Pr(Si) = S(A)
i × (σd(Si) + ε)×

∑
ej∈Si

||ej ||22, (15)

where ej is the j-th edge (1-simplex) constituting the simplex Si, σd(Si) is the standard deviation of the
dot-products – computed with the unit surface normal – across the simplex Si, and ε is a small number to
guard against assigning a zero priority to large simplices whose dot-products at the vertices are all zero. See
Appendix B for a summary of the entire splitting process in pseudo code.

3The (d− 1)-simplices {Si}i forming the boundary S each consist of
(

d
2

)
line segments.
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4.4 Analysis

4.4.1 Best Case Scenarios

The integral of G over a simplex Si can be computed exactly if the flow transformation g is: (a) linear over
the simplex Si; or (b) G · S(n)

i is constant for all x ∈ Si. The latter is equivalent to F · dA being constant,
such as for hyperspheres. In both cases, we have G(Si) = Ex∼USi

[G(x)]. In practice, it is rarely possible to
realize these best cases, however, if the dot-product is locally-linear over the simplex, our biased estimate is a
good approximation to the exact integral.

4.4.2 Runtime Complexity & Implementation Considerations

For a given simplicial polytope, the algorithm first computes the surface normals for each of the boundary
simplices, which requires computing d determinants of (d− 1)× (d− 1) matrices for each boundary simplex.
The total complexity of this initialization step is thus O(kd4), where k is the number of boundary simplices.
Note that the surface normals do not need to be recomputed after splitting edges. Furthermore, if regions are
defined as a set of half-spaces (i.e., linear inequalities), the surface normals are immediately available and do
not require the quartic initialization step. Following this initialization, the manipulation of the priority queue
with every split is logarithmic in the number of boundary simplices.

When computing G, one has to first flow the input to the uniform distribution and then compute the
Jacobian-vector product of the backward-pass; in order to avoid computing the Jacobian-vector product, we
can first compute the vector-Jacobian product S(n)>

i J−1 of the backward-pass followed by a dot-product
with |J |F to obtain S(n)>

i |J |J−1F. This avoids an extra backward-pass in PyTorch, which does not support
forward-mode auto-differentiation of Jacobian-vector-products. In fact, the derivative of S(n)>

i |J |J−1F with
respect to S(n)>

i yields exactly G.

5 Experiments

We will now evaluate the proposed adaptive boundary flux estimator (BF-A) against traditional sampling-
based estimators such as the Monte-Carlo (MC) and Importance Sampling (IS) estimators. As accuracy of the
CDF estimates of the baseline sampling-based estimators are mainly defined by the sample size (Cunningham
et al., 2013), we compare all methods based on sample budgets.

For the purpose of evaluation, we train normalizing flows on d-dimensional (d ∈ [2, 5]) data derived from 4
tabular datasets open sourced on the UCI Machine Learning Repository (Dua & Graff, 2017) and preprocessed
as in Papamakarios et al. (2017): Power, Gas, Hepmass, and Miniboone. We construct normalizing flows
from the following three architecture families: Glow (Kingma & Dhariwal, 2018), Masked Autoregressive
Flows (Papamakarios et al., 2017), and FFJORD (Grathwohl et al., 2019). For every pair (dataset, d), we
obtain 2 random d-dimensional slices of the dataset over which we train the normalizing flows. In addition,
we also consider how the capacities of these models affect the performance: for the two discrete flows (Glow
and MAFs), we vary the number of hidden dimensions in the coupling networks and the number of flow
transforms stacked together; for FFJORD, we instead vary the number of hidden dimensions in each layer
of the MLP parameterizing the ODE. For constructing discrete flows, we choose 3, 5 or 7 flow layers and
construct coupling layers with 16, 32 or 64 hidden units. While one Glow layer corresponds to a sequence of
(ActNorm) – (Glow Coupling) – (Invertible 1× 1) transformations, one MAF layer corresponds to a sequence
of (ActNorm) – (MAF Coupling) transformations. For continuous flows, we parameterize the neural ODE
with 2 hidden layers, each consisting of 16, 32 or 64 hidden units. In summary, we obtain a total of 168 flow
models for every d ∈ [2, 5] by training 21 flow models (9 each from the 2 discrete flow families and 3 from
the continuous flows) on 2 slices derived from each of the 4 datasets. We include training details and the
box-plots of training log-likelihoods in Appendix C.

Generating Simplicial Polytopes. The crucial component in ensuring a fair and unbiased evaluation of
the estimators is in uniformly sampling simplicial polytopes V in target space such that they are not biased
towards any specific regions or cumulative densities. In order to actually sample a simplicial polytope, we
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(a) Glow (Kingma & Dhariwal, 2018)
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(b) MAF (Papamakarios et al., 2017)
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(c) FFJORD (Grathwohl et al., 2019)

Figure 5: Sample Efficiency. We highlight the sample efficiency of the proposed adaptive boundary
flux (BF-A) estimator as compared to Monte-Carlo (MC) and Importance Sampling (IS) estimators. We
show absolute estimation errors for 3 flow architectures: two discrete normalizing flows (Glow and MAF) —
composed of 7 flow-layers with 64 hidden units in their coupling nets — and one continuous normalizing flow
(FFJORD) — parameterized by a 2-layer MLP with 64 hidden units in each layer. All models were trained
on a 2D slice of the Power dataset, with volumes V given by convex hulls constructed from points sampled
on the surface of spheres with radius 1.0, centered at points sampled from the flow.

construct a convex hull around a fixed number of points in target space. To ensure that convex hulls of
varying sizes are equally explored, we sample these points from the boundary of a sphere centered at a flow
sample and control the size of the convex hull by controlling the radius of the sphere. We observed that the
inclusion of very small convex hulls can lead to inconsistent results across runs due to large relative errors of
the sampling-based estimators (MC, IS). Thus we only accepted convex hulls with CDFs larger than 0.01 for
fairness and to improve stability and reproducibility between runs. While the number of hull points affects
the average size and cumulative density of the enclosed volume, it does not markedly change the average size
of the simplices as defined in Section 4.3.2 and we therefore do not consider the number of hull points as an
evaluation axis.

In our evaluation we consider 20 points to construct the hull, trading off lower cumulative densities against
linear approximation of the spherical boundary; also note that all 20 points lie on the boundary of the hull
and count against the sample budget of the BF-A algorithm. Furthermore, we consider spheres with radius
0.5, 0.75, or 1.0, amounting to a coverage radius of up to 1 standard deviation for our normalized data.
Finally, in order to evaluate a normalizing flow model, we construct 5 convex hulls for each choice of the
radius. Overall, we evaluate each CDF estimator over a total of 10,080 hulls.4

Evaluation. For each convex hulls we compute a reference cumulative density using 2M importance samples
and evaluate all estimators against this gold standard based on their predicted cumulative density using a
fixed sample budget K. Unlike our proposed adaptive boundary flux estimator (BF-A), which is deterministic,
the Monte-Carlo (MC) and Importance Sampling (IS) estimators are stochastic; thus, in order to accurately
capture the variance of these stochastic estimators, we collect results across 5 runs for each hull. We then
evaluate the estimators in terms of both relative and absolute errors. Table 1 shows the aggregate results
across all 10,080 configurations with a sample budget of 4000 points. In the remainder of this section, we will
unroll these results and analyze our estimator along individual evaluation axes.

Discussion. On average, our BF-A estimator obtains approximately 3.8× and 2.5× lower absolute errors
than IS and MC, respectively, for a sample budget of 4k points (Table 1); likewise, we obtain 1.7× and 2.7×
lower relative errors than IS and MC, respectively. For the specific case of 2D flows, we report relative errors
that are better than IS by 11.6× and MC by 22.1× (Table 2a); also see Fig. 5 for a qualitative comparison of
the estimators for 2D flows in terms of the absolute deviation from the true cumulative density as obtained
over a random hull: we note that in all 3 cases the proposed algorithm converges to the true estimate well
within 500 samples while the stochastic estimates of the MC and IS estimators exhibit high variance. This

410,080 hulls = 168 models
dim · 4 dim · 5 hulls

models·radii · 3 radii
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Estimator Absolute Error Relative Error
IS 0.00572±0.01585 0.03000±0.04632
MC 0.00381±0.00381 0.04864±0.05178
BF-S 0.01705±0.04175 0.19032±0.53439
BF-A (ours) 0.00152±0.00554 0.01822±0.06626

Table 1: Quantitative Evaluation (Aggregate): We show the absolute and relative errors of each
estimator with a sample budget of 4000 points, averaged across all evaluation axes. The proposed BF-A
algorithm outperforms the IS and MC estimators in terms of both the absolute and relative error.

pattern is consistent across our experiments with 2D flows and we find that our algorithm outperforms IS and
MC by 30× and 55×, respectively, for a sample budget of just 500 points. Conversely, MC and IS algorithms
would require ∼50k samples on average to match the relative errors obtained by BF-A for 2D flows with
just 4k samples. Furthermore, BF-A produces accurate estimates with fewer than 4k points in many cases,
making it a practical alternative to MC algorithms for CDF estimation. A comparison across different hull
radii is shown in Table 2b. We note that, while the absolute errors of all estimators increase with increasing
hull-sizes, the relative errors of MC decrease with increasing hull sizes, while those of IS and BF-A increase
with increasing hull sizes; nonetheless, BF-A outperforms IS and MC in terms of both absolute and relative
errors for the explored hull sizes. Additional quantitative evaluations can be found in the Appendix: in terms
of different capacities (Appendix D; Tables 3-4), the observed trends are in line with the analysis above,
both for discrete and continuous flows. We also note that varying the width of the coupling transform (in
discrete flows) does not affect the observed trends as much as the depth of the flow transform. Finally, we
observe similar trends across varying flow architectures as well (Appendix D; Table 5); also see Fig. 8 in
Appendix D for a visual summary of all quantitative evaluations.

Our qualitative and quantitative evaluations show a marked improvement of the proposed method over
traditional sampling-based estimators. BF-A benefits from our novel formulation of cumulative densities as
boundary fluxes as well as from the sample efficiency enabled by the priority function Pr. We note that BF-S,
the stochastic realization of the Boundary Flux estimator – as defined in Eq. (13) – uses random samples
on the boundary to form a Monte Carlo estimate of the CDF and accrues a higher relative error of 0.19
on average compared to the other Monte Carlo estimators (Table 1); nonetheless, its formulation readily
extends itself to an adaptive refinement in (d− 1) – dimensional space, which we use in developing the BF-A
estimator. Although the BF-S estimator cannot be directly applied to obtain sample-efficient and accurate
CDF estimates, it could form the basis of stochastic-adaptive estimators in future work. Intuitively, the
estimation error of the BF-A estimator can be traced back to how much the dot-product G · n can change
for small changes in the input x; in fact, our motivation behind evaluating the estimators as a function of
growing dimensions, growing hull-sizes, and growing model capacities is targeted towards testing how well our
estimator can adapt to increasing complexity. We observe that while our method continues to outperform the
sampling-based estimators with growing hull sizes (Table 2b), model capacities (Appendix D; Table 3 and
Table 4), varying flow architectures (Appendix D; Table 5), and data dimensions up to and including 4D,
BF-A only performs comparably to the sampling-based estimators for a sample budget of 4k points with 5D
flows (Table 2a).

Limitations & Future Work. A limitation of the proposed estimator is that the structural advantages and
improvements over sampling-based estimators are likely to be less pronounced in higher dimensions: the CDF
over a compact region is defined by a computationally challenging integration over a d-dimensional volume,
which inherently scales poorly with dimension. Here we describe how to exploit the diffeomorphic structure
of distributions defined by normalizing flows to produce a more efficient CDF estimation method and validate
our approach on problems between 2D and 5D. While higher-dimensional CDFs are certainly of interest,
our evaluation of equivalent sample sizes shows that even low-dimensional CDFs can be computationally
demanding. Additional challenges in high-dimensional spaces, such as floating point precision, cannot be
ruled out and may require dedicated solutions not covered in this work.

Future extensions of the proposed estimator could consider using higher-order information of the model, such
as curvature, in defining the priority function in order to improve the scaling of the method; this may also

10
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Dims Estimator Absolute Error Relative Error

2
IS 0.00737±0.01981 0.01620±0.02459
MC 0.00482±0.00434 0.03101±0.03366
BF-A (ours) 0.00071±0.00281 0.00146±0.00308

3
IS 0.00528±0.01564 0.02543±0.03618
MC 0.00363±0.00381 0.05247±0.05202
BF-A (ours) 0.00134±0.00584 0.00710±0.03254

4
IS 0.00405±0.00818 0.04495±0.05404
MC 0.00274±0.00251 0.06576±0.06162
BF-A (ours) 0.00237±0.00780 0.03209±0.08405

5
IS 0.00376±0.00640 0.07233±0.08153
MC 0.00244±0.00218 0.07340±0.06483
BF-A (ours) 0.00380±0.00658 0.07796±0.14184

(a) Dimension-wise

Radius Estimator Absolute Error Relative Error

0.5
IS 0.00338±0.01066 0.01895±0.02430
MC 0.00336±0.00336 0.05670±0.05612
BF-A (ours) 0.00073±0.00287 0.01016±0.04500

0.75
IS 0.00480±0.01327 0.02771±0.04061
MC 0.00365±0.00350 0.04896±0.05205
BF-A (ours) 0.00126±0.00460 0.01666±0.05429

1.0
IS 0.00808±0.01998 0.03941±0.05871
MC 0.00425±0.00428 0.04292±0.04761
BF-A (ours) 0.00229±0.00728 0.02500±0.08450

(b) Size-wise

Table 2: Quantitative Evaluation: We show the absolute and relative errors of each of the methods with
a sample budget of 4000 points averaged across all the configurations separately for (a) each dimensionality
and (b) each radius of the hull. We note that (a) BF-A outperforms both IS and MC on average for 2D, 3D
and 4D flows in terms of both absolute and relative errors, and (b) across various hull sizes, BF-A performs
better than IS and MC on average in terms of both absolute and relative error.

enable the definition of a more natural stopping criterion than sample budget. Another interesting extension
to the adaptive estimator would be to split a batch of edges together as opposed to splitting a single edge at a
time. Additionally, it remains to be explored how different choices of field F could be used in minimizing the
estimation error for a given simplicial polytope. Finally, noting that our method works better with FFJORD
than MAF and Glow on average (Appendix D; Table 5), one could also explore regularization methods that
encourage smoother transformations between the target and base spaces.

Conclusion

Cumulative density functions are as fundamentally important as probability density functions, but cannot
always be estimated efficiently and exactly. In this work, we propose a new stochastic CDF estimator derived
as an adaptation of the divergence theorem by exploiting the diffeomorphic properties of flow that allow us
to estimate CDF as the volume of the boundary. Furthermore, we demonstrate how this stochastic CDF
estimator can be made more sample-efficient by reusing computations and strategically acquiring new points
such that the estimate obtains a good CDF estimate with as few points as possible. In our evaluation of
this new adaptive estimator, we find that it outperforms traditional sampling-based estimators in terms of
sample-efficiencies and accuracies. We believe that our proposed efficient CDF estimator will help open up
new application areas with Normalizing Flows.
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A Computing Surface Normals

In applying the divergence theorem, one would need to compute the surface normal vector. In the context of
this paper, we compute surface normals to the (d− 1)-dimensional simplices constituting the boundary: for
example, we would need to compute the surface normal to line-segments in 2D, triangles in 3D, tetrahedrons
in 4D and so on. By definition of (d− 1)-dimensional simplices, they lie in a plane defined by (d− 1) linearly
independent vectors; since we are computing normals to (d− 1)-dimensional simplices lying in Rd, the vectors
spanning the plane containing the simplex and the normal vector to this plane form a full basis of Rd. In
general, one could imagine solving a system of simultaneous equations in order to determine a vector normal
to a given set of vectors. However, in this specific case, since we know that we are computing a normal vector
to (d− 1) linearly independent vectors, we can just define the normal vector to a simplex z defined by the
vertex set {zi}i in terms of the determinant:

v =

∣∣∣∣∣∣∣∣∣∣∣


e

z2 − z1
z3 − z1

...
zd − z1



∣∣∣∣∣∣∣∣∣∣∣
(16)

where, e is the orthonormal unit basis in Rd. Since the determinant of a matrix containing two identical
rows evaluates to 0, we can easily confirm that the dot product ∀i ∈ [2, d], v · (zi − z1) = 0. Also note that
at a high level, this construction resembles the vector cross-product operation. In fact, similar to vector
cross products, the vector norm of the v is equal to the volume of the parallelotope spanned by the set of
(d− 1) linearly independent vectors {zi − z1}i. Therefore, in order to derive the surface normal vector whose
magnitude is equal to the volume of the simplex z, we would need to divide v with (d− 1)!:

z(n) = 1
(d− 1)!

∣∣∣∣∣∣∣∣∣∣∣


e

z2 − z1
z3 − z1

...
zd − z1



∣∣∣∣∣∣∣∣∣∣∣
(17)

Accordingly, for some vector w, the dot-product w · z(n) can be written as:

w · z(n) = 1
(d− 1)!

∣∣∣∣∣∣∣∣∣∣∣


w

z2 − z1
z3 − z1

...
zd − z1



∣∣∣∣∣∣∣∣∣∣∣
(18)
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B Pseudo-codes

Algorithm 1 Split edges and update the volume
Objects and Attributes:

edge: A 1 simplex object in Rd having the following attributes:
– endPoints: the endPoints of the edge
– simplices: set of d− 1-dimensional simplices that contains this edge

simplex: A d− 1 simplex object in Rd having the following attributes:
– edges: the set of edges contained in the simplex
– unitSurfaceNormal: the unit surface normal of the simplex, adjusted so that it points outwards (or

inwards) of the hull.
– volume: the volume of the simplex
– getVolumeElement: a method that will loop through the points and computes the mean dot-product.

Input:
edgeToSplit: The selected edge to split according to the priority function described in Eq.(15).
edges: Hashmap of Edges
– Allows O(1) retrieval of edge objects from the endpoints. If object does not exist in the queue, a new

one is created and returned.
volume: The current estimated volume

Output:
newVolume

1: newVolume ← volume . Initialize the newVolume to be equal to the current volume
2: for simplex in edgeToSplit.simplices do
3: simplex1 ← new Simplex()
4: simplex2 ← new Simplex()
5: simplex1.unitSurfaceNormal ← simplex.unitSurfaceNormal
6: simplex2.unitSurfaceNormal ← simplex.unitSurfaceNormal
7: simplex1.volume ← simplex.volume/2
8: simplex2.volume ← simplex.volume/2
9: for otherEdge in simplex.edges-{edgeToSplit} do

10: newEdge1 ← edges.get(otherEdge.endPoint[0],edge.midPoint)
11: newEdge2 ← edges.get(otherEdge.endPoint[1],edge.midPoint)
12: if otherEdge.hasEndPoint(edgeToSplit.endPoint[0]) then
13: otherEdge.add(simplex1)
14: simplex1.edges.add(otherEdge, newEdge1, newEdge2)
15: else if otherEdge.hasEndPoint(edgeToSplit.endPoint[1]) then
16: otherEdge.add(simplex2)
17: simplex2.edges.add(otherEdge, newEdge1, newEdge2)
18: else
19: otherEdge.add(simplex1, simplex2)
20: newEdge1.add(simplex1, simplex2)
21: newEdge2.add(simplex1, simplex2)
22: simplex1.edges.add(otherEdge, newEdge1, newEdge2)
23: simplex2.edges.add(otherEdge, newEdge1, newEdge2)
24: otherEdge.remove(simplex)
25: newVolume ← newVolume - simplex.getVolumeElement()
26: newVolume ← newVolume + simplex1.getVolumeElement()
27: newVolume ← newVolume + simplex2.getVolumeElement()
28: return newVolume
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Algorithm 2 getVolumeElement of Simplex Object
Objects and Attributes:

edge: A 1 simplex object in Rd having the following attributes:
– endPoints: the endPoints of the edge
– simplices: set of d− 1 simplices that contains this edge

simplex: A d− 1 simplex object in Rd having the following attributes:
– edges: the set of edges contained in the simplex
– unitSurfaceNormal: the unit surface normal of the simplex, adjusted so that it points outwards (or

inwards) of the hull.
– volume: the volume of the simplex
– getVolumeElement: a method that will loop through the points and computes the mean dot-product.

Input:
simplex: A simplex object
flow: The normalizing flow
D: Number of dimensions

Output:
volume

1: volumeElement ← 0
2: for point in simplex.points() do
3: volumeElement ← volumeElement + simplex.volume*flow.dotProduct(point,simplex.unitSurfaceNormal)
4: return volumeElement
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C Training Details and Log-likelihoods

For all normalizing flows, we train the models with a batch size of 10k and stop when the log-likelihoods
do not improve over 5 epochs. For the continuous flows, we used the exact divergence for computing the
log-determinant. We used exp-scaling in the affine coupling layer of both MAF and Glow models – and, in
order to prevent numerical overflows, we applied a tanh nonlinearity before the exp-scaling. Finally, we used
softplus as our activation function for both the Neural ODE and coupling networks. From Fig. 6 and Fig.
7, we observe both the Continuous and Discrete flows obtain similar log-likelihoods and are able to fit the
training data well.
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Figure 6: Log-Likelihoods (Discrete Flows).
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Figure 7: Log-Likelihoods (Continuous Flows).
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D Extended Results

In this section, we include results that evaluate our algorithm as a function of flow-architectures and their
capacities. We also include plots to visually summarize our quantitative results.

Depth Estimator Absolute Error Relative Error

3
IS 0.00449±0.01048 0.02683±0.04063
MC 0.00359±0.00334 0.04844±0.05345
BF-A (ours) 0.00115±0.00479 0.01719±0.07362

5
IS 0.00562±0.01381 0.03167±0.04787
MC 0.00372±0.00336 0.04833±0.05216
BF-A (ours) 0.00142±0.00536 0.02221±0.07773

7
IS 0.00585±0.01499 0.03113±0.04583
MC 0.00375±0.00342 0.04776±0.05186
BF-A (ours) 0.00192±0.00775 0.02470±0.08521

Width Estimator Absolute Error Relative Error

16
IS 0.00552±0.01409 0.03095±0.04505
MC 0.00368±0.00335 0.04851±0.05277
BF-A (ours) 0.00195±0.00767 0.02290±0.07088

32
IS 0.00544±0.01357 0.02940±0.04310
MC 0.00365±0.00334 0.04782±0.05253
BF-A (ours) 0.00130±0.00609 0.01944±0.07800

64
IS 0.00501±0.01200 0.02932±0.04666
MC 0.00374±0.00342 0.04820±0.05217
BF-A (ours) 0.00125±0.00396 0.02184±0.08754

Table 3: Quantitative Evaluation (Capacity - Glow and MAF): We show the absolute and relative
errors of each of the methods with a sample budget of 4000 points as a function of the depth and width of
discrete flows as explained; we see that BF-A outperforms both IS and MC.

Width Estimator Absolute Error Relative Error

16
IS 0.00631±0.02026 0.02975±0.04846
MC 0.00383±0.00472 0.04961±0.04996
BF-A (ours) 0.00171±0.00504 0.01430±0.03244

32
IS 0.00614±0.01808 0.03005±0.04966
MC 0.00400±0.00420 0.04991±0.05094
BF-A (ours) 0.00131±0.00343 0.01034±0.02098

64
IS 0.00701±0.02152 0.03080±0.04856
MC 0.00432±0.00470 0.04914±0.05012
BF-A (ours) 0.00170±0.00391 0.01132±0.02083

Table 4: Quantitative Evaluation (Capacity - FFJORD): We show the absolute and relative errors of
each of the methods with a sample budget of 4000 points as a function of the number of hidden units of
two-layer MLPs parameterizing FFJORD as explained; we see that BF-A outperforms both IS and MC.

Flow Method Absolute Error Relative Error

Glow
IS 0.00395±0.01131 0.02524±0.03818
MC 0.00357±0.00328 0.05072±0.05421
BF-A (ours) 0.00155±0.00726 0.01963±0.07250

MAF
IS 0.00667±0.01480 0.03445±0.05032
MC 0.00379±0.00346 0.04568±0.05062
BF-A (ours) 0.00145±0.00473 0.02311±0.08501

FFJORD
IS 0.00649±0.02000 0.03021±0.04890
MC 0.00405±0.00455 0.04955±0.05034
BF-A (ours) 0.00157±0.00417 0.01196±0.02529

Table 5: Quantitative Evaluation (Flow-Architecture): We show the absolute and relative errors of
each of the methods with a sample budget of 4000 points as a function of the flow-architecture; we see that
BF-A outperforms both IS and MC. Most interestingly, we find that our method is more efficient with Neural
ODEs than with Glow or MAF – our analyses show that this can be attributed to the fact that Neural ODEs
have much smoother diffeomorphic transformations than Glow and MAF. Perhaps more importantly, the
Neural ODEs also obtain similar or better training log-likelihoods than Glow and MAF (Appendix C).
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(a) Aggregate Evaluation of Estimators
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(b) Evaluation of Estimators with Growing Dimensions
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(c) Evaluation of Estimators with Growing Hull Sizes.
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(d) Evaluation of Estimators as a function of Flow Architectures.

Figure 8: Visualizations of Quantitative Results.
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