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Abstract

We consider offline Reinforcement Learning (RL), where the agent does not interact
with the environment and must rely on offline data collected using a behavior policy.
Previous works provide policy evaluation guarantees when the target policy to
be evaluated is covered by the behavior policy, that is, state-action pairs visited
by the target policy must also be visited by the behavior policy. We show that
when the MDP has a latent low-rank structure, this coverage condition can be
relaxed. Building on the connection to weighted matrix completion with non-
uniform observations, we propose an offline policy evaluation algorithm that
leverages the low-rank structure to estimate the values of uncovered state-action
pairs. Our algorithm does not require a known feature representation, and our
finite-sample error bound involves a novel discrepancy measure quantifying the
discrepancy between the behavior and target policies in the spectral space. We
provide concrete examples where our algorithm achieves accurate estimation while
existing coverage conditions are not satisfied. Building on the above evaluation
algorithm, we further design an offline policy optimization algorithm and provide
non-asymptotic performance guarantees.

1 Introduction

Reinforcement Learning (RL) has achieved significant empirical success in the online setting, where
the agent continuously interacts with the environment to collect data and improve its performance.
However, online exploration is costly and risky in many applications, such as healthcare [4] and
autonomous driving [16], in which case it is preferable to learn from a pre-collected observational
dataset from doctors or human drivers using their own policies. Due to lack of on-policy interaction
with the environment, offline RL faces the fundamental challenge of distribution shift [7]. A
standard approach for handling distribution shift is importance sampling [12, 11]. More sophisticated
approaches have been proposed to alleviate the high variance of importance sampling [2, 21]. Recent
works [17, 10, 23] consider estimating the state marginal importance ratio, a more tractable problem.

Existing work on offline RL requires the dataset to have sufficient coverage. A standard measure for
coverage is the concentrability coefficient [19]: Cπ = maxs,a

dπ(s,a)
ρ(s,a) , which is the ratio between the
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state-action occupancy measure of a policy π of interest and the (empirical) occupancy measure ρ of
the behavior policy generating the offline dataset. However, this can be restrictive as the support of ρ
must contain that of dπ in order for Cπ to be finite. Earlier work such as the Fitted Q-iteration (FQI)
algorithm [9] requires full coverage, i.e. Cπ <∞ for all policies π. More recent works [19, 13, 8]
requires a more relaxed partial coverage condition Cπ∗

< ∞ for the optimal policy π∗. Partial
coverage is still a fairly strong requirement: the behavior policy must visit every state the optimal
policy would visit, and take every action the optimal policy would take.

In this paper, we seek to relax the coverage condition for offline policy evaluation in settings where
the Markov decision process (MDP) has a latent low-rank structure. Similarly to [15, 14], we view
the Q function as a matrix and exploit its low-rank structure to infer the entries that were not observed
in the offline data. Unlike typical results from the low-rank matrix completion literature, our setting
requires completing the matrix under non-uniform sampling, as in [3, 6]; moreover, the error is
evaluated under a different distribution or weighted norm, leading to the fundamental challenge of
distribution shift. By leveraging techniques from weighted and non-uniform matrix completion, we
develop a new offline policy evaluation algorithm, which alternates between Q iteration and matrix
estimation. For both the infinite and finite sample settings, we show that the evaluation error can
be bounded in terms of a novel discrepancy measure between the behavior and target policies. In
contrast to the standard concentrability coefficient, our discrepancy measure may remain finite even
when the behavior policy does not cover the support of the target policy. We present a concrete
example where the concentrability coefficient is infinite but our method achieves a meaningful error
bound. Building on the above evaluation algorithm, we further design an offline policy optimization
algorithm with provable performance guarantees.

2 Problem Setup

Consider an MDPM = (S,A, H, P, r, µ1) with finite state space S, finite action space A, horizon
H , transition kernel P = {Pt}t∈[H], bounded reward function r = {rt : S ×A → [0, 1]}t∈[H], and
initial state distribution µ1 ∈ ∆(S). Let S = |S| and A = |A|. For each policy π = {πt : S →
∆(A)}t∈[H], the Q function Qπ

t : S × A → R is defined as Qπ
t (s, a) = Eπ[

∑H
i=t ri(si, ai)|st =

s, at = a], and the total expected reward is Jπ = Eπ[
∑H

t=1 rt(st, at)|s1 ∼ µ1]. Let dπt : S ×A →
[0, 1] denote the state-action occupancy measure at time t ∈ [H] under policy π.

Given a dataset generated by the behavior policy πβ , our goal is to estimate Jπθ

for a target policy πθ.
We assume that the MDP has the following low-rank structure, which implies that for any policy π,
its Q function (viewed as an S-by-A matrix) is at most rank d.

Assumption. For all t, rt ∈ [0, 1]S×A has rank at most d/2, and Pt admits the decomposition

Pt(s
′|s, a) =

∑d/2
i=1 ut,i(s

′, s)wt,i(a) or Pt(s
′|s, a) =

∑d/2
i=1 ut,i(s)wt,i(s

′, a), ∀s′, s, a.

The above low-rank model is different from the Low-rank MDP model considered in previous
works [1, 20]. In Low-rank MDPs, the transition kernel P is assumed to have a factorization of the
form P (s′|s, a) =

∑d
i=1 ui(s

′)wi(s, a), where the factors ui(·) and wi(·, ·) are unknown. Closely
related is the Linear MDP model [5, 22], where the feature maps wi(·, ·) are known. In these models,
the low-rank/linear structures are with respect to the relationship between the originating state-action
pair (s, a) and the destination state s′; they do not imply that Q function is low-rank when viewed as
a matrix. In contrast, our model stipulates that the transition kernel can be factorized either between
(i) a and (s, s′) or (ii) s and (s′, a), both of which imply a low dimensional relationship between the
current state s and the action a taken at that state, resulting in a low-rank Q function.

For a matrix M , let ∥M∥∗ denote its nuclear norm (sum of singular values), ∥M∥op its operator
norm (maximum singular value), ∥M∥∞ = maxi,j |Mij | its entrywise ℓ∞ norm, and supp(M) =
{(i, j) : Mij ̸= 0} its support. The indicator matrix 1M is a binary matrix encoding the position of
the support of M . The entrywise product between two matrices M and M ′ is denoted by M ◦M ′.

We propose a novel discrepancy measure defined below, and show that it can replace the role of the
concentrability coefficient in our error bound under the low-rank assumption.
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Definition 1 (Operator discrepancy). The operator discrepancy between two probability distributions
p, q ∈ ∆(S ×A) is defined as

Dis(p∥q) := min
{
∥g − q∥op : g ∈ ∆(S ×A), supp(g) ⊆ supp(p)

}
. (1)

Note that Dis(p∥q) ≤ ∥p− q∥op is always finite, and Dis(p∥q) = 0 if and only if supp(q) ⊆
supp(p). To gain intuition for the above definition, assume the minimizer in (1) is g∗. By generalized
Hölder’s inequality, we have∣∣∣E(s,a)∼g∗

[
M(s, a)

]
− E(s,a)∼q

[
M(s, a)

]∣∣∣ = ∣∣∣⟨g∗,M⟩ − ⟨q,M⟩∣∣∣ ≤ Dis(p∥q) · ∥M∥∗. (2)

If the nonzero singular values of M are of the same scale, then the RHS of (2) is of order Dis(p∥q) ·
rank(M). Therefore, Dis(p∥q) measures the distribution shift between p and q in terms of preserving
the expectation of low-rank matrices. Note that Dis(p∥q) only depends on the support of p: if
supp(p) = supp(p′), then Dis(p∥q) = Dis(p′∥q) for all q. Moreover, thanks to the minimization
in the definition (1), Dis(p∥q) can be significantly smaller than ∥p− q∥op. For instance, if p is the
uniform distribution on S ×A, then g∗ = q and hence Dis(p∥q) = 0 for all q.

The operator discrepancy shares similarity with the parameter Λ in [6]. Note that the operator
discrepancy is not symmetric. The error bounds for our proposed off-policy evaluation algorithm will
be a function of Dis(dπ

β

t ∥dπ
θ

t ), even when one is given infinite samples from the behavior policy. The
operator discrepancy only depends on the support of the behavior policy and not the exact distribution,
which is expected under the infinite sample setting. As such, the operator discrepancy highlights the
inherent error induced by distribution shift. In the finite sample setting, our error will have additional
terms which represent the empirical approximation error on the support of the behavior policy.

3 Algorithm

Our algorithm alternates between two steps: applying Q-value iteration on the support of dπ
β

t , and
using low-rank matrix completion to infer the Q values off support. The algorithm takes as input an
offline dataset D = {(skt , akt , rkt )}t∈[H],k∈[K], which contains K independent trajectories generated
from the behavior policy πβ . Over state-action pairs in the support of πβ , we use the data to construct
unbiased empirical estimates of the immediate reward, transition kernel and occupancy measure
of the behavior policy, denoted by r̂t, P̂t and d̂π

β

t , respectively. Let B̂πθ

t denote the target policy’s
empirical Bellman operator, which is given by

(B̂πθ

t f)(s, a) = r̂t(s, a) +
∑

s′,a′ P̂t(s
′|s, a)πθ

t (a
′|s′)f(s′, a′) (3)

for all f : S ×A → R. Note that we can evaluate (B̂π
t f)(s, a) only over (s, a) ∈ supp(d̂π

β

t ). With
these notations, our algorithm is given below.

Algorithm 1: Matrix Completion in Low-Rank Offline RL

Data: dataset D, πθ, initial state distribution µ1, weight matrices (ρt)t∈[H], and ME(·).
Result: estimator Ĵ .

1 Q̂πθ

H+1(s, a)← 0, ∀(s, a) ∈ S ×A.
2 for t = H, H-1, . . . , 1 do
3 Q iteration: Zt(s, a)← (B̂πθ

t Q̂πθ

t+1)(s, a), for all (s, a) ∈ supp(ρt).
4 Matrix estimation: Q̂πθ

t ← ME (1ρt
◦ Zt).

5 end
6 Output Ĵ ←

∑
s,a µ1(s)π

θ
1(a|s)Q̂πθ

1 (s, a).

Line 3 of Algorithm 1 involves a weight matrix ρt with supp(ρt) ⊆ supp(d̂π
β

t ). One may simply
take ρt to be d̂π

β

t , or use other weights. Our theorems below quantify the performance of different ρt.
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Line 4 of the algorithm uses a matrix estimation subroutine ME(·), which is given by the following
nuclear norm minimization program with Lt := H − t+ 1 and a tuning parameter κ ≥ 0:

ME(1ρt
◦ Zt) = argmin

M∈RS×A

∥M∥∗

s.t. ∥1ρt
◦ (M − Zt)∥∞ ≤ κ, ∥M∥∞ ≤ Lt.

(4)

4 Analysis

We present evaluation error bounds under both the infinite sample setting K → ∞ and the finite
sample setting K <∞. Define the population Bellman operator Bπθ

t , which is given by equation (3)
with r̂t and P̂t replaced by rt and Pt. Define the matrix Yt ∈ RS×A via Yt(s, a) = (Bπθ

t Q̂πθ

t+1)(s, a),
which is the population version of Zt computed in Algorithm 1.

In the infinite sample setting, we have d̂π
β

t (s, a) → dπ
β

t (s, a), r̂t(s, a) → rt(s, a) and P̂t(s, a) →
Pt(s, a) for all (s, a) ∈ supp(dπ

β

t ). Consequently, both B̂πθ

t and Zt converge to their population
versions Bπθ

t and Yt, respectively. We set κ = 0 in equation (4), which implies that 1ρt
◦M =

1ρt
◦ Yt. We have the following guarantee.

Theorem 1 (Infinite samples). In the infinite sample setting, under Algorithm 1 with ρt = dπ
β

t and
κ = 0, the output estimator Ĵ satisfies∣∣Ĵ − Jπθ ∣∣ ≤ 2

∑H
t=1 Dis(dπ

β

t ∥dπ
θ

t ) ∥Yt∥∗ . (5)

Next consider the setting with a finite dataset D = {(skt , akt , rkt )}t∈[H],k∈[K]. Let nt(s, a) :=∑
k∈[K] 1(skt ,a

k
t )=(s,a) be the visitation count of each state-action pair. Accordingly, the empirical

occupancy of πβ is given by d̂π
β

t (s, a) = nt(s, a)/K. The following guarantee, which generalizes
Theorem 1, holds for any weight matrices ρ = (ρt)t∈[H], for which we define nmin(ρ) :=
min{nt(s, a) : t ∈ [H], (s, a) ∈ supp(ρt)}.
Theorem 2 (Finite samples). Consider the finite sample setting under Algorithm 1 with ρt satisfying
supp(ρt) ⊆ supp(d̂π

β

t ) and κ = ∥1ρt
◦ (Yt − Zt)∥∞ . There exists an absolute constant C > 0

such that with probability at least 1− δ, we have∣∣Ĵ − Jπθ ∣∣ ≤2∑H
t=1 Dis(ρt∥dπ

θ

t ) ∥Yt∥∗ + C
√

H3 log(HSA/δ)
nmin(ρ)

. (6)

Remark 1. The finite sample error bound in (6) decomposes into infinite sample error and statistical
error. The infinite sample error quantifies the intrinsic hardness of distribution shift. The statistical
error is due to empirical estimation of the reward and transition kernel. We provide the flexibility
of using ρt different from d̂π

β

t , which would allow us to balance the infinite sample error and the
statistical error. If nmin(d̂

πβ

) is small, the statistical error can be large. In this case, one may choose
a ρt that puts zero weight on the pairs (s, a) with small count nt(s, a). The resulting nmin(ρ) can be
significantly larger than nmin(d̂

πβ

), which reduces the statistical error while potentially increasing
the infinite sample error.

The proofs of Theorem 1 and 2 are deferred to Appendix A.1 and A.6, respectively. Our bounds (5)
and (6) scale with the operator discrepancy (1), which is always finite, given any behavior policy πβ

and target policy πθ, in contrast to the concentrability coefficient Cπ = maxs,a
dπ(s,a)
ρ(s,a) . Suppose

that there exists some (s, a) such that ρt(s, a) = 0 and dπ
θ

t (s, a) > 0. Then, Cπθ

= ∞ whereas
Dis(ρt∥dπ

θ

t ) is finite and meaningful.

We present a concrete example in the infinite samples setting showcasing the effectiveness of our
algorithm. Assume S = A = n. Consider the simple setting where the transition is uniform over
all state-action pairs. For each s and t, assume πθ

t (·|s) is supported on m actions, and the locations
of these actions are a realization of uniform random sampling over [n]. We assume πβ

t is generated
from the same model independently. Note that the support of dπ

β

t and dπ
θ

t will be mostly disjoint,
making the concentrability coefficient infinite with high probability. Using Theorem 1, we derive the
following error bound, the proof of which is deferred to Appendix A.2.
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Corollary 1. Under the aforementioned setting, there exists an absolute constant C > 0 such that

when n ≥ C, with probability at least 1− 1
n , we have

∣∣Ĵ − Jπθ ∣∣ ≤ C
√

dH3 log(n)
m .

If m satisfies m ≳ dH logn
ϵ2 , then we have |Ĵ − Jπθ | ≤ ϵH . Suppose m = n/2. In this setting, the

behavior and target policies both randomize over half of the actions, but their actions may have little

overlap. Our bound gives |Ĵ − Jπθ | ≲
√

dH3 logn
n , which can be vanishingly small when n is large.

5 Policy Optimization and Guarantee

In this section, we build on our policy evaluation methode to design an offline policy optimization
algorithm. Given a dataset D generated by a behavior policy πβ , we can use Algorithm 1 to obtain
an value estimate Ĵπ for each policy π. We optimize over policies for which the above estimate is
reliable. Specifically, we consider the following set of candidate policies

ΠB :=
{
π : Dis(dπt ∥ρt) ≤ B, ∀t ∈ [H]

}
,

where the parameter B ≥ 0 controls how close the occupancy distribution of the candidate policy
is to the data distribution, in terms of operator discrepancy defined in (1). It is easy to see that
when policy π satisfies supp(dπt ) ⊆ supp(ρt), we have Dis(dπt ∥ρt) = 0 and as a result, π ∈ ΠB

for any B ≥ 0. Consequently, if we take ρt = d̂π
β

t , then ΠB includes the policies that are covered
by the offline dataset. In other words, all policies with finite concentrability coefficients are in ΠB .
Importantly, when B > 0, the set ΠB contains other policies with infinite concentrability coefficients,
as demonstrated in the example at the end of last section. With a bigger B, the set ΠB includes more
policies, though we have weaker evaluation guarantees for these policies.

Among all candidate policies in ΠB , we maximize the estimated values obtained by Algorithm 1 to
get

π̂ = argmax
π∈ΠB

Ĵπ. (7)

We present the following guarantee for π̂, the proof of which can be found in Appendix A.7.
Theorem 3. Suppose πβ ∈ ΠB . We obtain π̂ by solving (7). There exists an absolute constant C > 0
such that with probability at least 1− δ, we have

J π̂ ≥ Jπ − 4BH3/2
√
SAd− C

√
H3 log(HSA/δ)

nmin(ρ)
, ∀π ∈ ΠB . (8)

The above bound shows that we are able to find a policy π̂ with a nearly optimal value, compared
to other policies in ΠB . How close π̂ is to the optimal policy in ΠB depends on how accurately
we can evaluate all policies in ΠB . According to Theorem 2, the estimations are accurate if B is
small (policies are close to behavior) and nmin(ρ) is large (dataset is large), which is reflected in
the bound (8). Similarly as before, the two error terms in (8) quantifies the fundamental difficulty
of distribution shift and finite sample noise, respectively. If we let ρt = d̂π

β

t and B = 0, we are
essentially optimizing over all policies with finite concentrability coefficients. In this case, our bound
reduces to

J π̂ ≥ Jπ − C

√
H3 log(HSA/δ)

nmin(ρ)
, ∀π ∈ Π0.

Compared to the PAC bound of CPPO proposed in [19] (Section 5.1), our bound has a better
polynomial dependence on the time horizon H .

6 Conclusion

We propose a novel algorithm for efficient offline evaluation when low-rank structure is present in the
MDP. Our algorithm is a combination of Q iteration and low-rank matrix estimation, which is easy to
implement. We show that the proposed operator discrepancy measure better captures the difficulty of
policy evaluation in the offline setting, compared to the traditional concentrability coefficient. We
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also combine the evaluation algorithm with policy optimization and provide performance guarantee.
We believe that this work is a first step in exploiting the benefit of low-rank structure in the Q function
in offline RL. In the future, we hope to develop a more efficient policy optimization algorithm, with a
better estimation accuracy.
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A Proofs

Let µπ
t : S → [0, 1] denote the state occupancy measure at time t ∈ [H] under policy π.

A.1 Proof of Theorem 1

We present two lemmas before analyzing the evaluation error. The first one analyzes the error incurred
at the matrix estimation step. The proof is deferred to Appendix A.4.
Lemma 1. For arbitrary real matrices A,B, P,W ∈ Rm×n, we have∣∣∣∣∣∣

∑
i,j

Wij(Aij −Bij)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
i,j

Pij(Aij −Bij)

∣∣∣∣∣∣+ (∥A∥∗ + ∥B∥∗) ∥P −W∥op .

Remark. Under the matrix estimation framework, we can interpret matrix P as the sampling pattern
and W as the weights for evaluation.

Next, we introduce a lemma decomposing the evaluation error as a summation of the matrix estimation
accuracy from future timesteps. The proof can be found in Appendix A.5.

Lemma 2. For the Q function and its estimator Qπθ

t , Q̂πθ

t ∈ RS×A, we have〈
dπ

θ

t , Q̂πθ

t −Qπθ

t

〉
=

〈
dπ

θ

t , Q̂πθ

t − Yt

〉
+

〈
dπ

θ

t+1, Q̂
πθ

t+1 −Qπθ

t+1

〉
, t ∈ [H],

and consequently 〈
dπ

θ

1 , Q̂πθ

1 −Qπθ

1

〉
=

H∑
t=1

〈
dπ

θ

t , Q̂πθ

t − Yt

〉
.

Based on Lemma 1 and 2, we derive the following error bound. For each t ∈ [H] and an arbitrary
g ∈ ∆(S ×A) with supp(g) ⊆ supp(dπ

β

t ), we have∣∣∣∣∣∑
s,a

dπ
θ

t (s, a)
(
Q̂πθ

t (s, a)− Yt(s, a)
)∣∣∣∣∣
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≤

∣∣∣∣∣∑
s,a

g(s, a)
(
Q̂πθ

t (s, a)− Yt(s, a)
)∣∣∣∣∣+ 2 ∥Yt∥∗

∥∥∥dπθ

t − g
∥∥∥
op

=2 ∥Yt∥∗
∥∥∥dπθ

t − g
∥∥∥
op

,

where the first step follows from Lemma 1, and the second equality follows from the constraints in (4)
with κ = 0. Then, combining with the decomposition in Lemma 2, we obtain the desired bound by
minimizing over all such g.

A.2 Proof of Corollary 1

For simplicity, define b := m
n . Since the transition is uniform, the state occupancy µπ

t (·) is uniform
under any policy π, i.e. µπ

t (s) =
1
n . By the way the policies are generated, dπ

θ

t (·, ·) = µπθ

t (·)πθ
t (·|·) ∈

Rn×n is supported on mn entries whose locations are realization of random sampling, and on these
entries dπ

θ

t (s, a) = 1
mn . Specifically, all dπ

θ

t (s, a) are i.i.d. Bernoulli random variables that take the
value 1 with probability b. The behavior policy πβ is generated independently via the same process.
Let M := dπ

θ

t − dπ
β

t and we have

Mij =


1

mn with probability b(1− b)

− 1
mn with probability b(1− b)

0 with probability 1− 2b(1− b)

(9)

independently across all entries (i, j). By matrix Bernstein inequality, we obtain the following result,
the proof of which is deferred to Appendix A.3.
Lemma 3. There exists an absolute constant C > 0 such that when n ≥ C, with probability at least
1− 1

n , we have

∥M∥op ≤ C
1

n

√
log(n)

m
. (10)

Since Yt is at most rank-d and has bounded entries, we have ∥Yt∥∗ ≤
√
d ∥Yt∥F ≤ n

√
dH .

Combining Theorem 1 and (10), we get∣∣∣Ĵ − Jπθ
∣∣∣ ≤ 2

H∑
t=1

∥Yt∥∗
∥∥∥dπβ

t − dπ
θ

t

∥∥∥
op

≲ H · n
√
dH · 1

n

√
log(n)

m

=

√
dH3 log(n)

m
,

where the first upper bound is obtained by plugging dπ
β

t into the objective of (1).

A.3 Proof of Lemma 3

We apply matrix Berstein’s inequality (Theorem 6.1.1 in [18]). Let Sk = Mijeie
⊤
j , for all k ∈ [n2].

Since |Mij | ≤ 1
mn , we derive that ∥Sk∥op ≤

1
mn . We calculate that∑

k

E[SkS
⊤
k ] =

∑
i,j

E[M2
ij ]eie

⊤
i

= 2b(1− b)
1

m2n
In.

As a result, we have∥∥∥∥∥∑
k

E[SkS
⊤
k ]

∥∥∥∥∥
op

= 2b(1− b)
1

m2n
=

2(n−m)

n3m
≤ 2

n2m
.
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By symmetry, we also have
∥∥∑

k E[S⊤
k Sk]

∥∥
op
≤ 2

n2m . Hence, we get

P
(
∥M∥op ≥ t

)
≤ 2n exp

(
−t2/2

2
mn2 + t

3mn

)
.

Letting the RHS be upper bounded by 1
n yields the desired result.

A.4 Proof of Lemma 1

The proof uses the following result, which holds for any pairs of dual norms. In this paper, we only
consider using ∥·∥∗ and ∥·∥op.

Lemma 4. For a real matrix M ∈ Rm×n and two weight matrices P,W ∈ Rm×n, we have that∣∣∣∣∣∣
∑
i,j

PijMij −
∑
i,j

WijMij

∣∣∣∣∣∣ ≤ ∥M∥∗ ∥P −W∥op .

Proof. We can rewrite
∑

i,j PijMij −
∑

i,j WijMij as

⟨M,P −W ⟩ ,

where ⟨·, ·⟩ denotes the trace inner product between matrices. Applying Hölder’s inequality, we
obtain

|⟨M,P −W ⟩| ≤ ∥M∥∗ ∥P −W∥op .

Substituing Mij = Aij −Bij in Lemma 4, we immediately obtain the desired results in Lemma 1.

A.5 Proof of Lemma 2

Recall that

Qπθ

t (s, a) =
(
Bπθ

t Qπθ

t+1

)
(s, a), (11)

Yt(s, a) =
(
Bπθ

t Q̂πθ

t+1

)
(s, a). (12)

For each (s, a) ∈ S ×A, we have

Q̂πθ

t (s, a)−Qπθ

t (s, a)

=
(
Q̂πθ

t (s, a)− Yt(s, a)
)
+
(
Yt(s, a)−Qπθ

t (s, a)
)

=
(
Q̂πθ

t (s, a)− Yt(s, a)
)
+

∑
s′,a′

Pt(s
′|s, a)πθ

t+1(a
′|s′)

(
Q̂πθ

t+1(s
′, a′)−Qπθ

t+1(s
′, a′)

)
,

where the last step follows from equations (12) and (11). Multiplying both sides by dπ
θ

t (s, a) and
summing over (s, a), we obtain〈

dπ
θ

t , Q̂πθ

t −Qπθ

t

〉
=
〈
dπ

θ

t , Q̂πθ

t − Yt

〉
+

∑
s′,a′

∑
s,a

dπ
θ

t (s, a)Pt(s
′|s, a)πθ

t+1(a
′|s′)︸ ︷︷ ︸

=dπθ
t+1(s

′,a′)

(
Q̂πθ

t+1(s
′, a′)−Qπθ

t+1(s
′, a′)

)

=
〈
dπ

θ

t , Q̂πθ

t − Yt

〉
+
〈
dπ

θ

t+1, Q̂
πθ

t+1 −Qπθ

t+1

〉
,

thereby proving the first equation in the lemma. Continuing the above recursion yields the second
equation.
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A.6 Proof of Theorem 2

Fix t ∈ [H]. For gt ∈ ∆(S ×A) satisfying supp(gt) ⊆ supp(ρt), we have∣∣∣∣∣∑
s,a

dπθ
t (s, a)

(
Q̂πθ

t (s, a)− Yt(s, a)
)∣∣∣∣∣

≤

∣∣∣∣∣∑
s,a

gt(s, a)
(
Q̂πθ

t (s, a)− Yt(s, a)
)∣∣∣∣∣+ 2 ∥Yt∥∗ · ∥d

πθ
t − gt∥op ,

by Lemma 1 and the fact that
∥∥∥Q̂πθ

t

∥∥∥
∗
≤ ∥Yt∥∗ by construction. Applying triangle inequality, we get∣∣∣∣∣∑

s,a

gt(s, a)
(
Q̂πθ

t (s, a)− Yt(s, a)
)∣∣∣∣∣

≤

∣∣∣∣∣∑
s,a

gt(s, a)
(
Q̂πθ

t (s, a)− Zt(s, a)
)∣∣∣∣∣+

∣∣∣∣∣∑
s,a

gt(s, a) (Zt(s, a)− Yt(s, a))

∣∣∣∣∣
≤2

∣∣∣∣∣∑
s,a

gt(s, a) (Zt(s, a)− Yt(s, a))

∣∣∣∣∣ ,
where the last step follows from the constraint in (4). Recall that

Zt(s, a) = r̂t(s, a) +
∑
s′,a′

P̂t(s
′|s, a)πθ

t+1(a
′|s′)Q̂πθ

t+1(s
′, a′),

Yt(s, a) = rt(s, a) +
∑
s′,a′

Pt(s
′|s, a)πθ

t+1(a
′|s′)Q̂πθ

t+1(s
′, a′).

Using the above expressions, we obtain

Zt(s, a)− Yt(s, a) = r̂t(s, a)− rt(s, a) +
∑
s′,a′

(P̂t(s
′|s, a)− Pt(s

′|s, a))πθ
t+1(a

′|s′)Q̂πθ

t+1(s
′, a′)︸ ︷︷ ︸

F̂t(s,a)

.

Note that r̂t and F̂t are both the average of nt(s, a) bounded random variables. Additionally, |r̂t| is
bounded by 1 and

∣∣∣F̂t

∣∣∣ is bounded by H . A standard application of Hoeffding’s inequality followed
by union bound yields

P
[

max
t,(s,a)∈supp(ρt)

|r̂t(s, a)− rt(s, a)| ≤ ε

]
≥ 1−

∑
t,(s,a)∈supp(ρt)

e−ε2nt(s,a)/2

≥ 1−HSAe−ε2nmin(ρ)/2.

Setting the probability to be lower bounded by 1− δ gives

ε ≲

√
log(HSA/δ)

nmin(ρ)
.

Similar techniques yield

P

[
max

t,(s,a)∈supp(ρt)

∣∣∣F̂t(s, a)
∣∣∣ ≲ √

H log(HSA/δ)

nmin(ρ)

]
≥ 1− δ.

Applying the high probability bound and Lemma 2, we obtain
H∑
t=1

∣∣∣∣∣∑
s,a

dπθ
t (s, a)

(
Q̂πθ

t (s, a)− Yt(s, a)
)∣∣∣∣∣

≲
H∑
t=1

∥∥∥gt − dπ
θ

t

∥∥∥
op
∥Yt∥∗ +

√
H3 log(HSA/δ)

nmin(ρ)
.

Minimizing the RHS over all gt yields the desired result.
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Remark 2. Note that the proof does not rely on the specific distribution of ρt. Instead, we only use
the support of ρt and upper bound the statistical error by the maximum deviation on the support. It
will be an interesting future direction to incorporate the exact distribution of ρt into the error bound.

A.7 Proof of Theorem 3

Invoking Theorem 2, we have

J π̂ ≥ Ĵ π̂ − 2

H∑
t=1

Dis(ρt∥dπ̂t )
∥∥∥Y π̂

t

∥∥∥
∗
− C

√
H3 log(HSA/δ)

nmin(ρ)

≥ Ĵπ − 2

H∑
t=1

Dis(ρt∥dπ̂t )
∥∥∥Y π̂

t

∥∥∥
∗
− C

√
H3 log(HSA/δ)

nmin(ρ)

≥ Jπ − 2

H∑
t=1

Dis(ρt∥dπ̂t )
∥∥∥Y π̂

t

∥∥∥
∗
− 2

H∑
t=1

Dis(ρt∥dπt ) ∥Y π
t ∥∗ − 2C

√
H3 log(HSA/δ)

nmin(ρ)
,

with probability at least 1− δ. Since we assume Dis(ρt∥dπt ) ≤ B for all t ∈ [H] and π ∈ ΠB , the
discrepancies can be upper bounded by B. Combining with the fact that ∥Y π

t ∥∗ ≤
√
d ∥Y π

t ∥F ≤√
SAHd, we get the desired result.
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