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ABSTRACT

Video understanding, including video captioning and retrieval, is still a great chal-
lenge for video-language models (VLMs). The existing video retrieval and caption
benchmarks only include short descriptions, limits their ability of detailed video
understanding evaluation. To address this problem, we present CAREBENCH,
a testing benchmark for fine-grained video Captioning and Retrieval with 1,000
high-quality pairs of videos and human-annotated detailed captions. Uniquely,
it provides manually separated spatial annotations and temporal annotations for
each video. Based on this design, we introduce two evaluation metrics, ReBias
and CapST, specifically tailored for video retrieval and video captioning tasks,
respectively. These metrics enable a comprehensive investigation into the spatial
and temporal biases inherent in VLMs. In addition, to handle both video retrieval
and video captioning tasks in a unified framework, we develop a simple baseline
based on a Multimodal Language Model (MLLM). By implementing a two-stage
Supervised Fine-Tuning (SFT), we fully unlock the potential of MLLM, enabling
it not only to generate detailed video descriptions but also to extract video features.
Surprisingly, experimental results demonstrate that, compared to the CLIP-based
models designed for retrieval and the popular MLLMs skilled in video captioning,
our baseline shows competitive performance in both fine-grained video retrieval
and video detailed captioning.

1 INTRODUCTION

Video captioning (Wang et al., 2022; Xu et al., 2023; Wang et al., 2024a; Chai et al., 2024) and
video retrieval (Radford et al., 2021; Luo et al., 2022; Ma et al., 2022; Zhou et al., 2024; Wang et al.,
2024c; Zhu et al., 2024; Zhang et al., 2024a) are two main tasks in video-language understanding.
Captioning requires perception and description of the main objects, events and actions in the video,
while retrieval aims at finding the most relevant video/text based on the text/video query. These
two tasks intuitively reflect the alignment and comprehension ability of Video-Language Models
(VLMs), serving as critical evaluations of VLM capabilities.

However, existing retrieval and captioning benchmarks struggle to evaluate VLMs’ fine-grained
understanding. Traditional benchmarks (Xu et al., 2016; Chen & Dolan, 2011; Hendricks et al.,
2017) have short and rough annotations, assessing general and coarse-grained video understanding
of VLMs due to brief descriptions. Recent works (Zhang et al., 2024a; Yang et al., 2024; Chai
et al., 2024) use powerful VLMs like GPT-4o (OpenAI, 2023) for auto-annotation, which inevitably
introduces hallucinations and biases. DREAM-1K (Wang et al., 2024a) has more accurate human
annotations, yet it lacks hierarchical captions and comprehensive focus on both objects and events.

In addition, designing effective metrics for video captioning also poses a challenge. Traditional
n-gram metrics (Vedantam et al., 2015) are difficult to evaluate fine-grained captions(Wang et al.,
2024a; Chai et al., 2024), while LLM-based evaluations (e.g. AutoDQ (Wang et al., 2024a)), lack
comprehensive consideration of both static objects and dynamic actions.

To address these issues, we present CAREBENCH, a fine-grained Benchmark for video Captioning
and Retrieval. It contains 1,000 videos with human-annotated detailed captions. Unlike images,
video understanding tasks require models to understand both static scenes and dynamic actions. So
we apply a hierarchical annotation scheme with each annotation covering four aspects: an overall
summary, static object descriptions, dynamic action descriptions, and misc descriptions (e.g., filming
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Table 1: Statistics of retrieval and captioning benchmarks. Traditional benchmarks, namely
MSR-VTT (Xu et al., 2016), MSVD (Chen & Dolan, 2011), DiDeMo (Hendricks et al., 2017) and
ActivityNet (Heilbron et al., 2015) have very short captions. Detailed captioning benchmarks (Wang
et al., 2024a; Chai et al., 2024) have longer and detailed captions, but they are either annotated by
GPT or fail to focus on both static objects and dynamic actions.

Benchmark # Sample Avg. Len. Avg. Words Annotator Hierarchical Anno. Static Focus Dynamic Focus
MSR-VTT (Xu et al., 2016) 1,000 15.01s 9.41 Human ✗ ✗ ✗
DiDeMo (Hendricks et al., 2017) 1,037 53.94s 29.11 Human ✗ ✗ ✗
MSVD (Chen & Dolan, 2011) 670 10.04s 7.01 Human ✗ ✗ ✗
ActivityNet (Heilbron et al., 2015) 5,044 36.00s 13.48 Human ✗ ✗ ✗
DREAM-1K (Wang et al., 2024a) 1,000 8.9s 59.3 Human ✗ ✗ ✓
VDC (Chai et al., 2024) 1,000 28.18s 500.91 GPT ✓ ✓ ✗

CAREBENCH 1,000 14.35s 227.95 Human ✓ ✓ ✓

style, camera movement, etc.). Such a design ensures each caption has sufficient details, challenging
models to capture fine-grained information. Furthermore, to evaluate models spatiotemporally, each
caption is manually separated into spatial and temporal parts. Based on this, we construct ReBias
and CapST, two novel metrics for video retrieval and captioning, respectively. Due to our benchmark
and metrics design, this work brings the community some new insights about spatiotemporal biases
of state-of-the-art VLMs that other benchmarks may fail to reveal.

During the evaluation on both video retrieval and captioning tasks, we realize that previous works
treat retrieval and captioning as separate tasks, leading to the development of specialized models for
each. Specifically, CLIP-based dual-encoder models have been advanced for video retrieval, while
Multimodal Large Language Models (MLLMs) have been tailored for video captioning. However,
we discover that the two tasks can be unified and formulated as a mapping from the pixel space to a
high-dimensional space: ϕ : RT×H×W×C → RD (either vocabulary space RDv or embedding space
RDe ). This finding renders it feasible to address the gap between video retrieval and captioning.

Taking advantage of the unified architecture of MLLMs, we develop CARE, a simple and unified
baseline for both detailed video captioning and fine-grained video retrieval. Specifically, our method
involves a two-stage supervised fine-tuning (SFT). This makes it possible to generate video captions
and discriminate video contents using only one model. The first stage aligns the model output
to a fine-grained text space, by training the model using mixed LLaVA-Video-178k (Zhang et al.,
2024c) and Tarsier (Wang et al., 2024a) recaptioned data. In the second stage, a text-only contrastive
learning approach (Jiang et al., 2024b) is adopted to enable the MLLM to perform cross-modal rep-
resentations. As shown in Figure 1, our experiments indicate that, compared to CLIP-based retrieval
models and MLLM captioning models, CARE achieves superior performance on CAREBENCH.

In summary, we make the following contributions:

(1) We introduce a fine-grained benchmark named CAREBENCH. It is designed for video retrieval
and captioning, comprising 1,000 videos with high-quality human-annotated descriptions that pro-
vide sufficient video details. Each video features hierarchical descriptions ensuring comprehensive
coverage, and manually split spatial/temporal captions. Based on this, we construct ReBias and
CapST, two novel metrics designed for the video retrieval and captioning tasks, respectively. Such
designs reveal new insights about spatiotemporal biases of VLMs that other benchmarks may ignore.

(2) We present CARE, a simple baseline for fine-grained video retrieval and captioning. By applying
two-stage Supervised Fine-Tuning (SFT), we enable CARE to not only generate detailed video de-
scriptions but also to extract video features. Our experiments show that, compared to the CLIP-based
models designed for retrieval and the popular MLLMs skilled in video captioning, our baseline has
competitive performance in both fine-grained video retrieval and detailed video captioning.

2 RELATED WORK

Video Caption. Video captioning aims to describe videos using natural language. Traditional cap-
tioning benchmarks, such as ActivityNet (Heilbron et al., 2015), MSVD (Chen & Dolan, 2011), and
MSR-VTT (Xu et al., 2016), typically use a single sentence to describe a video, which is insufficient
to convey the full visual contents. As a result, they can no longer effectively stress-test modern
MLLMs, as these models can output semantically richer descriptions than reference captions. To
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Figure 1: CAREBENCH performance of popular models and CARE. The results on MLLMs are
reported on their public version without contrastive training. The CLIP-based models have achieved
excellent performance in video retrieval tasks, but they lack the ability to describe videos. On the
other hand, MLLMs can describe videos in detail, but their retrieval performance is very poor. In
contrast, CARE not only shows outstanding retrieval performance but also has a strong capability to
describe videos. Features are extracted from MLLMs using EOL prompt (Jiang et al., 2024b).

address these issues, new benchmarks have been proposed. DREAM-1K (Wang et al., 2024a) anno-
tates five categories of videos with rich action content and introduces a novel automatic evaluation
method called AutoDQ, which assesses the accuracy and recall of actions and events in captions.
Similarly, VDC (Chai et al., 2024) employs hierarchical prompting with GPT-4o for structured and
detailed captions, followed by manual correction. However, it lacks explicit focus on human actions
and motion. In this paper, we explore a new fine-grained video captioning benchmark focusing not
only on objects but also actions to comprehensively evaluate VLMs.

Video Retrieval. Video retrieval aims to find the most relevant video/text based on the text/video
query. Traditional methods (Wang et al., 2024c; Ma et al., 2022; Luo et al., 2022; Zhang et al., 2024a;
Li et al., 2023b; Girdhar et al., 2023) focus on using dual encoders based on CLIP (Radford et al.,
2021) to extract features. But most of them are limited by the 77-token context length inherited from
CLIP, hindering long-caption understanding (Zhou et al., 2024). While long-text and fine-grained
video retrieval becomes important. Long-CLIP (Zhang et al., 2024a) addresses this problem by
extending context to 248 tokens for long-text retrieval. But the benchmark used by it are annotated
by LLMs, which may contain coarse-grained, uncertain and wrong descriptions. In this paper, we
further explore the model training and the benchmark design for fine-grained video retrieval.

Multimodal Large Language Model. Due to great advancements in LLMs (Devlin et al., 2019;
Brown et al., 2020; Wei et al., 2022; Chowdhery et al., 2023), their multimodal counterparts
(MLLMs) (Li et al., 2023a; Chen et al., 2023; Yao et al., 2024; Zhang et al., 2024b; Wang et al.,
2024b) are receiving significant attention, particularly for their capability to perform various visual
tasks using straightforward instructions. Recent works like VideoChat (Li et al., 2023a) demon-
strate outstanding performance on multimodal benchmarks (Fu et al., 2024; Li et al., 2024). But
these models are restricted to generating responses based solely on user instructions and lack the
capability to represent videos, images, and text. In this paper, we construct a unified baseline for
both video retrieval and video captioning.

Multimodal Embedding. CLIP (Radford et al., 2021) learns image and text representations by
aligning them with contrastive learning. However, Mind the Gap (Liang et al., 2022) notes that
different data modalities are embedded with gaps in their shared representation space. To address
this issue, recent works like VISTA (Zhou et al., 2024) and E5-V (Jiang et al., 2024b) explore
unified representation. They find that MLLMs provide a unified multimodal framework to unify
cross-modal representations without gaps. We regard it as a promising method and will further
explore unified MLLM representation on video retrieval.

3 CAREBENCH: A FINE-GRAINED BENCHMARK

3.1 VIDEO COLLECTION

We manually select 1,000 videos from FineAction (Liu et al., 2022) with 10-20 videos in each
subcategory. FineAction is a video dataset for temporal action localization with 106 subcategories
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and 4 major categories: personal care, socializing & relaxing, sports & exercise, and household
activities. Videos in each subcategory share similar scenes and actions, which poses a challenge to
the models’ ability to understand and discriminate similar videos.

3.2 TWO-STAGE ANNOTATION PIPELINE

The annotation pipeline consists of two stages. In stage one, annotators describe videos in detail,
covering four key aspects of each video. Subsequently, they are guided to separate the annotations
into temporal and spatial descriptions. To ensure high quality and minimize bias, each video is
independently captioned by two annotators and subsequently refined and merged by our experts.
Refer to Figure 6 and Appendix A for annotation pipelines, data examples and the case study.

3.2.1 STAGE-I: DETAILED ANNOTATION

In Stage-I, annotators provide detailed video descriptions limited to 150-300 words. Each descrip-
tion can be divided into four parts: a general overview, an action description, a object description,
and a misc. description, as outlined below:

General Overview provides a one-sentence summary of the entire video. For example, this video
shows a person slicing a watermelon.

Object Description focuses on static objects with attributes like position, color, shape, and other
visual details. It contains primary and secondary objects, background, their relative positions, inter-
actions, and even watermarks.

Action Description captures the actions occurring in the video, detailing the event sequences (e.g.,
first..., then...) and providing specific details of each action (e.g., rotating the watermelon clockwise).
It also includes the style of the actions (e.g., cutting fruit quickly, climbing the tree clumsily).

Misc. Description is about 2-4 sentences in length. It covers different aspects, such as the viewpoint
(e.g., a third-person perspective) and the overall type of the video (e.g., delightful and relaxing).

3.2.2 STAGE-II: SPATIO-TEMPORAL SEPARATION

(a) Video length distribution.
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(b) Caption length distribution.

Figure 2: Statistics of CAREBENCH.

Stage-II refines the initial annotations
by separating spatial and temporal el-
ements. It removes action texts from
object descriptions to create pure spa-
tial captions, and eliminates static
references from action descriptions to
form pure temporal captions. This
design ensures precise evaluation of
VLMs’ spatiotemporal modeling ca-
pabilities by preventing interference
between dynamic and static elements.

Spatial Description provides a com-
prehensive view, beginning with a
general overview and then detailing
main objects, secondary objects, and the backgrounds. It ensures that spatial descriptions can dif-
ferentiate between similar videos within the same subcategory.

Temporal Description begins with a general overview, then focuses on actions and their order.
Spatial-specific details are excluded. It ensures temporal descriptions uniquely identify each video
within its subcategory.

3.3 COMPARISON ON STATISTICS

The captions in CAREBENCH are human-annotated, providing detailed and comprehensive descrip-
tions of the videos. Consequently, its statistics differ significantly from those of traditional bench-
marks. As shown in Table 1, our benchmark is similar in size to MSR-VTT (Xu et al., 2016),
DiDeMo (Hendricks et al., 2017), but the average number of words per caption is 24.2× higher than

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

that of MSR-VTT (Xu et al., 2016), 7.82× higher than DiDeMo (Hendricks et al., 2017), and 32.5×
higher than MSVD (Chen & Dolan, 2011). The chart in Figure 2a shows the video length distribu-
tion of CAREBENCH. Since excessively long video durations significantly increase the difficulty for
annotators to provide detailed descriptions, our benchmark focuses on videos ranging from 5 to 20
seconds in length, with over 80% of the videos falling within this range. Only 5.8% are shorter than
5s or extends beyond 30s. Figure 2b demonstrates how the caption length distributes. Most captions
in CAREBENCH contain between 175 and 275 words.

3.4 METRICS DESIGN

CAREBENCH contains manually annotated spatial-temporal captions. This design enables us to
identify biases in the model’s understanding of static objects and dynamic actions by analyzing the
imbalance in spatio-temporal performance across video retrieval and captioning tasks. To quan-
tify the spatio-temporal perfomance and bias, we introduce two novel metrics for video retrieval
and video captioning, respectively: ReBias and CapST. These two metrics comprehensively reveal
VLMs’ performance and inherent biases by separately evaluating spatial tasks and temporal tasks.

3.4.1 REBIAS

Evaluating spatial and temporal captions separately reveals the model’s performance across both di-
mensions. We introduce ReBias, a metric that measures spatiotemporal Retrieval Bias. It measures
a model’s bias towards its focus on static objects versus dynamic actions by showing how far the
temporal-to-spatial recall ratio deviates from 1 (lower is better). It can be formulated as follows:

B =

∣∣∣∣1− R̄temporal

R̄spatial

∣∣∣∣ , (1)

where R̄temporal and R̄spatial denotes the average recall on temporal/spatial retrieval, respectively.

3.4.2 CAPST

Existing video captioning metrics face limitations: traditional n-gram methods, like CIDEr (Vedan-
tam et al., 2015), struggle with long captions (Chai et al., 2024; Wang et al., 2024a), while LLM-
based metrics (Chai et al., 2024; Wang et al., 2024a) lack comprehensiveness in evaluating both ob-
jects and actions. For example, VDCScore (Chai et al., 2024) evaluates predictions by querying both
ground truth and prediction details to compute recall, but it ignores precision which is critical for as-
sessing hallucinations; AutoDQ (Wang et al., 2024a) only focuses on evaluating actions/events and
neglects objects. To overcome these issues, we propose CapST, a video Captioning metric jointly
evaluating Spatial objects and Temporal events. Similar to Wang et al. (2024a), a powerful LLM
extracts events from temporal captions and objects from spatial captions and computes the Natural
Language Inference (NLI) relationship between the ground truth Dgt and the predictions Dpred.
Specifically, we compute the recall and precision score of a sample according to Equation (2) and
report average recall and precision of all samples in a benchmark. More details about quantitative
and human-aligned validation on different metrics can be seen in Appendix C.

R =
N(Dgt

entail−−−→ Epred)

N(Epred)
, P =

N(Dpred
entail−−−→ Egt)

N(Egt)
, (2)

where Epred and Egt denote elements (either objects or events) extracted from predictions and
ground truth captions, respectively. N(Epred) and N(Egt) is the number of elements extracted

from Dpred and Dgt, respectively. N(Dgt
entail−−−→ Epred) refers to the number of Epred entailed by

Dgt, and N(Dpred
entail−−−→ Egt) means the number of Egt entailed by Dpred.

Specially, when multiple attributes are combined in a single description (e.g., “an elderly man wear-
ing glasses and a blue suit”), NLI tends to penalize partially matching predictions, even when those
predictions correctly identify some valid characteristics. To address this issue, we instruct the LLM
to split attributes during extraction. For instance, the aforementioned description would be divided
into “an elderly man wearing glasses” and “an elderly man wearing a blue suit.” This design allows
a more precise evaluation of the model’s performance to describe objects with multiple attributes.
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nothing like the original songs.0.4766
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Stage-I: Fine-Grained Caption Adaptation

Vision Encoder
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Discribe the video in detail:

Prompt

Large Language Model

… …
Summary of above sentence in 
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Prompt

…  …
Vocabulary Space Embedding Space

Space 
Shift

The singers cover songs from the past 
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improvising.

Stage-II: Retrieval Adaptation

Figure 3: Training recipe of CARE. Stage-I aligns CARE outputs to a fine-grained text space for
detailed video descriptions, while Stage-II contrastively trains CARE to extract features, shifting the
output space from vocabulary (RDv ) to embedding space (RDe ).

4 CARE: A UNIFIED VIDEO MODEL

Previous works treat video retrieval and captioning as separate tasks, fostering specialized models
like CLIP-based dual-encoders for retrieval and MLLMs for captioning. However, we find that
these tasks can be unified into a single framework, formulated as a mapping from the pixel space
to a high-dimensional space: ϕ : RT×H×W×C → RD (either vocabulary space RDv or embedding
space RDe ). To bridge this gap, we introduce CARE, a unified baseline built on Qwen2-VL (Wang
et al., 2024b), trained via a two-stage progressive SFT to achieve both robust video captioning and
strong video representation. The training pipeline is shown in Figure 3.

4.1 STAGE-I: FINE-GRAINED CAPTION ADAPTATION

MLLMs excel in general video understanding but often miss key video details. To align the model
with fine-grained video understanding and provide a robust backbone for Stage-II, we train CARE
with high-quality video-caption pairs. Specifically, we set finetuning prompt to “Describe the
video in detail.” and train our model using video-text pairs from Tarsier Recap (Wang et al.,
2024a), emphasizing action-rich descriptions, and LLaVA-Video-178k (Zhang et al., 2024c), focus-
ing on short videos with details. With fine-grained caption adaptation, the model output is aligned
with fine-grained text space and can focus on detailed actions and objects when describing videos.

4.2 STAGE-II: RETRIEVAL ADAPTATION

After Stage-I, CARE achieves precise alignment between pixel space and fine-grained text space.
To shift the model output from the vocabulary space RDv to the embedding space RDe , we use a
similar method as Jiang et al. (2024b;a), employing an Explicit One-word Limitation (EOL) prompt
to extract embeddings from CARE. Specifically, there are two steps: (1) given an EOL prompt:
“<sent> Summary of the above sentence in one word:”, the model is instructed
to summarize the sentence si in the next token; (2) we use the hidden states in the next token
generation step as the final embeddings fi. Then, we train the model on an NLI dataset (Gao et al.,
2021) where each sample contains a sentence si, its positive s+i and its hard negative s−i . Since
there are no video inputs during Stage-II, we freeze the vision encoder and train the LLM only. Our
training objective is given as:

L = − log
ecos(fi,f

+
i )/τ∑N

j=1

(
ecos(fi,f

+
j )/τ + ecos(fi,f

−
j )/τ

) , (3)

where fi, f+
i , f−

i denote the embeddings of the sentence si, its positive s+i and its hard negative s−i ,
respectively. cos(·) is the cosine similarity function. τ is the temperature hyperparameter.

5 EXPERIMENTS

In this section, we present the experiments on CAREBENCH. Section 5.1 shows the experiment
settings. Section 5.2 and 5.3 analyze the results on video captioning and retrieval. In section 5.4,
we conduct ablations to show the effectiveness of our methods. Additional experiments on other
benchmarks and smaller MLLMs are included in Appendix B.
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Table 2: Video caption performance of popular models on CAREBENCH (Events). We report
F1/Recall/Precision for each category. # Params denotes the number of LLM parameters.

Model # Params CAREBENCH Caption (Events)
Personal Care Social & Relax Sports & Excercise Household Overall

GPT-4o mini - 32.9/24.9/48.4 34.7/26.2/51.1 44.3/38.0/53.0 34.2/26.9/46.8 36.8/29.1/50.2

LLaVA NeXT Video (Zhang et al., 2024b) 7B 27.5/20.1/43.7 25.0/17.4/44.1 29.4/21.1/48.4 24.3/16.2/48.1 26.6/18.7/45.9
InternVL2 (Chen et al., 2023) 7B 22.2/18.4/28.0 23.0/17.9/32.3 27.9/23.4/34.5 18.4/14.7/24.8 23.3/18.8/30.7
InternVL2.5 (Chen et al., 2024) 7B 22.0/15.1/41.1 24.0/16.8/41.6 34.0/26.1/48.8 22.3/15.3/40.6 26.0/18.6/43.2
InternVL2.5 (Chen et al., 2024) 72B 24.6/16.7/46.7 25.9/18.3/44.4 36.0/27.8/51.0 24.9/17.5/43.2 28.2/20.3/46.4
MiniCPM-V 2.6 (Yao et al., 2024) 7B 30.2/21.3/52.0 26.9/18.6/48.8 38.1/29.7/53.1 28.5/20.0/49.5 31.1/22.3/51.2
Tarsier (Wang et al., 2024a) 7B 25.4/16.5/55.0 26.5/18.0/50.4 32.0/22.8/53.3 22.8/15.3/44.7 27.1/18.4/51.1
Qwen2-VL (Wang et al., 2024b) 7B 28.4/23.9/34.9 27.5/20.8/40.3 33.0/26.6/43.6 25.7/20.2/35.1 28.8/22.9/39.0
Qwen2-VL (Wang et al., 2024b) 72B 29.6/22.1/45.0 28.1/20.6/44.2 37.3/28.5/53.9 26.4/18.6/45.4 30.5/22.6/47.1

CAREstage−I 7B 33.9/25.4/50.8 32.4/24.0/49.8 42.8/33.7/58.5 31.5/24.4/44.7 35.3/26.9/51.3
CARE 7B 34.4/25.6/52.6 32.2/24.0/48.8 42.3/33.3/58.1 30.9/23.4/45.3 35.1/26.6/51.4

Table 3: Video caption performance of popular models on CAREBENCH (Objects). We report
F1/Recall/Precision for each category. # Params denotes the number of LLM parameters.

Model # Params CAREBENCH Caption (Objects)
Personal Care Social & Relax Sports & Excercise Household Overall

GPT-4o mini - 29.2/21.2/47.2 34.2/26.5/48.0 36.0/27.4/52.6 35.1/27.6/48.2 33.8/25.8/49.1

LLaVA NeXT Video (Zhang et al., 2024b) 7B 21.7/15.5/36.2 24.1/17.3/39.9 26.8/19.6/42.3 26.3/19.5/40.4 24.7/17.9/39.8
InternVL2 (Chen et al., 2023) 7B 20.4/15.1/31.6 23.1/17.3/34.6 24.9/18.3/38.7 22.7/17.1/33.8 22.9/17.1/34.9
InternVL2.5 (Chen et al., 2024) 7B 26.4/20.4/37.2 28.4/22.7/37.9 31.6/26.4/39.4 29.6/24.4/37.7 29.1/23.5/38.2
InternVL2.5 (Chen et al., 2024) 72B 28.7/22.4/40.0 28.6/23.3/37.3 34.0/28.2/42.7 30.8/25.7/38.5 30.5/24.8/39.5
MiniCPM-V 2.6 (Yao et al., 2024) 7B 28.9/19.7/53.6 29.4/21.0/48.8 32.0/23.7/49.3 32.2/23.3/52.1 30.5/21.9/50.5
Tarsier (Wang et al., 2024a) 7B 30.0/22.2/45.9 30.0/22.6/44.4 33.4/24.9/50.7 31.2/23.9/45.1 31.1/23.4/46.5
Qwen2-VL (Wang et al., 2024b) 7B 23.7/15.8/47.7 23.0/15.1/47.8 24.9/16.2/53.1 24.8/16.8/47.2 24.0/15.9/49.1
Qwen2-VL (Wang et al., 2024b) 72B 24.5/16.3/49.4 22.5/14.7/47.8 24.6/15.8/56.3 26.5/17.4/55.7 24.2/15.8 /51.9

CAREstage−I 7B 32.1/22.6/55.3 31.3/22.2/53.1 33.2/23.2/58.4 33.6/23.8/57.1 32.4/22.9/55.7
CARE 7B 30.9/21.1/57.2 31.5/21.9/55.6 31.8/21.3/62.6 32.6/23.0/55.8 31.7/21.8/57.8

5.1 SETTINGS

In Stage-I, we train Qwen2-VL (Wang et al., 2024b) for about 400 GPU hours with a learning rate
of 2e-5, batch size of 64, max pixel of 460,800, and 16 input frames. For Stage-II, CAREstage-II is
initialized from Stage-I and trained on NLI dataset with the video backbone frozen. Due to text-only
contrastive learning, Stage-II only requires 24 GPU hours. We set epoch, batch size, and warmup
ratio to 2, 768, and 0.2, respectively, and fully fine-tune CAREstage-II with learning rate of 2e-4.

5.2 VIDEO CAPTIONING

In Table 2 and Table 3, we present quantitative comparison of the video captioning task on
CAREBENCH between CARE and popular VLMs. Results are reported in zero-shot setting fol-
lowing our CapST metric. We use DeepSeek-V3 (DeepSeek-AI et al., 2024) to serve as the LLM
judge. The number of input frames are set to 32. The default prompt is “Describe the video
in detail.” unless the official research (Zhang et al., 2024b) recommends a specific one.

As illustrated in Table 2 and Table 3, our model has demonstrated superior performance across all the
categories, surpassing all existing open-source models currently available. Considering the disparity
between the models’ parameters and their performance, even the most powerful MLLM, Qwen2-VL
72B, exhibits a significant performance gap when compared to our 7B CARE. This indicates that all
current models still lack the ability to provide highly detailed, comprehensive, and fine-grained video
descriptions. Additionally, it can be observed that whether the model has undergone stage II training
does not affect its captioning performance. These promising results demonstrate that even a small-
scale 7B model is capable of understanding the details within videos, including dynamic actions and
static object elements and can have outstanding captioning and retrieval abilities simultaneously.

5.3 VIDEO RETRIEVAL

We compare CLIP-based models, contrastively trained MLLMs and our CARE on CAREBENCH,
following the setting of 32 input frames. Table 4 and Table 5 present the general retrieval perfor-
mance and spatiotemporal retrieval performance on CAREBENCH. General retrieval uses first-stage
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Table 4: Video retrieval performance of some state-of-the-arts methods on CAREBENCH. All
the results are reported in zero-shot setting.

Model
CAREBENCH General Retrieval

Text-to-Video Video-to-Text
R@1 R@5 R@10 R@1 R@5 R@10

CLIP-based Models
CLIP B/16 (Radford et al., 2021) 45.7 79.6 89.1 48.4 82.4 90.8
CLIP L/14 (Radford et al., 2021) 51.2 83.4 90.6 54.7 86.9 93.6
LanguageBind (Zhu et al., 2024) 64.3 91.0 96.3 59.5 88.0 95.0
Long-CLIP B/14 (Zhang et al., 2024a) 59.2 85.3 92.1 55.8 84.7 92.9
Long-CLIP L/14 (Zhang et al., 2024a) 62.7 88.8 95.7 60.3 88.8 94.9
InternVideo2stage2 1B (Wang et al., 2024c) 72.5 93.7 97.3 69.5 94.6 97.8

MLLMs
LLaVA NeXT Video 7B (Zhang et al., 2024b) 22.4 51.5 65.3 25.2 54.4 67.7
MiniCPM-V 2.6 (Yao et al., 2024) 8.2 26.9 38.4 16.7 39.9 55.8
InternVL2 8B (Chen et al., 2023) 34.6 67.1 80.2 35.1 68.5 82.0
Tarsier 7B (Wang et al., 2024a) 26.8 64.6 83.5 32.3 68.0 84.4
Qwen2-VL 7B (Wang et al., 2024b) 30.9 64.7 79.1 32.9 69.6 82.7

Contrastively trained MLLMs
LLaVA NV 7B (Zhang et al., 2024b) 66.9 89.4 96.0 62.7 89.2 95.4
MiniCPM-V 2.6 (Yao et al., 2024) 71.0 92.2 97.0 69.3 92.8 97.1
InternVL2 8B (Chen et al., 2023) 72.1 92.6 96.8 73.6 93.4 97.4
Tarsier 7B (Wang et al., 2024a) 71.0 93.8 97.8 70.6 94.2 98.0
Qwen2-VL 7B (Wang et al., 2024b) 76.6 95.3 98.7 77.4 95.6 98.7

CARE 77.0 95.6 98.7 79.0 96.8 99.1

Table 5: Spatiotemporal retrieval results of video retrieval on CAREBENCH. LLaVA NV 7B is
short for LLaVA NeXT Video 7B. We train all the MLLMs contrastively on NLI dataset to enable
them to generate video embeddings. All the results are reported in zero-shot setting.

Model
CAREBENCH Spatial Retrieval CAREBENCH Temporal Retrieval

ReBias%Text-to-Video Video-to-Text Text-to-Video Video-to-Text
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP-based Models
CLIP B/16 (Radford et al., 2021) 45.6 79.0 89.2 47.6 80.9 90.8 30.3 65.1 79.8 35.8 71.0 85.8 17.75
CLIP L/14 (Radford et al., 2021) 49.0 81.9 91.4 55.4 85.6 93.0 33.5 70.3 84.0 39.7 76.2 87.9 16.52
LanguageBind (Zhu et al., 2024) 64.7 90.8 96.8 61.0 87.2 94.5 39.8 77.3 90.5 42.2 77.6 91.7 18.10
Long-CLIP B/14 (Zhang et al., 2024a) 62.5 86.0 92.7 53.8 84.1 92.7 32.0 65.4 79.3 29.7 67.3 84.1 31.88
Long-CLIP L/14 (Zhang et al., 2024a) 65.6 90.9 96.0 61.0 88.3 94.4 33.2 68.8 81.6 34.5 71.9 86.6 31.77
InternVideo2stage2 1B (Wang et al., 2024c)† 72.4 94.2 97.4 62.7 90.5 95.9 46.0 80.8 91.9 46.6 82.5 92.5 16.58

MLLMs
LLaVA NV 7B (Zhang et al., 2024b) 34.1 63.1 76.0 31.1 63.7 75.1 18.6 48.1 62.4 20.7 47.1 62.4 32.32
MiniCPM-V 2.6 (Yao et al., 2024) 6.6 25.2 35.7 13.3 38.2 53.5 11.8 35.8 52.2 16.6 47.4 64.4 24.41
InternVL2 8B (Chen et al., 2023) 40.4 72.9 83.8 40.3 73.0 85.7 29.3 62.5 77.4 27.1 59.8 75.9 19.31
Tarsier 7B (Wang et al., 2024a) 40.5 74.0 88.1 41.9 75.0 87.4 26.8 64.6 83.5 32.3 68.0 84.4 13.15
Qwen2-VL 7B (Wang et al., 2024b) 28.1 61.3 76.1 31.6 65.6 80.4 24.3 61.5 78.4 26.4 59.2 76.1 5.28

Contrastively trained MLLMs
LLaVA NV 7B (Zhang et al., 2024b) 68.0 92.0 96.2 65.0 90.0 95.9 43.3 76.9 88.9 40.1 75.4 88.7 22.69
MiniCPM-V 2.6 (Yao et al., 2024) 71.7 93.6 98.0 67.6 92.3 97.7 50.5 82.9 92.1 46.1 80.9 93.3 16.89
InternVL2 8B (Chen et al., 2023) 76.1 94.1 97.6 74.3 94.5 97.6 48.1 76.8 89.0 47.6 78.2 90.3 25.02
Tarsier 7B (Wang et al., 2024a) 70.2 94.0 98.2 67.4 93.5 97.4 50.1 84.1 92.8 50.0 84.7 94.9 14.04
Qwen2-VL 7B (Wang et al., 2024b) 78.2 95.5 98.5 75.4 95.0 98.1 51.9 84.8 94.9 52.7 85.4 95.2 16.30

CARE 76.8 96.3 98.7 78.1 95.8 99.3 50.7 85.3 94.4 53.4 86.3 94.0 17.53
† InternVideo2stage2 is tested without match header for fairness.

annotations, while spatial and temporal retrieval leverage spatial captions and temporal captions
from second-stage. All tasks employ Recall at Rank K (R@K, higher is better) in a zero-shot set-
ting. The following observations can be concluded according to our analysis:

MLLMs perform better than CLIP-based models on video retrieval. CLIP-based models have
long dominated retrieval performance benchmarks. However, as demonstrated in Table 4, MLLMs
trained with contrastive learning exhibit significantly enhanced retrieval capabilities, surpassing their
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Table 6: Effect of the two-stage training. Four model settings are included: the baseline, CARE
with fine-grained caption adaptation only, CARE with retrieval adaptation only, and CARE with
full two-stage SFT. The evaluation metrics include Avg. R@1, which denotes the average text-to-
video and video-to-text R@1 on CAREBENCH General Retrieval, and Avg. F1, which represents
the average action/object F1 on CAREBENCH. Unified Score is the average of R@1 and F1.

Setting Retrieval Caption Overall
Avg. R@1 Avg. F1 Unified Score

Baseline 25.6 26.8 26.2
+Fine-Grained Caption Adaptation 17.6(-8.0) 33.8(+7.0) 25.7(-0.5)
+Retrieval Adaptation 77.0(+51.4) 28.2(+1.4) 52.6(+26.4)

+Fine-Grained Caption Adaptation & Retrieval Adaptation 78.0(+52.4) 33.4(+6.6) 55.7(+29.5)

predecessors in performance. Our CARE yields the most favorable results, surpassing CLIP, Long-
CLIP, LanguageBind, InternVideo2 and all the other MLLMs.

VLMs have inherent biases in their spatiotemporal understanding and excel at leveraging spa-
tial shortcuts for video understanding. According to Table 5, all models exhibit imbalance in spa-
tiotemporal understanding, with spatial retrieval performance significantly outperforming temporal
retrieval performance. When we switch from general retrieval to spatial retrieval, the performance
drop for VLMs is small (Avg. R@1: Qwen2-VL –0.20, Tarsier –2.00, MiniCPM-V 2.6 –0.50). In
contrast, the drop is substantial for Temporal Retrieval (Avg. R@1: Qwen2-VL –24.70, Tarsier
–20.75, MiniCPM-V 2.6 –21.85). Even when most action-related cues are removed from captions,
VLMs still maintain comparable performance. This indicates that these VLMs rely on scene cues
as a shortcut rather than using the detailed action information. Such a bias highlights the need for
improved methods to enhance temporal understanding capabilities in video understanding tasks.

5.4 ABLATION STUDY

In this section, we conduct experiments to further investigate the effect of our proposed two-
stage SFT. Using the same setting as mentioned in Section 5.1 and building upon the Qwen2-VL
model (Wang et al., 2024b), we perform a quantitative analysis to evaluate the impact of different
stages on the model’s performance in video captioning and retrieval tasks, as shown in Table 6. Our
baseline model, Qwen2-VL (Wang et al., 2024b), shows strong captioning skills (Avg. F1 26.8) but
struggles with retrieval tasks (Avg. R@1 25.6) without retrieval adaptation. Adding fine-grained
caption adaptation greatly improves the model’s captioning ability (Avg. F1 +7.0) at a slight cost
to retrieval performance (Avg. R@1 -8.0). On the other hand, using only retrieval adaptation gives
the model excellent retrieval capabilities (Avg. R@1 +51.4), which is a big improvement over the
baseline. After both training stages, our model not only excels in detailed video description but
also achieves top-level retrieval performance. Interestingly, we have uncovered evidence that video
retrieval and captioning tasks can mutually enhance each other: retrieval adaptation improves the
baseline’s video captioning performance by +1.4 (Avg. F1 26.8 −→ 28.2), and the high-quality fine-
tuning of fine-grained caption adaptation further boosts the retrieval adapted model by +1 (Avg.
R@1 77.0 −→ 78.0).

6 CONCLUSION

In this work, we present CAREBENCH, a fine-grained benchmark for video captioning and retrieval,
featuring 1,000 videos with high-quality human-annotated descriptions. Each caption is structured
hierarchically to cover four key aspects: overall summary, static object descriptions, dynamic action
descriptions, and miscellaneous details such as filming styles. We also propose ReBias and CapST,
novel metrics for assessing retrieval and captioning performance. Additionally, we develop CARE,
a unified baseline for both tasks, leveraging a two-stage supervised fine-tuning approach to generate
detailed captions and extract video features. Experiments show that CARE outperforms specialized
models in both fine-grained retrieval and captioning. Our work highlights the potential of unifying
video captioning and retrieval tasks under a single framework, challenging the traditional methods.
However, our model doesn’t address problems about VLMs’ spatiotemporal bias. Look ahead, future
research could explore further integration of both tasks and try to develop a more balanced model.
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Reproducibility Statement. We provide comprehensive materials to reproduce our results. Model
and training details (including loss functions, hyperparameters, and training settings) are in Section
4 and 5.1. Dataset sources, licenses, and annotation steps are documented in Section 3 and Appendix
H.

Ethical Statement. (1) Human annotators. We pay human annotators above the legally mandated
minimum wage in accordance with the laws where the research is conducted. (2) Biases in bench-
mark annotations. The authors are aware of the potential for bias in the annotations of our bench-
mark. These annotations may inadvertently reflect the annotators’ perspectives and biases. We have
tried to minimize the bias during the expert refinement and each annotation is cross-checked by two
human experts.
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Traditional Coarse-Fine Caption

Cheese is being sliced.

GPT-4o Generated Caption

The video is a sequence of frames showcasing various stationary ob-
jects placed on a flat surface. The frame composition remains largely 
consistent throughout the video, featuring a white water bottle equip-
ped with a black cap and a carabiner, a fork laid on a purple cloth, a 
knit green object, a floral-patterned fabric, and a blue mobile phone in 
a case. The background displays a wall with noticeable peeling paint, 
indicating slight wear and tear. At one point, the camera captures an 
angled view of a ceiling or light-colored horizontal surface before 
returning to the original scene. The video concludes focusing back on 
the stationary objects. The transitions are smooth with minimal move-
ment, maintaining a stable frame structure except for brief diversions.

Coarse-grained Description Uncertain Description Wrong Description

Summary This video showcases the sparring process between 
two individuals using samurai swords.
   Spatial Description The person on the left is dressed in black 
attire, wearing a protective helmet and gloves, gripping the 
samurai sword in his right hand, and sporting black and red boots. 
The individual on the right has a similar outfit, but his boots are 
black and white. The setting is indoors, featuring a black floor and 
light beige walls. One side of the wall has a wooden door, while 
the other side displays hooks adorned with various styles of 
swords and other equipment. A few spectators can also be seen 
around the venue.

Temporal Description During their exchange, the left-side con-
testant takes the initiative to attack, using his sword to deflect the 
right-side contestant's blade from below, then swiftly transi-
tioning to a defensive block. After successfully parrying, he 
attempts to strike at the chest area of the right-side contestant. 
The video then shifts from a first-person perspective to a third-
person view, reenacting the aforementioned actions. It transitions 
back to the first-person perspective for the second attack, where 
the swords clash back and forth several times. The right-side 
contestant then moves forward for a strike, but the left-side 
contestant dodges, elegantly sliding his sword from right to left 
across the chest of the right-side contestant, although he misses 
the hit. The video alternates between first-person and third-
person perspectives, vividly illustrating the viewpoints of both the 
contestants during their sparring and the spectators watching the 
action unfold. 
   Misc (Filming Style etc.) Overall, the entire video can be di-
vided into four segments, effectively showcasing the dynamic 
nature of their practice sessions.

CaReBench Caption

Figure 4: Comparision of captions between MSR-VTT(Xu et al., 2016), GPT-4o generated
data(Cui et al., 2024) and CAREBENCH. The caption in the upper left corner is from MSR-
VTT(Xu et al., 2016). It only contains short-text coarse descriptions. The annotation located in
the lower left corner is generated by GPT-4o sourced from ShareGPT-4o(Cui et al., 2024). It has
some coarse-grained, uncertain and wrong descriptions. The fine-grained caption on the right is
selected from CAREBENCH and is created by our human annotator following the pipeline. The
green sentences are fine-grained descriptions and the brown words show the temporal sequences in
the video.

A CASE STUDY

Benchmarks like MSRVTT (Xu et al., 2016) rely on brief short captions. As shown in Figure 4, the
MSRVTT caption in the upper-left corner overlooks key details, such as the contents of the kitchen
and the attire of the man. Captions annotated by LLMs may have coarse-grained, uncertain and
wrong descriptions. As shown in Figure 4, GPT-4o erroneously identifies the slipper beneath the
phone as a phone case and describes the camera’s violent shaking as “minimal movement.” The
fine-grained caption on the right is selected from CAREBENCH and is created by human. The green
sentences are fine-grained descriptions and the brown words show the action sequences in the video.
For more sample of CAREBENCH, see the end of the appendix.

B ADDITIONAL EXPERIMENTS

B.1 EXPERIMENTS ON TRADITIONAL BENCHMARKS

We compare CLIP-based models, MLLMs, and CARE on traditional retrieval benchmarks. All
the experiments follow the setting of 32 input frames. Table 7 and Table 8 present the retrieval
performance of all the models on MSR-VTT (Xu et al., 2016), MSVD (Chen & Dolan, 2011) and
DiDeMo (Hendricks et al., 2017). All the retrieval results are reported in zero-shot setting. Table 9
illustrates the captioning performance of popular models on DREAM-1K (Wang et al., 2024a).
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Table 7: Video retrieval performance on MSR-VTT (Xu et al., 2016) and MSVD (Chen &
Dolan, 2011).

Model
MSR-VTT (Xu et al., 2016) MSVD (Chen & Dolan, 2011)

Text-to-Video Video-to-Text Text-to-Video Video-to-Text
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP-based Models
CLIP B/16 (Radford et al., 2021) 33.8 56.1 66.6 30.5 53.8 65.5 37.0 64.2 74.1 60.5 79.9 87.5
CLIP L/14 (Radford et al., 2021) 36.7 58.8 68.0 32.8 54.7 66.2 41.1 68.8 77.5 68.1 85.5 91.8
LanguageBind (Zhu et al., 2024) 42.1 65.9 75.5 40.1 65.4 73.9 50.0 77.7 85.6 75.1 90 94.2
Long-CLIP B/14 (Zhang et al., 2024a) 38.7 62.3 70.6 34.4 57.7 68.2 40.4 68.0 77.7 63.4 81.6 87.8
Long-CLIP L/14 (Zhang et al., 2024a) 40.9 65.5 74.6 36.2 62.2 71.5 46.5 73.5 82.0 69.3 86.0 90.3
InternVideo2stage2 1B (Wang et al., 2024c)† 44.2 70.1 78.1 40.5 66.9 76.3 53.0 79.1 87.2 74.6 88.5 93.4

Contrastively Trained MLLMs
LLaVA NeXT Video 7B (Zhang et al., 2024b) 40.3 64.9 74.1 30.5 58.0 69.0 47.3 75.7 83.7 51.9 74.3 81.8
InternVL2 8B (Chen et al., 2023) 44.6 69.3 77.4 40.8 66.6 76.5 47.7 75.9 83.9 64.2 81.3 87.2
MiniCPM-V 2.6 (Yao et al., 2024) 44.7 69.7 77.8 41.6 68.7 77.6 50.5 78.7 85.8 69.1 84.6 90.2
Tarsier 7B (Wang et al., 2024a) 43.4 69.2 77.0 35.8 62.5 72.3 52.1 79.7 86.5 67.8 88.8 93.1
Qwen2-VL 7B (Wang et al., 2024a) 46.9 69.2 79.7 43.4 69.2 78.8 53.3 79.7 86.5 73.7 89.6 92.4

CARE 43.9 67.0 75.7 41.7 68.1 76.2 52.6 79.2 86.6 74.6 87.9 92.4
† InternVideo2stage2 is tested without match header for fairness.

Table 8: Video retrieval performance on DiDeMo (Hendricks et al., 2017).

Model
DiDeMo

Text-to-Video Video-to-Text
R@1 R@5 R@10 R@1 R@5 R@10

CLIP-based Models
CLIP B/16 (Radford et al., 2021) 23.5 46.3 55.2 22.2 43.8 54.0
CLIP L/14 (Radford et al., 2021) 24.1 48.0 58.2 23.8 44.9 54.0
LanguageBind (Zhu et al., 2024) 35.6 63.6 71.7 35.6 62.8 71.8
Long-CLIP B/14 (Zhang et al., 2024a) 30.3 52.4 63.7 24.8 52.8 63.4
Long-CLIP L/14 (Zhang et al., 2024a) 32.4 56.2 65.2 28.5 54.1 64.7
InternVideo2stage2 1B (Wang et al., 2024c)† 35.0 63.7 74.1 35.5 60.7 70.7

Contrastively Trained MLLMs
LLaVA NeXT Video 7B (Zhang et al., 2024b) 36.0 62.3 71.7 31.4 58.0 68.0
InternVL2 8B (Chen et al., 2023) 39.7 65.6 74.1 35.5 64.0 72.2
MiniCPM-V 2.6 (Yao et al., 2024) 40.6 65.2 74.2 35.7 61.6 70.1
Tarsier 7B (Wang et al., 2024a) 42.1 68.2 77.1 39.5 64.6 73.7
Qwen2-VL 7B (Wang et al., 2024a) 46.1 69.6 77.6 42.1 66.1 76.3

CARE 41.4 68.5 77.1 39.1 66.0 75.8
† InternVideo2stage2 is tested without match header for fairness.

B.2 EXPERIMENTS ON SMALLER MLLMS

We additionally benchmark small contrastively-trained MLLMs (1B/2B) on CAREBENCH and
MSR-VTT (Xu et al., 2016). The training follows the setting of Stage-II and consumes only 2.26
GPU hours and 6.4 GPU hours for 1B and 2B models, respectively. Table 10 and Table 11 report Re-
call@{1,5,10} for both text-to-video and video-to-text retrieval. As shown, competitive InternVL
2.5 1B/2B surpass Long-CLIP and narrow much of the gap to earlier 7B MLLMs—highlighting
the importance of training objectives and data over parameter count alone—while our 7B model
still achieves the strongest overall results. All methods follow the same input preprocessing and
evaluation settings to ensure comparability.

C QUANTITATIVE AND HUMAN-ALIGNED VALIDATION ON METRICS

We conduct additional quantitative and human-aligned validation to show that CapST reflects fine-
grained caption quality and correlates with human judgment compared to n-gram metrics.
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Table 9: Video caption performance of popular models on DREAM-1K. We report
F1/Recall/Precision for each category. # Params denotes the number of LLM parameters.

Model # Params DREAM-1K
Live-Action Movies Animation Movies Stock Videos YouTube Videos TikTok-Style Short Overall

GPT-4o mini - 34.5/32.7/36.6 28.9/26.0/32.6 37.9/38.0/37.9 33.5/30.2/37.5 34.7/29.3/42.4 34.0/31.2/37.4

LLaVA NeXT Video (Zhang et al., 2024b) 7B - - - - - -
InternVL2 (Chen et al., 2023) 7B 27.3/27.1/27.4 20.6/18.1/23.8 33.3/33.0/33.5 26.9/24.2/30.2 25.7/21.2/32.7 26.9/24.7/29.5
InternVL2.5 (Chen et al., 2024) 7B - - - - - -
InternVL2.5 (Chen et al., 2024) 72B - - - - - -
MiniCPM-V 2.6 (Yao et al., 2024) 7B 30.5/27.7/33.8 24.8/22.5/27.8 35.4/35.0/35.8 29.5/28.0/31.3 31.6/26.5/38.9 30.5/27.9/33.5
Tarsier (Wang et al., 2024a) 7B 36.6/34.8/38.5 29.3/25.5/34.6 39.6/35.5/44.7 33.0/28.4/39.2 33.6/26.9/44.6 34.6/30.2/40.3
Qwen2-VL (Wang et al., 2024b) 7B 27.7/24.2/32.5 22.2/18.4/28.0 37.0/38.0/36.1 30.7/27.0/35.5 29.1/23.8/37.6 29.6/26.3/33.9
Qwen2-VL (Wang et al., 2024b) 72B 32.1/30.6/33.7 27.6/23.9/32.6 41.1/41.1/41.2 32.0/27.7/38.1 32.1/26.4/41.0 33.2/29.9/37.3

CAREstage−I 7B 40.8/41.9/39.7 33.7/31.6/36.0 44.0/45.2/43.0 34.5/32.5/36.6 38.4/33.7/44.7 38.4/37.0/40.0
CARE 7B 41.9/42.1/41.8 32.0/30.0/34.2 44.2/45.6/42.8 34.5/32.3/37.1 37.3/33.7/41.7 38.1/36.8/39.5

Table 10: Video retrieval performance of small MLLMs on CAREBENCH. All the results are
reported in zero-shot setting.

Model
CAREBENCH General Retrieval

Text-to-Video Video-to-Text
R@1 R@5 R@10 R@1 R@5 R@10

CLIP-based Models
CLIP B/16 (Radford et al., 2021) 45.7 79.6 89.1 48.4 82.4 90.8
CLIP L/14 (Radford et al., 2021) 51.2 83.4 90.6 54.7 86.9 93.6
LanguageBind (Zhu et al., 2024) 64.3 91.0 96.3 59.5 88.0 95.0
Long-CLIP B/14 (Zhang et al., 2024a) 59.2 85.3 92.1 55.8 84.7 92.9
Long-CLIP L/14 (Zhang et al., 2024a) 62.7 88.8 95.7 60.3 88.8 94.9
InternVideo2stage2 1B (Wang et al., 2024c) 72.5 93.7 97.3 69.5 94.6 97.8

Contrastively trained MLLMs
LLaVA NV 7B (Zhang et al., 2024b) 66.9 89.4 96.0 62.7 89.2 95.4
MiniCPM-V 2.6 (Yao et al., 2024) 71.0 92.2 97.0 69.3 92.8 97.1
InternVL2.5 1B (Chen et al., 2024) 66.3 92.6 97.3 63.6 90.2 96.1
InternVL2 8B (Chen et al., 2023) 72.1 92.6 96.8 73.6 93.4 97.4
InternVL2.5 2B (Chen et al., 2024) 73.4 93.9 97.9 73.4 92.9 97.4
Tarsier 7B (Wang et al., 2024a) 71.0 93.8 97.8 70.6 94.2 98.0
Qwen2-VL 7B (Wang et al., 2024b) 76.6 95.3 98.7 77.4 95.6 98.7

CARE 77.0 95.6 98.7 79.0 96.8 99.1

N-gram metrics on CaReBench including BLEU@4, METEOR, ROUGE-L and CIDEr are shown
in Table 12. Due to the extremely high richness of the vocabulary in fine-grained captions, sentences
with similar semantics can differ greatly at the token level. Consequently, n-gram–based metrics are
already close to zero and no longer meaningful.

To provide human-aligned validation on CapST, we invite 10 human experts and follow the Elo
settings in Table 13 to perform ”which-is-better” evaluations on CAREBENCH and show the Elo
scores in Table 14.

Table 15 shows the pearson correlation coefficients between these metrics and Elo scores (e.i. human
preference). The results indicate that: (1) All the n-gram-based metrics are significantly uncorrelated
with the Elo score. (2) Action F1 and Object F1 demonstrate significant correlations with the Elo
score, suggesting they better capture human preferences.

D LIMITATIONS

Although CARE demonstrates strong generalization ability on fine-grained video retrieval and cap-
tioning tasks, it exhibits a certain degree of performance drop compared to the baseline (i.e con-
stratively trained Qwen2-VL) on coarse-grained, traditional datasets such as MSR-VTT (Xu et al.,
2016), as shown in Table 7 and Table 8. To further investigate this phenomenon, we provide in
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Table 11: Video retrieval performance of small MLLMs on MSR-VTT (Xu et al., 2016). All the
results are reported in zero-shot setting.

Model
MSR-VTT

Text-to-Video Video-to-Text
R@1 R@5 R@10 R@1 R@5 R@10

CLIP-based Models
CLIP B/16 (Radford et al., 2021) 33.8 56.1 66.6 30.5 53.8 65.5
CLIP L/14 (Radford et al., 2021) 36.7 58.8 68.0 32.8 54.7 66.2
LanguageBind (Zhu et al., 2024) 42.1 65.9 75.5 40.1 65.4 73.9
Long-CLIP B/14 (Zhang et al., 2024a) 38.7 62.3 70.6 34.4 57.7 68.2
Long-CLIP L/14 (Zhang et al., 2024a) 40.9 65.5 74.6 36.2 62.2 71.5
InternVideo2stage2 1B (Wang et al., 2024c)† 44.2 70.1 78.1 40.5 66.9 76.3

Contrastively trained MLLMs
LLaVA NeXT Video 7B (Zhang et al., 2024b) 40.3 64.9 74.1 30.5 58.0 69.0
InternVL2.5 1B (Chen et al., 2024) 41.3 64.4 73.8 36.3 61.6 70.9
InternVL2 8B (Chen et al., 2023) 44.6 69.3 77.4 40.8 66.6 76.5
InternVL2.5 2B (Chen et al., 2024) 41.9 68.4 75.7 39.7 65.8 75.5
MiniCPM-V 2.6 (Yao et al., 2024) 44.7 69.7 77.8 41.6 68.7 77.6
Tarsier 7B (Wang et al., 2024a) 43.4 69.2 77.0 35.8 62.5 72.3
Qwen2-VL 7B (Wang et al., 2024a) 46.9 69.2 79.7 43.4 69.2 78.8

CARE 43.9 67.0 75.7 41.7 68.1 76.2

Table 12: Comparison of models on BLEU@4, METEOR, ROUGE-L, and CIDEr.

Models BLEU@4 METEOR ROUGE-L CIDEr
LLaVA Video 7B (Zhang et al., 2024b) 0.030 0.155 0.185 0.019
MiniCPM-V 2.6 (Yao et al., 2024) 0.022 0.139 0.163 0.025
InternVL 2.5 8B (Chen et al., 2024) 0.015 0.120 0.156 0.000
Tarsier 7B (Wang et al., 2024a) 0.012 0.093 0.151 0.000
Qwen2-VL 7B (Wang et al., 2024b) 0.013 0.114 0.128 0.009
Qwen2-VL 72B (Wang et al., 2024b) 0.018 0.115 0.167 0.000

CARE 0.012 0.100 0.153 0.000

this section the results of CARE versus contrastively trained Qwen2-VL (Wang et al., 2024b) on
MSVD (Chen & Dolan, 2011), MSR-VTT (Xu et al., 2016), DiDeMo (Hendricks et al., 2017),
VDC (Chai et al., 2024) short captions, DREAM-1K (Wang et al., 2024a), ShareGPT-4o (Cui et al.,
2024), and CAREBENCH, together with an explicit, quantitative analysis of how performance varies
with caption length and action–object complexity across benchmarks.

D.1 PERFORMANCE OF CARE AND QWEN2-VL 7B ACROSS DIFFERENT BENCHMARKS

Table 16 shows the results of CARE and contrastively trained Qwen2-VL on difference benchmarks.
To ensure a fair comparison of model performance across datasets and to eliminate the influence of
absolute Avg Recall values, we use the relative gap (percentage) in Equation (4). The results of
performance gaps across difference benchmarks are illustrated in Table 17.

G =
RCARE −RQwen

RQwen
(4)

where RCARE is Avg Recall of CARE and RQwen is Avg Recall of contrastively trained Qwen2-VL.
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Table 13: Elo setting.

Parameter Number
initial Elo mean 1,000
Elo standard deviation 300
base of logarithm 10
scaling factor 400
K-factor 32
minimum Elo rating 700

Table 14: Elo scores of popular models on CAREBENCH.

Model Elo Score
InternVL2 8B (Chen et al., 2023) 889.31
LLaVA NeXT Video 7B (Zhang et al., 2024b) 914.27
Qwen2-VL 7B (Wang et al., 2024b) 959.34
MiniCPM-V 2.6 (Yao et al., 2024) 1051.14
Tarsier 7B (Wang et al., 2024a) 1061.59

CARE 1124.34

D.2 PEARSON CORRELATION ANALYSIS BETWEEN PERFORMANCE GAP AND BENCHMARK
STATISTICS

To visualize how the relative performance gap numerically relates to each benchmark statistic, we
performed a Pearson correlation analysis; the results are shown in Table 18.

According to the results illustrated above, we can come to the conclusions that:

1. CARE has a clear performance advantage on long-text, fine-grained tasks – especially those
containing a large number of actions and objects. Pearson correlation analysis shows that
the Relative Gap between our model and Qwen2-VL is strongly and positively correlated
with Avg. Words and Avg. Objects, and moderately positively correlated with Avg. Ac-
tions. The more detailed the benchmark and the more objects and actions it contains, the
more pronounced CARE’s advantages become.

2. CARE underperforms Qwen2-VL on coarse-grained retrieval benchmarks with simple ob-
jects and actions within the 7-to-60-word range. In contrast to Qwen2-VL, CARE incor-
porates an additional Fine-grained Alignment SFT. Although more ablation studies are
needed to verify how the SFT design affects performance, we can tentatively conclude that
this extra training reduces the model’s generalization on coarse-grained tasks.

E OBJECT LEAKAGE IN TEMPORAL CAPTION

We’ve tried our best to reduce the object leakage (i.e. having unnecessary objects) in temporal
caption. We here provide statistics and examples illustrating the degree of static/object leakage
in temporal annotations. We extract the objects in spatial captions and temporal captions using
Deepseek V3. The avg. objects in spatial caption is 10.76 and avg. objects in temporal caption is
6.82. The following shows two examples.

Example 1:

[video] v_00000044_3.mp4
[category] Personal Care
[subcategory] apply_eyebrows

[spatial_objects]
a woman with long black hair

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 15: Pearson correlation coefficients between metrics and Elo scores.

Metrics Elo Score
BLEU@4 -0.41
METEOR -0.54
ROUGE-L -0.19
CIDEr -0.14
Action F1 0.81
Object F1 0.71

Table 16: Performance of CaRe and Qwen2-VL 7B across different datasets.

Model ShareGPT-4o CaReBench MSVD VDC short captions MSR-VTT DiDeMo DREAM-1K
CaRe 87.38 91.03 78.88 80.19 62.10 61.32 92.93
Qwen2-VL 7B 87.03 90.38 79.20 81.00 64.53 62.97 94.65
† Metrics are computed as the average of T2V R@1,2,5 and V2T R@1,2,5.

a right eyebrow with brow dye
soft orange eyeshadow with silver glitter
pale pink lips
a pink wall with a black grid pattern
an upper garment with a blue base
an upper garment with white floral patterns
a small bottle of yellowish-brown brow dye
a small white mirror
a mirror with a yellow-edged border
a mirror with a silver design in the lower right corner
a brush with a black bristle head
a brush with a yellowish-brown stick
a brush with silver-white text branding.

[temporal_objects]
a person
a brow gel
a right eyebrow
a mirror
a small brush

Example 2:

[video] v_00007656_1.mp4
[category] Sports, Excercise
[subcategory] drop_golf

[spatial_objects]
a boy in a light blue short-sleeve shirt
a boy in khaki shorts
a boy wearing a white baseball cap
a boy wearing white-brown athletic shoes
a black golf club
a boy in a red short-sleeve shirt
a boy in khaki-striped shorts
a boy wearing a red baseball cap
a boy wearing white-brown athletic shoes
a white glove
a black golf club
a vast expanse of grass
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Table 17: Performance gaps, average words and actions/objects complexity of different
benchmarks.

Benchmark Avg. Words Relative Gap (%) Avg. Objects Avg. Actions
MSVD 7.0 -0.404 2.34 1.56
MSR-VTT 9.4 -3.766 2.34 1.89
DiDeMo 29.1 -2.620 4.07 3.69
VDC short captions 32.8 -1.000 4.67 3.18
DREAM-1K 59.3 1.817 5.79 6.16
ShareGPT-4o 125.7 0.402 8.31 5.78
CaReBench 228.0 0.719 10.03 6.94
† Objects and actions are extracted by Deepseek V3 (DeepSeek-AI et al., 2024).

Table 18: Pearson correlation coefficients (r) between relative gap and different variables.

Item Pearson r (p-value)
Rel Gap vs Avg. Words +0.706 (p = 0.076)
Rel Gap vs Avg. Objects +0.718 (p = 0.069)
Rel Gap vs Avg. Actions +0.523 (p = 0.229)

a pushcart on the left
some clothing on the pushcart
a deep blue bag on the grass
a railing enclosing the golf course
several yellow-green trees
a white house
a white signboard on the ground

[temporal_objects]
a boy in a red shirt,
a boy in a blue shirt,
a golf club,
a grassy field,
a ball

F LOGITS VISUALIZATION

To explore how CARE works, we feed its output embedding of a video featuring a chef is cutting
tomatoes in the kitchen into the last linear layer (i.e. lm head). It projects the embedding into the
vocabulary space. By decode the output logits, we can easily visualize the semantic components of
an embedding. It can be discovered that tokens with high logits constitute the essential semantics of
the input video, as shown in Figure 5c, describing the main visual objects and actions of the video
such as kitchen, cutting, tomatoes and chef, while the tokens in Figure 5b contain many subwords
and irrelevant tokens like dice, car and pizza. It can be inferred that the semantic distribution in the
next token space is hugely changed by two-stage SFT, allowing the main semantics to be the core
components of the embedding.

G ANNOTATION GUIDELINES

To inform our annotators the key points that they need to pay attention to, we design a guideline to
teach them how to describe videos accurately. The guideline is shown below.
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(a) The input video.

(b) Top 50 tokens decoded from the output embeddings of Qwen2-VL.

(c) Top 50 tokens decoded from the output embeddings of CARE.

Figure 5: Top 50 tokens decoded from the output embeddings of Qwen2-VL and CARE.
Qwen2-VL is the baseline model of CARE without any SFT. Compared to Qwen2-VL, two-stage
SFT makes the semantic components of CARE embedding much more related to the input video
featuring a chef is cutting tomatoes in the kitchen.

Worker 
Annotation

Expert
Correction

This video showcases a person swimming. In the upper left corner of the screen, 
it displays the "Voice of Ken Wood" while the bottom of the frame is labeled 
"Body Position". The commentary throughout the video is conducted in English. 
The swimmer is dressed in a swimsuit and is wearing a white and red swim cap 
as they navigate through the pool. The camera initially captures the athlete from 
behind, who is swimming in the center lane of the pool. They consistently rise to 
the surface to breathe, using coordinated arm strokes and leg kicks to move 
efficiently. Next, the shot shifts to a side view of the swimmer. During this 
transition, the blue watermark in the lower right corner disappears first, followed 
by the watermark in the upper left corner. A new watermark then appears in the 
lower right, remaining visible until the end of the video, when all watermarks 
vanish. Meanwhile, the background audio provides commentary on the 
swimmer's movements. ……

Stage-I: Detailed Hierarchical Annotation

Stage 2: Spatial-Temporal Part Separation

Spatial-Temporal Annotation
Separation

Expert
Correction

The camera initially captures the athlete from behind, who is swimming in the center lane of the 
pool. They consistently rise to the surface to breathe, using coordinated arm strokes and leg kicks 
to move efficiently. Next, the shot shifts to a side view of the swimmer. During this transition, the 
blue watermark in the lower right corner disappears first, followed by the watermark in the upper left 
corner. A new watermark then appears in the lower right, remaining visible until the end of the video, 
when all watermarks vanish. Meanwhile, the background audio provides commentary on the 
swimmer's movements. (remove audio description) ……

This video showcases a person swimming in the center lane of the pool. In the upper left corner of 
the screen, it displays the "Voice of Ken Wood" while the bottom of the frame is labeled "Body 
Position". The commentary throughout the video is conducted in English. (remove audio
description) The swimmer is dressed in a swimsuit and is wearing a white and red swim cap as 
they navigate through the pool. In the lower right corner of the screen, the name "Jess Schipper"  
shows. (add subtitle description missing in Stage 1). ……

who is swimming in the center lane of the
pool.

in the center lane of the pool.

move static descriptions to 
spatial annotation

Spatial Annotation

Temporal Annotation

Figure 6: An overview of the annotation pipeline. In Stage-I, workers are asked to describe videos
hierarchically in detail. In Stage-II, workers need to separate spatial descriptions with temporal
descriptions.
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Annotation Guideline (Stage 1)

Task
Your task is to describe videos in detail and hierarchically within 150-300 words. We provide
two examples and some points you may need to know.
Example 1: Cutting a Watermelon
(A video about cutting a watermelon is provided.)

• Summary This video shows a man cutting a watermelon.
• Object Description The man is wearing a green T-shirt and a black apron, with a

black mesh hat on his head. His left hand is wearing a gray glove, while his right
hand, holding a fruit knife, is wearing a transparent glove. He stands at the corner of
the countertop, with a white cutting board in front of him, holding a watermelon. To
his left, there is a sink containing another uncut watermelon.

• Action Description The man first cuts off both ends of the watermelon. Then, he
places the watermelon upright and rotate it clockwise, slicing off the rind piece by
piece. He uses the knife to push the rind into a trash bin on his right. Next, he takes
a light green tray from his right and place it next to the cutting board. After peeling
the watermelon, he cuts it into pieces and slides them onto the light green tray.

• Misc Description The video is filmed from behind the man, showing a quick and
efficient process of cutting the watermelon. With impressive speed, he slices through
the fruit, showing his expertise.

Example 2: Cutting a Tomato
(A video about cutting a tomato is provided.)

• Summary In the footage, someone is holding a knife and cutting a tomato on a
cutting board.

• Object Description The person is wearing black clothes, with a watch on his left
wrist. On the cutting board, there are four previously cut tomatoes and one sliced
green fruit. On the table, there is a bag of uncut tomatoes and a small knife. In the
top left corner of the video, there is a ”luxeat” watermark, and the text “NOW I’VE
SEEN EVERYTHING” is written in the bottom left corner.

• Action Description While cutting the tomato, the person first slices it forcefully
with one cut, then speeds up the chopping frequency, quickly slicing the tomato into
neat pieces.

• Misc Description The video is filmed from a third-person perspective, showcasing
clean and efficient vegetable-cutting. The person’s motions are skillful and confident.

Key Points for Descriptions
• Object Description Describe the entire frame in as much detail as possible. Focus

on the objects visible in the frame, clearly describing their positions, appearances,
and interactions (e.g “left hand” “right hand” “on the left” “on the right” “above”
“below” “upside-down” “holding” “wearing” etc.). This part should follow the de-
scription order outlined below: (1) describe the main object in the frames: for exam-
ple, “The person is wearing a green T-shirt and a black apron, with a black mesh hat
on their head. His left hand is wearing a gray glove, while his right hand, holding a
fruit knife, is wearing a transparent glove.” (2) describe the secondary objects in the
frames: for example, “The person is standing at one corner of a metal countertop. In
front of him is a white cutting board with a watermelon on it. To his left, there is a
sink containing another uncut watermelon.”

• Action Description Clearly describe the actions performed by the main subject,
noting the sequence of events (e.g first do X, then do Y). Include details about the nu-
ances of the actions (e.g rotating the watermelon clockwise, flipping it upside-down)
and the style of execution (e.g cutting fruit very quickly, climbing a tree clumsily).

• Misc Description Describe the video’s filming perspective (e.g “first-person,”
“third-person,” “off-site footage of a competition”) and provide a brief summary
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of the overall style and impression conveyed by the actions (e.g orderly and fast
watermelon cutting, sharp and efficient movements, clumsy actions, or dangerous
behaviors). This part should be concise, within 2-4 sentences.

Annotation Guideline (Stage 2)

Task
In this stage, your task is to separate the original hierarchical descriptions into two parts:
spatial descriptions (which do not include any descriptions about movements) and temporal
descriptions (which do not include any object descriptions). Camera movements, such as
zoom-ins, zoom-outs, etc should be included in temporal descriptions.
Key Points for Descriptions

• The spatial description should cover the key objects, secondary objects, and the en-
vironment in the frame. It must ensure that, based on the spatial description alone,
the videos in the assigned subcategory can be differentiated from one another.

• The temporal description should exclude any obvious static object descriptions that
help distinguish different videos. Only the details and sequence of actions should be
kept, and it must ensure that, based on the temporal description alone, the videos in
the assigned subcategory can be differentiated from one another.

• All the contents of spatial and temporal descriptions should come from the Stage 1
descriptions, and no additional details should be added. Both spatial and temporal
descriptions should begin with a summary.

H LICENSE INFORMATION

Datasets. Below are the datasets used in this paper that have known license information:
DiDeMo (Hendricks et al., 2017) (BSD 2-Clause License), Activity-Net (Heilbron et al., 2015)
(MIT License), DREAM-1K (Wang et al., 2024a) (Apache-2.0 License), VDC (Chai et al., 2024)
(Apache-2.0 License). Please note that CAREBENCH will be released with MIT License in the
future.

Models. Below are the models used in this paper that have known license information: In-
ternVL2 (Chen et al., 2023) (MIT License), InternVL2.5 (Chen et al., 2024) (Qwen License), LLaVA
NeXT Video (Zhang et al., 2024b) (Llama 2 Community License), Qwen2-VL (Wang et al., 2024b)
(Apache-2.0 License), Tarsier (Wang et al., 2024a) (Apache-2.0 License), LanguageBind (Zhu et al.,
2024) (MIT License), Long-CLIP (Zhang et al., 2024a) (Apache-2.0 License), InternVideo2 (Wang
et al., 2024c) (Apache-2.0 License).
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Annotation: This video showcases a heartwarming scene at an amusement park where a man is holding a little girl. The man is 
dressed in a blue top, revealing only his head, neck, and part of his upper body. The little girl has golden hair and is wearing a 
sleeveless blue top adorned with plenty of sequins on the front. Around her neck, she wears several strands of pink beaded 
necklaces. Surrounding them are other children and adults, with a person in a Peppa Pig mascot costume standing behind them. 
The mascot features a pink pig head and a blue body. This costumed character is interacting and waving at the children outside 
a small fenced area made of wood. Behind them is a white wall that has a blackboard with green and pink patterns drawn on it. 
The girl is leaning against the man's right arm, being held high by him, with her left hand resting on his neck and her right hand 
hanging down beside her. She then turns around to look back, releasing her left hand from his neck. The man mouths 
something to her, and the girl faces the camera again, cheerfully raising her right hand and waving towards it. The Peppa Pig 
mascot behind them has its left hand resting on its belly and is continuously waving with its right hand, even stopping briefly to 
embrace someone in front before turning to the right to keep waving. The video captures this scene from the viewpoint of the 
two characters, and their smiles, along with those of the nearby onlookers, are bright and joyous, showcasing a delightful 
atmosphere.

Spatial Annotation: This video showcases a scene in an amusement park where a man is holding a young girl. The man is 
dressed in a blue top, revealing only his head, neck, and part of his upper body. The little girl has golden hair and wears a blue 
sleeveless top adorned with numerous sequins on the front. Around her neck, she sports a necklace made of several pink beads. 
The girl is leaning against the man's right arm, held high above the ground. Her left hand rests on the man's neck, while her 
right hand hangs naturally by her side. Surrounding them are other children and adults, and in the background, there's a person 
dressed in a costume resembling Peppa Pig, with a pink pig head and a blue body. This costumed character is standing in a 
small enclosed area made of wooden fencing, interacting and greeting the children outside. Behind him is a white wall featuring 
a small blackboard decorated with green and pink patterns.

Temporal Annotation: This video showcases a scene in an amusement park where a man is holding a little girl in his arms. The 
girl turns her head to look back, releasing her left hand from the man's neck while he says something to her. She then 
straightens up to face the camera and happily waves her right hand at it. Behind them, a Peppa Pig plush toy stands with its left 
hand resting on its belly and its right hand waving enthusiastically. At one point, it briefly hugs the person in front before 
turning to the right to continue waving.

Video

Caption

Video

Caption

Annotation: This video showcases a woman styling her hair. She is dressed in a white blouse and has long hair. On her right wrist, she wears 
a watch, while her left hand grips a round brush and holds a black hairdryer. In front of her is a white table, which has two black towels 
draped over it, alongside various combs. The woman is seated on a gray chair, and behind her, there is a row of tables with chairs facing 
away from her, as well as numerous bottles on the tables. The wall behind her is adorned with several mirrors. At the beginning of the video, 
she uses the round brush in her left hand to curl a section of her hair on the left side while simultaneously using the hairdryer in her right 
hand to blow dry those strands. Afterward, she continues to use the round brush to style her hair, securing it at the ends while also using 
the hairdryer with her left hand to blow dry the hair. The entire video is filmed from a frontal perspective, showcasing her expertise and 
technique.

Spatial Annotation: This video showcases a woman blow-drying her hair. She is dressed in a white top and has long hair. On her right wrist, 
she wears a watch, while her left hand grips a round hairbrush and holds a black hairdryer. In front of her, there is a white table adorned with 
two black towels, on which various combs are placed. The woman is seated in a gray chair, with a row of tables and chairs facing away from 
her behind. The tables are stocked with numerous bottles. Additionally, the wall behind her features several mirrors hanging prominently.

Temporal Annotation: This video showcases a woman styling her hair. She starts by using a round brush in her left hand to curl a section of 
hair on her left side while simultaneously blow-drying it with a hairdryer in her right hand. After that, she continues to use the round brush 
with her left hand to comb through her hair, securing the brush at the end, and then she uses the hairdryer in her left hand to finish styling 
those sections of hair.
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Annotation: The video captures the heartwarming moment of a woman embracing her dog. Set outdoors under a brilliant sun, 
it features a brown-haired woman wearing a black tank top, holding her black dog close. In the background, there's a red and 
white vehicle adorned with paw print decals. Initially, she gazes down at the side profile of her dog, one arm wrapped around it 
while the other gently strokes its fur. As the camera rotates clockwise, the dog playfully sticks out its tongue, attempting to lick 
her. She closes her eyes and turns away, wearing a blissful expression, while both hands continue to caress the dog's neck and 
head.Later on, she lifts her dog's front paws towards the camera while still scratching its neck. At this moment, another person's 
arm appears on the right side of the frame, gently rubbing the dog's chin. The woman plants a kiss on the dog's forehead, then 
leans her head closely against the small pup. The dog tilts its head outward, prompting her to start playing with its front paws 
using her left hand. She then embraces the dog tightly once more, tenderly stroking the fur on its chin with her right index 
finger. A man's hand reaches in from the right side of the frame to give the dog some affectionate scratches on its head.As the 
camera gradually pulls back, the woman continues to stroke the dog's back with her left hand while nuzzling her head against it. 
The video is shot from a third-person perspective, with the camera positioned very close to the woman and her dog. The scene 
is filled with the warmth of their embrace, creating a wonderfully intimate atmosphere.

Spatial Annotation: The video captures the moment a woman embraces her dog. Set outdoors in glorious sunshine, the scene 
features a brown-haired woman wearing a black tank top, holding her black dog close. In the background, there is a red and 
white vehicle adorned with paw print patterns.

Temporal Annotation: The video captures the tender moment of a woman embracing her dog. At first, she gazes down at the 
dog's side profile, with one hand wrapped around the dog and the other gently stroking it. As the camera rotates clockwise, the 
dog eagerly sticks out its tongue, attempting to lick her, but she closes her eyes and turns away, using both hands to caress the 
dog's neck and head. Later, she lifts the dog's two front paws to face the camera while continuing to scratch its neck. At this 
point, another person's arm appears on the right side of the video, reaching out to pet the puppy's chin. The woman kisses the 
dog's forehead and then presses her head closely against the small dog's. The dog tilts its head outward, and the woman 
begins to manipulate its front paws with her left hand. She then pulls the dog in tightly, continuing to pet it and gently 
brushing her right index finger along its chin fur. Just outside the frame on the right, a man extends his hand to pet the dog, 
scratching its head. As the camera gradually zooms out, the woman uses her left hand to stroke the puppy's back from top to 
bottom, while also nuzzling her head against its.

Video

Caption

Annotation: This video showcases the fencing competition between athletes from the Arab Republic of Egypt and South Korea. 
At the bottom of the video, you can see the flags of both countries, their respective abbreviations, and the names of the 
competitors. The match progresses through rounds 1 to 3. On the left side, we have A. ABOUELKASSEM representing the Arab 
Republic of Egypt, while on the right is South Korean fencer CHOI B. During the match, the Egyptian fencer has their left leg 
forward and holds the sword in their left hand, while the Korean fencer has their right leg forward and wields the sword in their 
right hand. Both athletes are clad in fencing uniforms and black helmets, with the South Korean fencer standing out in red 
shoes. As the match unfolds, they begin by cautiously probing each other before the Korean fencer suddenly lunges forward, 
striking the Egyptian athlete on the leg. In response, the Egyptian fencer leaps upward to evade the blow but loses their balance 
upon landing and falls to the left. The second part of the video features a slow-motion replay of this action. The entire video is 
filmed from the side of the competition area, vividly illustrating the various dynamics of the match.

Spatial Annotation: This video showcases the competition between athletes from the Arab Republic of Egypt and South Korea 
on the fencing arena. At the bottom of the video, you can see the flags of both countries, their abbreviated names, and the 
names of the athletes. The match is in rounds 1-3. On the left is A. ABOUELKASSEM representing the Arab Republic of Egypt, 
while on the right is CHOI B. from South Korea. Throughout the competition, both athletes are dressed in fencing attire and 
wearing black helmets. Notably, the South Korean athlete is wearing red shoes. The Egyptian athlete has their left leg forward 
and holds the sword in their left hand, while the South Korean athlete has their right leg forward with the sword held in their 
right hand.

Temporal Annotation: This video showcases the competition between the athletes from the Arab Republic of Egypt and South 
Korea on the fencing arena. During the match, the two players initially engaged in a careful testing of each other's defenses. 
Suddenly, the South Korean fencer lunged forward with a swift thrust, striking the leg of the athlete from the Arab Republic of 
Egypt. In response, the Egyptian fencer jumped up, but unfortunately, he lost his balance upon landing and fell to the left. The 
second part of the video features a slow-motion replay of this sequence of events.

Video

Caption
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