
LaCoOT: Layer Collapse through Optimal Transport

Victor Quétu1 Zhu Liao1 Nour Hezbri2 Fabio Pizzati3 Enzo Tartaglione1
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Abstract

Although deep neural networks are well-known for their
outstanding performance in tackling complex tasks, their
hunger for computational resources remains a significant
hurdle, posing energy-consumption issues and restricting
their deployment on resource-constrained devices, prevent-
ing their widespread adoption.
In this paper, we present an optimal transport-based method
to reduce the depth of over-parametrized deep neural net-
works, alleviating their computational burden. More specif-
ically, we propose a new regularization strategy based on
the Max-Sliced Wasserstein distance to minimize the dis-
tance between the intermediate feature distributions in the
neural network. We show that minimizing this distance en-
ables the complete removal of intermediate layers in the
network, achieving better performance/depth trade-off com-
pared to existing techniques. We assess the effectiveness of
our method on traditional image classification setups and
extend it to generative image models. Our code is available
at https://github.com/VGCQ/LaCoOT.

1. Introduction

Over the last few years, the field of deep learning has under-
gone a significant transformation with the advent of foun-
dation models. These are large-scale, pre-trained models
capable of performing a wide range of tasks across differ-
ent domains, including computer vision. As exemplars we
can mention CLIP [52] and ALIGN [26] for image classi-
fication, DiT [47], Stable Diffusion [54] and DALL-E [53]
for image generation, or SAM [29] for semantic segmenta-
tion. The effectiveness of these foundation models is pri-
marily driven by empirical patterns observed through scal-
ing laws [23]: the improvements achieved by these mod-
els correlate with the exponential increase in computational

This paper has been accepted for publication at the IEEE/CVF Inter-
national Conference on Computer Vision 2025 (ICCV25).
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Figure 1. With LaCoOT, we finetune existing networks with an
OT-inspired regularization R augmenting the loss L, reducing in-
termediate feature distribution discrepancy. This enables the com-
plete removal of layers.

requirements due to the growth of both their size and the
number of training data [10, 55].

However, the progress enabled by these new models
(consisting of billions of parameters) comes at the price of
higher computational costs, consuming more energy, thus
contributing to carbon emissions [62]. For instance, training
a generative model is comparable to driving a car for 10km,
while generating 10k samples is estimated to be equivalent
to driving 160 km [56]. Although training costs are expen-
sive, the open-sourcing of these foundation models multi-
plies inference costs across multiple users and contributes
to carbon emissions in a significant manner. The need to re-
duce the environmental impact of these models at inference
by proposing computational reduction is therefore apparent.
Consequently, the rise of complexity-reduction approaches
such as pruning [21], quantization [18], and knowledge dis-
tillation [25] is motivated by the need for more efficient ar-
chitectures to alleviate their resource demands. Reducing
deep neural network (DNN) complexity is not an easy task:
generalization and model complexity are inextricably re-
lated [23], but since pre-trained models are often employed
for downstream tasks, they tend to be over-parameterized.
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This gives us hope: in principle, it is possible to compress
these models without any (or only little) performance degra-
dation [59]. This observation is further supported by the
collapse phenomenon in neural networks, which has been
observed at both the neuron [65] and layer levels [19]. On
the one hand, individual neurons stop learning, leading to
constant or trivial outputs, while on the other hand, entire
layers fail to learn and become redundant or inactive. Con-
sequently, these layers could, in principle, be removed.

Nevertheless, few methods are capable of removing en-
tire layers from a neural network. Some of them have been
designed to mitigate the depth of DNNs while maintaining
performance, exploiting the deletion of several layers [34]
or ad-hoc architectural search [2]. However, these methods
are computationally challenging since they either require re-
training or rely on huge search spaces, leading to significant
search costs. Moreover, the focus of previous works is of-
ten more on removing non-linearities, leaving the fusion of
the remaining consecutive linear layers to further research,
which shows that this is not straightforward in many com-
mon cases [49].

Driven by the motivation of reducing the depth of DNNs,
we leverage optimal transport (OT) [48, 61] to develop a
framework allowing post-training the complete removal of
layers from the architecture. Compared to existing OT-
based frameworks incorporating it into neural architecture
search [27, 44, 63] or knowledge distillation pipelines [7,
38], our strategy does not involve training more than one
network but rather operates inside the model. In our case,
we use OT to minimize the distributional changes between
layers inside the same model, allowing us to strategically
and efficiently remove layers (as showcased in Fig. 1).
Overall, our contributions can be summarized as follows.
• We propose a novel OT-based and block collapse induc-

tive regularization (Sec. 4), seamlessly integrated into the
main training pipeline of neural networks. Our approach
consists of minimizing a block-wise OT discrepancy mea-
sure, specifically the Max-Sliced Wasserstein distance,
between the input and output features’ probability distri-
butions of the blocks of the network (Sec. 4.2).

• We motivate our strategy (Sec. 4.1 and Sec. 4.3) by show-
ing how it allows, post-training, the complete removal of
several blocks from the architecture at once.

• Our proposed regularization strategy demonstrates its ef-
fectiveness in reducing the depth of over-parameterized
DNNs with marginal performance loss with respect to
competing state-of-the-art techniques (Sec. 5.2).

2. Related Works
Neural network pruning. In the last decades, neural net-
work pruning has risen as the one privileged approach to
compress deep neural networks: complimentary to other
popular approaches like quantization, it leads to heavy

parameter reduction through the proper cut of groups of
parameters (or filters in convolutional architectures) that
are less important for the specific downstream task under
exam. Its effectiveness is empirically certified by several
works [4, 8, 22] and justified by the known overparametriza-
tion of such models [36]. Among these, we historically
distinguish between unstructured pruning approaches that
eliminate parameters without considering the neural net-
work’s structure [21, 59] and structured pruning, where en-
tire channels, neurons, or filters are removed [22, 58].

Unstructured pruning methods are grouped into two
main categories based on the nature of the importance score
used to prune weights: gradient-based methods rank the pa-
rameters according to the gradient magnitude [32, 59] (or
higher-order derivatives), while magnitude-based ones [21,
39, 64] use the weights’ magnitude as a significance score to
prune them. In a famous study, [4] compared the effective-
ness of these two approaches, concluding that magnitude-
based techniques are often more accurate than gradient-
based ones while offering a better trade-off between com-
plexity and competitiveness. Following up on this work,
[17] even showcased that simple magnitude pruning meth-
ods can achieve results that are comparable to more com-
plex ones, establishing a solid comparison baseline. Al-
though some studies suggest that unstructured pruning may
actually harbor structured effects [35], in general, they pro-
vide few practical benefits when deploying the neural net-
work on generic computing resources [6].

Unlike unstructured pruning, structured pruning brings
immediate advantages for both memory and computation,
despite resulting in lower overall sparsity [6]. Despite
this, when employing recent computing resources, remov-
ing entire filters on recent computing resources has only a
marginal effect on the improved latency, given the avail-
ability of resources in parallel. The real bottleneck in
parallel computation resides in the computational critical
path1 [41], which can be mitigated by reducing the model’s
depth. Although some existing approaches, like knowledge
distillation to shallow student models [25] already tackle
this issue, maintaining the performance cannot be guaran-
teed, as the optimal architecture of the target model is not
known a priori, which may lead to significant performance
loss.
Neural network depth reduction. Several recent works
have proposed approaches to reduce the depth of DNNs.
The most common practice is to remove non-linearities be-
tween layers: this (in principle) enables two successive
layers to be merged together. Among these approaches,
Layer Folding [14] is one of the earlier attempts: it eval-

1We refer to the critical path as the longest path, in terms of time or
computational cost, through the computational graph that must be exe-
cuted sequentially during inference, thus determining the model’s mini-
mum achievable latency.



uates whether non-linear activations can be discarded, re-
placing ReLUs with PReLU (having a trainable slope for
the negative part). More recently, Entropy-Guided Pruning
(EGP) [34] proposes to reduce the depth of DNNs by prior-
itizing the pruning of connections in layers with little use of
the non-linearity (estimated through an entropic measure).
On the same trend, NEPENTHE [35] improved EGP’s en-
tropy estimator and introduced a budget for the number of
parameters to prune. Taking a more global approach, EAS-
IER [51] was designed to determine the effect of removing a
non-linearity, considering the introduced error at the output
of the model, estimated through a validation set.

Although in principle effective in reducing the critical
path length of DNNs, these methods do not provide sig-
nificant gains in all cases, due to some impossibilities in
merging consecutive linear layers. One example is the prob-
lem associated with ResNet-type architectures: if we have
padding in the second convolutional layer, then there is
no analytical solution for merging the two consecutive lay-
ers [49]. Moreover, if an activation is removed where there
is a residual connection, no fusion can be applied. A major
architectural change is necessary to observe a real impact in
practice.

Unlike those works, our method does not rely on lin-
earizing activations and merging two consecutive layers. In-
stead, LaCoOT minimizes the Max-Sliced Wasserstein dis-
tance between the input and output features’ distributions of
the blocks of the network. Post-training, layers having the
lowest Max-Sliced Wasserstein distance are removed. De-
veloped to be model-agnostic, we compare our method with
these works and show its effectiveness in Sec. 5.

3. Preliminaries
3.1. Background on Optimal Transport
In this subsection, we present a succinct overview of OT
and the Wasserstein distance for discrete distributions [48].

Given two metric spaces X and Y and a cost function
c defined over X × Y , the goal of the OT problem is to
determine the most efficient manner to transport mass from
one distribution, defined over X to another supported over
Y , where the transportation cost is dictated by the chosen
function c.

For X = Y = Rd, we consider two discrete probability
measures and we recall the Monge Formulation of the OT
problem:

OT (µ, ν, c) = min
T

∑
i

αic[xi, T (xi)], (1)

where µ and ν defined as:

µ =

N∑
i=1

αiδxi , ν =

M∑
i=1

βiδyi
, (2)

where δx refers to the Dirac (unit mass) distribution at
point x. The weights α and β reside in the probabil-
ity simplex {a ∈ R|∑ ai = 1}, and T is defined as
T : {x1, . . . ,xN} → {y1, . . . ,yM} and verifying:

βj =
∑

i:T (xi)=yj

αi, ∀j ∈ JMK, (3)

or more compactly T♯µ = ν.
In the following, we will consider only the case of
uniform weights and the same support size, taking
M = N and αi = βj =

1
N . We also take as the cost func-

tion c(x,y) = ∥x− y∥pp for x ∈ X , y ∈ Y, p ∈ R>0.
In this case, OT establishes a measure of distance be-
tween the probability distributions. Such a distance, known
as the p-Wasserstein distance, is in general defined as
Wp = OT (µ, ν, c)

1
p . When we have the dimension of the

ground space being d = 1, the p-Wasserstein distance takes
on a closed form, given by:

Wp =

(
1

N

N∑
i=1

|xi − yi|p
) 1

p

, (4)

where we assume x1 < · · · < xN and y1 < · · · < yN such
that xi 7→ yi,∀i.
Given the closed-form expression in one dimension, sliced
variants of the p-Wasserstein distance have been introduced.
These variants transform sample assignment and distance
calculation by sorting the one-dimensional projection of the
samples. This process yields a sufficient approximation of
the high-dimensional p-Wasserstein distance, which is im-
mune to the curse of dimensionality [57]. Specifically, our
focus lies on the p-Max-Sliced Wasserstein distance, in-
troduced in [12], and defined as follows:

max W̃p(µ, ν) = max
θ∈U(Sd−1)

Wp(θ♯µ, θ♯ν), (5)

where θ♯ stands for the pushforwards of the projection
X : Rd 7→ ⟨θ,X⟩ , ⟨·, ·⟩ for the dot product operator
and U(Sd−1) for the uniform distribution on the unit hyper-
sphere of dimension d− 1.

Essentially, the Max-Sliced Wasserstein distance repre-
sents a version of the sliced Wasserstein distance where
we select the optimal direction to project the probability
measures, i.e., the direction along which the projected dis-
tance is maximized, also possessing valid metric proper-
ties [5, 42, 43]. In our work, we will consider the Max-
Sliced Wasserstein distance, for its previously discussed
convenience, specifically computed for p = 2, to quantify
the distance between intermediate probability distributions
between blocks inside a neural network model, as it will be
presented in the next section.



3.2. Learning Framework
In this subsection, we introduce our learning framework.
Let us define T = TK ◦· · ·◦T1 as the DNN we wish to train
on the dataset D, where each Tk is an elementary module
(which can be defined as single or multiple layers). Given a
loss function L we aim at minimizing, the objective entails
minimizing the problem:

(T , F ) ∈ argmin
T ,F

|D|∑
i=1

L [(F ◦ T )(x1,i), yi] , (6)

where F is a classifier layer, x1,i the i-th input sample for
the DNN, and yi the associated ground-truth label and |D|
the number of samples in the dataset. For each module Tk,
we define the input probability distribution µk as:

µk :=
1

|D|δyk−1,D =
1

|D|δxk,D =
1

|D|

|D|∑
i=1

δxk,i
,

which is also the output of the preceding module Tk−1.
Similarly, the output probability distribution νk is defined
as:

νk :=
1

|D|δyk,D =
1

|D|

|D|∑
i=1

δyk,i
.

According to our notation, νk ≡ µk+1, given that yk,i =
xk+1,i∀i, k. Furthermore, we assume that xk,i and yk,i

possess identical dimensions, and consequently µk and νk
to live in the same dimensional space, allowing for the com-
putation of the distance between them. In the following, our
goal would be to control these distances during training to
allow for the isolation and removal of certain blocks post-
training, with almost no loss of performance.

4. LaCoOT
In this section, we detail our method, LaCoOT, for reduc-
ing neural network depth using optimal transport (Sec. 4.1):
we propose a regularization strategy based on the Max-
Sliced Wasserstein distance to minimize the distance be-
tween intermediate feature distributions in the neural net-
work. Fig. 1 provides a general overview of our method. We
also present some insights into this strategy and how it en-
ables the removal of intermediate layers in the network after
training, with, in principle, minimal performance degrada-
tion (Sec. 4.3).

4.1. Proposed Regularization
Our objective is to reduce the depth of the neural network.
To achieve such a goal, we will incorporate a penalization of
the distance between two consecutive blocks during train-
ing. This is to assist the DNN in learning a target input-
output function T while following the shortest path. This

Algorithm 1 Our proposed method LaCoOT.

1: function LACOOT(wINIT , D, λ, δ)
2: w ←Train(wINIT, Dtrain, λ)
3: dense acc←Evaluate(w, Dval)
4: current acc← dense acc
5: while (dense acc - current acc) > δ do
6: R̂ = [R̂1, R̂2, ..., R̂K ]

7: l← argmin(R̂)
8: Tl = Identity()
9: current acc← Evaluate(w, Dval)

10: end while
11: return w
12: end function

yields, after training, to identifying blocks that can be re-
moved from the architecture without impacting the perfor-
mance. Specifically, these blocks introduce marginal statis-
tical modification on their corresponding input features. We
include this constraint in the learning translates into mini-
mizing, besides the loss L, in the form of a regularizer:

R =
1

K

K∑
k=1

max W̃2(µ̂k, ν̂k), (7)

where the probability distributions µ̂k and ν̂k are the em-
pirical counterparts of the previously defined distributions
µk and νk. They are constructed over uniformly-weighted
samples of a N -sized minibatch, and so defined by µ̂k =
1
N

∑N
i=1 δxk,i

, where xk,i is taken as the flattened input
vector of the block corresponding to the i-th element of the
minibatch.

Post-training, if the distance R̂k := max W̃2(µ̂k, ν̂k)
falls below a fixed threshold ε, the corresponding block Tk

can be pruned from the architecture. Namely, this threshold
is related to a tolerated performance drop budget δ.

4.2. Overview on the Procedure
Depicted in Alg. 1, we present here LaCoOT to remove the
layers having the lowest Max-Sliced Wasserstein distances.
Indeed, the layer having the lowest Max-Sliced Wasserstein
distance is likely to have a function close to the identity
function. Therefore, this layer can be linearized, as keeping
it is unnecessary, as illustrated in Tab. 2 in Supp. Mat. Aim-
ing at this, we first train the neural network, represented by
its weights at initialization wINIT on the training set Dtrain
with our regularization set by λ (line 2) and evaluate it on
the validation set Dval (line 3). We then calculate the Max-
Sliced Wasserstein distance R̂k for each considered layer
k for all the K considered layers, collected in the vector
R (line 6), following Eq. 7. We then find the layer having
the lowest Max-Sliced Wasserstein distance, represented by
its index l (line 7) and replace it with the Identity (line 8).



In the following steps, this layer is, obviously, no longer
taken into consideration. The performance of the model is
re-evaluated on the validation set Dval (line 9). Once the
performance on the validation set drops below the threshold
δ, the final model is obtained.

4.3. Properties of the proposed regularization
The regularization acts like a soft 1-Lipschitz constraint.
By looking closer into µk and νk (the input and output
distributions of the k-th block), the central limit theo-
rem suggests that µk can be regarded asymptotically as a
Gaussian distribution with mean mk and covariance Σk.
Then, by employing the delta method, νk can be approxi-
mated asymptotically as a Gaussian distribution with mean
Tk(mk) and covariance JT

k ΣkJk, where Jk represents the
Jacobian matrix of the block transformation Tk.

The constraint µk = νk can be interpreted as an orthog-
onality constraint on the Jacobian of the block transforma-
tion, indicating that our regularization imposes a similar ef-
fect as enforcing orthogonality on the Jacobian. This im-
plies a block-wise soft Lipschitz constraint on the neural
network by preserving gradient norms that drive the net-
work to be 1-Lipschitz. This type of constraint was investi-
gated in the literature [1, 3, 33], and it has been particularly
shown in [3] that a 1-Lipschitz constraint does not limit the
expressiveness, i.e. the capacity and learning flexibility of
a neural network, for classification tasks. Instead, this reg-
ularization should offer a different stance on the trade-off
between generalization and accuracy. This also coincides
with the results in [28] that highlight the generalization-
enhancing effect of such a regularization. During training,
provided that a proper weight on the regularization (through
some hyperparameter λ) is tuned, the neural network’s ex-
pressive power should, in principle, remain intact, while ad-
hering to the least action principle, thereby preventing ar-
bitrary amplification of small differences and big distribu-
tional changes.
Stationary point analysis. The whole optimization prob-
lem can be expressed as:

J = L+ λR ⇒ ∂J
∂wk0

=
∂L
∂wk0

+ λ
∂R
∂wk0

, k0 ∈ JKK,

(8)
where λ is a positive hyperparameter. We then characterize
the stationary point as:

∂L
∂wk0

+ λ
∂R
∂wk0

= 0⇒ λ = − ∂L
∂wk0

· 1
∂R

∂wk0

. (9)

From this equation, since λ ≥ 0, we clearly observe that
the loss and the regularizer are antagonists. Hence, while
browsing the parameter space to minimize the loss, unre-
stricted DNNs are rather biased towards increasing inter-
mediate distributional changes in the path they take. These

changes, which can be evaluated when taking the inter-
block distances in the vanilla setting, might be irrelevant:
the DNN can converge to another local minimum in the loss
landscape, with similar performance but without undergo-
ing too many distributional changes.

In the learning process, we recall that the primary objec-
tive is to traverse the gap between the input distribution and
the target output distribution. A crucial threshold is thus
reached when the network’s output converges to the ground
truth. Namely, this inherent distance between the input and
ground truth distribution defines a tight lower bound for the
regularization value, corresponding to the minimal distribu-
tional changing capacity that still has to be maintained in
the network to have a good performance and not to underfit.
This is guaranteed by applying the Triangle inequality:

max W̃2(µ1, νGT ) ≤
K∑

k=1

max W̃2(µk, νk)

+ max W̃2(νK , νGT ), (10)

where νGT represents the ground truth label distribution.

5. Experiments
In this section, we empirically evaluate the effectiveness
of our proposed approach across multiple architectures and
datasets for traditional image classification setups and ex-
tend it to image generation.

5.1. Experimental setup
Networks and Datasets. On image classification setups,
we test LaCoOT on three widely used models, ResNet-
18, MobileNet-V2, and Swin-T trained on seven different
datasets: CIFAR-10 [30], Tiny-ImageNet [31], PACS and
VLCS from DomainBed [20], as well as Flowers-102 [45],
DTD [9], and Aircraft [40]. To showcase its applicabil-
ity to larger models on diverse tasks, we employ DiT-
XL/2 [47], finetuned on ImageNet [11] for image genera-
tion. For all our experiments, we use the implementation of
the Max Sliced Wasserstein distance available in the POT
toolbox [16]. LaCoOT is only applied in subsequent blocks
having the same dimensionality: this results in a subset of 4,
12, 12, and 28 blocks considered removable for ResNet-18,
Swin-T, MobileNetV2, and DiT-XL/2, respectively.
Baselines. We compare our method with leading depth-
reducing methods: Layer Folding [14], EGP [34], NE-
PENTHE [35], and EASIER [51]. The hyperparameters,
augmentation techniques, and learning policies are pre-
sented in Supp. Mat., mainly following [50] and [51].

5.2. Results
5.2.1. Image Classification
Fig. 2 displays the test performance (top-1) as a func-
tion of the critical path length for CIFAR-10 and Tiny-
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Figure 2. Test performance (Top-1 [%]) in function of the Critical Path Length for ResNet-18 (a,d), Swin-T (b,e) and MobileNetv2 (c,f)
trained on CIFAR-10 (a,b,c) and Tiny-ImageNet-200 (d,e,f). For each dataset/architecture, we showcase the results achieved by LaCoOT
for different values of λ, forming in dark blue the pareto frontier of our technique. Top left corner is the best.

ImageNet-200. The results achieved on other setups can
be found in Sec. F in the Supp. Mat. Moreover, Fig. 5 in
Supp. Mat. illustrates the relationship between Critical Path
Length (CPL) and practical resource consumption: as the
CPL decreases, both the inference time and the number of
MACs (multiply-accumulate operation) decrease, indicat-
ing improved computational efficiency and faster inference
speeds.
Critical Path Length. First, we can observe in Fig. 2
that the baseline methods showcase longer critical path
lengths with respect to our method. Indeed, as discussed in
Sec. 2, most methods have been focusing on removing non-
linearities from the networks, leaving the fusion of subse-
quent layers as future work. However, while for Swin-T the
fusion of two linear layers in the MLP block is straightfor-
ward, it is not the case when ResNet is employed: we recall
that there is no analytical solution for merging two consec-
utive convolutional layers when padding is employed in the
second one [49]. Hence, even if multiple non-linearities are
removed from the network with these baselines, the critical
path length only slowly decreases. Unlike these methods,
LaCoOT focuses directly on full blocks divided by skip con-
nections, hence quickly lowering the critical path length.
LaCoOT effectiveness. First, in most setups, we can ob-
serve LaCoOT’s effectiveness. Indeed, for short critical
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Figure 3. FID-50k as a function of the critical path length achieved
by a DiT-XL/2 finetuned on ImageNet. It consistently achieves
lower FID when finetuned with LaCoOT, even halving the FID
when two DiT blocks are removed. The generated content is also
better preserved (images for critical path length 26).

path length, LaCoOT is the method performing overall the



best, achieving a new Pareto Frontier when λ is increas-
ing. For instance, for ResNet-18 trained on CIFAR-10
(Fig. 2a), our method reduces the critical path length even
further, whereas previous methods could not. Besides, for
Swin-T on Tiny-ImageNet-200 (Fig. 2e), LaCoOT some-
times outperforms current methods by 10% for the same
critical path length. Additionally, looking at longer criti-
cal path lengths, we can observe that when λ is decreasing,
LaCoOT achieves comparable results to other baselines.

We also report an issue faced with EGP. Indeed, by forc-
ing a layer to have zero entropy, this method could prune it
entirely, hence preventing the signal from passing through
this layer, and thus causing the algorithm to completely fail.
This is what is observed with the MobileNetv2 architec-
ture on CIFAR-10, Flowers-102, DTD, or on Aircraft: from
the first iteration, EGP prunes the last single layer before
the classifier head entirely, leading to its complete removal,
which completely cuts the information flow in the network,
since there is no skip or residual connection at this stage.

Furthermore, on parameter-efficient architectures (such
as MobileNetv2), we can observe that EASIER performs
the best (Fig. 2f), while our method achieves comparable
results (Fig. 2c). However, the advised reader will be able
to put these results into perspective with the aim of EAS-
IER, which focuses solely on removing non-linearities (as
mentioned in Sec. 2). Moreover, the iterative nature of
EASIER results in very few benefits in practice, as shown
in Sec. 5.3. For instance, to achieve a path length of 105
on MobileNetv2, EASIER needs to carry out 34 trainings,
whereas our method requires only one.
Comparison with the original model. Although in cer-
tain setups, such as ResNet-18 on CIFAR-10, LaCoOT ef-
fectively reduces model size while maintaining the original
model’s performance, it often results in some performance
degradation compared to the original model. This is likely
because the model is not re-trained after layer removal. In
contrast, traditional compression schemes typically involve
re-training the model after dropping some parameters to re-
cover performance. We show in Tab. 8 in Supp. Mat. that
the model can recover performance with a healing phase.

5.2.2. Image Generation
Unlike other baselines, which cannot scale due to their iter-
ative nature, we show the possible extension of our method
to foundation models by finetuning a pre-trained DiT-XL/2
on ImageNet with our method LaCoOT for 5k training
steps. For 50k generated samples of size 256×256 with a
classifier-free guidance scale of 1.5, Fig. 3 displays the FID-
50k score depending on the critical path length, as well as
examples of generated samples from the pre-trained model,
and from models with two DiT blocks removed.

While no difference is observed when looking at the
FID-50k score for the original model (critical path length of
28), the effect of our technique is visible when DiT blocks

Approach top-1 [%] MACs [M] Inference time [ms] Time
Original 91.77 140.19 7.90 ± 0.43 30’

Layer Folding 88.76 147.53 9.89 ± 1.11 160’
EGP 90.64 140.19 7.62 ± 0.20 376’

NEPENTHE 89.26 140.19 7.71 ± 0.40 288’
EASIER 90.35 140.19 7.07 ± 0.18 533’

LaCoOT 90.99 64.69 4.78 ± 0.34 40’

Table 1. Test performance (top-1), MACs, inference time on
a NVIDIA A4500 and training time for ResNet-18 trained on
CIFAR-10. Original refers to the trained model without layer dele-
tion. The best results between Layer Folding, EGP, NEPENTHE,
EASIER, and LaCoOT are in bold.

are removed: LaCoOT consistently achieves a lower FID-
50k compared to the pre-trained model. For instance, when
two DiT blocks are removed, we observe that the FID-50k
score is twice as low. This is reflected in the quality of the
generated images: the dog, the volcano, the bird, and the
bear are not really visible, while the last dog contains ar-
tifacts. Indeed, the removal of blocks completely destroys
generated images in the absence of the regularization, while
the generated content is better preserved with its use. There-
fore, as it required only a few fine-tuning steps, our ap-
proach LaCoOT can be suitable for foundation models.

5.3. Practical Benefits
In this subsection, we showcase the practical benefits of our
approach in terms of inference time as well as the efficiency
of LaCoOT.
Tab. 1 shows the test performance, MACs, and inference
time on an NVIDIA A4500, as well as the training time for
a ResNet-18 trained on CIFAR-10 for all the considered ap-
proaches. The same analysis for Swin-T and MobileNetv2
is conducted in Sec. D in the Supp. Mat. As anticipated
in Sec. 2, we observe that baseline methods do not reduce
MACs in practice, as they simply rely on non-linearities re-
moval without providing insights on how to merge consec-
utive layers. Unlike its competitors, LaCoOT produces a
model whose inference has been reduced by 40%. More-
over, looking at the training time, LaCoOT is the most ef-
ficient. In Tab. 4 in the Supp. Mat., the same analysis is
conducted for MobileNetv2 on CIFAR-10, corresponding
to Fig. 2c. While Layer Folding, EGP, and NEPENTHE
showcase performance drop at high critical path length, we
achieve comparable performance as EASIER for the same
critical path length in 20× less time, with real practical ben-
efits since the inference time is reduced.

5.4. Ablation Study
In this subsection, we study the impact of λ, which balances
the strength of our regularizer. Moreover, to validate the
effectiveness of our proposed importance metric for layer
removal, we compare it with two alternative methods for
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Figure 4. Comparison of LaCoOT, BI (theoretical best), and Ran-
dom for ResNet-18 on CIFAR-10. LaCoOT (λ = 5) halves the
MACs with minimal performance loss. Higher λ values further
reduce MACs while maintaining performance.

selecting which layers to remove. Fig. 4 shows this com-
parison on a ResNet-18 on CIFAR-10.

Impact of λ. First, in the absence of regularization dur-
ing training (i.e., with λ = 0), we can observe that the
Max-Sliced Wasserstein distance is not a faithful indicator
of block importance, since it can be surpassed by random
block removal. Considering our previous theoretical anal-
ysis in Sec. 4.3, this observation is largely expected, since
without our regularization, the blocks operate changes on
the intermediate features’ distribution, which is unneces-
sary. Indeed, when our regularization is incorporated into
the training process, the unnecessary distributional changes
are minimized, and our metric becomes a reliable basis for
ranking the importance of the model blocks. Looking at
Fig. 4, the higher λ, the more blocks can be removed with-
out harming performance. Indeed, we can observe that La-
CoOT (λ = 5) halves the number of MACs with almost no
performance drop to the dense model. From Eq. 8, selecting
λ depends on the user’s goal, since there is a trade-off be-
tween performance and complexity. In general, the higher
the lambda, the more layers can be removed, but potentially
the lower the performance.
Choice of the importance score. LaCoOT is here com-
pared with two alternative methods for selecting which lay-
ers to remove. In the first scenario that we refer to as “block
influence” (BI), we remove layers depending on their im-
pact on the performance : we remove one layer at a time by
selecting the one impacting the performance the least. In a
second scenario, referred to as “Random”, we remove one
layer at a time by selecting it randomly. Based on random-
ness, error bars have been calculated on 10 seeds. From
Fig. 4, we can observe that LaCoOT achieves a better per-

formance/compression trade-off compared to the two other
approaches Block Influence and Random, which validates
the choice of our importance score.

5.5. Limitations and Future Work
While effective in alleviating the computational burden of
DNNs, LaCoOT also has some limitations, highlighting op-
portunities for future improvements and research, as dis-
cussed below.
Performance degradation. Compressing existing
parameter-efficient architectures is particularly challeng-
ing, a common issue in the field of model compression.
Indeed, LaCoOT struggles to reduce the depth of an already
underfitted architecture without compromising perfor-
mance, as seen with MobileNetv2 on Tiny-ImageNet-200.
This highlights the challenges of further compressing
already efficient architectures and the need to carefully
manage the trade-off between model depth and perfor-
mance. However, LaCoOT effectively reduces the depth of
over-fitted DNNs, especially given that only one training is
required to achieve compression.
Extension of LaCoOT with the Gromov-Wasserstein
distance. LaCoOT was primarily designed to operate on
layers where the Max-Sliced Wasserstein distance can be
computed directly. While this distance requires match-
ing dimensions between distributions, our experiments in
Sec. E in Supp. Mat. show that LaCoOT remains effective
even for layers with mismatched dimensions, such as con-
volutional layers that modify the number of filters or feature
sizes. However, we believe that a more principled treat-
ment of such cases—potentially leveraging the Gromov-
Wasserstein distance [60], which allows for comparing dis-
tributions whose supports do not necessarily lie in the same
metric space—remains an avenue for future research.

6. Conclusion
In this work, we have proposed LaCoOT, a new optimal
transport-based regularization strategy. Specifically, we use
the Max-Sliced Wasserstein distance to minimize the dis-
tances between the intermediate feature distributions in the
neural network. This regularization enables, post-training,
the complete removal of layers from the architecture with a
minor impact on performance. Experiments conducted on
three widely used architectures across seven image classifi-
cation datasets have demonstrated LaCoOT’s capability and
effectiveness in reducing the number of layers in the neural
network. Unlike other approaches that rely on an iterative
scheme, we have shown that extending LaCoOT to founda-
tion models is possible since our approach requires only a
few fine-tuning steps. Concerned about the increasing en-
vironmental impact of AI, we hope this work will inspire
future optimization techniques and new approaches for net-
work compression.
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LaCoOT: Layer Collapse through Optimal Transport

Supplementary Material

A. Gradients of the regularizer

Herein, we provide further details on the regularizer,
namely, by deriving its gradients.

Namely, ∀k0 ∈ JKK,

Rk0
=

√√√√ 1

N

N∑
i=1

(θTxk0,i − θTTk0
(xk0,i;wk0

))2 (11)

In our setting, we are also assuming that Tk0
(xk0,i;wk0

) =
xk0,i+fk0(xk0,i;wk0). Hence, we make use of this expres-
sion to derive the following analytical expression for ∂Rk0

∂wk0
.

∂Rk0

∂wk0

=
1

NRk0

N∑
i=1

(θT fk0
(xk0,i;wk0

))
∂θT fk0(xk0,i;wk0)

∂wk0

(12)

⇒ ∂R
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=
1

K

K∑
k=k0

∂Rk

∂wk0

(13)

Computing the Wasserstein distance requires a sorting
oracle, even in one dimension. In practice, backpropagation
works through subgradients of the sorting operation. While
argsort is non-differentiable, by leveraging automatic dif-
ferentiation with PyTorch, in the POT library [16] gradients
flow through the take along axis operation, treating sorting
indices as constants during backpropagation. This is suffi-
cient because the Wasserstein distance remains well-defined
even at points where the sorting order changes.

B. Correlation between Wasserstein distance
and performance degradation

In Tab. 2, we analyze the correlation between the Wasser-
stein distance for each considered block (B1, B2, B3, B4),
and performance degradation for a ResNet-18 on CIFAR-
10. The higher λ, the lower the distances, thus the more
likely the block has a function close to the identity, and
therefore the higher the performance since removing a
block close to identity does not lead to any changes. Indeed,
if the Wasserstein distance is zero, by definition the output
matches the input and therefore the whole block encodes the
identity function. The higher the distance is, the larger the
perturbation introduced will be, increasing the risk of per-
formance loss. Consequently, as λ increases, performance
improves since removing a block functioning close to iden-
tity has minimal impact on the model’s behavior.

λ B1 B2 B3 B4 Mean top-1

0.01 0.210 0.126 0.104 0.044 0.121 73.04
0.1 0.068 0.074 0.036 0.016 0.048 80.23
1 4.63e-4 0.0246 5.80e-3 2.59e-4 7.78e-3 89.01
5 4.41e-4 7.93e-3 4.35e-4 1.34e-4 2.23e-3 90.99

Table 2. Correlation between the Wasserstein distance of each
block (B1, B2, B3, B4) and the performance for a ResNet-18 on
CIFAR-10.

C. Relationship between critical path length
and practical resource consumption

In this section, we show that optimizing the critical path
length can lead to significant improvements in both infer-
ence speed and computational efficiency. Indeed, Fig. 5
demonstrates the relationship between critical path length,
inference time (measured on a NVIDIA A4500) and com-
putational complexity (MACs) for a ResNet-18 on CIFAR-
10.

35 40 45 50 55 60

Critical Path Length

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

In
fe

re
n

ce
ti

m
e

[m
s]

70

80

90

100

110

120

130

140

M
A

C
s

[M
]

Figure 5. Relationship between Critical Path Length (CPL), in-
ference time, and Multiply-Accumulate Operations (MACs) for a
ResNet-18 model on the CIFAR-10 dataset. As the CPL decreases,
both the inference time and the number of MACs decrease, indicat-
ing improved computational efficiency and faster inference speeds.

This analysis highlights a trade-off between computa-
tional complexity and inference speed. Reducing the criti-
cal path length leads to both faster inference times and fewer
computational operations: shorter critical paths are more ef-
ficient in terms of both time and computational resources.



D. Practical Benefits
Following the analysis conducted in Sec. 5.3, in this sub-
section, we showcase the practical benefits of our approach
in terms of efficiency as well as inference time.

To clarify the role of block eligibility in our method,
Tab. 3 reports, for each tested backbone: the total number
of blocks (# Blocks), the number of blocks satisfying the
equal-shape criterion and thus eligible for MSW scoring (#
MSW), the number of blocks ultimately pruned (# Pruned),
along with the resulting percentage reductions in latency
and MACs, and the resulting Top-1 accuracy on CIFAR-10.
Tab. 3 provides a detailed quantification of block eligibility
and its impact on both efficiency and performance. For the
cases where this assumption does not hold, we describe a
workaround in Sec. E.

Backbone # Blocks # MSW # Pruned Latency MACs Top-1

ResNet-18 8 4 4 -39.50 % -53.86 % 90.99

Swin-T 12 12 3 -38.48 % -61.55 % 89.47

MobileNetv2 17 12 10 -23.66 % -3.81 % 87.25

Table 3. Block eligibility and impact of pruning on CIFAR-10.

Tab.4 shows the test performance, MACs, and inference
time on an NVIDIA A4500, as well as the training time for
a MobileNetv2 trained on CIFAR-10 for all the considered
approaches.

Approach top-1 [%] MACs [M] Inference time [ms] Time
Original 93.50 87.98 13.57 ± 0.82 112’

Layer Folding 86.56 87.98 20.29 ± 0.19 529’
EGP 9.70 87.98 13.38 ± 0.18 732’

NEPENTHE 86.75 87.98 13.29 ± 0.24 3165’
EASIER 87.19 87.98 13.22 ± 0.54 3514’

LaCoOT 87.25 84.63 10.36 ± 0.60 132’

Table 4. Test performance (top-1), MACs, inference time on a
NVIDIA A4500 and training time for MobileNetv2 trained on
CIFAR-10. Original refers to the trained model without layer dele-
tion. The best results between Layer Folding, EGP, NEPENTHE,
EASIER and LaCoOT are in bold.

In this setup, while Layer Folding and EGP showcase
performance drop at high critical path length, we achieve
comparable performance as EASIER or NEPENTHE for
the same critical path length in 20× less time, with real
practical benefits since the inference time and the MACs
are reduced.

Tab. 5 shows the test performance, MACs, and inference
time on an NVIDIA A4500, as well as the training time
for a Swin-T trained on CIFAR-10 for all the considered
approaches. In this setup, since the fusion of two linear
layers is straightforward, we merge the layers for the base-
line methods when the non-linearity in between has been
removed.

Approach top-1 [%] MACs [M] Inference time [ms] Time
Original 91.67 518.94 13.54 ± 0.32 113’

Layer Folding 85.73 510.80 14.89 ± 0.11 383’
EGP 92.01 514.95 13.51 ± 0.17 228’

NEPENTHE 92.29 510.82 13.24 ± 0.26 688’
EASIER 91.25 494.28 11.04 ± 0.15 803’

LaCoOT 89.47 199.54 8.33 ± 0.02 135’

Table 5. Test performance (top-1), MACs, inference time on a
NVIDIA A4500 and training time for Swin-T trained on CIFAR-
10. Original refers to the trained model without layer deletion. The
best results between Layer Folding, EGP, NEPENTHE, EASIER
and LaCoOT are in bold.

In this setup, we can observe that the other methods
reduce the number of MACs. However, there is little
(if any) benefit in practice: the inference time is not re-
duced. Indeed, these methods focus solely on removing
non-linearities, unlike our method, which removes com-
plete blocks. On the other hand, although a slight loss of
performance is noticeable, our method LaCoOT consider-
ably reduces the number of MACs and decreases the infer-
ence time by more than 35%, while being far more efficient
at training time than its competitors.

E. Extension of LaCoOT to layers with mis-
matched dimensionalities

LaCoOT was primilary designed to operate on layers where
the Max-Sliced Wasserstein distance can be computed di-
rectly. This distance requires matching dimensions between
distributions, which prevents a direct calculation of this dis-
tance for layers with different input and output dimensions.
Nevertheless, we propose in this section to address this is-
sue by studying the case of a 3x3 convolutional layer inside
a ResNet-18.

Our goal here is to remove this specific layer in the net-
work. However, directly removing the layer would result in
a mismatch in both spatial resolution and channel dimen-
sionality, disrupting the flow of activations through the net-
work. To mitigate this, we introduce an alternative trans-
formation that preserves the overall network structure while
ensuring compatibility with subsequent layers. Specifically,
we replace the 3×3 convolutional layer with a combina-
tion of a spatial downsampling operation and a 1×1 con-
volution. The downsampling is achieved using an average
pooling layer (AvgPool2d) with a 2×2 kernel and a stride
of 2, which reduces the spatial resolution. The 1×1 convo-
lution then adjusts the number of output channels to match
the expected input dimensions of the following layers. To
ensure both configurations could be trained simultaneously,
we implemented a dual-path approach within the modified
block, where both the original and new transformations co-
existed. During training, the introduced path with the 1x1



convolution is only trained using the Max-Sliced Wasser-
stein distance, computed between the output distribution of
the 1x1 convolution and the output distribution of the orig-
inal 3x3 convolution. Post-training, the original 3x3 convo-
lution is discarded, and replaced by the average pooling and
the newly trained 1x1 convolution.

Following the same training policy detailed in Sec. L, a
ResNet-18 with the introduced transformation is trained on
CIFAR-10. On the one hand, with λ = 0, the resulting net-
work with the proposed transformation loses 0.98% perfor-
mance compared to its full version. On the other hand, with
λ = 0.1, the resulting network achieves comparable perfor-
mance with only a 0.18% performance loss compared to its
full version, highlighting the effectiveness of our method in
this case.

To conclude, by incorporating this modified structure
into the ResNet-18 architecture, we enable a seamless inte-
gration of LaCoOT which addresses the case of layers with
mismatched dimensions.

F. Additional Results on Image Classification
Setups

To complete the comparisons carried out in Sec. 5, we
compare in this section the effectiveness of LaCoOT with
respect to other baselines methods on Swin-T trained on
PACS, VLCS, Aircraft, Flowers-102 and DTD in Fig 6.
Indeed, as demonstrated in the previous section (Sec. D),
Swin-T is the only architecture where competing methods
can lead to practical benefits, since the fusion of two con-
secutive linear layers is straightforward.

In most setups, we can observe the effectiveness of La-
CoOT. Indeed, for short critical path length, LaCoOT is the
method performing overall the best, achieving a new Pareto
Frontier when λ is increasing. In some cases like DTD, La-
CoOT outperforms current methods by 10% for the same
critical path length. Additionally, looking at longer critical
path lengths, we can observe that when λ is decreasing, La-
CoOT achieves comparable results to other baseline meth-
ods. Overall, since our method focuses on removing blocks,
shorter critical path lengths can be achieved even though the
performance drops dramatically. For very short critical path
length (around 60), applying a healing policy or finetuning
to the model could help recovering performance. However,
we leave this aspect to future work.

G. Ranking with the Lipschitz constant
While Fig. 2 and 3 emphasize critical path length, we
also report results using standard metrics (MACs, inference
time, and training time) in Tab. 1, 4 and 5, which confirm
the advantage of LaCoOT across multiple resource and per-
formance dimensions. Furthermore, we show here in Tab. 6
that the ranking of the methods is preserved by display-

ing the Lipschitz constants across all blocks (B1–B4) of
ResNet-18 on CIFAR-10. The global Lipschitz constant
is upper bounded by the product of each block’s Lipschitz
constant.

Approach B1 B2 B3 B4 Global

Original 3.61 3.42 2.12 1.47 38.48

Layer Folding 1.01 7.52 5.19 1.01 39.81

EGP 3.83 3.70 1.01 1.01 14.17

NEPENTHE 4.53 3.03 1.01 1.01 13.73

EASIER 4.72 1.44 1.35 2.69 24.68

LaCoOT (λ = 5) 1.01 1.04 1.10 1.18 1.36

Table 6. Lipschitz constants for ResNet-18 on CIFAR-10.

H. Comparison with structured pruning
To complete the comparisons carried out in Sec. 5, we com-
pare in this section the effectiveness of LaCoOT with re-
spect to a traditional model pruning method : Depgraph [15]
in Tab. 7. LaCoOT outperforms DepGraph and achieves
superior latency reduction. DepGraph’s low performance
is due to the absence of retraining after pruning (to fairly
compare to us). Furthermore, since [13, 15, 37] perform
channel pruning while LaCoOT removes entire layers, these
methods operate at different levels of granularity. Rather
than addressing the exact same problem, they are comple-
mentary: applying DepGraph on top of LaCoOT (as a re-
finement at finer granularity) yields even greater latency
gains.

Approach top-1 [%] MACs [M] Latency

Original 91.77 140.19 100%

LaCoOT (λ = 5) 90.99 64.69 -38%
Depgraph (0.3) 59.40 70.96 -11%

LaCoOT (λ = 5) + Depgraph (0.2) 90.96 57.22 -45%
LaCoOT (λ = 5) + Depgraph (0.3) 89.27 49.63 -49%

Table 7. Depgraph vs. LaCoOT for ResNet-18 on CIFAR-10.

I. A closer look at generated samples
We display in Fig. 7 some generated samples from the
pre-trained DiT-XL/2 (Fig. 7a), a DiT-XL/2 with two DiT
blocks removed without the use of LaCoOT (Fig. 7b), and
from a DiT-XL/2 finetuned with LaCoOT(λ = 1e−4) with
two DiT blocks removed (Fig. 7c).

While the removal of blocks is completely destroying
generated images in absence of the regularization, the gen-
erated content is better preserved when the DiT-XL/2 is
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Figure 6. Test performance (Top-1 [%]) in function of the Critical Path Length for Swin-T trained on Aircraft (a), DTD (b), Flowers-102
(c), PACS (d) and VLCS (e). For each setup, we showcase the results achieved by LaCoOT for different values of λ, forming in dark blue
the pareto frontier of our technique. Top left corner is the best.

fine-tuned with our method on 5k training steps. Indeed,
the resulting images are much better than the the generated
images produced without LaCoOT. However, we can ob-
serve a little loss in visual fidelity with respect to the pre-
trained DiT-XL/2. For instance, although we can still per-
ceive the buildings in the third image of the second column
in Fig. 7c, we can no longer discern the lake in the fore-
ground compared to the pre-trained model image in Fig. 7a.
Nevertheless as it required only a few finetuning steps and
given the quality of the generated samples with our method
compared to without, we believe that our approach LaCoOT
can be applied and suitable for foundation models.

J. Ablation Study

In this section, we conduct multiple ablation studies. First,
we explore in Sec. J.1 the impact of using the Max-Sliced
Wasserstein Distance, or the the Sliced Wasserstein Dis-
tance as a regularization in our method. Second, we evalu-
ate the impact of the number of projections in Sec. J.2 and
the batch size in Sec. J.3 toward LaCoOT success. Finally,
in Sec. J.4, we compare our method LaCoOT replacing the
Max-Sliced Wasserstein Distance with other existing met-
rics to quantify differences between distributions.

J.1. Theoretical guarantees versus practical benefits

From the POT library [16], two sliced OT distances can be
used in our proposed regularization strategy. We propose

here to explore the impact of using the Max-Sliced Wasser-
stein Distance (MSWD), or the the Sliced Wasserstein Dis-
tance (SWD) as a regularization in our method.

From a theoretical perspective, it is preferable to use
the MSWD as it guarantees convergence [12]. Indeed, the
MSWD minimizes the worst-case difference in distribution
between the two measures over all possible projections.
Since the MSWD is a global measure over all slices, it en-
forces convergence in the full measure space. This makes
it a robust and convergent method for comparing distribu-
tions, ensuring that all possible distances are minimized
when the maximum distance is minimized.

Moreover, when performing projections to calculate the
Wasserstein Distance, we evaluate the impact of seeding the
generator. Specifically, we investigate whether initializing
the random seed for the generator during the projection pro-
cess affects the stability or performance of our model.

This leads to four distinct configurations:
• “Seed + SWD” refers to the case where the SWD is used

as a regularizer in our framework, and the generator is
seeded during projections;

• “Seed + MSWD” refers to the case where the MSWD is
used as a regularizer in our framework, and the generator
is seeded during projections;

• “None + SWD” refers to the case where the SWD is used
as a regularizer in our framework, and the generator is
not seeded during projections, allowing for randomness
to influence the projection directions;



(a) Samples generated from a pre-trained DiT-XL/2.

(b) Samples generated from a DiT-XL/2 with two DiT blocks removed, without LaCoOT. The generated content tends to be indiscernible.

(c) Samples generated from a DiT-XL/2 finetuned with LaCoOT (λ = 1e−4) with two DiT blocks removed.

Figure 7. Generated samples from different configurations of a DiT-XL/2. When finetuned with LaCoOT, when two DiT blocks are
removed, the generated content is better preserved. Indeed, the removal of blocks is completely destroying generated images in absence of
the regularization, while the generated content is better preserved with its use.



140.19121.31102.4483.5664.69

MACs [M]

88

90

92

T
op

-1
[%

]

Seed + SWD

Seed + MSWD

None + SWD

None + MSWD

Figure 8. MSWD vs. SWD and impact of seeding the generator
for the projections for a ResNet-18 trained on CIFAR-10 with La-
CoOT (λ = 5). SWD yields better results than MSWD.

• “None + MSWD” refers to the case where the MSWD is
used as a regularizer in our framework, and the generator
is not seeded during projections, allowing for randomness
to influence the projection directions.
Since the unseeded approach may expose the model to

more generalization across different slices, and that MSWD
provides theoretical convergence guarantees, we use the
“None + MSWD” configuration in all our experiments ex-
cept where otherwise stated.

Fig. 8 displays the results of the ablation over the 4 con-
figurations on a ResNet-18 trained on CIFAR-10 with our
method LaCoOT with λ = 5. Since variability between
runs can occur, we report standard deviations over 5 runs.

Interestingly, despite offering theoretical convergence
guarantees, the use of MSWD as a regularizer yields worse
results compared to the use of the SWD. Moreover, looking
at the standard deviations, we can observe that the “None
+ SWD” configuration display the lowest, which shows its
stability. Thus, we draw the reader’s attention to the fact
that better results can be obtained in practice if one allow
himself to dispense with the theoretical convergence guar-
antees.

J.2. Ablation on the number of projections
In this subsection, we evaluate the impact of the number of
projections nproj toward LaCoOT success. Indeed, Fig. 9
shows the results achieved for LaCoOT(λ = 5) when lower-
ing the number of projections used to calculate the MSWD.

While for the extreme case (nproj = 1), a drop in perfor-
mance is observed when blocks are removed and MACs re-
duced, we can already obtain decent results with nproj = 5.
Indeed, it appears that the number of projections plays a
role in the trade-off between the model’s original perfor-
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Figure 9. Ablation on the number of projection nproj for a
ResNet-18 trained on CIFAR-10 with LaCoOT (λ = 5).

mance (at 140.19 MACs) and the possibility of removing
layers without performance loss. In fact, nproj = 40 show-
cases the best results with the best performance at lower
MACs, and a very slight loss of performance with respect
to its original counterpart at 140,19 MACs.

J.3. Ablation on the batch size
In this subsection, we evaluate the impact of the batch size
BS on LaCoOT results. Indeed, Fig. 10 shows the results
achieved for LaCoOT(λ = 5) when lowering the batch size
used to calculate the MSWD.
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Figure 10. Ablation on the batch size BS for a ResNet-18 trained
on CIFAR-10 with LaCoOT (λ = 5).

Looking at the results, it appears evident that reducing
the batch size produces worse results. Although perfor-
mance remains constant (or presents a slight decrease for
BS = 100) when layers are removed and MACs are re-



duced, it appears evident that the smaller the batch size,
the lower the performance of the original model (at 140.19
MACs). Hence, whenever possible, LaCoOT should always
be applied with a sufficiently large batch size that can fit in
the memory of the used computing resources.

J.4. Comparison with other metrics

In this subsection, we compare our method LaCoOT us-
ing other existing metrics to quantify differences between
distributions. Indeed, the MSWD regularization can be re-
placed by the ℓ1 distance, the ℓ2 distance, the Maximum
Mean Discrepancy (MMD) or the Kullback-Leibler (KL)
Divergence. For each comparison, we show the best con-
figuration of λ yielding the best results for the trade-off be-
tween top-1 performance and MACs. Indeed, a grid search
on λ is carried out to find the best trade-offs. Fig. 11 dis-
plays the results for a ResNet-18 trained on CIFAR-10.
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Figure 11. Ablation on LaCoOT replacing the proposed regu-
larization with ℓ1, ℓ2, MMD or KL divergence, for a ResNet-18
trained on CIFAR-10.

On the one hand, while for high MACs, the KL diver-
gence shows its competitiveness, the performance drops
dramatically as blocks are removed and MACs reduced.
On the other hand, we can observe that ℓ1, ℓ2 and MMD
obtain similar performance/complexity trade-off with rela-
tively few performance drops. Our method LaCoOT with
the MSWD outperforms the other compared metrics for
lower MACs.

While the choice of metric seems to have very little im-
pact on the performance obtained, we draw the reader’s at-
tention to the fact that this is due to the idea we are propos-
ing. Indeed, minimizing the distance between feature dis-
tributions of successive layers appears to be more important
to reduce the depth of DNNs than the choice of the metric
itself. Thus, the other metrics presented here can also be

used as regularizations in our method, but these may pro-
duce worse results.

K. Training from scratch with lower initial
depth

While having an oracle baseline on each setup is computa-
tionally expensive as brute-force research for all the com-
binations (+full retraining) is required, we present in Tab. 8
below the performance of 16 residual networks trained from
scratch on CIFAR-10 following the set of Tab. 9. Indeed,
we remove at initialization (a combination of) layers inside
a ResNet-18 and train the network from scratch. We call
this the “brute-force approach”.

Combination # B. Rem. Top-1 [%] MACs [M]

2222 (Original) 0 91.77 140.19

2221 1 91.86 121.31
2212 1 91.29 121.31
1222 1 90.82 121.31
2122 1 90.59 121.31
2211 2 91.96 102.44
1221 2 91.58 102.44
2112 2 91.45 102.44
2121 2 91.27 102.44
1212 2 91.25 102.44
1122 2 91.02 102.44
2111 3 91.78 83.56
1211 3 91.64 83.56
1121 3 90.94 83.56
1112 3 90.88 83.56
1111 4 91.45 64.69

LaCoOT(λ = 5) 4 90.99 64.69
LaCoOT(λ = 5) + retraining 4 91.42 64.69

Table 8. ResNet-18 trained from scratch on CIFAR-10 with layers
removed initially. For a given combination, we associate the num-
ber of blocks removed (# B. Rem.), the top-1 performance and
associated MACs at inference.

Our approach LaCoOT is achieving comparable perfor-
mance compared to these models. However, while the
“brute-force approach” has to perform 16 separate trainings,
LaCoOT can produce the same 16 subnetworks in one train-
ing only, hence being very efficient. By further retraining
the pruned architecture, we recover performance, compara-
ble to the original model, as shown in the last line.

L. Details on the learning strategies employed
Image Classification. The training hyperparameters used
in the experiments are presented in Table 9. Our code is
available at https://github.com/VGCQ/LaCoOT.

CIFAR-10 is augmented with per-channel normalization,
random horizontal flipping, and random shifting by up to
four pixels in any direction. For the datasets of DomainBed,
the images are augmented with per-channel normalization,

https://github.com/VGCQ/LaCoOT


Model Dataset Epochs Batch Opt. Mom. LR Milestones Drop Factor Weight Decay

ResNet-18 CIFAR-10 160 128 SGD 0.9 0.1 [80, 120] 0.1 1e-4
Swin-T CIFAR-10 160 128 SGD 0.9 0.001 [80, 120] 0.1 1e-4

MobileNetv2 CIFAR-10 160 128 SGD 0.9 0.1 [80, 120] 0.1 1e-4

ResNet-18 Tiny-ImageNet-200 160 128 SGD 0.9 0.1 [80, 120] 0.1 1e-4
Swin-T Tiny-ImageNet-200 160 128 SGD 0.9 0.001 [80, 120] 0.1 1e-4

MobileNetv2 Tiny-ImageNet-200 160 128 SGD 0.9 0.1 [80, 120] 0.1 1e-4

ResNet-18 PACS 30 16 SGD 0.9 0.001 [24] 0.1 5e-4
Swin-T PACS 30 16 SGD 0.9 0.001 [24] 0.1 5e-4

MobileNetv2 PACS 30 16 SGD 0.9 0.001 [24] 0.1 5e-4

ResNet-18 VLCS 30 16 SGD 0.9 0.001 [24] 0.1 5e-4
Swin-T VLCS 30 16 SGD 0.9 0.001 [24] 0.1 5e-4

MobileNetv2 VLCS 30 16 SGD 0.9 0.001 [24] 0.1 5e-4

ResNet-18 Flowers-102 50 16 Adam 1e-4 0
Swin-T Flowers-102 50 16 Adam 1e-4 0

MobileNetv2 Flowers-102 50 16 Adam 1e-4 0

ResNet-18 DTD 50 16 Adam 1e-4 0
Swin-T DTD 50 16 Adam 1e-4 0

MobileNetv2 DTD 50 16 Adam 1e-4 0

ResNet-18 Aircraft 50 16 Adam 1e-4 0
Swin-T Aircraft 50 16 Adam 1e-4 0

MobileNetv2 Aircraft 50 16 Adam 1e-4 0

Table 9. The different employed learning strategies.

random horizontal flipping, random cropping, and resizing
to 224. The brightness, contrast, saturation, and hue are
also randomly affected with a factor fixed to 0.4. Tiny-
ImageNet-200 is augmented with per-channel normaliza-
tion and random horizontal flipping. Moreover, the images
of Flowers-102 are augmented with per-channel normaliza-
tion, random horizontal and vertical flipping combined with
a random rotation, and cropped to 224. DTD and Aircraft
are augmented with random horizontal and vertical flipping,
and with per-channel normalization.

Following [34] and [50], on CIFAR-10 and Tiny-
ImageNet-200, all the models are trained for 160 epochs,
optimized with SGD, having momentum 0.9, batch size
128, and weight decay 1e-4. The learning rate is decayed by
a factor of 0.1 at milestones 80 and 120. The initial learning
rate ranges from 0.1 for ResNet-18 and MobileNetv2, to 1e-
3 for Swin-T. Moreover, on PACS and VLCS, all the mod-
els are trained for 30 epochs, optimized with SGD, having
momentum 0.9, a learning rate of 1e-3 decayed by a factor
0.1 at milestone 24, batch size 16, and weight decay 5e-
4. Furthermore, on Aircraft, DTD, and Flowers-102, all the
models are trained following a transfer learning strategy. In-
deed, each model is initialized with its pre-trained weights
on ImageNet, trained for 50 epochs, optimized with Adam,
having a learning rate 1e-4 and batch size 16.

The experiments were mostly performed using an
NVIDIA RTX 3090.
Image Generation. DiT-XL/2 at 256× 256 image reso-
lution is fine-tuned on ImageNet for 5k training steps on

3 NVIDIA L40S using AdamW, no weight decay, with a
global batch size of 60 and a learning rate 1e-4. Only hori-
zontal flips were used to augment the training set. Follow-
ing common practice in the generative modeling literature,
we maintain an exponential moving average (EMA) of DiT
weights over training with a decay of 0,9999. All results re-
ported use the EMA model. The pre-trained model is taken
from the original paper [47] and the diffusion was done us-
ing the same details as in the original paper. We evaluate
the quality of the generated samples with Fréchet Inception
Distance (FID) [24], the standard metric for evaluating gen-
erative models of images. Following convention, we report
FID-50k using 250 sampling steps with clean-fid [46] and
classifier-free guidance scale of 1,5.
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