

000 CAREBENCH: A FINE-GRAINED BENCHMARK 001 FOR VIDEO CAPTIONING AND RETRIEVAL 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 008 ABSTRACT 009

010 Video understanding, including video captioning and retrieval, is still a great chal-
011 lenge for video-language models (VLMs). The existing video retrieval and caption
012 benchmarks only include short descriptions, limits their ability of detailed video
013 understanding evaluation. To address this problem, we present CAREBENCH,
014 a testing benchmark for fine-grained video **C**aptioning and **R**etrieval with 1,000
015 high-quality pairs of videos and human-annotated detailed captions. Uniquely,
016 it provides manually separated spatial annotations and temporal annotations for
017 each video. Based on this design, we introduce two evaluation metrics, ReBias
018 and CapST, specifically tailored for video retrieval and video captioning tasks,
019 respectively. These metrics enable a comprehensive investigation into the spatial
020 and temporal biases inherent in VLMs. In addition, to handle both video retrieval
021 and video captioning tasks in a unified framework, we develop a simple baseline
022 based on a Multimodal Language Model (MLLM). By implementing a two-stage
023 Supervised Fine-Tuning (SFT), we fully unlock the potential of MLLM, enabling
024 it not only to generate detailed video descriptions but also to extract video features.
025 Surprisingly, experimental results demonstrate that, compared to the CLIP-based
026 models designed for retrieval and the popular MLLMs skilled in video captioning,
027 our baseline shows competitive performance in both fine-grained video retrieval
028 and video detailed captioning.
029

030 1 INTRODUCTION 031

032 Video captioning (Wang et al., 2022; Xu et al., 2023; Wang et al., 2024a; Chai et al., 2024) and
033 video retrieval (Radford et al., 2021; Luo et al., 2022; Ma et al., 2022; Zhou et al., 2024; Wang et al.,
034 2024c; Zhu et al., 2024; Zhang et al., 2024a) are two main tasks in video-language understanding.
035 Captioning requires perception and description of the main objects, events and actions in the video,
036 while retrieval aims at finding the most relevant video/text based on the text/video query. These
037 two tasks intuitively reflect the alignment and comprehension ability of Video-Language Models
038 (VLMs), serving as critical evaluations of VLM capabilities.

039 However, existing retrieval and captioning benchmarks struggle to evaluate VLMs' fine-grained
040 understanding. Traditional benchmarks (Xu et al., 2016; Chen & Dolan, 2011; Hendricks et al.,
041 2017) have short and rough annotations, assessing general and coarse-grained video understanding
042 of VLMs due to brief descriptions. Recent works (Zhang et al., 2024a; Yang et al., 2024; Chai
043 et al., 2024) use powerful VLMs like GPT-4o (OpenAI, 2023) for auto-annotation, which inevitably
044 introduces hallucinations and biases. DREAM-1K (Wang et al., 2024a) has more accurate human
045 annotations, yet it lacks hierarchical captions and comprehensive focus on both objects and events.

046 In addition, designing effective metrics for video captioning also poses a challenge. Traditional
047 n-gram metrics (Vedantam et al., 2015) are difficult to evaluate fine-grained captions(Wang et al.,
048 2024a; Chai et al., 2024), while LLM-based evaluations (e.g. AutoDQ (Wang et al., 2024a)), lack
049 comprehensive consideration of both static objects and dynamic actions.

050 To address these issues, we present CAREBENCH, a fine-grained **B**enchmark for video **C**aptioning
051 and **R**etrieval. It contains 1,000 videos with human-annotated detailed captions. Unlike images,
052 video understanding tasks require models to understand both static scenes and dynamic actions. So
053 we apply a hierarchical annotation scheme with each annotation covering four aspects: an overall
summary, static object descriptions, dynamic action descriptions, and misc descriptions (e.g., filming

054
 055 **Table 1: Statistics of retrieval and captioning benchmarks.** Traditional benchmarks, namely
 056 MSR-VTT (Xu et al., 2016), MSVD (Chen & Dolan, 2011), DiDeMo (Hendricks et al., 2017) and
 057 ActivityNet (Heilbron et al., 2015) have very short captions. Detailed captioning benchmarks (Wang
 058 et al., 2024a; Chai et al., 2024) have longer and detailed captions, but they are either annotated by
 059 GPT or fail to focus on both static objects and dynamic actions.

Benchmark	# Sample	Avg. Len.	Avg. Words	Annotator	Hierarchical Anno.	Static Focus	Dynamic Focus
MSR-VTT (Xu et al., 2016)	1,000	15.01s	9.41	Human	✗	✗	✗
DiDeMo (Hendricks et al., 2017)	1,037	53.94s	29.11	Human	✗	✗	✗
MSVD (Chen & Dolan, 2011)	670	10.04s	7.01	Human	✗	✗	✗
ActivityNet (Heilbron et al., 2015)	5,044	36.00s	13.48	Human	✗	✗	✗
DREAM-1K (Wang et al., 2024a)	1,000	8.9s	59.3	Human	✗	✗	✓
VDC (Chai et al., 2024)	1,000	28.18s	500.91	GPT	✓	✓	✗
CAREBENCH	1,000	14.35s	227.95	Human	✓	✓	✓

060
 061 style, camera movement, etc.). Such a design ensures each caption has sufficient details, challenging
 062 models to capture fine-grained information. Furthermore, to evaluate models spatiotemporally, each
 063 caption is manually separated into spatial and temporal parts. Based on this, we construct ReBias
 064 and CapST, two novel metrics for video retrieval and captioning, respectively. Due to our benchmark
 065 and metrics design, this work brings the community some new insights about spatiotemporal biases
 066 of state-of-the-art VLMs that other benchmarks may fail to reveal.

067 During the evaluation on both video retrieval and captioning tasks, we realize that previous works
 068 treat retrieval and captioning as separate tasks, leading to the development of specialized models for
 069 each. Specifically, CLIP-based dual-encoder models have been advanced for video retrieval, while
 070 Multimodal Large Language Models (MLLMs) have been tailored for video captioning. However,
 071 we discover that the two tasks can be unified and formulated as a mapping from the pixel space to a
 072 high-dimensional space: $\phi : \mathbb{R}^{T \times H \times W \times C} \rightarrow \mathbb{R}^D$ (either vocabulary space \mathbb{R}^{D_v} or embedding space
 073 \mathbb{R}^{D_e}). This finding renders it feasible to address the gap between video retrieval and captioning.

074 Taking advantage of the unified architecture of MLLMs, we develop CARE, a simple and unified
 075 baseline for both detailed video captioning and fine-grained video retrieval. Specifically, our method
 076 involves a two-stage supervised fine-tuning (SFT). This makes it possible to generate video captions
 077 and discriminate video contents using only one model. The first stage aligns the model output
 078 to a fine-grained text space, by training the model using mixed LLaVA-Video-178k (Zhang et al.,
 079 2024c) and Tarsier (Wang et al., 2024a) recaptioned data. In the second stage, a text-only contrastive
 080 learning approach (Jiang et al., 2024b) is adopted to enable the MLLM to perform cross-modal
 081 representations. As shown in Figure 1, our experiments indicate that, compared to CLIP-based retrieval
 082 models and MLLM captioning models, CARE achieves superior performance on CAREBENCH.

083 In summary, we make the following contributions:

084 **(1)** We introduce a fine-grained benchmark named CAREBENCH. It is designed for video retrieval
 085 and captioning, comprising 1,000 videos with high-quality human-annotated descriptions that pro-
 086 vide sufficient video details. Each video features hierarchical descriptions ensuring comprehensive
 087 coverage, and manually split spatial/temporal captions. Based on this, we construct ReBias and
 088 CapST, two novel metrics designed for the video retrieval and captioning tasks, respectively. Such
 089 designs reveal new insights about spatiotemporal biases of VLMs that other benchmarks may ignore.

090 **(2)** We present CARE, a simple baseline for fine-grained video retrieval and captioning. By applying
 091 two-stage Supervised Fine-Tuning (SFT), we enable CARE to not only generate detailed video de-
 092 scriptions but also to extract video features. Our experiments show that, compared to the CLIP-based
 093 models designed for retrieval and the popular MLLMs skilled in video captioning, our baseline has
 094 competitive performance in both fine-grained video retrieval and detailed video captioning.

101 2 RELATED WORK

102 **Video Caption.** Video captioning aims to describe videos using natural language. Traditional cap-
 103 tioning benchmarks, such as ActivityNet (Heilbron et al., 2015), MSVD (Chen & Dolan, 2011), and
 104 MSR-VTT (Xu et al., 2016), typically use a single sentence to describe a video, which is insufficient
 105 to convey the full visual contents. As a result, they can no longer effectively stress-test modern
 106 MLLMs, as these models can output semantically richer descriptions than reference captions. To

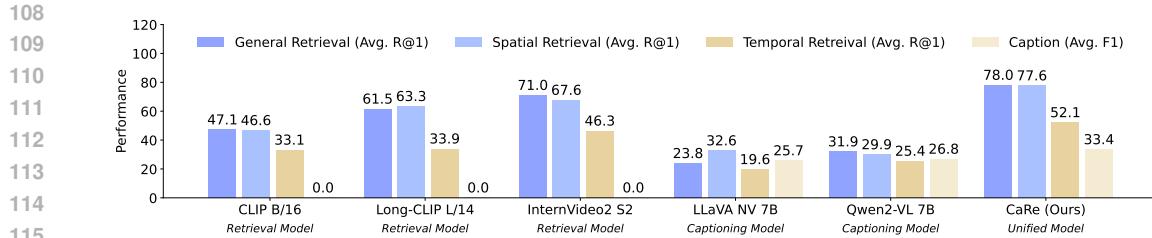


Figure 1: **CAREBENCH performance of popular models and CARE**. The results on MLLMs are reported on their public version without contrastive training. The CLIP-based models have achieved excellent performance in video retrieval tasks, but they lack the ability to describe videos. On the other hand, MLLMs can describe videos in detail, but their retrieval performance is very poor. In contrast, CARE not only shows outstanding retrieval performance but also has a strong capability to describe videos. Features are extracted from MLLMs using EOL prompt (Jiang et al., 2024b).

address these issues, new benchmarks have been proposed. DREAM-1K (Wang et al., 2024a) annotates five categories of videos with rich action content and introduces a novel automatic evaluation method called AutoDQ, which assesses the accuracy and recall of actions and events in captions. Similarly, VDC (Chai et al., 2024) employs hierarchical prompting with GPT-4o for structured and detailed captions, followed by manual correction. However, it lacks explicit focus on human actions and motion. In this paper, we explore a new fine-grained video captioning benchmark focusing not only on objects but also actions to comprehensively evaluate VLMs.

Video Retrieval. Video retrieval aims to find the most relevant video/text based on the text/video query. Traditional methods (Wang et al., 2024c; Ma et al., 2022; Luo et al., 2022; Zhang et al., 2024a; Li et al., 2023b; Girdhar et al., 2023) focus on using dual encoders based on CLIP (Radford et al., 2021) to extract features. But most of them are limited by the 77-token context length inherited from CLIP, hindering long-caption understanding (Zhou et al., 2024). While long-text and fine-grained video retrieval becomes important. Long-CLIP (Zhang et al., 2024a) addresses this problem by extending context to 248 tokens for long-text retrieval. But the benchmark used by it are annotated by LLMs, which may contain coarse-grained, uncertain and wrong descriptions. In this paper, we further explore the model training and the benchmark design for fine-grained video retrieval.

Multimodal Large Language Model. Due to great advancements in LLMs (Devlin et al., 2019; Brown et al., 2020; Wei et al., 2022; Chowdhery et al., 2023), their multimodal counterparts (MLLMs) (Li et al., 2023a; Chen et al., 2023; Yao et al., 2024; Zhang et al., 2024b; Wang et al., 2024b) are receiving significant attention, particularly for their capability to perform various visual tasks using straightforward instructions. Recent works like VideoChat (Li et al., 2023a) demonstrate outstanding performance on multimodal benchmarks (Fu et al., 2024; Li et al., 2024). But these models are restricted to generating responses based solely on user instructions and lack the capability to represent videos, images, and text. In this paper, we construct a unified baseline for both video retrieval and video captioning.

Multimodal Embedding. CLIP (Radford et al., 2021) learns image and text representations by aligning them with contrastive learning. However, Mind the Gap (Liang et al., 2022) notes that different data modalities are embedded with gaps in their shared representation space. To address this issue, recent works like VISTA (Zhou et al., 2024) and E5-V (Jiang et al., 2024b) explore unified representation. They find that MLLMs provide a unified multimodal framework to unify cross-modal representations without gaps. We regard it as a promising method and will further explore unified MLLM representation on video retrieval.

3 CAREBENCH: A FINE-GRAINED BENCHMARK

3.1 VIDEO COLLECTION

We manually select 1,000 videos from FineAction (Liu et al., 2022) with 10-20 videos in each subcategory. FineAction is a video dataset for temporal action localization with 106 subcategories

162 and 4 major categories: *personal care*, *socializing & relaxing*, *sports & exercise*, and *household*
 163 *activities*. Videos in each subcategory share similar scenes and actions, which poses a challenge to
 164 the models' ability to understand and discriminate similar videos.
 165

166 3.2 TWO-STAGE ANNOTATION PIPELINE 167

168 The annotation pipeline consists of two stages. In stage one, annotators describe videos in detail,
 169 covering four key aspects of each video. Subsequently, they are guided to separate the annotations
 170 into temporal and spatial descriptions. To ensure high quality and minimize bias, each video is
 171 independently captioned by two annotators and subsequently refined and merged by our experts.
 172 Refer to Figure 6 and Appendix A for annotation pipelines, data examples and the case study.

173 3.2.1 STAGE-I: DETAILED ANNOTATION 174

175 In Stage-I, annotators provide detailed video descriptions limited to 150-300 words. Each descrip-
 176 tion can be divided into four parts: a general overview, an action description, a object description,
 177 and a misc. description, as outlined below:

178 **General Overview** provides a one-sentence summary of the entire video. For example, *this video*
 179 *shows a person slicing a watermelon*.

180 **Object Description** focuses on static objects with attributes like position, color, shape, and other
 181 visual details. It contains primary and secondary objects, background, their relative positions, inter-
 182 actions, and even watermarks.

183 **Action Description** captures the actions occurring in the video, detailing the event sequences (e.g.,
 184 *first...*, *then...*) and providing specific details of each action (e.g., *rotating the watermelon clockwise*).
 185 It also includes the style of the actions (e.g., *cutting fruit quickly*, *climbing the tree clumsily*).

186 **Misc. Description** is about 2-4 sentences in length. It covers different aspects, such as the viewpoint
 187 (e.g., *a third-person perspective*) and the overall type of the video (e.g., *delightful and relaxing*).

188 3.2.2 STAGE-II: SPATIO-TEMPORAL SEPARATION 189

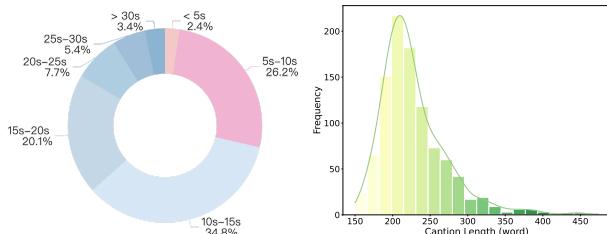
190 Stage-II refines the initial annotations
 191 by separating spatial and temporal el-
 192 ements. It removes action texts from
 193 object descriptions to create pure spa-
 194 tial captions, and eliminates static
 195 references from action descriptions to
 196 form pure temporal captions. This
 197 design ensures precise evaluation of
 198 VLMs' spatiotemporal modeling ca-
 199 pabilities by preventing interference
 200 between dynamic and static elements.

201 **Spatial Description** provides a com-
 202 prehensive view, beginning with a
 203 general overview and then detailing
 204 main objects, secondary objects, and the backgrounds. It ensures that spatial descriptions can dif-
 205 ferentiate between similar videos within the same subcategory.

206 **Temporal Description** begins with a general overview, then focuses on actions and their order.
 207 Spatial-specific details are excluded. It ensures temporal descriptions uniquely identify each video
 208 within its subcategory.

209 3.3 COMPARISON ON STATISTICS 210

211 The captions in CAREBENCH are human-annotated, providing detailed and comprehensive descrip-
 212 tions of the videos. Consequently, its statistics differ significantly from those of traditional bench-
 213 marks. As shown in Table 1, our benchmark is similar in size to MSR-VTT (Xu et al., 2016),
 214 DiDeMo (Hendricks et al., 2017), but the average number of words per caption is $24.2 \times$ higher than



(a) Video length distribution. (b) Caption length distribution.

Figure 2: **Statistics of CAREBENCH.**

that of MSR-VTT (Xu et al., 2016), $7.82 \times$ higher than DiDeMo (Hendricks et al., 2017), and $32.5 \times$ higher than MSVD (Chen & Dolan, 2011). The chart in Figure 2a shows the video length distribution of CAREBENCH. Since excessively long video durations significantly increase the difficulty for annotators to provide detailed descriptions, our benchmark focuses on videos ranging from 5 to 20 seconds in length, with over 80% of the videos falling within this range. Only 5.8% are shorter than 5s or extends beyond 30s. Figure 2b demonstrates how the caption length distributes. Most captions in CAREBENCH contain between 175 and 275 words.

3.4 METRICS DESIGN

CAREBENCH contains manually annotated spatial-temporal captions. This design enables us to identify biases in the model’s understanding of static objects and dynamic actions by analyzing the imbalance in spatio-temporal performance across video retrieval and captioning tasks. To quantify the spatio-temporal performance and bias, we introduce two novel metrics for video retrieval and video captioning, respectively: ReBias and CapST. These two metrics comprehensively reveal VLMs’ performance and inherent biases by separately evaluating spatial tasks and temporal tasks.

3.4.1 REBIAS

Evaluating spatial and temporal captions separately reveals the model’s performance across both dimensions. We introduce ReBias, a metric that measures spatiotemporal **Retrieval Bias**. It measures a model’s bias towards its focus on static objects versus dynamic actions by showing how far the temporal-to-spatial recall ratio deviates from 1 (lower is better). It can be formulated as follows:

$$B = \left| 1 - \frac{\bar{R}_{\text{temporal}}}{\bar{R}_{\text{spatial}}} \right|, \quad (1)$$

where $\bar{R}_{\text{temporal}}$ and \bar{R}_{spatial} denotes the average recall on temporal/spatial retrieval, respectively.

3.4.2 CAPST

Existing video captioning metrics face limitations: traditional n-gram methods, like CIDEr (Vedantam et al., 2015), struggle with long captions (Chai et al., 2024; Wang et al., 2024a), while LLM-based metrics (Chai et al., 2024; Wang et al., 2024a) lack comprehensiveness in evaluating both objects and actions. For example, VDCScore (Chai et al., 2024) evaluates predictions by querying both ground truth and prediction details to compute *recall*, but it ignores *precision* which is critical for assessing hallucinations; AutoDQ (Wang et al., 2024a) only focuses on evaluating actions/events and neglects objects. To overcome these issues, we propose CapST, a video **Captioning** metric jointly evaluating **Spatial** objects and **Temporal** events. Similar to Wang et al. (2024a), a powerful LLM extracts events from temporal captions and objects from spatial captions and computes the Natural Language Inference (NLI) relationship between the ground truth D_{gt} and the predictions D_{pred} . Specifically, we compute the recall and precision score of a sample according to Equation (2) and report average recall and precision of all samples in a benchmark. More details about quantitative and human-aligned validation on different metrics can be seen in Appendix C.

$$R = \frac{N(D_{gt} \xrightarrow{\text{entail}} E_{pred})}{N(E_{pred})}, P = \frac{N(D_{pred} \xrightarrow{\text{entail}} E_{gt})}{N(E_{gt})}, \quad (2)$$

where E_{pred} and E_{gt} denote elements (either objects or events) extracted from predictions and ground truth captions, respectively. $N(E_{pred})$ and $N(E_{gt})$ is the number of elements extracted from D_{pred} and D_{gt} , respectively. $N(D_{gt} \xrightarrow{\text{entail}} E_{pred})$ refers to the number of E_{pred} entailed by D_{gt} , and $N(D_{pred} \xrightarrow{\text{entail}} E_{gt})$ means the number of E_{gt} entailed by D_{pred} .

Specially, when multiple attributes are combined in a single description (e.g., “*an elderly man wearing glasses and a blue suit*”), NLI tends to penalize partially matching predictions, even when those predictions correctly identify some valid characteristics. To address this issue, we instruct the LLM to split attributes during extraction. For instance, the aforementioned description would be divided into “*an elderly man wearing glasses*” and “*an elderly man wearing a blue suit*.” This design allows a more precise evaluation of the model’s performance to describe objects with multiple attributes.

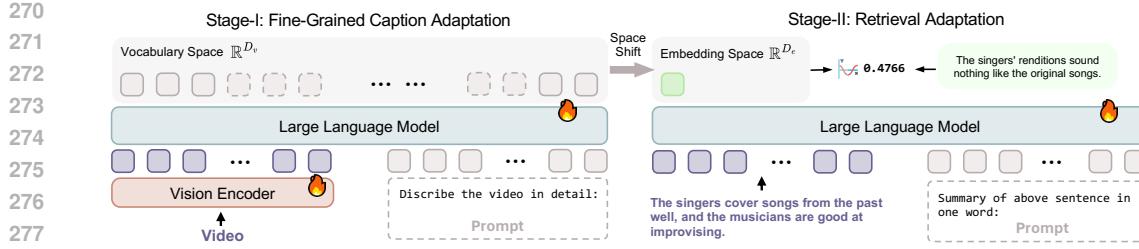


Figure 3: **Training recipe of CARE.** Stage-I aligns CARE outputs to a fine-grained text space for detailed video descriptions, while Stage-II contrastively trains CARE to extract features, shifting the output space from vocabulary (\mathbb{R}^{D_v}) to embedding space (\mathbb{R}^{D_e}).

4 CARE: A UNIFIED VIDEO MODEL

Previous works treat video retrieval and captioning as separate tasks, fostering specialized models like CLIP-based dual-encoders for retrieval and MLLMs for captioning. However, we find that these tasks can be unified into a single framework, formulated as a mapping from the pixel space to a high-dimensional space: $\phi : \mathbb{R}^{T \times H \times W \times C} \rightarrow \mathbb{R}^D$ (either vocabulary space \mathbb{R}^{D_v} or embedding space \mathbb{R}^{D_e}). To bridge this gap, we introduce CARE, a unified baseline built on Qwen2-VL (Wang et al., 2024b), trained via a two-stage progressive SFT to achieve both robust video captioning and strong video representation. The training pipeline is shown in Figure 3.

4.1 STAGE-I: FINE-GRAINED CAPTION ADAPTATION

MLLMs excel in general video understanding but often miss key video details. To align the model with fine-grained video understanding and provide a robust backbone for Stage-II, we train CARE with high-quality video-caption pairs. Specifically, we set finetuning prompt to “Describe the video in detail.” and train our model using video-text pairs from Tarsier Recap (Wang et al., 2024a), emphasizing action-rich descriptions, and LLaVA-Video-178k (Zhang et al., 2024c), focusing on short videos with details. With fine-grained caption adaptation, the model output is aligned with fine-grained text space and can focus on detailed actions and objects when describing videos.

4.2 STAGE-II: RETRIEVAL ADAPTATION

After Stage-I, CARE achieves precise alignment between pixel space and fine-grained text space. To shift the model output from the vocabulary space \mathbb{R}^{D_v} to the embedding space \mathbb{R}^{D_e} , we use a similar method as Jiang et al. (2024b;a), employing an Explicit One-word Limitation (EOL) prompt to extract embeddings from CARE. Specifically, there are two steps: (1) given an EOL prompt: “<sent> Summary of the above sentence in one word:”, the model is instructed to summarize the sentence s_i in the next token; (2) we use the hidden states in the next token generation step as the final embeddings f_i . Then, we train the model on an NLI dataset (Gao et al., 2021) where each sample contains a sentence s_i , its positive s_i^+ and its hard negative s_i^- . Since there are no video inputs during Stage-II, we freeze the vision encoder and train the LLM only. Our training objective is given as:

$$\mathcal{L} = -\log \frac{e^{\cos(f_i, f_i^+)/\tau}}{\sum_{j=1}^N (e^{\cos(f_i, f_j^+)/\tau} + e^{\cos(f_i, f_j^-)/\tau})}, \quad (3)$$

where f_i, f_i^+, f_i^- denote the embeddings of the sentence s_i , its positive s_i^+ and its hard negative s_i^- , respectively. $\cos(\cdot)$ is the cosine similarity function. τ is the temperature hyperparameter.

5 EXPERIMENTS

In this section, we present the experiments on CAREBENCH. Section 5.1 shows the experiment settings. Section 5.2 and 5.3 analyze the results on video captioning and retrieval. In section 5.4, we conduct ablations to show the effectiveness of our methods. Additional experiments on other benchmarks and smaller MLLMs are included in Appendix B.

324 **Table 2: Video caption performance of popular models on CAREBENCH (Events).** We report
 325 F1/Recall/Precision for each category. # Params denotes the number of LLM parameters.
 326

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	Model	# Params	CAREBENCH Caption (Events)				
			Personal Care	Social & Relax	Sports & Excercise	Household	Overall
GPT-4o mini	-	32.9/24.9/48.4	34.7/26.2/51.1	44.3/38.0/53.0	34.2/26.9/46.8	36.8/29.1/50.2	
LLaVA NeXT Video (Zhang et al., 2024b)	7B	27.5/20.1/43.7	25.0/17.4/44.1	29.4/21.1/48.4	24.3/16.2/48.1	26.6/18.7/45.9	
InternVL2 (Chen et al., 2023)	7B	22.2/18.4/28.0	23.0/17.9/32.3	27.9/23.4/34.5	18.4/14.7/24.8	23.3/18.8/30.7	
InternVL2.5 (Chen et al., 2024)	7B	22.0/15.1/41.1	24.0/16.8/41.6	34.0/26.1/48.8	22.3/15.3/40.6	26.0/18.6/43.2	
InternVL2.5 (Chen et al., 2024)	72B	24.6/16.7/46.7	25.9/18.3/44.4	36.0/27.8/51.0	24.9/17.5/43.2	28.2/20.3/46.4	
MinICPM-V 2.6 (Yao et al., 2024)	7B	30.2/21.3/52.0	26.9/18.6/48.8	38.1/29.7/53.1	28.5/20.0/49.5	31.1/22.3/51.2	
Tarsier (Wang et al., 2024a)	7B	25.4/16.5/ 55.0	26.5/18.0/ 50.4	32.0/22.8/53.3	22.8/15.3/44.7	27.1/18.4/51.1	
Qwen2-VL (Wang et al., 2024b)	7B	28.4/23.9/34.9	27.5/20.8/40.3	33.0/26.6/43.6	25.7/20.2/35.1	28.8/22.9/39.0	
Qwen2-VL (Wang et al., 2024b)	72B	29.6/22.1/45.0	28.1/20.6/44.2	37.3/28.5/53.9	26.4/18.6/45.4	30.5/22.6/47.1	
CARE_{stage-I}	7B	<u>33.9/25.4/50.8</u>	<u>32.4/24.0/49.8</u>	42.8/33.7/58.5	31.5/24.4/44.7	35.3/26.9/51.3	
CARE	7B	<u>34.4/25.6/52.6</u>	<u>32.2/24.0/48.8</u>	<u>42.3/33.3/58.1</u>	<u>30.9/23.4/45.3</u>	<u>35.1/26.6/51.4</u>	

337 **Table 3: Video caption performance of popular models on CAREBENCH (Objects).** We report
 338 F1/Recall/Precision for each category. # Params denotes the number of LLM parameters.
 339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	Model	# Params	CAREBENCH Caption (Objects)				
			Personal Care	Social & Relax	Sports & Excercise	Household	Overall
GPT-4o mini	-	29.2/21.2/47.2	34.2/26.5/48.0	36.0/27.4/52.6	35.1/27.6/48.2	33.8/25.8/49.1	
LLaVA NeXT Video (Zhang et al., 2024b)	7B	21.7/15.5/36.2	24.1/17.3/39.9	26.8/19.6/42.3	26.3/19.5/40.4	24.7/17.9/39.8	
InternVL2 (Chen et al., 2023)	7B	20.4/15.1/31.6	23.1/17.3/34.6	24.9/18.3/38.7	22.7/17.1/33.8	22.9/17.1/34.9	
InternVL2.5 (Chen et al., 2024)	7B	26.4/20.4/37.2	28.4/ <u>22.7/37.9</u>	31.6/ <u>26.4/39.4</u>	29.6/ <u>24.4/37.7</u>	29.1/ <u>23.5/38.2</u>	
InternVL2.5 (Chen et al., 2024)	72B	28.7/ <u>22.4/40.0</u>	28.6/ <u>23.3/37.3</u>	34.0/28.2/42.7	30.8/ <u>25.7/38.5</u>	30.5/ <u>24.8/39.5</u>	
MinICPM-V 2.6 (Yao et al., 2024)	7B	28.9/19.7/53.6	29.4/21.0/48.8	32.0/23.7/49.3	32.2/23.3/52.1	30.5/21.9/50.5	
Tarsier (Wang et al., 2024a)	7B	30.0/22.2/45.9	30.0/22.6/44.4	33.4/24.9/50.7	31.2/23.9/45.1	31.1/23.4/46.5	
Qwen2-VL (Wang et al., 2024b)	7B	23.7/15.8/47.7	23.0/15.1/47.8	24.9/16.2/53.1	24.8/16.8/47.2	24.0/15.9/49.1	
Qwen2-VL (Wang et al., 2024b)	72B	24.5/16.3/49.4	22.5/14.7/47.8	24.6/15.8/56.3	26.5/17.4/55.7	24.2/15.8/51.9	
CARE_{stage-I}	7B	<u>32.1/22.6/55.3</u>	<u>31.3/22.2/53.1</u>	<u>33.2/23.2/58.4</u>	<u>33.6/23.8/57.1</u>	<u>32.4/22.9/55.7</u>	
CARE	7B	<u>30.9/21.1/57.2</u>	<u>31.5/21.9/55.6</u>	<u>31.8/21.3/62.6</u>	<u>32.6/23.0/55.8</u>	<u>31.7/21.8/57.8</u>	

350 5.1 SETTINGS

351 In Stage-I, we train Qwen2-VL (Wang et al., 2024b) for about 400 GPU hours with a learning rate
 352 of 2e-5, batch size of 64, max pixel of 460,800, and 16 input frames. For Stage-II, CARE_{stage-II} is
 353 initialized from Stage-I and trained on NLI dataset with the video backbone frozen. Due to text-only
 354 contrastive learning, Stage-II only requires 24 GPU hours. We set epoch, batch size, and warmup
 355 ratio to 2, 768, and 0.2, respectively, and fully fine-tune CARE_{stage-II} with learning rate of 2e-4.
 356

357 5.2 VIDEO CAPTIONING

358 In Table 2 and Table 3, we present quantitative comparison of the video captioning task on
 359 CAREBENCH between CARE and popular VLMs. Results are reported in zero-shot setting following
 360 our CapST metric. We use DeepSeek-V3 (DeepSeek-AI et al., 2024) to serve as the LLM
 361 judge. The number of input frames are set to 32. The default prompt is “Describe the video
 362 in detail.” unless the official research (Zhang et al., 2024b) recommends a specific one.
 363

364 As illustrated in Table 2 and Table 3, our model has demonstrated superior performance across all the
 365 categories, surpassing all existing open-source models currently available. Considering the disparity
 366 between the models’ parameters and their performance, even the most powerful MLLM, Qwen2-VL
 367 72B, exhibits a significant performance gap when compared to our 7B CARE. This indicates that all
 368 current models still lack the ability to provide highly detailed, comprehensive, and fine-grained video
 369 descriptions. Additionally, it can be observed that whether the model has undergone stage II training
 370 does not affect its captioning performance. These promising results demonstrate that even a small-
 371 scale 7B model is capable of understanding the details within videos, including dynamic actions and
 372 static object elements and can have outstanding captioning and retrieval abilities simultaneously.
 373

374 5.3 VIDEO RETRIEVAL

375 We compare CLIP-based models, contrastively trained MLLMs and our CARE on CAREBENCH,
 376 following the setting of 32 input frames. Table 4 and Table 5 present the general retrieval perfor-
 377 mance and spatiotemporal retrieval performance on CAREBENCH. General retrieval uses first-stage

Table 4: **Video retrieval performance of some state-of-the-arts methods on CAREBENCH.** All the results are reported in zero-shot setting.

Model	CAREBENCH General Retrieval					
	Text-to-Video			Video-to-Text		
	R@1	R@5	R@10	R@1	R@5	R@10
CLIP-based Models						
CLIP B/16 (Radford et al., 2021)	45.7	79.6	89.1	48.4	82.4	90.8
CLIP L/14 (Radford et al., 2021)	51.2	83.4	90.6	54.7	86.9	93.6
LanguageBind (Zhu et al., 2024)	64.3	91.0	96.3	59.5	88.0	95.0
Long-CLIP B/14 (Zhang et al., 2024a)	59.2	85.3	92.1	55.8	84.7	92.9
Long-CLIP L/14 (Zhang et al., 2024a)	62.7	88.8	95.7	60.3	88.8	94.9
InternVideo2 _{stage2} 1B (Wang et al., 2024c)	72.5	93.7	97.3	69.5	94.6	97.8
MLLMs						
LLaVA NeXT Video 7B (Zhang et al., 2024b)	22.4	51.5	65.3	25.2	54.4	67.7
MiniCPM-V 2.6 (Yao et al., 2024)	8.2	26.9	38.4	16.7	39.9	55.8
InternVL2 8B (Chen et al., 2023)	34.6	67.1	80.2	35.1	68.5	82.0
Tarsier 7B (Wang et al., 2024a)	26.8	64.6	83.5	32.3	68.0	84.4
Qwen2-VL 7B (Wang et al., 2024b)	30.9	64.7	79.1	32.9	69.6	82.7
Contrastively trained MLLMs						
LLaVA NV 7B (Zhang et al., 2024b)	66.9	89.4	96.0	62.7	89.2	95.4
MiniCPM-V 2.6 (Yao et al., 2024)	71.0	92.2	97.0	69.3	92.8	97.1
InternVL2 8B (Chen et al., 2023)	72.1	92.6	96.8	73.6	93.4	97.4
Tarsier 7B (Wang et al., 2024a)	71.0	93.8	97.8	70.6	94.2	98.0
Qwen2-VL 7B (Wang et al., 2024b)	76.6	95.3	98.7	77.4	95.6	98.7
CARE	77.0	95.6	98.7	79.0	96.8	99.1

Table 5: Spatiotemporal retrieval results of video retrieval on CAREBENCH. LLaVA NV 7B is short for LLaVA NeXT Video 7B. We train all the MLLMs contrastively on NLI dataset to enable them to generate video embeddings. All the results are reported in zero-shot setting.

Model	CAREBENCH Spatial Retrieval								CAREBENCH Temporal Retrieval								ReBias%	
	Text-to-Video				Video-to-Text				Text-to-Video				Video-to-Text					
	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@10		
CLIP-based Models																		
CLIP B/16 (Radford et al., 2021)	45.6	79.0	89.2	47.6	80.9	90.8	30.3	65.1	79.8	35.8	71.0	85.8					17.75	
CLIP L/14 (Radford et al., 2021)	49.0	81.9	91.4	55.4	85.6	93.0	33.5	70.3	84.0	39.7	76.2	87.9					16.52	
LanguageBind (Zhu et al., 2024)	64.7	90.8	96.8	61.0	87.2	94.5	39.8	77.3	90.5	42.2	77.6	91.7					18.10	
Long-CLIP B/14 (Zhang et al., 2024a)	62.5	86.0	92.7	53.8	84.1	92.7	32.0	65.4	79.3	29.7	67.3	84.1					31.88	
Long-CLIP L/14 (Zhang et al., 2024a)	65.6	90.9	96.0	61.0	88.3	94.4	33.2	68.8	81.6	34.5	71.9	86.6					31.77	
InternVideo2 _{stage2} 1B (Wang et al., 2024c) [†]	72.4	94.2	97.4	62.7	90.5	95.9	46.0	80.8	91.9	46.6	82.5	92.5					16.58	
MLLMs																		
LLaVA NV 7B (Zhang et al., 2024b)	34.1	63.1	76.0	31.1	63.7	75.1	18.6	48.1	62.4	20.7	47.1	62.4					32.32	
MiniCPM-V 2.6 (Yao et al., 2024)	6.6	25.2	35.7	13.3	38.2	53.5	11.8	35.8	52.2	16.6	47.4	64.4					24.41	
InternVL2 8B (Chen et al., 2023)	40.4	72.9	83.8	40.3	73.0	85.7	29.3	62.5	77.4	27.1	59.8	75.9					19.31	
Tarsier 7B (Wang et al., 2024a)	40.5	74.0	88.1	41.9	75.0	87.4	26.8	64.6	83.5	32.3	68.0	84.4					13.15	
Qwen2-VL 7B (Wang et al., 2024b)	28.1	61.3	76.1	31.6	65.6	80.4	24.3	61.5	78.4	26.4	59.2	76.1					5.28	
Contrastively trained MLLMs																		
LLaVA NV 7B (Zhang et al., 2024b)	68.0	92.0	96.2	65.0	90.0	95.9	43.3	76.9	88.9	40.1	75.4	88.7					22.69	
MiniCPM-V 2.6 (Yao et al., 2024)	71.7	93.6	98.0	67.6	92.3	97.7	50.5	82.9	92.1	46.1	80.9	93.3					16.89	
InternVL2 8B (Chen et al., 2023)	76.1	94.1	97.6	74.3	94.5	97.6	48.1	76.8	89.0	47.6	78.2	90.3					25.02	
Tarsier 7B (Wang et al., 2024a)	70.2	94.0	98.2	67.4	93.5	97.4	50.1	84.1	92.8	50.0	84.7	94.9					14.04	
Qwen2-VL 7B (Wang et al., 2024b)	78.2	<u>95.5</u>	<u>98.5</u>	<u>75.4</u>	<u>95.0</u>	<u>98.1</u>	51.9	<u>84.8</u>	94.9	<u>52.7</u>	<u>85.4</u>	95.2					16.30	
CARE	76.8	96.3	98.7	78.1	95.8	99.3	50.7	85.3	94.4	53.4	86.3	94.0					17.53	

[†] InternVideo2_{stage2} is tested without match header for fairness.

annotations, while spatial and temporal retrieval leverage spatial captions and temporal captions from second-stage. All tasks employ Recall at Rank K (R@K, higher is better) in a zero-shot setting. The following observations can be concluded according to our analysis:

MLLMs perform better than CLIP-based models on video retrieval. CLIP-based models have long dominated retrieval performance benchmarks. However, as demonstrated in Table 4, MLLMs trained with contrastive learning exhibit significantly enhanced retrieval capabilities, surpassing their

432 Table 6: **Effect of the two-stage training.** Four model settings are included: the baseline, CARE
 433 with fine-grained caption adaptation only, CARE with retrieval adaptation only, and CARE with
 434 full two-stage SFT. The evaluation metrics include Avg. R@1, which denotes the average text-to-
 435 video and video-to-text R@1 on CAREBENCH General Retrieval, and Avg. F1, which represents
 436 the average action/object F1 on CAREBENCH. Unified Score is the average of R@1 and F1.

Setting	Retrieval Avg. R@1	Caption Avg. F1	Overall Unified Score
Baseline	25.6	26.8	26.2
+Fine-Grained Caption Adaptation	17.6(-8.0)	33.8(+7.0)	25.7(-0.5)
+Retrieval Adaptation	77.0(+51.4)	28.2(+1.4)	52.6(+26.4)
+Fine-Grained Caption Adaptation & Retrieval Adaptation	78.0(+52.4)	33.4(+6.6)	55.7(+29.5)

444 predecessors in performance. Our CARE yields the most favorable results, surpassing CLIP, Long-
 445 CLIP, LanguageBind, InternVideo2 and all the other MLLMs.

446 **VLMs have inherent biases in their spatiotemporal understanding and excel at leveraging spatial
 447 shortcuts for video understanding.** According to Table 5, all models exhibit imbalance in spa-
 448 tiotemporal understanding, with spatial retrieval performance significantly outperforming temporal
 449 retrieval performance. When we switch from general retrieval to spatial retrieval, the performance
 450 drop for VLMs is small (Avg. $R@1$: Qwen2-VL -0.20, Tarsier -2.00, MiniCPM-V 2.6 -0.50). In
 451 contrast, the drop is substantial for Temporal Retrieval (Avg. $R@1$: Qwen2-VL -24.70, Tarsier
 452 -20.75, MiniCPM-V 2.6 -21.85). Even when most action-related cues are removed from captions,
 453 VLMs still maintain comparable performance. This indicates that these VLMs rely on scene cues
 454 as a shortcut rather than using the detailed action information. Such a bias highlights the need for
 455 improved methods to enhance temporal understanding capabilities in video understanding tasks.

456 5.4 ABLATION STUDY

457 In this section, we conduct experiments to further investigate the effect of our proposed two-
 458 stage SFT. Using the same setting as mentioned in Section 5.1 and building upon the Qwen2-VL
 459 model (Wang et al., 2024b), we perform a quantitative analysis to evaluate the impact of different
 460 stages on the model’s performance in video captioning and retrieval tasks, as shown in Table 6. Our
 461 baseline model, Qwen2-VL (Wang et al., 2024b), shows strong captioning skills (Avg. F1 26.8) but
 462 struggles with retrieval tasks (Avg. R@1 25.6) without retrieval adaptation. Adding fine-grained
 463 caption adaptation greatly improves the model’s captioning ability (Avg. F1 +7.0) at a slight cost
 464 to retrieval performance (Avg. R@1 -8.0). On the other hand, using only retrieval adaptation gives
 465 the model excellent retrieval capabilities (Avg. R@1 +51.4), which is a big improvement over the
 466 baseline. After both training stages, our model not only excels in detailed video description but
 467 also achieves top-level retrieval performance. Interestingly, we have uncovered evidence that video
 468 retrieval and captioning tasks can mutually enhance each other: retrieval adaptation improves the
 469 baseline’s video captioning performance by +1.4 (Avg. F1 26.8 → 28.2), and the high-quality fine-
 470 tuning of fine-grained caption adaptation further boosts the retrieval adapted model by +1 (Avg.
 471 R@1 77.0 → 78.0).

472 6 CONCLUSION

473 In this work, we present CAREBENCH, a fine-grained benchmark for video captioning and retrieval,
 474 featuring 1,000 videos with high-quality human-annotated descriptions. Each caption is structured
 475 hierarchically to cover four key aspects: overall summary, static object descriptions, dynamic action
 476 descriptions, and miscellaneous details such as filming styles. We also propose ReBias and CapST,
 477 novel metrics for assessing retrieval and captioning performance. Additionally, we develop CARE,
 478 a unified baseline for both tasks, leveraging a two-stage supervised fine-tuning approach to generate
 479 detailed captions and extract video features. Experiments show that CARE outperforms specialized
 480 models in both fine-grained retrieval and captioning. Our work highlights the potential of unifying
 481 video captioning and retrieval tasks under a single framework, challenging the traditional methods.
 482 However, our model doesn’t address problems about VLMs’ spatiotemporal bias. Look ahead, future
 483 research could explore further integration of both tasks and try to develop a more balanced model.

486 **Reproducibility Statement.** We provide comprehensive materials to reproduce our results. Model
 487 and training details (including loss functions, hyperparameters, and training settings) are in Section
 488 4 and 5.1. Dataset sources, licenses, and annotation steps are documented in Section 3 and Appendix
 489 H.

490 **Ethical Statement.** (1) *Human annotators.* We pay human annotators above the legally mandated
 491 minimum wage in accordance with the laws where the research is conducted. (2) *Biases in bench-
 492 mark annotations.* The authors are aware of the potential for bias in the annotations of our bench-
 493 mark. These annotations may inadvertently reflect the annotators' perspectives and biases. We have
 494 tried to minimize the bias during the expert refinement and each annotation is cross-checked by two
 495 human experts.

497 REFERENCES

498 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
 499 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
 500 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
 501 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
 502 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
 503 Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In *NeurIPS*, 2020.

504 Wenhao Chai, Enxin Song, Yilun Du, Chenlin Meng, Vashisht Madhavan, Omer Bar-Tal, Jeng-
 505 Neng Hwang, Saining Xie, and Christopher D. Manning. Auroracap: Efficient, performant video
 506 detailed captioning and a new benchmark. *CoRR*, abs/2410.03051, 2024.

507 David L. Chen and William B. Dolan. Collecting highly parallel data for paraphrase evaluation. In
 508 *ACL*, pp. 190–200. The Association for Computer Linguistics, 2011.

509 Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 510 Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Internvl:
 511 Scaling up vision foundation models and aligning for generic visual-linguistic tasks. *CoRR*,
 512 abs/2312.14238, 2023.

513 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
 514 glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
 515 multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*,
 516 2024.

517 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
 518 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
 519 Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
 520 Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
 521 Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
 522 skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
 523 Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
 524 Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
 525 Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
 526 Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
 527 nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
 528 Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways.
 529 *J. Mach. Learn. Res.*, 24:240:1–240:113, 2023.

530 Erfei Cui, Yinan He, Zheng Ma, Zhe Chen, Hao Tian, Weiyun Wang, Kunchang Li, Yi Wang,
 531 Wenhai Wang, Xizhou Zhu, Lewei Lu, Tong Lu, Yali Wang, Limin Wang, Yu Qiao, and Jifeng
 532 Dai. Sharegpt-4o: Comprehensive multimodal annotations with gpt-4o, 2024. URL <https://sharegpt4o.github.io/>.

533 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
 534 gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
 535 Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
 536 Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui

540 Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
 541 Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
 542 Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
 543 Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
 544 Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
 545 Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
 546 Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
 547 Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shaoqing Wu, Shengfeng
 548 Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
 549 ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, and Wangding Zeng. Deepseek-v3
 550 technical report. *CoRR*, abs/2412.19437, 2024.

551 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
 552 bidirectional transformers for language understanding. In *NAACL-HLT (1)*, pp. 4171–4186. As-
 553 sociation for Computational Linguistics, 2019.

554 Chaoyou Fu, Yuhan Dai, Yondong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
 555 Zhou, Yunhang Shen, Mengdan Zhang, Peixian Chen, Yanwei Li, Shaohui Lin, Sirui Zhao,
 556 Ke Li, Tong Xu, Xiawu Zheng, Enhong Chen, Rongrong Ji, and Xing Sun. Video-mme: The
 557 first-ever comprehensive evaluation benchmark of multi-modal llms in video analysis. *CoRR*,
 558 abs/2405.21075, 2024.

559 Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
 560 embeddings. In *EMNLP (1)*, pp. 6894–6910. Association for Computational Linguistics, 2021.

561 Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
 562 Joulin, and Ishan Misra. Imagebind one embedding space to bind them all. In *CVPR*, pp. 15180–
 563 15190. IEEE, 2023.

564 Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet:
 565 A large-scale video benchmark for human activity understanding. In *CVPR*, pp. 961–970. IEEE
 566 Computer Society, 2015.

567 Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell, and Bryan C. Rus-
 568 sell. Localizing moments in video with natural language. In *ICCV*, pp. 5804–5813. IEEE Com-
 569 puter Society, 2017.

570 Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing Wang, and Fuzhen Zhuang. Scaling sentence
 571 embeddings with large language models. In *EMNLP (Findings)*, pp. 3182–3196. Association for
 572 Computational Linguistics, 2024a.

573 Ting Jiang, Minghui Song, Zihan Zhang, Haizhen Huang, Weiwei Deng, Feng Sun, Qi Zhang,
 574 Deqing Wang, and Fuzhen Zhuang. E5-V: universal embeddings with multimodal large language
 575 models. *CoRR*, abs/2407.12580, 2024b.

576 Kunchang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhui Wang, Ping Luo, Yali Wang, Limin Wang,
 577 and Yu Qiao. Videochat: Chat-centric video understanding. *CoRR*, abs/2305.06355, 2023a.

578 Kunchang Li, Yali Wang, Yizhuo Li, Yi Wang, Yinan He, Limin Wang, and Yu Qiao. Unmasked
 579 teacher: Towards training-efficient video foundation models. In *ICCV*, pp. 19891–19903. IEEE,
 580 2023b.

581 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
 582 Ping Lou, Limin Wang, and Yu Qiao. Mvbench: A comprehensive multi-modal video under-
 583 standing benchmark. In *CVPR*, pp. 22195–22206. IEEE, 2024.

584 Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y. Zou. Mind the gap:
 585 Understanding the modality gap in multi-modal contrastive representation learning. In *NeurIPS*,
 586 2022.

587 Yi Liu, Limin Wang, Yali Wang, Xiao Ma, and Yu Qiao. Fineaction: A fine-grained video dataset
 588 for temporal action localization. *IEEE Trans. Image Process.*, 31:6937–6950, 2022.

594 Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui Li. Clip4clip: An
 595 empirical study of CLIP for end to end video clip retrieval and captioning. *Neurocomputing*, 508:
 596 293–304, 2022.

597 Yiwei Ma, Guohai Xu, Xiaoshuai Sun, Ming Yan, Ji Zhang, and Rongrong Ji. X-CLIP: end-to-
 598 end multi-grained contrastive learning for video-text retrieval. In *ACM Multimedia*, pp. 638–647.
 599 ACM, 2022.

600 OpenAI. GPT-4 technical report. *CoRR*, abs/2303.08774, 2023.

601 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 602 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 603 Sutskever. Learning transferable visual models from natural language supervision. In *ICML*,
 604 volume 139 of *Proceedings of Machine Learning Research*, pp. 8748–8763. PMLR, 2021.

605 Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image
 606 description evaluation. In *CVPR*, pp. 4566–4575. IEEE Computer Society, 2015.

607 Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu,
 608 and Lijuan Wang. GIT: A generative image-to-text transformer for vision and language. *Trans.
 609 Mach. Learn. Res.*, 2022, 2022.

610 Jiawei Wang, Liping Yuan, and Yuchen Zhang. Tarsier: Recipes for training and evaluating large
 611 video description models. *CoRR*, abs/2407.00634, 2024a.

612 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 613 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 614 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
 615 perception of the world at any resolution. *CoRR*, abs/2409.12191, 2024b.

616 Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Guo Chen, Baoqi Pei, Rongkun Zheng,
 617 Zun Wang, Yansong Shi, Tianxiang Jiang, Songze Li, Jilan Xu, Hongjie Zhang, Yifei Huang,
 618 Yu Qiao, Yali Wang, and Limin Wang. Internvideo2: Scaling foundation models for multimodal
 619 video understanding. In *ECCV (85)*, volume 15143 of *Lecture Notes in Computer Science*, pp.
 620 396–416. Springer, 2024c.

621 Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
 622 Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In *ICLR*.
 623 OpenReview.net, 2022.

624 Haiyang Xu, Qinghao Ye, Ming Yan, Yaya Shi, Jiabo Ye, Yuanhong Xu, Chenliang Li, Bin Bi,
 625 Qi Qian, Wei Wang, Guohai Xu, Ji Zhang, Songfang Huang, Fei Huang, and Jingren Zhou.
 626 mplug-2: A modularized multi-modal foundation model across text, image and video. In *ICML*,
 627 volume 202 of *Proceedings of Machine Learning Research*, pp. 38728–38748. PMLR, 2023.

628 Jun Xu, Tao Mei, Ting Yao, and Yong Rui. MSR-VTT: A large video description dataset for bridging
 629 video and language. In *CVPR*, pp. 5288–5296. IEEE Computer Society, 2016.

630 Dongjie Yang, Suyuan Huang, Chengqiang Lu, Xiaodong Han, Haoxin Zhang, Yan Gao, Yao Hu,
 631 and Hai Zhao. Vript: A video is worth thousands of words. *Advances in Neural Information
 632 Processing Systems*, 37:57240–57261, 2024.

633 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
 634 Weilin Zhao, Zhihui He, Qianyu Chen, Huarong Zhou, Zhensheng Zou, Haoye Zhang, Shengding
 635 Hu, Zhi Zheng, Jie Zhou, Jie Cai, Xu Han, Guoyang Zeng, Dahai Li, Zhiyuan Liu, and Maosong
 636 Sun. Minicpm-v: A GPT-4V level MLLM on your phone. *CoRR*, abs/2408.01800, 2024.

637 Beichen Zhang, Pan Zhang, Xiaoyi Dong, Yuhang Zang, and Jiaqi Wang. Long-clip: Unlocking
 638 the long-text capability of CLIP. In *ECCV (51)*, volume 15109 of *Lecture Notes in Computer
 639 Science*, pp. 310–325. Springer, 2024a.

640 Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, and
 641 Chunyuan Li. Llava-next: A strong zero-shot video understanding model, April 2024b. URL
 642 <https://llava-vl.github.io/blog/2024-04-30-llava-next-video/>.

648 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video instruc-
649 tion tuning with synthetic data, 2024c. URL <https://arxiv.org/abs/2410.02713>.
650

651 Junjie Zhou, Zheng Liu, Shitao Xiao, Bo Zhao, and Yongping Xiong. VISTA: visualized text em-
652 bedding for universal multi-modal retrieval. In *ACL (1)*, pp. 3185–3200. Association for Compu-
653 tational Linguistics, 2024.

654 Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, Hongfa Wang, Yatian Pang, Wenhao Jiang,
655 Junwu Zhang, Zongwei Li, Caiwan Zhang, Zhifeng Li, Wei Liu, and Li Yuan. Languagebind:
656 Extending video-language pretraining to n-modality by language-based semantic alignment. In
657 *ICLR*. OpenReview.net, 2024.

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

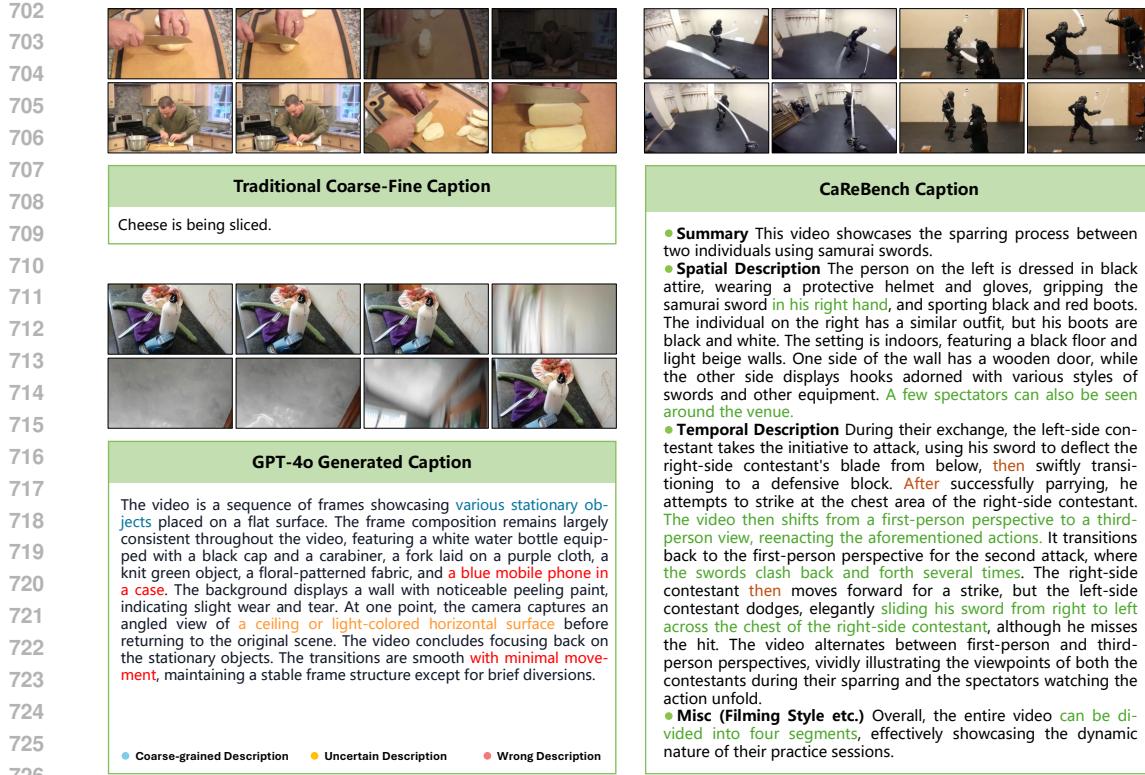


Figure 4: **Comparision of captions between MSR-VTT(Xu et al., 2016), GPT-4o generated data(Cui et al., 2024) and CAREBENCH.** The caption in the upper left corner is from MSR-VTT(Xu et al., 2016). It only contains short-text coarse descriptions. The annotation located in the lower left corner is generated by GPT-4o sourced from ShareGPT-4o(Cui et al., 2024). It has some **coarse-grained**, **uncertain** and **wrong** descriptions. The fine-grained caption on the right is selected from CAREBENCH and is created by our human annotator following the pipeline. The **green** sentences are fine-grained descriptions and the **brown** words show the temporal sequences in the video.

A CASE STUDY

Benchmarks like MSRVTT (Xu et al., 2016) rely on brief short captions. As shown in Figure 4, the MSRVTT caption in the upper-left corner overlooks key details, such as the contents of the kitchen and the attire of the man. Captions annotated by LLMs may have coarse-grained, uncertain and wrong descriptions. As shown in Figure 4, GPT-4o erroneously identifies the slipper beneath the phone as a phone case and describes the camera's violent shaking as "minimal movement." The fine-grained caption on the right is selected from CAREBENCH and is created by human. The **green** sentences are fine-grained descriptions and the **brown** words show the action sequences in the video. For more sample of CAREBENCH, see the end of the appendix.

B ADDITIONAL EXPERIMENTS

B.1 EXPERIMENTS ON TRADITIONAL BENCHMARKS

We compare CLIP-based models, MLLMs, and CARE on traditional retrieval benchmarks. All the experiments follow the setting of 32 input frames. Table 7 and Table 8 present the retrieval performance of all the models on MSR-VTT (Xu et al., 2016), MSVD (Chen & Dolan, 2011) and DiDeMo (Hendricks et al., 2017). All the retrieval results are reported in zero-shot setting. Table 9 illustrates the captioning performance of popular models on DREAM-1K (Wang et al., 2024a).

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
Table 7: **Video retrieval performance on MSR-VTT (Xu et al., 2016) and MSVD (Chen & Dolan, 2011).**

Model	MSR-VTT (Xu et al., 2016)								MSVD (Chen & Dolan, 2011)				
	Text-to-Video				Video-to-Text				Text-to-Video		Video-to-Text		
	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	
CLIP-based Models													
CLIP B/16 (Radford et al., 2021)	33.8	56.1	66.6	30.5	53.8	65.5	37.0	64.2	74.1	60.5	79.9	87.5	
CLIP L/14 (Radford et al., 2021)	36.7	58.8	68.0	32.8	54.7	66.2	41.1	68.8	77.5	68.1	85.5	91.8	
LanguageBind (Zhu et al., 2024)	42.1	65.9	75.5	40.1	65.4	73.9	50.0	77.7	85.6	75.1	90	94.2	
Long-CLIP B/14 (Zhang et al., 2024a)	38.7	62.3	70.6	34.4	57.7	68.2	40.4	68.0	77.7	63.4	81.6	87.8	
Long-CLIP L/14 (Zhang et al., 2024a)	40.9	65.5	74.6	36.2	62.2	71.5	46.5	73.5	82.0	69.3	86.0	90.3	
InternVideo2 _{stage2} 1B (Wang et al., 2024c) [†]	44.2	70.1	78.1	40.5	66.9	76.3	53.0	79.1	87.2	74.6	88.5	93.4	
Contrastively Trained MLLMs													
LLaVA NeXT Video 7B (Zhang et al., 2024b)	40.3	64.9	74.1	30.5	58.0	69.0	47.3	75.7	83.7	51.9	74.3	81.8	
InternVL2 8B (Chen et al., 2023)	44.6	69.3	77.4	40.8	66.6	76.5	47.7	75.9	83.9	64.2	81.3	87.2	
MiniCPM-V 2.6 (Yao et al., 2024)	44.7	69.7	77.8	41.6	68.7	77.6	50.5	78.7	85.8	69.1	84.6	90.2	
Tarsier 7B (Wang et al., 2024a)	43.4	69.2	77.0	35.8	62.5	72.3	52.1	79.7	86.5	67.8	88.8	93.1	
Qwen2-VL 7B (Wang et al., 2024a)	46.9	69.2	79.7	43.4	69.2	78.8	53.3	79.7	86.5	73.7	89.6	92.4	
CARE	43.9	67.0	75.7	41.7	68.1	76.2	52.6	79.2	86.6	74.6	87.9	92.4	

[†] InternVideo2_{stage2} is tested without match header for fairness.

774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
Table 8: **Video retrieval performance on DiDeMo (Hendricks et al., 2017).**

Model	DiDeMo											
	Text-to-Video						Video-to-Text					
	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
CLIP-based Models												
CLIP B/16 (Radford et al., 2021)	23.5	46.3	55.2	22.2	43.8	54.0						
CLIP L/14 (Radford et al., 2021)	24.1	48.0	58.2	23.8	44.9	54.0						
LanguageBind (Zhu et al., 2024)	35.6	63.6	71.7	35.6	62.8	71.8						
Long-CLIP B/14 (Zhang et al., 2024a)	30.3	52.4	63.7	24.8	52.8	63.4						
Long-CLIP L/14 (Zhang et al., 2024a)	32.4	56.2	65.2	28.5	54.1	64.7						
InternVideo2 _{stage2} 1B (Wang et al., 2024c) [†]	35.0	63.7	74.1	35.5	60.7	70.7						
Contrastively Trained MLLMs												
LLaVA NeXT Video 7B (Zhang et al., 2024b)	36.0	62.3	71.7	31.4	58.0	68.0						
InternVL2 8B (Chen et al., 2023)	39.7	65.6	74.1	35.5	64.0	72.2						
MiniCPM-V 2.6 (Yao et al., 2024)	40.6	65.2	74.2	35.7	61.6	70.1						
Tarsier 7B (Wang et al., 2024a)	42.1	68.2	77.1	39.5	64.6	73.7						
Qwen2-VL 7B (Wang et al., 2024a)	46.1	69.6	77.6	42.1	66.1	76.3						
CARE	41.4	68.5	77.1	39.1	66.0	75.8						

[†] InternVideo2_{stage2} is tested without match header for fairness.

796
797
798
799
800
801
802
803
804
805
806
807
808
809
B.2 EXPERIMENTS ON SMALLER MLLMs

We additionally benchmark small contrastively-trained MLLMs (1B/2B) on CAREBENCH and MSR-VTT (Xu et al., 2016). The training follows the setting of Stage-II and consumes only 2.26 GPU hours and 6.4 GPU hours for 1B and 2B models, respectively. Table 10 and Table 11 report Recall@{1,5,10} for both text-to-video and video-to-text retrieval. As shown, competitive InternVL 2.5 1B/2B surpass Long-CLIP and narrow much of the gap to earlier 7B MLLMs—highlighting the importance of training objectives and data over parameter count alone—while our 7B model still achieves the strongest overall results. All methods follow the same input preprocessing and evaluation settings to ensure comparability.

C QUANTITATIVE AND HUMAN-ALIGNED VALIDATION ON METRICS

We conduct additional quantitative and human-aligned validation to show that CapST reflects fine-grained caption quality and correlates with human judgment compared to n-gram metrics.

810 Table 9: **Video caption performance of popular models on DREAM-1K.** We report
 811 F1/Recall/Precision for each category. # Params denotes the number of LLM parameters.
 812

813	Model	# Params	DREAM-1K					
			814 Live-Action Movies	814 Animation Movies	814 Stock Videos	814 YouTube Videos	814 TikTok-Style Short	814 Overall
815	GPT-4o mini	-	34.5/32.7/36.6	28.9/26.0/32.6	37.9/38.0/37.9	<u>33.5</u> /30.2/37.5	34.7/29.3/42.4	34.0/31.2/37.4
816	LLaVA NeXT Video (Zhang et al., 2024b)	7B	-	-	-	-	-	-
817	InternVL2 (Chen et al., 2023)	7B	27.3/27.1/27.4	20.6/18.1/23.8	33.3/33.0/33.5	26.9/24.2/30.2	25.7/21.2/32.7	26.9/24.7/29.5
818	InternVL2.5 (Chen et al., 2024)	7B	-	-	-	-	-	-
819	InternVL2.5 (Chen et al., 2024)	72B	-	-	-	-	-	-
820	MiniCPM-V 2.6 (Yao et al., 2024)	7B	30.5/27.7/33.8	24.8/22.5/27.8	35.4/35.0/35.8	29.5/28.0/31.3	31.6/26.5/38.9	30.5/27.9/33.5
821	Tarsier (Wang et al., 2024a)	7B	36.6/34.8/38.5	29.3/25.5/ 34.6	39.6/35.5/ 44.7	33.0/28.4/ 39.2	33.6/26.9/ 44.6	34.6/30.2/ 40.3
822	Qwen2-VL (Wang et al., 2024b)	7B	27.7/24.2/32.5	22.2/18.4/28.0	37.0/38.0/36.1	30.7/27.0/35.5	29.1/23.8/37.6	29.6/26.3/33.9
823	Qwen2-VL (Wang et al., 2024b)	72B	32.1/30.6/33.7	27.6/23.9/32.6	41.1/41.1/41.2	32.0/27.7/ 38.1	32.1/26.4/41.0	33.2/29.9/37.3
824	CARE _{stage-1}	7B	40.8 /41.9/39.7	33.7 / 31.6 / 36.0	44.0/45.2/43.0	34.5 / 32.5 / 36.6	38.4 / 33.7 / 44.7	38.4 / 37.0 / 40.0
825	CARE	7B	41.9 / 42.1 / 41.8	32.0/30.0/34.2	44.2 / 45.6 /42.8	34.5 / 32.3 / 37.1	37.3 / 33.7 /41.7	38.1 / 36.8 / 39.5

822 Table 10: **Video retrieval performance of small MLLMs on CAREBENCH.** All the results are
 823 reported in zero-shot setting.

825	Model	CAREBENCH General Retrieval					
		Text-to-Video			Video-to-Text		
		R@1	R@5	R@10	R@1	R@5	R@10
CLIP-based Models							
830	CLIP B/16 (Radford et al., 2021)	45.7	79.6	89.1	48.4	82.4	90.8
831	CLIP L/14 (Radford et al., 2021)	51.2	83.4	90.6	54.7	86.9	93.6
832	LanguageBind (Zhu et al., 2024)	64.3	91.0	96.3	59.5	88.0	95.0
833	Long-CLIP B/14 (Zhang et al., 2024a)	59.2	85.3	92.1	55.8	84.7	92.9
834	Long-CLIP L/14 (Zhang et al., 2024a)	62.7	88.8	95.7	60.3	88.8	94.9
835	InternVideo2 _{stage2} 1B (Wang et al., 2024c)	72.5	93.7	97.3	69.5	94.6	97.8
Contrastively trained MLLMs							
837	LLaVA NV 7B (Zhang et al., 2024b)	66.9	89.4	96.0	62.7	89.2	95.4
838	MiniCPM-V 2.6 (Yao et al., 2024)	71.0	92.2	97.0	69.3	92.8	97.1
839	InternVL2.5 1B (Chen et al., 2024)	66.3	92.6	97.3	63.6	90.2	96.1
840	InternVL2 8B (Chen et al., 2023)	72.1	92.6	96.8	73.6	93.4	97.4
841	InternVL2.5 2B (Chen et al., 2024)	73.4	93.9	97.9	73.4	92.9	97.4
842	Tarsier 7B (Wang et al., 2024a)	71.0	93.8	97.8	70.6	94.2	98.0
843	Qwen2-VL 7B (Wang et al., 2024b)	76.6	95.3	98.7	77.4	95.6	98.7
844	CARE	77.0	95.6	98.7	79.0	96.8	99.1

845 N-gram metrics on CaReBench including BLEU@4, METEOR, ROUGE-L and CIDEr are shown
 846 in Table 12. Due to the extremely high richness of the vocabulary in fine-grained captions, sentences
 847 with similar semantics can differ greatly at the token level. Consequently, n-gram-based metrics are
 848 already close to zero and no longer meaningful.

849 To provide human-aligned validation on CapST, we invite 10 human experts and follow the Elo
 850 settings in Table 13 to perform "which-is-better" evaluations on CAREBENCH and show the Elo
 851 scores in Table 14.

852 Table 15 shows the pearson correlation coefficients between these metrics and Elo scores (e.i. human
 853 preference). The results indicate that: (1) All the n-gram-based metrics are significantly uncorrelated
 854 with the Elo score. (2) Action F1 and Object F1 demonstrate significant correlations with the Elo
 855 score, suggesting they better capture human preferences.

D LIMITATIONS

861 Although CARE demonstrates strong generalization ability on fine-grained video retrieval and cap-
 862 tioning tasks, it exhibits a certain degree of performance drop compared to the baseline (i.e con-
 863 stratively trained Qwen2-VL) on coarse-grained, traditional datasets such as MSR-VTT (Xu et al.,
 864 2016), as shown in Table 7 and Table 8. To further investigate this phenomenon, we provide in

864 Table 11: **Video retrieval performance of small MLLMs on MSR-VTT (Xu et al., 2016).** All the
 865 results are reported in zero-shot setting.

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917	866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917					
	866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917					
	866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917					
CLIP-based Models						
CLIP B/16 (Radford et al., 2021)	33.8	56.1	66.6	30.5	53.8	65.5
CLIP L/14 (Radford et al., 2021)	36.7	58.8	68.0	32.8	54.7	66.2
LanguageBind (Zhu et al., 2024)	42.1	65.9	75.5	40.1	65.4	73.9
Long-CLIP B/14 (Zhang et al., 2024a)	38.7	62.3	70.6	34.4	57.7	68.2
Long-CLIP L/14 (Zhang et al., 2024a)	40.9	65.5	74.6	36.2	62.2	71.5
InternVideo2 _{stage2} 1B (Wang et al., 2024c) [†]	44.2	70.1	78.1	40.5	66.9	76.3
Contrastively trained MLLMs						
LLaVA NeXT Video 7B (Zhang et al., 2024b)	40.3	64.9	74.1	30.5	58.0	69.0
InternVL2.5 1B (Chen et al., 2024)	41.3	64.4	73.8	36.3	61.6	70.9
InternVL2 8B (Chen et al., 2023)	44.6	69.3	77.4	40.8	66.6	76.5
InternVL2.5 2B (Chen et al., 2024)	41.9	68.4	75.7	39.7	65.8	75.5
MiniCPM-V 2.6 (Yao et al., 2024)	44.7	69.7	77.8	41.6	68.7	77.6
Tarsier 7B (Wang et al., 2024a)	43.4	69.2	77.0	35.8	62.5	72.3
Qwen2-VL 7B (Wang et al., 2024a)	46.9	69.2	79.7	43.4	69.2	78.8
CARE	43.9	67.0	75.7	41.7	68.1	76.2

Table 12: Comparison of models on BLEU@4, METEOR, ROUGE-L, and CIDEr.

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917	889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917	889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917	889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917	889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
LLaVA Video 7B (Zhang et al., 2024b)	0.030	0.155	0.185	0.019
MiniCPM-V 2.6 (Yao et al., 2024)	0.022	0.139	0.163	0.025
InternVL 2.5 8B (Chen et al., 2024)	0.015	0.120	0.156	0.000
Tarsier 7B (Wang et al., 2024a)	0.012	0.093	0.151	0.000
Qwen2-VL 7B (Wang et al., 2024b)	0.013	0.114	0.128	0.009
Qwen2-VL 72B (Wang et al., 2024b)	0.018	0.115	0.167	0.000
CARE	0.012	0.100	0.153	0.000

900 this section the results of CARE versus contrastively trained Qwen2-VL (Wang et al., 2024b) on
 901 MSVD (Chen & Dolan, 2011), MSR-VTT (Xu et al., 2016), DiDeMo (Hendricks et al., 2017),
 902 VDC (Chai et al., 2024) short captions, DREAM-1K (Wang et al., 2024a), ShareGPT-4o (Cui et al.,
 903 2024), and CAREBENCH, together with an explicit, quantitative analysis of how performance varies
 904 with caption length and action–object complexity across benchmarks.

905 D.1 PERFORMANCE OF CARE AND QWEN2-VL 7B ACROSS DIFFERENT BENCHMARKS

906 Table 16 shows the results of CARE and contrastively trained Qwen2-VL on difference benchmarks.
 907 To ensure a fair comparison of model performance across datasets and to eliminate the influence of
 908 absolute *Avg Recall* values, we use the relative gap (percentage) in Equation (4). The results of
 909 performance gaps across difference benchmarks are illustrated in Table 17.

$$910 \quad G = \frac{R_{\text{CARE}} - R_{\text{Qwen}}}{R_{\text{Qwen}}} \quad (4)$$

911 where R_{CARE} is *Avg Recall* of CARE and R_{Qwen} is *Avg Recall* of contrastively trained Qwen2-VL.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 13: **Elo setting.**

Parameter	Number
initial Elo mean	1,000
Elo standard deviation	300
base of logarithm	10
scaling factor	400
K-factor	32
minimum Elo rating	700

Table 14: **Elo scores of popular models on CAREBENCH.**

Model	Elo Score
InternVL2 8B (Chen et al., 2023)	889.31
LLaVA NeXT Video 7B (Zhang et al., 2024b)	914.27
Qwen2-VL 7B (Wang et al., 2024b)	959.34
MiniCPM-V 2.6 (Yao et al., 2024)	1051.14
Tarsier 7B (Wang et al., 2024a)	1061.59
CARE	1124.34

D.2 PEARSON CORRELATION ANALYSIS BETWEEN PERFORMANCE GAP AND BENCHMARK STATISTICS

To visualize how the relative performance gap numerically relates to each benchmark statistic, we performed a Pearson correlation analysis; the results are shown in Table 18.

According to the results illustrated above, we can come to the conclusions that:

1. CARE has a clear performance advantage on long-text, fine-grained tasks – especially those containing a large number of actions and objects. Pearson correlation analysis shows that the Relative Gap between our model and Qwen2-VL is strongly and positively correlated with Avg. Words and Avg. Objects, and moderately positively correlated with Avg. Actions. The more detailed the benchmark and the more objects and actions it contains, the more pronounced CARE’s advantages become.
2. CARE underperforms Qwen2-VL on coarse-grained retrieval benchmarks with simple objects and actions within the 7-to-60-word range. In contrast to Qwen2-VL, CARE incorporates an additional Fine-grained Alignment SFT. Although more ablation studies are needed to verify how the SFT design affects performance, we can tentatively conclude that this extra training reduces the model’s generalization on coarse-grained tasks.

E OBJECT LEAKAGE IN TEMPORAL CAPTION

We’ve tried our best to reduce the object leakage (i.e. having unnecessary objects) in temporal caption. We here provide statistics and examples illustrating the degree of static/object leakage in temporal annotations. We extract the objects in spatial captions and temporal captions using Deepseek V3. The avg. objects in spatial caption is 10.76 and avg. objects in temporal caption is 6.82. The following shows two examples.

Example 1:

```
[video] v_00000044_3.mp4
[category] Personal Care
[subcategory] apply_eyebrows

[spatial_objects]
a woman with long black hair
```

972 Table 15: Pearson correlation coefficients between metrics and Elo scores.
973

974	Metrics	Elo Score
975	BLEU@4	-0.41
976	METEOR	-0.54
977	ROUGE-L	-0.19
978	CIDEr	-0.14
979	Action F1	0.81
980	Object F1	0.71

982 Table 16: Performance of CaRe and Qwen2-VL 7B across different datasets.
983

984 Model	985 ShareGPT-4o	986 CaReBench	987 MSVD	988 VDC short captions	989 MSR-VTT	990 DiDeMo	991 DREAM-1K
992 CaRe	993 87.38	994 91.03	995 78.88	996 80.19	997 62.10	998 61.32	999 92.93
999 Qwen2-VL 7B	1000 87.03	1001 90.38	1002 79.20	1003 81.00	1004 64.53	1005 62.97	1006 94.65

1007 [†] Metrics are computed as the average of T2V R@1,2,5 and V2T R@1,2,5.

1008 a right eyebrow with brow dye
1009 soft orange eyeshadow with silver glitter
1010 pale pink lips
1011 a pink wall with a black grid pattern
1012 an upper garment with a blue base
1013 an upper garment with white floral patterns
1014 a small bottle of yellowish-brown brow dye
1015 a small white mirror
1016 a mirror with a yellow-edged border
1017 a mirror with a silver design in the lower right corner
1018 a brush with a black bristle head
1019 a brush with a yellowish-brown stick
1020 a brush with silver-white text branding.

1021
1022 [temporal_objects]
1023 a person
1024 a brow gel
1025 a right eyebrow
1026 a mirror
1027 a small brush

1028 **Example 2:**

1029
1030 [video] v_00007656_1.mp4
1031 [category] Sports, Excercise
1032 [subcategory] drop_golf
1033
1034 [spatial_objects]
1035 a boy in a light blue short-sleeve shirt
1036 a boy in khaki shorts
1037 a boy wearing a white baseball cap
1038 a boy wearing white-brown athletic shoes
1039 a black golf club
1040 a boy in a red short-sleeve shirt
1041 a boy in khaki-striped shorts
1042 a boy wearing a red baseball cap
1043 a boy wearing white-brown athletic shoes
1044 a white glove
1045 a black golf club
1046 a vast expanse of grass

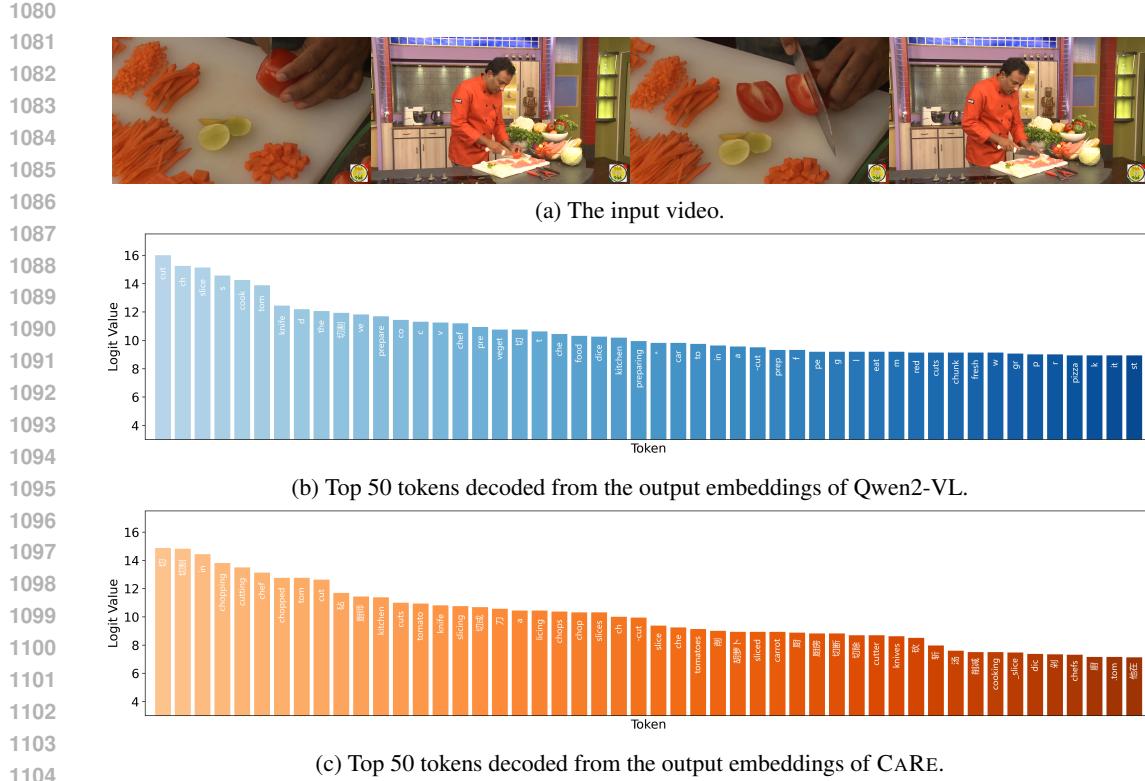
1026
1027
1028
1029 Table 17: **Performance gaps, average words and actions/objects complexity of different**
1030 **benchmarks.**

Benchmark	Avg. Words	Relative Gap (%)	Avg. Objects	Avg. Actions
MSVD	7.0	-0.404	2.34	1.56
MSR-VTT	9.4	-3.766	2.34	1.89
DiDeMo	29.1	-2.620	4.07	3.69
VDC short captions	32.8	-1.000	4.67	3.18
DREAM-1K	59.3	1.817	5.79	6.16
ShareGPT-4o	125.7	0.402	8.31	5.78
CaReBench	228.0	0.719	10.03	6.94

1037 [†] Objects and actions are extracted by Deepseek V3 (DeepSeek-AI et al., 2024).
10381039 Table 18: **Pearson correlation coefficients (r) between relative gap and different variables.**
1040

Item	Pearson r (p-value)
Rel Gap vs Avg. Words	+0.706 (p = 0.076)
Rel Gap vs Avg. Objects	+0.718 (p = 0.069)
Rel Gap vs Avg. Actions	+0.523 (p = 0.229)

1041
1042
1043
1044
1045
1046
1047
1048 a pushcart on the left
1049 some clothing on the pushcart
1050 a deep blue bag on the grass
1051 a railing enclosing the golf course
1052 several yellow-green trees
1053 a white house
1054 a white signboard on the ground1055 [temporal_objects]
1056 a boy in a red shirt,
1057 a boy in a blue shirt,
1058 a golf club,
1059 a grassy field,
1060 a ball1061
1062 F LOGITS VISUALIZATION
10631064
1065 To explore how CARE works, we feed its output embedding of a video featuring *a chef is cutting*
1066 *tomatoes in the kitchen* into the last linear layer (i.e. `lm_head`). It projects the embedding into the
1067 vocabulary space. By decode the output logits, we can easily visualize the semantic components of
1068 an embedding. It can be discovered that tokens with high logits constitute the essential semantics of
1069 the input video, as shown in Figure 5c, describing the main visual objects and actions of the video
1070 such as *kitchen*, *cutting*, *tomatoes* and *chef*, while the tokens in Figure 5b contain many subwords
1071 and irrelevant tokens like *dice*, *car* and *pizza*. It can be inferred that the semantic distribution in the
1072 next token space is hugely changed by two-stage SFT, allowing the main semantics to be the core
1073 components of the embedding.
10741075 G ANNOTATION GUIDELINES
10761077 To inform our annotators the key points that they need to pay attention to, we design a guideline to
1078 teach them how to describe videos accurately. The guideline is shown below.
1079



1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Figure 5: Top 50 tokens decoded from the output embeddings of Qwen2-VL and CARE. Qwen2-VL is the baseline model of CARE without any SFT. Compared to Qwen2-VL, two-stage SFT makes the semantic components of CARE embedding much more related to the input video featuring *a chef is cutting tomatoes in the kitchen*.

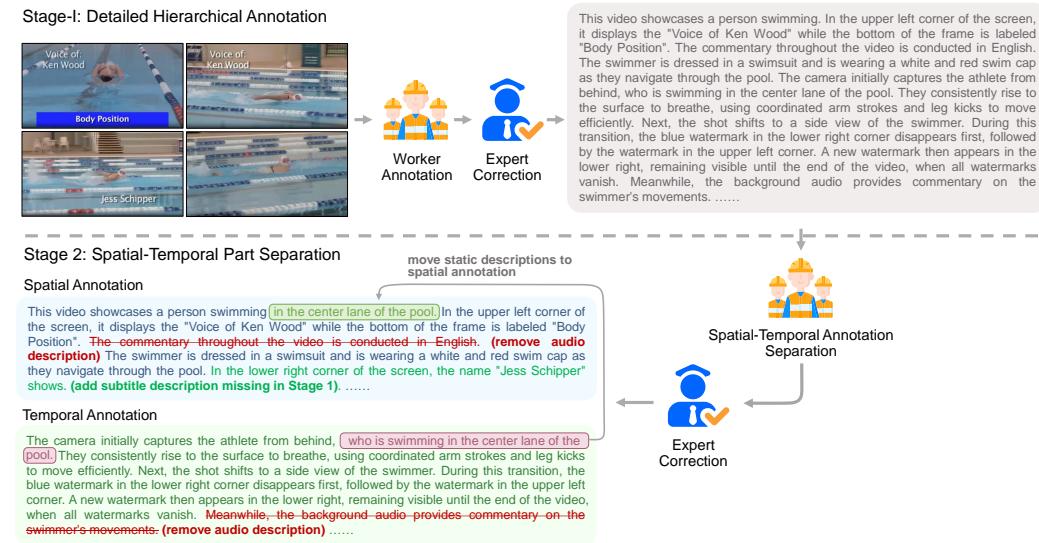


Figure 6: An overview of the annotation pipeline. In Stage-I, workers are asked to describe videos hierarchically in detail. In Stage-II, workers need to separate spatial descriptions with temporal descriptions.

1134
1135**Annotation Guideline (Stage 1)**

1136

Task

1137

Your task is to describe videos in detail and hierarchically within 150-300 words. We provide two examples and some points you may need to know.

1138

Example 1: Cutting a Watermelon

1139

(A video about cutting a watermelon is provided.)

1140

1141

- **Summary** This video shows a man cutting a watermelon.

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Example 2: Cutting a Tomato

1156

(A video about cutting a tomato is provided.)

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

- **Summary** In the footage, someone is holding a knife and cutting a tomato on a cutting board.

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Key Points for Descriptions

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

- **Object Description** The person is wearing black clothes, with a watch on his left wrist. On the cutting board, there are four previously cut tomatoes and one sliced green fruit. On the table, there is a bag of uncut tomatoes and a small knife. *In the top left corner of the video, there is a "luxeat" watermark, and the text "NOW I'VE SEEN EVERYTHING" is written in the bottom left corner.*

- **Action Description** While cutting the tomato, the person first slices it forcefully with one cut, then *speeds up the chopping frequency*, quickly slicing the tomato into neat pieces.

- **Misc Description** The video is filmed from a third-person perspective, showcasing clean and efficient vegetable-cutting. The person's motions are skillful and confident.

1188
1189
1190
1191

of the overall style and impression conveyed by the actions (e.g orderly and fast watermelon cutting, sharp and efficient movements, clumsy actions, or dangerous behaviors). This part should be concise, within 2-4 sentences.

1192

1193

Annotation Guideline (Stage 2)

1194

Task

1195
1196
1197
1198

In this stage, your task is to separate the original hierarchical descriptions into two parts: spatial descriptions (which do not include any descriptions about movements) and temporal descriptions (which do not include any object descriptions). Camera movements, such as zoom-ins, zoom-outs, etc should be included in temporal descriptions.

1199

Key Points for Descriptions

1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

- The spatial description should cover the key objects, secondary objects, and the environment in the frame. It must ensure that, based on the spatial description alone, the videos in the assigned subcategory can be differentiated from one another.
- The temporal description should exclude any obvious static object descriptions that help distinguish different videos. Only the details and sequence of actions should be kept, and it must ensure that, based on the temporal description alone, the videos in the assigned subcategory can be differentiated from one another.
- All the contents of spatial and temporal descriptions should come from the Stage 1 descriptions, and no additional details should be added. Both spatial and temporal descriptions should begin with a summary.

1211

1212

H LICENSE INFORMATION

1213

1214
1215
1216
1217
1218

Datasets. Below are the datasets used in this paper that have known license information: DiDeMo (Hendricks et al., 2017) (BSD 2-Clause License), Activity-Net (Heilbron et al., 2015) (MIT License), DREAM-1K (Wang et al., 2024a) (Apache-2.0 License), VDC (Chai et al., 2024) (Apache-2.0 License). Please note that CAREBENCH will be released with MIT License in the future.

1219
1220
1221
1222
1223
1224

Models. Below are the models used in this paper that have known license information: InternVL2 (Chen et al., 2023) (MIT License), InternVL2.5 (Chen et al., 2024) (Qwen License), LLaVA NeXT Video (Zhang et al., 2024b) (Llama 2 Community License), Qwen2-VL (Wang et al., 2024b) (Apache-2.0 License), Tarsier (Wang et al., 2024a) (Apache-2.0 License), LanguageBind (Zhu et al., 2024) (MIT License), Long-CLIP (Zhang et al., 2024a) (Apache-2.0 License), InternVideo2 (Wang et al., 2024c) (Apache-2.0 License).

1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242

1243

1244

1245

1246

1247

1248

» Video

» Caption

1249

1250

1251

1252

1253

1254

Annotation: This video showcases a heartwarming scene at an amusement park where a man is holding a little girl. The man is dressed in a blue top, revealing only his head, neck, and part of his upper body. The little girl has golden hair and is wearing a sleeveless blue top adorned with plenty of sequins on the front. Around her neck, she wears several strands of pink beaded necklaces. Surrounding them are other children and adults, with a person in a Peppa Pig mascot costume standing behind them.

The mascot features a pink pig head and a blue body. This costumed character is interacting and waving at the children outside a small fenced area made of wood. Behind them is a white wall that has blackboard with green and pink patterns drawn on it.

The girl is leaning against the man's right arm, being held high by him, with her left hand resting on his neck and her right hand hanging down beside her. She then turns around to look back, releasing her left hand from his neck. The man mouths something to her, and the girl faces the camera again, cheerfully raising her right hand and waving towards it. The Peppa Pig mascot behind them has its left hand resting on its belly and is continuously waving with its right hand, even stopping briefly to

embrace someone in front before turning to the right to keep waving. The video captures this scene from the viewpoint of the two characters, and their smiles, along with those of the nearby onlookers, are bright and joyous, showcasing a delightful atmosphere.

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

» Video

» Caption

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

Video

Caption

Annotation: The video captures the heartwarming moment of a woman embracing her dog. Set outdoors under a brilliant sun, it features a brown-haired woman wearing a black tank top, holding her black dog close. In the background, there's a red and white vehicle adorned with paw print decals. Initially, she gazes down at the side profile of her dog, one arm wrapped around it while the other gently strokes its fur. As the camera rotates clockwise, the dog playfully sticks out its tongue, attempting to lick her. She closes her eyes and turns away, wearing a blissful expression, while both hands continue to caress the dog's neck and head. Later on, she lifts her dog's front paws towards the camera while still scratching its neck. At this moment, another person's arm appears on the right side of the frame, gently rubbing the dog's chin. The woman plants a kiss on the dog's forehead, then leans her head closely against the small pup. The dog tilts its head outward, prompting her to start playing with its front paws using her left hand. She then embraces the dog tightly once more, tenderly stroking the fur on its chin with her right index finger. A man's hand reaches in from the right side of the frame to give the dog some affectionate scratches on its head. As the camera gradually pulls back, the woman continues to stroke the dog's back with her left hand while nuzzling her head against it. The video is shot from a third-person perspective, with the camera positioned very close to the woman and her dog. The scene is filled with the warmth of their embrace, creating a wonderfully intimate atmosphere.

Spatial Annotation: The video captures the moment a woman embraces her dog. Set outdoors in glorious sunshine, the scene features a brown-haired woman wearing a black tank top, holding her black dog close. In the background, there is a red and white vehicle adorned with paw print patterns.

Temporal Annotation: The video captures the tender moment of a woman embracing her dog. At first, she gazes down at the dog's side profile, with one hand wrapped around the dog and the other gently stroking it. As the camera rotates clockwise, the dog eagerly sticks out its tongue, attempting to lick her, but she closes her eyes and turns away, using both hands to caress the dog's neck and head. Later, she lifts the dog's two front paws to face the camera while continuing to scratch its neck. At this point, another person's arm appears on the right side of the video, reaching out to pet the puppy's chin. The woman kisses the dog's forehead and then presses her head closely against the small dog's. The dog tilts its head outward, and the woman begins to manipulate its front paws with her left hand. She then pulls the dog in tightly, continuing to pet it and gently brushing her right index finger along its chin fur. Just outside the frame on the right, a man extends his hand to pet the dog, scratching its head. As the camera gradually zooms out, the woman uses her left hand to stroke the puppy's back from top to bottom, while also nuzzling her head against its.

Video

Caption

Annotation: This video showcases the fencing competition between athletes from the Arab Republic of Egypt and South Korea. At the bottom of the video, you can see the flags of both countries, their respective abbreviations, and the names of the competitors. The match progresses through rounds 1 to 3. On the left side, we have A. ABOUELKASSEM representing the Arab Republic of Egypt, while on the right is South Korean fencer CHOI B. During the match, the Egyptian fencer has their left leg forward and holds the sword in their left hand, while the Korean fencer has their right leg forward and wields the sword in their right hand. Both athletes are clad in fencing uniforms and black helmets, with the South Korean fencer standing out in red shoes. As the match unfolds, they begin by cautiously probing each other before the Korean fencer suddenly lunges forward, striking the Egyptian athlete on the leg. In response, the Egyptian fencer leaps upward to evade the blow but loses their balance upon landing and falls to the left. The second part of the video features a slow-motion replay of this action. The entire video is filmed from the side of the competition area, vividly illustrating the various dynamics of the match.

Spatial Annotation: This video showcases the competition between athletes from the Arab Republic of Egypt and South Korea on the fencing arena. At the bottom of the video, you can see the flags of both countries, their abbreviated names, and the names of the athletes. The match is in rounds 1-3. On the left is A. ABOUELKASSEM representing the Arab Republic of Egypt, while on the right is CHOI B. from South Korea. Throughout the competition, both athletes are dressed in fencing attire and wearing black helmets. Notably, the South Korean athlete is wearing red shoes. The Egyptian athlete has their left leg forward and holds the sword in their left hand, while the South Korean athlete has their right leg forward with the sword held in their right hand.

Temporal Annotation: This video showcases the competition between the athletes from the Arab Republic of Egypt and South Korea on the fencing arena. During the match, the two players initially engaged in a careful testing of each other's defenses. Suddenly, the South Korean fencer lunged forward with a swift thrust, striking the leg of the athlete from the Arab Republic of Egypt. In response, the Egyptian fencer jumped up, but unfortunately, he lost his balance upon landing and fell to the left. The second part of the video features a slow-motion replay of this sequence of events.

1347

1348

1349