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Abstract

The concept of trustworthy AI has gained widespread attention lately. One of the aspects
relevant to trustworthy AI is robustness of ML models. In this study, we show how to
::::::
exactly

:
compute the recently introduced measure of real-world-robustness - a measure for

robustness against naturally occurring distortions of input data - for tree-based classifiers
. The original method for computing real-world-robustness

:::::
under

:::
the

:::::::::::
assumption

::::
that

::::
the

::::::
natural

::::::::::
distortions

:::
are

::::::
given

::
as

::::::::::
probability

::::::::::::
distributions.

:::::
The

::::
idea

::
is

::
to

:::::::
extract

:::
the

::::::::
decision

::::
rules

::
of

::
a

::::::
trained

::::::::::
tree-based

::::::::
classifier,

::::::::
separate

:::
the

:::::::
feature

:::::
space

::::
into

::::::::::::::
non-overlapping

:::::::
regions

:::
and

:::::::::
determine

::::
the

::::::::::
probability

::::
that

::
a

::::
data

:::::::
sample

::::
with

:::::::::
distortion

:::::::
returns

:::
its

::::::::
predicted

::::::
label.

:::
The

::::::::
original

::::::::
method

:
works for all black box classifiers, but is only an approximation .

Here we show how real-world-robustness, under the assumption that the natural distortions
are given by multivariate normal distributions, can be exactly computed for tree-based
classifiers

:::
and

:::::
only

::::::
works

::
if
::::

the
::::::
input

:::::::::
dimension

:::
is

::::
not

::::
too

:::::
high,

::::::::
whereas

::::
our

:::::::::
proposed

:::::::
method

:::::::
returns

:::::
exact

::::::
results.

1 Introduction

Robustness of machine learning models is a recently widely investigated topic. One extensively studied
topic is adversarial robustness (Szegedy et al., 2014), which deals with small particular manipulations of
the input to cause misclassifications. These systematic manipulations are called adversarial attacks, and
several algorithms have been developed (Chen et al., 2019b; Pawelczyk et al., 2020; Sharma et al., 2020)
to find the nearest counterfactual (Kment, 2006; Wachter et al., 2018; Pawelczyk et al., 2021) (closest
point to the input according to a distance metric that leads to misclassification) of data samples in vari-
ous scenarios. Especially the area of adversarial attacks on images is highly researched since it can cause
a variety of safety concerns, e.g., in medical image processing and classification (Ma et al., 2021; Kaviani
et al., 2022).

:::::::::::::::::
Zhao et al. (2018)

::::
argue

:::::
that

::::::::::
adversarial

:::::::
attacks

:::
are

::::::::::
unnatural

::::
and

:::
not

::::::::::
meaningful

:::::
since

::::
the

:::::::::
adversarial

:::::
data

::::::::
samples

:::
are

:::::
very

::::::::
unlikely

::
to

::::::
occur

::
in

::::::::::
real-world

::::::::::::
applications.

::::::
They

::::::::
therefore

::::::::::
developed

:
a
::::::::
method

:::
to

::::::::
generate

:::::::
natural

:::::::::::
adversarial

:::::::::
examples

:::::::::::::::::::::::
(Hendrycks et al., 2021)

:::
with

::::::::::
generative

:::::::::::
adversarial

::::::::
networks

::::::::::::::::::::::
(Goodfellow et al., 2016)

:
.
:::::::::::
Adversarial

:::::::::
examples

:::
are

::::::
found

::
in

::::
the

::::::
latent

:::::
space

::::
and

::::::::
mapped

:::::
back

:::
into

::::
the

:::::::
original

:::::::
feature

::::::
space.

::::
The

::::::::
distance

:::::
from

:::
the

::::::
input

::::
data

:::::::
sample

:::
to

:::
the

:::::::::
generated

::::::::::
adversarial

:::::
data

:::::::
samples

::
is

:::::::::
measured

::
in

::::
the

::::::
latent

::::::
space,

:::
not

:::
in

:::
the

::::::::
original

:::::::
feature

::::::
space.

::::::::::::::::::::
Pedraza et al. (2022)

::
go

::
a

::::
step

::::::
further

::::
and

:::::
argue

:::::
that

::::
data

::::::::
samples

::::
that

::::
are

:::::::::
generated

::::
with

::::::::::
adversarial

:::::::
attacks

:::::
shall

::::
not

::
be

::::::
called

:::::::
natural

:::::::::
adversarial

::::::::::
examples.

::
In

:::::
their

:::::::::::::
interpretation,

:::::::
natural

:::::::::::
adversarial

::::::::
examples

::::::
occur

::
in

:::
the

::::::::::
real-world

::::
and

::::
lead

::
to

:
a
:::::::::::::::
misclassification

::::::::
“without

:::
an

:::::::
evident

:::::::
cause”,

::::
i.e.,

:::
are

:::::::
caused

::
by

:::::::
natural

:::::
noise

:::::
(e.g.,

:::::
from

::::::::
cameras

::
or

:::
by

::::::
natural

::::::::
changes

::
of

:::
the

::::::
input).

:::::::::::::::::::::
Vasiljevic et al. (2016)

:::::::::::
investigated

:::
the

::::::::::
robustness

::
of

::::::::
classifiers

:::::::
against

:::::
blurs

::
in

::::::
images.

:::::::::::::::::::::::::::::
Hendrycks & Dietterich (2019)

:::::
create

:::::::::::
benchmarks

:::
for

:::
the

::::::::::
robustness

::
of

::::::
image

::::::::
classifiers

:::::
with

::::::
several

:::::::::
robustness

:::::::
metrics

:::
on

:::::::::
corrupted

:::::::
images

::::::::::::::
(ImageNet-C).

::::::
These

::::::::::
alterations

::
to

::::
the

::::::
images

::::
are

:::::
being

::::::::
referred

::
to

::
as

::::::::
common

:::::::::::
corruptions

:::::
(e.g.,

:::::
noise

::::
and

::::::::
blurring

:::
in

::::::::
images),

::::::::
opposed

::
to

::::::::::
adversarial

:::::::
attacks

::::
and

::::
can

:::
be

::::::::::
interpreted

::
as

:::::::
natural

::::::::::
adversarial

:::::::::
examples.

:::::
The

::::::::::
robustness

::
of

:::::::
trained

:::::::::
classifiers

::
is

:::::::::
measured

::
by

::::::::::
evaluating

:::
the

:::::::::::
performance

:::
on

::::::
unseen

::::
test

:::::
data

::::
and

:::
the

::::::::::::
computation

::
of

:::
the

::::::::::
corruption

:::::
error

::::
and

:::::::::
variations

:::::::
thereof.

:::
In

:::::::::
adversarial

::::::::::
examples,

:::::::::
robustness

::
is
:::::::

usually
:::::::::
measured

:::
by

:::::
some

::::::::
distance

:::::::
metric,

::::
e.g.,

:::
the

::::::::::
Euclidean

::::::::
distance,

:::
and

::::
the

::::::::
distance

::
to

::::
the

::::::
closest

:::::::::::::
counterfactual

::
is

:::::
used

::
as

::::
the

::::::::::
robustness

::::::
metric.

::::::
With

::::
this

:::::::::::::
interpretation

::
of

::::::::::
robustness,

:::
one

::::::
single

::::::::::
adversarial

::::::::
example

::
in

::::
the

::::
close

:::::::
vicinity

:::
of

:
a
::::
test

:::::::
sample

:::
can

:::::
have

::
a

::::
huge

:::::::::
influence

::
in

:::
the

:::::::::
evaluation

:::
of

::::::::
classifiers

::::
(see

::::::::::::::::::::::
Scher & Trügler (2022)

::
for

::
a
::::::
visual

:::::::::::
illustration).

:
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A
::::::::::::::::::
Cohen et al. (2019)

:::::::::
investigate

::::::::::
robustness

::
of

:::::::::
smoothed

:::::::::
classifiers

:::::
with

:::::::::
Gaussian

:::::
noise,

::::::
which

:::::
come

:::::
from

:
a
:::::
base

::::::::
classifier.

:::
A

::::::::::::
Monte-Carlo

::::::::
sampling

:::::::::
approach

::
is

:::::
used

::
to

::::::::::
determine

:::
the

:::::
most

:::::::::
probable

::::::::
outcome

::
of

::
a

::::
data

:::::::
sample

:::::
under

::::
the

:::::::::
Gaussian

:::::
noise.

::::::
Even

:::::::
though

:::
the

:::::::::::
probability

:::
for

::::
each

:::::
class

::::
can

:::
be

::::::::::
computed,

::
it

::
is

:::
not

::::
used

:::
as

:::
the

::::::::
measure

::
of
:::::::::::
robustness.

:

::
A

:::::::
different

:
definition of robustness that is different than adversarial robustness was introduced in Scher &

Trügler (2022) and termed real-world-robustness. It describes
:
a
:::::::
general

::::::::::
framework

::
to

::::::::
compute

:
the robustness

of the
:::::::::
individual

:
predictions of a trained machine learning model against natural distortions, e.g., data-

processing errors, noise or measurement errors in the input data, opposed to systematic manipulations as
in adversarial attacks

:::::::::
individual

::::::::::
adversarial

::::::::
samples. The real-world-robustness Rµ of the prediction f of

an N -dimensional data sample µ with a distortion pµ (x⃗) given as a probability density function (PDF) is
defined via a binary function f ′,

f ′
(

µ, pµϵ

)
=

{
0, f (µ + ϵ) = f (µ)
1, f (µ + ϵ) ̸= f (µ)

(1)

::::
with

:::::::::
ϵ ∼ pµ (x⃗)

:
and an integral that determines the probability P for a different prediction compared to the

data sample µ,

P

(
f

(
µ + pµϵ

)
̸= f (µ)

)
=

∫
RN

f ′
(

µ, pµϵ

)
dpµdϵ

:
. (2)

The real-world-robustness Rµ of the data sample µ with distortion pµ (x⃗)
:::::::::
ϵ ∼ pµ (x⃗) is then computed by

Rµ = 1 − P.

In words, real-world-robustness is the probability that the prediction (classification) of an input sample
does not change under the given uncertainty of the input sample. Scher & Trügler (2022) showed how
real-world-robustness can approximately be computed for any black-box classifier with a Monte-Carlo based
method, under the constraint that the input feature space is not too high dimensional. They addition-
ally provide a detailed discussion for the justification of this definition of real-world-robustness, and how
it differs from adversarial robustness.

::::
This

:::::::::
definition

:::
of

:::::::::::::::::::
real-world-robustness

:::::::
clearly

::::::::::::
distinguishes

::::
the

:::::::
measure

:::::
from

::::::::::::::::::::
corruption-robustness,

::::::
which

::::::::
measures

::::
the

::::
rate

::
of

:::::::::::::::
misclassification

::
in
::::

test
::::
sets

:::::
with

::::::::
included

::::::
errors,

:::
but

:::::
does

:::
not

::::
give

::
a
:::::::::::
conditional

::::::::::
probability

::
of

:::::::::::::::
misclassification

:::
for

:::::
single

::::
test

::::::::
samples.

:::::
The

::::::::
practical

::::::::
relevance

::
of

:::::::::::::::::::
real-world-robustness

:::
are

::::::::
settings

::
in

:::::
which

::::
the

::::::::::
uncertainty

::
of

::::::
input

:::::::
samples

::
is

::::::
known

:::
(or

::
at

:::::
least

:::::::::::::
approximately

:::::::
known),

::::
and

::
in

::::::
which

:::
one

:::::
needs

::
a
::::::::
measure

::
of

::::
how

:::::
likely

::
it

::
is

::::
that

:
a
:::::::::::::::
misclassification

::::
will

:::::
occur

:::
due

:::
to

:::
the

::::::::
random

:::::
error

::
in

::::
the

:::::
input

::::::
data.

:::::
This

:::::
could

:::
for

::::::::
example

:::
be

::::::::::::
applications

::::
that

::::
use

:::::::::::
multivariate

:::::
sensor

:::::
data

::::
with

:::::::::::::
measurement

:::::
noise

:::::
(e.g.,

:::::::::::
temperature

:::::::::::::
measurements

::
at

::::::::
different

::::::::::
locations).

:

Another research direction deals with robust adversarial training of machine learning models. Qian et al.
(2022) present a comprehensive survey on robust adversarial training by introducing the fundamentals and
a general theoretical framework, and by summarising different training methodologies against various attack
scenarios. Tan et al. (2022) introduce a training framework by adding an adversarial sample detection
network to improve the classifier. In tree-based models, a training framework to learn robust trees against
adversarial attacks has been developed by Chen et al. (2019a), and Ghosh et al. (2017) investigate the
robustness of Decision Trees with symmetric label noise in the training data. Chen et al. (2019b) propose a
robustness verification algorithm for tree-based models to find the minimal distortion in the input that leads
to a misclassification.

In this paper, we show how to precisely compute real-world-robustness for tree-based classifiers (Decision
Trees, Random Forests and XGBoosted classifiers), under the assumption that the uncertainty of the input
test samples can be described by certain statistical distributions. This is possible because the decision
boundaries of tree-based classifiers are explicitly given (in contrast to, e.g., neural network classifiers). The
idea is to

:::
We extract the decision rule of each decision node of a tree-based classifier to separate the input

feature space into non-overlapping regions. We then determine the probability that a random data sample
wrt. the given uncertainty, which is modelled as a probability distribution, around a test sample lies in a

2
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region that has the same label as the prediction of the test sample itself.
::::
Our

::::::::
measure

::
of

::::::::::
robustness

::
is
::
a

::::::::::
probability

:::::
which

::::::
differs

:::::
from

::::::::
distance

:::::::
metrics

::::
that

:::
are

::::::::::
commonly

:::::
used

:::
for

::::::::::
adversarial

::::::::::
robustness.

:

The paper is structured as follows. First, we describe how to compute real-world-robustness for single
Decision Trees in Section 2. Then the approach is extended to Random Forest classifiers and XGBoosted
classifiers in Section 3. In Section 4, we present experimental results and Section 5 concludes the paper.

2 Robustness of Decision Trees

At first we show how to compute real-world-robustness for a trained Decision Tree (DT) classifier (Quinlan,
1986) with a categorical target variable. We extract the decision rule from each decision node of a trained
DT to split the input feature space into non-overlapping regions. For two-dimensional inputs, the regions
are rectangles and for higher dimensions, the regions are hyperrectangles. For ease of description, we call
the regions boxes (Chen et al., 2019b). To determine the robustness of the prediction of a data sample
with uncertainty (e.g., noise or measurement errors), we classify the data sample with the trained DT and
compute the probability that a random sample wrt. the given uncertainty is in a box that has the same
label as the data sample. Taking the sum over the computed probabilities returns the robustness of the DT
classification for that particular data sample.

2.1 Segmentation of the feature space

We have a trained DT without prior knowledge about the input features Xi. Each decision node in a DT
is a decision rule of the form Xi ≤ τij , where τij marks the jth decision rule of feature Xi. Note that τij is
unique for each j in a DT. We extract the decision rule from each decision node in the tree, add it to the
decision rule set τi of the associated feature Xi and sort each τi in ascending order. The elements of τi split
one dimension of the input feature space into non-overlapping segments and the individual elements of two
sets τj and τk are orthogonal to each other. Using two successive elements of each decision rule set τi to split
the input feature space creates one individual box. If a feature Xi is bounded, we expand τi to its minimum
and/or maximum values, otherwise we expand τi to negative and positive infinity to cover the entire input
feature space, i.e., if τi = {60, 80, 100}, the expanded unbounded set is τ ′

i = {−∞, 60, 80, 100, ∞}. This
results in a total number of boxes nb given by

nb =
N∏
i

(|τ ′
i | − 1) =

N∏
i

(|τi| + 1), (3)

where N is the number of input features and |τi| is the number of decision rules for feature Xi.

2.2 Robustness

We use the created boxes to determine the robustness Rµ of the prediction of an input data sample µ with
associated uncertainty pµ (x⃗). We determine the predicted label of µ as well as the labels of all boxes by
classifying their centre with the DT. To compute the robustness of

:::
the

::::::::::
prediction

::
of

:
µ, it suffices to only

consider the boxes that have the same label as µ itself, denoted as Bµ,
:::::

since
:::::

data
::::::::
samples

::
in

:::::
these

::::::
boxes

:::::
return

::::
the

:::::
same

:::::
result

:::
as

::
µ. We determine the probability mass mB that each box B ∈ Bµ is covering wrt.

the given uncertainty pµ around the data sample µ. Taking the sum over the determined probability masses
returns the robustness of the prediction of µ. Figure 1 illustrates the classified boxes (two labels) of a trained
DT with two input features X1, X2 and a data sample µ.

In case the uncertainty distribution of the data sample µ is analytically tractable (e.g., a multivariate normal
distribution with uncertainty Σ), exact solutions can be computed. We determine the probability mass mB

that each box B ∈ Bµ is covering by integrating the probability density function pµ(x⃗) of the underlying
uncertainty distribution between the lower and upper boundaries of each box. Taking the sum over all
computed probability masses gives the robustness Rµ of the prediction of the data sample µ,

3
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Figure 1: Illustration of boxes of a trained binary Decision Tree with two input features X1, X2 and a data
sample µ.

Rµ =
∑

B∈Bµ

∫
· · ·

∫ Bupp

Blow

pµ(x⃗) dx1dx2 . . . dxN , (4)

where Blow denotes the lower boundaries and Bupp denotes the upper boundaries of a box.

One-dimensional feature space For one-dimensional data samples µ with uncertainty given as a prob-
ability distribution, we can just integrate the PDF of the uncertainty probability distribution between the
lower and upper boundary of each box B ∈ Bµ if it is analytically tractable and take their sum to get the
robustness of

:::
the

:::::::::
prediction

:::
of µ.

Input data with multivariate normal uncertainty For an N -dimensional data sample µ with multi-
variate normal uncertainty Σ, we integrate the multivariate normal probability density function

pµ(x⃗) = 1√
(2π)N |Σ|

exp
(

−1
2(x⃗ − µ)T Σ−1(x⃗ − µ)

)
(5)

with (Genz, 1992)
:::
the

:::::::
method

:::
by

::::::::::::
Genz (1992) between the lower and upper boundaries of each box B ∈ Bµ

and take the sum over the probability masses, which returns the robustness of
:::
the

:::::::::
prediction

:::
of µ.

Input data with mixed uncertainty distributions For
::
an N -dimensional data samples

::::::
sample

:
µ
:
with

correlated features and the uncertainty in different dimensions given by different distributions, e.g., normal,
exponential or lognormal, computing the robustness via analytical integration might not be applicable

:
is

:::
not

::::::
always

::::::::
possible, since integrating the joint PDF might not be analytically tractable . In these cases,

other integration techniques (e. g., numerical integration) need to be applied to approximate -
:::::::

except
:
if
::::

the
:::::::::
variables

:::
are

:::
all

::::::::::::
uncorrelated

:::
to

:::::
each

::::::
other.

::::::::::
However,

::
in

:::::::
certain

::::::
cases,

::::::::::
analytical

::::::::::
integration

:::
of

:::::::::
correlated

::::::::::::
non-Gaussian

::::::::::::
distributions

::
is

:::::::
possible

::::::
using

:::
the

::::::::
reversed

::::::::
NORTA

:::::::
(normal

:::
to

:::::::::
anything)

::::::::
principle

::::::::::::::::::::
(Cario & Nelson, 1997)

:
,
::::::
where

:
a
:::::
joint

::::::::::
probability

:::::::::::
distribution

:::::
with

:::::
given

::::::::::
correlation

:::::::
matrix

::
is

:::::::::::
transformed

:::
into

::
a
:::::::::::
multivariate

:::::::
normal

:::::::::::
distribution

::
in

::::
two

::::::
steps.

:::
In

:::
the

::::
first

:::::
step,

:::
we

:::::
apply

::::
the

::::::::::
cumulative

:::::::::::
distribution

:::::::
function

:::::::
(CDF)

::
of

::::
the

:::::::::
respective

::::::::::::
distributions

::::
that

::::::
model

::::
the

::::::::::
uncertainty

::::::
w.r.t.

:::
the

:::::
data

:::::::
sample

::
µ

::
on

::::
the

:::::::
decision

::::::::::
boundaries

:::
in

::::
each

::::::::::
dimension,

::::::
which

::::::::::
transforms

::::::
them

::::
into

:::
the

:::::::::::::
[0, 1]N -space.

:::
In

:::
the

:::::::
second

:::::
step,

4
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Figure 2: Boxes inside of or intersecting with the bounding box of the 99% confidence ellipse around a data
sample with multivariate normal uncertainty, and more transparent boxes outside of the bounding box.

::
we

::::
use

:::
the

:::::::::
inversion

:::::::
method

::::::::::::::::
(Devroye, 1986)

::
by

::::::::
applying

::::
the

::::::
inverse

:::
of

:::
the

::::::
CDF

::
of

::::
the

::::::::
standard

:::::::
normal

::::::::::
distribution

:::
on

:::::
each

:::::::::::
transformed

::::::::
decision

:::::::::
boundary

::
in

::::
the

::::::::::::
[0, 1]N -space.

::::
We

:::
can

:::::
now

:::::
solve

::::::::
Equation

::
4
:::
by

::::::::::
integrating

:::
the

:::::::::::
multivariate

:::::::
normal

::::::::::
probability

:::::::
density

:::::::
function

::::::::::
(Equation

::
5)

:::::
with

:::::
µ = 0⃗

::::
and

:::
the

::::::::::
covariance

::::::
matrix

::
Σ

:::::
with

:::::
Ones

:::
on

::::
the

:::::
main

::::::::
diagonal

::::::::
elements

:::::
and

:::
the

::::::::::
correlation

:::::::::::
coefficients

::::::::
between

:::
the

::::::::
features

::
on

::::
the

:::::::::::
off-diagonal

::::::::
elements

::::::::
between

:::
the

::::::::::::
transformed

:::::
lower

::::
and

::::::
upper

::::::::::
boundaries

::
of

:::::
each

::::
box

:::::::
B ∈ Bµ:::

to
:::::::
compute

:
the robustness of the prediction of the data sample

:
a

::::
data

:::::::
sample

::
µ.

For an N -dimensional data sample with independent features, the robustness can be computed
:::::::
directly via

analytical integration, if the PDF of the uncertainty distribution in each dimension is analytically tractable.
We determine the covered probability mass of each box B ∈ Bµ by taking the product of the covered
probability masses in each dimension and then take the sum over the probability masses mB per box.

2.2.1 Runtime Improvement

Computing the robustness of low-dimensional inputs and shallow trees is fast since the number of boxes is
small. For high-dimensional inputs and deep trees, the number of boxes (see Equation 3) and simultaneously
the runtime increases with each input dimension. One approach to decrease the runtime for the robustness
computation of the prediction of a data sample µ with multivariate normal uncertainty Σ is to only consider
the boxes that are inside of or intersect with the bounding box of, e.g., the 99% confidence hyperellipsoid
around a data sample µ. Experiments have shown that the resulting robustness computations are much
faster since the probability mass for less boxes needs to be computed, while the difference in the results
is negligible. There is also a theoretical upper bound for the error of the resulting robustness (at max 1
percentage point). Another approach to speed up computations, which has not been tested, would be to
compute the probability mass mB of each box with the same label as µ in parallel.

Figure 2 represents a two-dimensional data sample µ with multivariate normal uncertainty, where the boxes
that are outside of the 99% confidence ellipse are more transparent. Only using the boxes that are inside of
or intersect with the

::::::::
bounding

::::
box

::
of

:::
the

:
99% confidence ellipse to determine the robustness of

:::
the

:::::::::
prediction

::
of µ speeds up computations, while the difference in the results is negligible (see Section 4).

5



Under review as submission to TMLR

3 Robustness of other tree-based methods

We now extend the approach to determine the robustness of a DT to more advanced tree-based methods.
We look at Random Forests, which consist of multiple trees, and at XGboosted trees.

3.1 Random Forest

A Random Forest (RF) (Breiman, 2001) extends a Decision Tree model and consists of multiple DTs. Each
tree is trained on a bootstrapped dataset with the same size as the original training dataset, i.e., a sample
can be part of the training set for one tree multiple times, whereas other samples are not part of that training
set. We extract the decision rule of each decision node in all individual trees, merge them per input feature
Xi to form the decision rule set τi and create boxes to compute the robustness of the prediction of a data
sample.

Analogous to the DT setup, we have a trained RF without prior knowledge about the input features Xi or
the individual trees. For each tree in the RF, we extract the decision rule Xi ≤ τij of each decision node, add
it to the decision rule set τi of the associated feature Xi and sort each τi in ascending order, as was done for
DTs. Since a RF consists of multiple DTs, decision nodes in different trees can have the same decision rule
Xi ≤ τij , leading to duplicate entries in τi. We eliminate all but one of the duplicate entries τij , such that
each τij is unique. To create boxes for robustness computations, we use the method described in Section 2.1
for DTs.

After creating the boxes, we compute the robustness of the prediction of a data sample µ in a RF, analogous
to the approach for DTs described in Section 2.2. First we determine the label of each box by classifying its
centre with the RF, not with the single trees. Then we classify µ with the RF to determine its label and
take the sum over all probability masses mB of the boxes B ∈ Bµ (boxes with the same label as µ).

Computing the robustness in a RF is computationally more expensive than in a DT, since a RF consists of
multiple trees, leading to more decision rules and a higher number of boxes (see Equation 3). In Section 2.2.1,
we described an approach to approximate the robustness of the prediction of a data sample with multivariate
normal uncertainty in a DT by only considering the boxes that are inside of or intersect with the bounding
box of the 99% confidence hyperellipsoid. Experiments with various sizes of RFs (number of trees and depth
of trees) have shown that computing the robustness of the prediction of a data sample is much faster when
only considering these boxes, while the robustness results only differ marginally (see Secion

::::::
Section

:
4).

Figure 3 contains the boxes of a trained RF (Figure 3d) with two input features X1, X2, two labels and three
associated DTs (Figures 3a, 3b, 3c), as well as a data sample with multivariate normal uncertainty. We
see that each individual DT is represented by different decision boundaries and different boxes. Overlaying
the individual Figures of the DTs gives the representation for the trained RF (Figure 3d). We also observe
that the data sample is classified differently in DT1 (red label) compared to the other two DTs and the RF
(yellow label).

At first glance, it would actually seem simpler to compute the real-world-robustness of a RF by first comput-
ing it individually for each DT of the forest, and then combining the results. This is, however, not possible,
as averaging the robustness of the individual trees cannot account for interdependencies (e.g., even if tree A
and tree B have the same robustness, the contributions from different parts of the feature space might be
different, and averaging them would lead to false results).

3.2 XGBoosted Decision Tree model

Similar to a Random Forest, an XGBoosted Decision Tree model (Chen & Guestrin, 2016) also consists of
multiple trees. Instead of training the trees from bootstrapped datasets, the individual trees build on each
other. We again extract the decision rules of each decision node in all trees and combine them per feature
Xi to form the associated decision rule set τi. We create boxes which are used to compute the robustness
of the prediction of a data sample. Since trees in an XGBoosted Decision Tree model build on each other,
there are less different decision rules than in a RF, when the number of trees and depth of the trees is the
same. This leads to a smaller number of boxes and thus computations are faster.

6
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(a) DT1 (b) DT2

(c) DT3 (d) RF

Figure 3: Boxes of 3 Decision Trees with two-dimensional input (a) - (c) and the resulting combined boxes
(d) of the associated binary Random Forest.

7
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Table 1:
:::::::::::
Comparison

::
of

::::::::::
robustness

::::::
results

::::
for

::
15

::::
test

::::::::
samples

::
of

::::
the

::::
Iris

:::::::
dataset

:::::
using

:::
all

:::::
boxes

::::
and

:::::
only

:::
the

:::::
boxes

:::::
that

:::
are

::::::
inside

::
of

::
or

::::::::
intersect

:::::
with

:::
the

:::::::::
bounding

::::
box

::
of

::::
the

::::
99%

:::::::::
confidence

:::::::::::::
hyperellipsoid

:::::::
around

:
a
::::
test

:::::::
sample

:::
for

:::::::::
robustness

::::::::::::
computation

:::
All

:::::
boxes

:::
99%

:::::
boxes

:

::::
Test

::::::
sample

: :::::
Boxes

:
-
::::::::::
Robustness

:::::
Boxes

:
-
::::::::::
Robustness

:
1
: :

8
:
-
::::::
0.99640

: :
2
:
-
:::::::
0.99640

:
2
: :

8
:
-
::::::
0.99999

: :
1
:
-
:::::::
0.99998

:
3
: :

8
:
-
::::::
0.99955

: :
2
:
-
:::::::
0.99954

:
4
: ::

13
:
-
:::::::
0.93596

: ::
13

::
-
::::::
0.93596

:
5
: ::

13
:
-
:::::::
0.85704

: ::
13

::
-
::::::
0.85704

:
6
: :

8
:
-
::::::
0.99115

: :
6
:
-
:::::::
0.99114

:
7
: :

8
:
-
::::::
0.99986

: :
4
:
-
:::::::
0.99985

:
8
: :

8
:
-
::::::
0.99955

: :
2
:
-
:::::::
0.99954

:
9
: ::

13
:
-
:::::::
0.94685

: ::
13

::
-
::::::
0.94685

::
10

: ::
11

:
-
:::::::
0.97147

: ::
11

::
-
::::::
0.97147

::
11

: ::
13

:
-
:::::::
0.98848

: :
5
:
-
:::::::
0.98847

::
12

: ::
13

:
-
:::::::
0.91796

: ::
13

::
-
::::::
0.91796

::
13

: :
8

:
-
::::::
0.95900

: :
2
:
-
:::::::
0.95899

::
14

: ::
13

:
-
:::::::
0.76319

: ::
13

::
-
::::::
0.76319

::
15

: :
8

:
-
::::::
0.99115

: :
4
:
-
:::::::
0.99114

4 Experimental results

In this Section we summarise experimental results for the computation of real-world-robustness for tree-based
classifiers. Experiments were carried out on 1 core of an Intel(R) Xeon(R) 6248 CPU @ 2.50GHz processor
with 256GB RAM.

:::
We

:::
are

:::::
using

::
2

:::::::
datasets

:::
for

::::
the

:::::::::::
experiments,

:::
the

::::
Iris

::::::
flower

::::::
dataset

:::::::::::::::::
(Anderson, 1936)

:::
and

:::
the

:::::::
MNIST

:::::::
dataset

::::::::::::
(Deng, 2012).

::::
For

::::::::::
illustration

:::::::::
purposes,

:::
the

::::::::::
uncertainty

:::::::::::
distribution

::
in

:::::
most

:::::::::::
experiments

:
is
::::::::::
prescribed

:::
as

:
a
:::::::::::
multivariate

:::::::
normal

:::::::::::
distribution

:::::
since

:::
we

::::
can

::::::::
compute

:::::
exact

:::::::::
solutions

::::::::
directly.

:::
We

:::::
have

:::
not

:::::
made

:::::::::::
comparisons

:::
to

:::::
other

::::::
notions

:::
of

:::::::::
robustness

:::::
since

:::::
most

:::::
other

:::::::::
robustness

::::::::::
techniques

:::::
(e.g.,

::::::::::
adversarial

:::::::::
examples)

:::
use

::
a
::::::::
distance

::::::
metric

::::::::
between

:
a
:::::
data

:::::::
sample

:::
and

:::::::::::::::
counterfactuals,

::::::::
whereas

:::
our

:::::::
method

:::::::
returns

::
a

::::::::::
probability.

:
The repository with codes will be made available with the camera ready version.

4.1 Results with 99% confidence hyperellipsoid

In Section 2.2.1 we described a method to decrease the runtime of the robustness computation while only
having negligible differences in the results. We trained a Decision Tree with a maximum depth of 4 on the
Iris flower dataset with a train/test split of 90/10. The uncertainty of the

::
10,

::::::::
yielding

:
15

::::
test

::::::::
samples.

:::
To

:::::::
compute

::::
the

:::::::::
robustness

:::
of

:::
the

:::::::::
prediction

:::
of

:::
the

::::
test

::::::::
samples,

:::
the

::::::::::
uncertainty

:::::::::::
distribution

::
of
::::
the test samples

is given as a multivariate normal distribution with Ones
::
0.1

:
on the main diagonal and Zeros on the off-

diagonals of the covariance matrix. We compare the
::::
This

::::::::::
uncertainty

:::::::::::
distribution

::::
was

::::::
chosen

:::
for

::::::::::
illustration

::::::::
purposes.

:::
In

::::
real

:::::::::::
applications,

::::
the

::::::::::
uncertainty

::::::
needs

::
to

::
be

::::::::::
prescribed

:::::
based

:::
on

::::
the

:::::
exact

::::::::::
application

:::::::
setting,

::::::::
requiring

:::::::::::::::::
domain-knowledge.

:::
In

::::
the

:::::::::::
experiments,

:::
we

::::::::::
determine

:::
the

:
robustness of the prediction of the test

samples computed with all boxes to the results
:::
and

::::
the

::::::::::
robustness, where we only look at the boxes that

are within
:::::
inside

:::
of or intersect with the

::::::::
bounding

::::
box

::
of

:::
the

:
99% confidence hyperellipsoid around the test

samples. In the experiments, we achieved R2 − scores
:::::
Table

::
1

::::
lists

:::
the

::::::::::
robustness

:::
of

:::
the

:::
15

::::
test

::::::::
samples

:::::::::
computed

::::
with

:::
all

::::::
boxes

::::
and

:::
the

::::::
boxes

:::::
that

:::
are

::::::
inside

::
of

:::
or

::::::::
intersect

:::::
with

:::
the

:::::::::
bounding

::::
box

:::
of

:::
the

:::::
99%

:::::::::
confidence

:::::::::::::
hyperellipsoid.

::::::
Even

::::::
though

::::
the

:::::::
number

:::
of

:::::
boxes

::::::::
diverges

:::::::
heavily

:::
for

:::::
some

::::
test

::::::::
samples,

:::
we

:::
see

::::
that

:::
the

::::::::::
robustness

::::::
results

:::
are

:::::
very

::::::
similar

::::
and

::::
only

:::::
start

::
to

:::::
differ

:::
in

:::
the

::::
fifth

::::::::
decimal

:::::
place.

:::::::
Figure

:
4
::::::
shows

:::
the

::::::::::
robustness

::::::
results

::
of

::::
the

::
15

::::
test

::::::::
samples

::
in

:::::::::::
comparison.

::::
We

:::::::
observe

::::
that

::::
the

::::
data

::::::
points

::::
are

::::::
almost

:::
on

:::
the

:::::::
straight

:::::::
dashed

:::
red

::::
line

:::::
with

:::::
slope

::
1,

::::::
which

:::::::::
illustrates

::::
the

:::::::::
similarity

::::::::
between

:::
the

:::::::
results.

::::
We

::::::::
achieved

::::::::
R2-scores

:
exceeding 0.9999 in each test run , showing

:::::::::
(equivalent

:::
to

:::
the

:::::::::::::
interpretation

::
of

::::
the

::::::::
R2-score

::
in

::
a

:::::
linear

:::::::::
regression

:::::::
model),

::::::::
showing

:::
the

:::::::::
similarity

::::::::
between

::::
the

::::::
results

::::
and that it suffices to only consider the

boxes that are within
:::::
inside

::
of

:
or intersect with the

::::::::
bounding

::::
box

::
of

:::
the

:
99% confidence hyperellipsoid to

compute the robustness of the prediction of the test samples.

8
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Figure 4:
::::::::::
Illustration

::
of

::::::::::
robustness

:::::::
results

:::
for

::
15

::::
test

::::::::
samples

::
of

::::
the

::::
Iris

:::::::
dataset

:::::
using

:::
all

:::::
boxes

::::
and

:::::
only

:::
the

:::::
boxes

:::::
that

:::
are

::::::
inside

::
of

::
or

::::::::
intersect

:::::
with

:::
the

:::::::::
bounding

::::
box

::
of

::::
the

::::
99%

:::::::::
confidence

:::::::::::::
hyperellipsoid

:::::::
around

:
a
::::
test

:::::::
sample.

::::
The

:::::::
dashed

::::
red

:::
line

::
is
::::::::
straight.

Table 2: Comparison of runtimes
:::
for

:::
10

::::
test

:::::::
samples

:::
of

:::
the

::::::::
MNIST

:::::::
dataset

:
using all boxes and only the

boxes that are within
:::::
inside

:::
of

:
or intersect with the

::::::::
bounding

::::
box

:::
of

::::
the 99% confidence hyperellipsoid

around a test sample for robustness computation

All boxes 99% boxes
Test sample Boxes - Runtime Boxes - Runtime
1 19,118 - 488s 296 - 8s
2 24,616 - 589s 3,848 - 99s
3 32,564 - 502s 1,824 - 46s
4 39,636 - 697s 52 - 1s
5 13,356 - 274s 1,512 - 39s
6 32,564 - 518s 1,824 - 45s
7 13,356 - 241s 48 - 2s
8 48,128 - 927s 380 - 10s
9 32,564 - 468s 120 - 3s
10 5,736 - 153s 24 - 1s

4.2 Runtime Analysis

Considering only the boxes that are within
:::::
inside

::
of
:
or intersect with the

::::::::
bounding

::::
box

::
of

:::
the

:
99% confidence

hyperellipsoid around a test sample not only returns good
::::::::
accurate

:
results for the computation of the

robustness of the prediction of a test sample, but is also much faster. With the Iris flower dataset, the
runtime difference for the test samples was negligible since it only contains 4 input features. We therefore
conducted experiments with the MNIST dataset(Deng, 2012). We resized the images from 28 × 28 to 5 × 5
pixels, normalised them, flattened them into a vector and used the 25-dimensional vector as input to train
a Random Forest with 5 trees and a maximum depth of 3 per tree on the training set (60,000 training
samples). To evaluate the runtime of the robustness computation, we determined the robustness of the first
10 images of the test set (10,000 test samples). The uncertainty

::::::::::
distribution

::
of

::::
the

::::
test

:::::::
samples

:
is given as

a multivariate normal distribution with 0.001 on the main diagonal elements and Zeros on the off-diagonal
elements of the covariance matrix

::
for

::::::::::
illustration

:::::::::
purposes. The resulting runtimes and number of boxes for

the robustness computation of the 10 test samples are listed in Table 2. We see that the number of boxes
that are within

:::::
inside

:::
of or intersect with the

::::::::
bounding

::::
box

:::
of

:::
the

:
99% confidence hyperellipsoid is much

smaller and that the runtimes are much shorter, compared to using all boxes. The difference in the results
is negligible as we achieved R2 − scores

::::
again

::::::::
achieved

:::::::::
R2-scores

:
exceeding 0.9999,

:::::::
further

::::::::::
indicating

::::
that

9
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Table 3:
::::::::::
Comparison

:::
of

::::::
results

:::
for

::
9

:::::::
trained

:::::::
Decision

::::::
Trees

:::
on

:::
the

:::::::
MNIST

:::::::
dataset

:::::
using

::::
the

:::::
boxes

:::::
that

:::
are

:::::
inside

::
of

:::
or

::::::::
intersect

::::
with

::::
the

:::::::::
bounding

::::
box

::
of

:::
the

:::::
99%

:::::::::
confidence

:::::::::::::
hyperellipsoid

:::::::
around

:
a
::::

test
:::::::
sample

::::
and

:::::
using

:::
the

:::::::
method

:::
in

:::::::::::::::::::::
Scher & Trügler (2022)

:::
for

:::::::::
robustness

::::::::::::
computation

::::::
Resized

::::::
Image

::::
Size

:::
DT

:::::
depth

: :::::::
R2-score

:

::::
3 × 3

: :
4

::::::
0.99990

::::
3 × 3

: :
5

::::::
0.99999

::::
3 × 3

: :
6

::::::
0.99999

::::
5 × 5

: :
5

::::::
0.99999

::::
5 × 5

: :
6

::::::
0.99998

::::
8 × 8

: :
4

::::::
0.99999

::::
8 × 8

: :
5

::::::
0.99999

::::::
10 × 10

: :
4

::::::
0.99999

::::::
10 × 10

: :
5

::::::
0.99998

:
it
:::::::
suffices

:::
to

::::
only

:::
use

::::
the

:::::
boxes

:::::
that

:::
are

::::::
inside

::
of

::
or

:::::::::
intersect

::::
with

::::
the

::::::::
bounding

::::
box

:::
of

:::
the

::::
99%

::::::::::
confidence

::::::::::::
hyperellipsoid

:::
to

::::::::
compute

:::
the

::::::::::
robustness

::
of

::::
the

:::::::::
prediction

::
of

::::
test

::::::::
samples.

4.3 Comparison to approximate robustness computation

Scher & Trügler (2022) introduced the term real-world-robustness, but their method is based on random
sampling and therefore only returns approximate results. With this comes the limitation that it only works
when the feature dimensionality is not too high. We compare the two methods (Random Sampling

:::::::::
(sampling

::::::::
1,000,000

::::::
times)

:
against 99% confidence hyperellipsoid around a test sample) by computing the robustness

of the prediction of data samples on trained Decision Trees. The DTs have a depth between 3 and 7
:
4

:::
and

::
6
:
and were trained on the MNIST dataset. We perform the same data preprocessing steps as for the

runtime analysis, but resize the images to various sizes, ranging from 3 × 3 to 10 × 10 such that the DTs
have input feature dimensions ranging from 9 to 100, and train them on the training set. The uncertainty
is given as a multivariate normal distribution with 0.0001 on the main diagonal elements and Zeros on the
off-diagonal elements of the covariance matrix . We compared

:::
for

::::::::::
illustration

:::::::::
purposes.

::::
We

::::::::
compare

:
the

results of each setting for the first 10 test samples and observed
:::::::
observe

:
that both methods return similar

results for the robustness of the prediction of data samples, with negligible differences starting in the third
decimal place

:::
and

:::::::::
R2-score

:::::::::
exceeding

::::::
0.9999

::::
for

:::
all

::::::::
settings,

::::
see

:::::
Table

::
3
::::

for
:
a
::::::::::

summary
::
of

::::
the

::::::
results.

This indicates that the method of Scher & Trügler (2022) to compute the robustness still works well with
an input feature dimension of 100, and more input features would be necessary to see a difference in the
results. We also computed the robustness of data samples with higher values in the main diagonal of the
multivariate uncertainty distribution (0.001, 0.01, 0.1 and 0.5) to cover more parts of the input feature space
and compared the results, but again only observed minor differences.

4.4
::::::::::
Robustness

::::::::::::
computation

::::
for

:::::::::
correlated

::::::::
features

::::
and

:::::::
mixed

::::::::::
distortions

::
In

::::
case

::::
the

::::::::
features

:::
are

::::::::::
correlated

::::
and

::::
the

::::::::::
uncertainty

::::::::::::
distribution

::
of

:::::
data

:::::::
samples

:::
is

::::
best

:::::::::
modelled

:::
by

:::::::
different

:::::::::::
probability

:::::::::::
distributions

:::
in

::::::::
different

::::::::::
dimensions,

:::
we

::::
can

::::::::
compute

::::
the

::::::::::
robustness

::
of

:::
the

::::::::::
prediction

::
of

:
a
:::::

data
:::::::
sample

::
µ

:::
by

::::::::
utilising

:::
the

::::::::
reversed

::::::::
NORTA

::::::::
principle

:::::::::
presented

::
in

:::::::
Section

::::
2.2.

::::
To

::::::::
illustrate

::::
the

:::::::::
approach,

::
we

:::::::
trained

:::
an

:::::::::::
XGBoosted

:::::::
Decision

:::::
Tree

::::::
model

::::
with

::
a

:::::::::
maximum

::::::
depth

::
of

:
4
::::
and

::
6

::::
trees

:::
on

::::
the

:::
Iris

:::::
flower

:::::::
dataset

:::::
with

:
a
::::::::::
train/test

::::
split

::
of

:::::::
90/10.

:::
For

:::::::::::
illustration

::::::::
purposes

:::
the

:::::::::::
uncertainty

::
of

::::
the

:
4
::::::::
features

::
is

:::::
given

::
by

::::::::
different

::::::::::::
distributions

:
-
:::::::
normal

:::
for

::::::
feature

::
1
::::::
(sepal

:::::::
length),

:::::::::::
exponential

:::
for

:::::::
feature

:
2
::::::
(sepal

:::::::
width),

::
χ2

:::
for

:::::::
feature

::
3

::::::
(petal

::::::
length)

::::
and

::::::::::
lognormal

:::
for

:::::::
feature

:
4
::::::
(petal

:::::::
width)

:
-
:::::
with

:::::::
different

:::::::::::
parameters.

::::::
After

:::::::::::
transforming

::::
the

::::::::::::
distributions,

::::
the

::::::::::
correlation

::::::
matrix

::
is
::::::
given

::::
with

:::::
Ones

:::
on

::::
the

:::::
main

::::::::
diagonal

::::
and

::::::
values

:::::::
between

:::
0.1

::::
and

:::
0.3

::
on

::::
the

::::::::::::
off-diagonals.

::::
The

::::::::::
robustness

::::::
results

::
of

:::
the

:::
15

:::
test

::::::::
samples

:::
are

:::::::::
visualised

::
in

::::::
Figure

:
5
::::
and

:::
we

:::::::
observe

:::::
that

:::::::
several

::::
test

:::::::
samples

:::::
have

::
a

::::::::::
robustness

::
of

:::::::
exactly

::
1.
::::::

This
::
is

::::::
caused

:::
by

:::::::::::
uncertainty

:::::::::::
distributions

:::::
with

:
a
::::::

lower
::::::
bound

:::::
(e.g.,

:::::::::::
exponential

:::
or

::
χ2

:::::::::::::
distribution).

:::
In

::::
case

::::
the

:::::
value

::
of

::
a
::::
test

:::::::
sample

::
in

:
a
::::::::::

dimension
::::
that

::
is
:::::::::

modelled
:::
by

::::
such

::
a
:::::::::::
probability

:::::::::::
distribution

::
is

::::::
higher

:::::
than

:::
the

:::::::
highest

:::::
value

:::
for

::::
the

:::::::
decision

::::::::::
boundaries

:::
in

::::
that

::::::::::
dimension,

::::
the

:::::
data

:::::
point

:::
in

::::
this

:::::::::
dimension

::::
will

:::::::
always

:::
be

:::::
above

::::
the

:::::::
highest

10
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Figure 5:
:::::::::
Illustration

:::
of

:::::::::
robustness

:::::::
results

:::
for

::
15

::::
test

::::::::
samples

::
of

:::
the

::::
Iris

:::::::
dataset

:::
for

:::::::::
correlated

:::::::
features

:::::
with

:::::
mixed

:::::::::::
distortions.

:::::
value

::
of

:::
the

::::::::
decision

:::::::::
boundary.

::::
For

::
a

:::::
visual

::::::::::::
explanation,

::
if

:::
the

:::::
data

::::::
sample

::
µ
:::
in

::::::
Figure

::
1

:::
was

:::
in

:::
the

::::::
upper

::::
right

::::
box

:::
(or

::
a

::::::::::::
neighbouring

::::
box

:::::::
thereof)

::::
and

:::
the

:::::::::::
uncertainty

::
in

:::::
both

::::::::::
dimensions

::::
was

::::
best

::::::::
modelled

:::
by

::::
two

::::::::::
exponential

::::::::::::
distributions,

::::
the

:::::
data

:::::::
sample

::::::
would

::::
have

::
a
::::::::::
robustness

:::
of

:
1
:::::

since
:::

no
:::::::

smaller
:::::::

values
:::::
could

:::
be

::::::::
sampled.

:

5 Conclusion

In this paper, we presented a method to precisely determine the real-world-robustness (robustness against
natural distortions in the input) of tree-based classifiers. We extract the decision rules from a trained
classifier to separate the input feature space into non-overlapping regions, called boxes, and integrate the
underlying probability distribution that models the uncertainty of a test sample between the lower and upper
boundaries of each box to determine their covered probability mass. Taking the probability sum over the
boxes that have the same label as the test sample returns the real-world-robustness of the prediction of
the test sample. We presented this approach for Decision Trees in detail and discussed the extension to
Random Forests and XGBoosted trees. The method gives a precise measure of the real-world-robustness of
the prediction of individual data samples,

::::::::::
introduced

:::
by

:::::::::::::::::::::
Scher & Trügler (2022)

:
, with tree-based classifiers.

::::
This

::::::
differs

:::::
from

:::::
other

::::::::::
robustness

:::::::::
measures

::::::
which

:::
use

:::::::
various

::::::::::
techniques

::
to

:::::
look

:::
for

::::::::::
adversarial

:::::::::
examples

:::
and

::::
use

:::
the

::::::::
distance

::::::::
between

:::
the

::::
test

:::::::
sample

::::
and

:::
the

:::::::
closest

:::::::::::::
counterfactual

::
as

::::
the

:::::::
measure

::::
for

::::::::::
robustness.

::
It

::::
also

::::::
differs

::::
from

::::::::::
robustness

:::
to

::::::::
common

:::::::::::
corruptions,

::::::
which

::::::::
measures

::::
the

:::::::
average

::::
rate

::
of

:::::::::::::::
misclassification

::
of

:
a
::::
test

:::
set

:::::
with

:::::::::
perturbed

::::::::
samples.

:

One limitation of our approach is that the uncertainty distribution needs to be modelled as a probability
distribution and that the PDF of the distribution must be analytically tractable to compute exact solutions.
This is not always possible, especially when features are correlated and the uncertainty in different dimensions
is best modelled by different distributions. In case the uncertainty distribution is more complex (e.g., because
it is not given as a probability distribution, but by a stochastic function that models some process), we can in
principle use numerical integration techniques to integrate the probability mass over the boxes for classifiers
with explicit decision boundaries (such as tree-based models) and find approximate solutions. We carried
out some initial experiments in that direction, solving Equation 4 with the quadpy package (Schlömer et al.,
2021) for numerical integration. We observed however that the results with numerical integration techniques
are often unstable and unreliable, especially when a data sample µ is in a large box, i.e., there is a big
gap between the lower and upper boundaries in at least one dimension of the box, compared to cases that
are actually analytically solvable. While it could be possible that with more carefully choosing types and

11
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parameters of the numerical routines the results could be better, this shows that simply using off-the-shelf
integration routines is not a feasible option.

A second limitation of our approach is the high amount of data storage space needed. Equation 3 shows the
number of boxes that are being created for a trained classifier. Classifiers with high input feature dimension
and especially Random Forests quickly exceed the available storage space, such that the robustness cannot
be computed anymore. With a more powerful machine, experiments on tree-based classifiers with high input
feature dimension could be carried out and still return exact solutions.

The method presented in this paper is applicable because tree-based classifiers have the convenient prop-
erty of having explicitly described decision boundaries that form hyperrectangles. Future research should
be dedicated to extending the presented approach to more advanced classifiers with complicated decision
boundaries, such as (nonlinear) Support Vector Machines and Neural Networks, and to find solutions for
computing the real-world-robustness of high dimensional classifiers.
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