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Abstract

Pre-trained language models (PLMs) which
carry generic knowledge can be a good start-
ing point for adapting to downstream appli-
cations. However, it is difficult to generalize
PLMs to new tasks with only a limited num-
ber of labeled samples given. In this work, we
show that Relation Graph augmented Learning
RGL method can obtain better performance in
few-shot natural language understanding tasks.
During learning, RGL constructs a relation
graph based on the label consistency between
samples in the same batch, and learns to solve
the resultant node classification and link pre-
diction problems of the relation graphs. In
this way, RGL fully exploits the limited su-
pervised information, which can boost the tun-
ing effectiveness. Extensive experiments on
benchmark tasks show that RGL consistently
improve the performance of prompt-based tun-
ing strategies.

1 Introduction

Pre-trained language models (PLMs), such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), has become the standard workhorse
for nowadays natural language processing (NLP)
tasks. A direct way of leveraging these PLMs
is to fine-tune them by taking gradient descent
w.r.t. the objective of downstream tasks. How-
ever, tuning the large PLM by a few labeled sam-
ples has a high risk of overfitting (Dodge et al.,
2020; Zhang et al., 2021; Gunel et al., 2020). Be-
sides, as PLMs are trained by an objective different
from the downstream tasks, the ability of PLM may
not be fully exploited. Recently, prompt-based
tuning methods emerge and show promising re-
sults on adapting PLMs to new tasks with a few
labeled samples (Liu et al., 2021). In particular,
prompts are used to reformulate the downstream
tasks into the same form of pre-training tasks such
that the gap between pre-training and fine-tuning is
reduced (Brown et al., 2020; Schick and Schiitze,

2021a). Concretely, prompt-based tuning strate-
gies rewrite the input sequence into cloze-style
question with masks (Schick and Schiitze, 2021a).
The input sequence is rewritten as prompts, while
the corresponding label is replaced by answer to-
kens. Some methods use hard prompts and an-
swers which use text strings with semantic meaning
conveyed (Schick and Schiitze, 2021b; Tam et al.,
2021; Gao et al., 2021), while others take learnable
parameters as soft prompts and answers (Liu et al.,
2021; Li and Liang, 2021; Lester et al., 2021). In
addition, multiple prompts can be used to boost
the performance of prompt-based tuning (Brown
et al., 2020; Schick and Schiitze, 2021b). While
the above strategies improve few-shot performance,
they pay less attention to representation learning
through fully utilizing supervisions from few-shot
training datasets.

In this work, we propose a simple yet effec-
tive relation graph augmented approach which can
enhance the performance of prompt-based tuning
strategies PLM in few-shot natural language un-
derstanding tasks. Specifically, our proposal aims
at fully exploiting the limited supervised informa-
tion via Relation Graph augmented Learning, we
thus call the proposed method RGL. RGL first con-
structs batch-wise relation graph, where every node
refers to a labeled sample and the edge between
nodes refers to the similarity between the two sam-
ples. RGL establishes edge in the relation graph
w.r.t whether the two samples are from the same
class and regularizes the similarity of representa-
tions learned by PLMs between every two samples
to fit the edge of relation graph. RGL can easily
scale up as the relation graph is constructed w.r.t.
only a mini-batch of sampled data points per it-
eration. Empirical results on benchmark datasets
show that RGL can consistently improve the per-
formance of prompt-based tuning. We make our
codes! publicly available.

"https://github.com/[XXX]/RGL
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2 Background

In this paper, we target at generalizing a pre-trained
language model (PLM) to text classification tasks
with a few labeled examples. Following the prob-
lem definition of (Schick and Schiitze, 2021b;
Gao et al., 2021), each task 7 with label space
Y consists of three datasets: (i) training dataset
Durain = {(x4,yi)} containing a few labeled ex-
amples where x; is the sequence and y; is the
corresponding label, (ii) development(validation)
dataset Dy, containing the same number of sam-
ples as Dyin and is used for model selection, and
(iii1) testing dataset Dy containing samples to be
predicted.

In prompt-based tuning, each input sample

(xi,v;) is reformulated as a pattern-verbalizer
pair (PVP) (Schick and Schiitze, 2021a) in
terms of (p(x;),v(y;)).  The pattern map-
ping function p(-) maps x; to cloze ques-
tions with masks. For example, a single sentence
x; = [CLS]s[SEP]” can be mapped as “p(x;) =
[CLS]s It was [MASK].[SEP]”, where [CLS] and
[SEP] are special start and end tokens. As for a sen-
tence pair “x; = [CLS]s1[SEP]s2[SEP]”, it can be
mapped as “p(x;) = [CLS]s1[MASK], s3[SEP]”.
The verbalizer v(-) maps y; to tokens expressing
the semantic meaning of y;. For examples, “posi-
tive/negative" can be mapped as “good/bad". With
PVPs, the token embedding thASK] is taken as the
representation of x;. The class prediction y; con-
tains conditional probability distribution of each
possible class label given x;, whose entry corre-
sponds to y; is estimated as

exp(p(IMASK] =v(y;)|p(x;)))

a(yilxi) = >, ey exp(p(IMASKI =v(y;)|p(x:)))
ox ( [MASK])
_ PIWo(y: ) (1)
Eyjey exp(w, Woy;) * thASK])

where w, is the logit vector of token v existing in
the vocabulary. Let y; be a one-hot vector with all
Os but a single one denoting the index of the ground
truth class label y; € {1,...,C}. The model is
optimized with respect to loss Lcg defined as

Lcg = Zj\;

where (-) "

~log(yi) "yi, @
denotes the transpose operation.

3 RGL: Our Proposed Method

In this section, we present the proposed RGL (Fig-
ure 1). We manage to exploit more supervised

signals out of the training samples by constructing
and learning on batch-wise relation graphs, which
can boost the effectiveness of prompt-based tuning.
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Figure 1: A high-level illustration of prompt-based tun-
ing with the proposed RGL (marked by the square with
blue dotted lines).

3.1 Defining the Relation Graphs

Consider a mini-batch B = {(x;, )}, con-
taining N randomly sampled sequence-label pairs,
whose indexes are keptinZ = {1,..., N}. We try
to exploit more supervised information by model-
ing its relation graph. Let G = {V, £} denotes the
relation graph among the N training samples in B.
In particular, V is a set of nodes where each node
v; € V corresponds to one training sample x;, and
& = {e;;} is a set of edges between the NV training
samples. As we mainly consider text classification
tasks, the edge e;; between a node v; and another
node v; is established if these nodes come from the
same class. Formally, e;; is set as

1 iy =y
€;i = . 3
“ {0 otherwise )

Note that (3) is just an example of defining e;; in
classification tasks, which already obtains good
performance. One can define e;; in other ways as
extension, such as modeling both the intra- and
inter-class relations (Kim et al., 2019), using auxil-
iary information to it, and using real-valued e;; for
regression tasks.

3.2 Learning with Relation Graphs

On the relation graph G of mini-batch B, we expand
the origin classification task into two problems: (i)
a node classification problem to predict the cor-
rect class of each node, and (ii) a link prediction
problem to connect nodes of the same classes and
disconnect nodes from different classes.



The node classification problem corresponds ex-
actly to the original classification task. Therefore,
we obtain class prediction y; of v; (corresponding
to x;) by (1) and calculate Lcg loss by (2).

As for the link prediction problem, we estab-
lish é;; between v; and v; based on the relevance
between y; and y;:

éij = 9(¥i,Y5); “4)

where y;,y; are obtained by (1), and g(-, -) is sim-
ply set as cosine similarity in this paper. There
exist other choices to obtain é;; such as calculate
g(hECLS],thLS]) or g(hEMASK]’hEMASK]) instead.
We use y;,y; as they carry more semantic infor-
mation relevant to each class, which are more pre-
dictive and obtain better empirical performance.
One may also consider using parameterized g(-, -)
instead of using cosine similarity. However, con-
sidering the limited number of labeled samples, we
avoid bringing in extra parameters to reduce the
risk of overfitting. To measure the losses of link
prediction, We design Ly inx loss as

—Z Z ei;log( e”

1€L jEA(1)

+(1—e;5) log(1—€;5), (5)

where A(i) = {j € Zand i # j}.

For each mini-batch I3, we optimize the model
to minimize the combination of node classification
loss Lcg and link prediction loss Ly inx as a whole:

Lcg + aLliink, (6)

where « is a hyperparameter to control the contri-
bution of this Ly k.

3.3 Comparisons with SCL.

The most relevant work to RGL is SCL(Gunel et al.,
2020) which applies supervised contrastive learn-
ing (SCL) on a batch level while fine-tuning PLM
(rather than prompt-based tuning PLM). SCL opti-
mizes for the following objective:

Lce + BLscL, @)

where Lgcr takes the following form:

_Z Zl f(x5)/7)

2 o exp(f(xi)-f (xi) )’

exp(f(xi)-
ZkeA

®)

where P (i) = {j € A(%) : y; = y;}, 7 is a hyper-
parameter. f(x;) is the representation of x;, which
is chosen as hECLS] in (Gunel et al., 2020) and is

changed to hEMASK] following routine in prompt-
based tuning strategies (Liu et al., 2021).

Our RGL is different from SCL in three aspects:
(i) RGL constructs relation graphs and aims to ap-
proximate the edge labels é;; defined in (3), while
SCL does not use any precise measures (e.g., edge
labels) constraining similarities/distances between
intra/inter-class samples; (ii) RGL rules samples
from the same class to be connected and otherwise
disconnected, while SCL only enforces samples
from the same class to be close without explicitly
pushing those from different classes to be farther
apart; and (iii) RGL estimates edge labels é;; us-
ing the prediction y; and y; to regularize the target
task-dependent representations, while SCL uses
representation of x; (outputs of PLM) which might
be irrelevant to the target task.

4 Experiments

Experimental settings. We use RoBERTa-
large2 (Liu et al., 2019) as the PLM. We take
PET? (Schick and Schiitze, 2021b) as the basic
prompt-based tuning method. Upon PET, we
compare the benefits of applying the proposed
RGL versus SCL (Gunel et al., 2020). We imple-
ment RGL in PyTorch. All the hyperparameters
are selected using the provided development set
via grid search following Gao et al. (2021). We
first select Adam optimizer learning rate from
{le — 5,2e — 5,5¢ — 5} and batch size from
{2,4, 8} for PET. Then, we select hyperparameter
a from [0 : 0.2 : 1] for RGL and hyperparameters
B and 7 for SCL. We train all methods for a
maximum number of 1000 steps and evaluate the
performance on development set every 100 steps.

Dataset. Experiments are performed on a vari-
ant of GLUE benchmarks (Wang et al., 2018) for
few-shot setting, which is provided by Gao et al.
(2021). Gao et al. (2021) provide 5 different train-
ing sets and developing sets where each of them
consist of 16 labeled samples per class. The aver-
aged performance over these 5 splits are reported.
We also evaluate the proposed RGL on the Su-
perGLUE (Wang et al., 2019) variant proposed
by Schick and Schiitze (2021b), whose results are
put in Appendix due to space limit.

Results. Table 1 shows the results. As shown,
both RGL and SCL can bring in additional perfor-

Zhttps://huggingface.co/roberta-large.
3https://github.com/timoschick/pet.
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SST-2 SST-5 MR CR MPQA Subj TREC CoLA
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)
PET 92.7(0.9) 474025 87.01.2) 90.3(1.0) 84702 91.24,; 84.8;.y 9.3(7.3)
PET+SCL  92.9(1.9) 48.0(1.9) 87.118) 903115 849024 91.2(17) 855026 20.9(16.5)
relative 1 +0.2 +0.6 +0.1 +0.0 +0.2 +0.0 +0.7 +11.6
PET+RGL  93.4(95) 49.3(1.9) 87.3(08) 90.3(09) 85.6(15 91.4(15 86829 22.714
relative 1 +0.7 +1.9 +0.3 +0.0 +0.9 +0.2 +2.0 +13.4
MNLI MNLI-mm SNLI QNLI RTE MRPC QQpP STS-B
(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Pear.)
PET+SCL  69.5(3.9) 71.3(3.1) T72009) 69207 69341 75840 066.737 71635
relative 1 +1.2 +0.8 +0.0 +4.7 +0.2 +1.3 +1.2 +0.6
PET+RGL  70.8( 3, 72.7(1.9 77517 7037 697496 77067 68815 72542
relative 1 +2.5 +2.2 +0.3 +5.8 +0.6 +2.5 +3.3 +1.5

Table 1: Test performance obtained on GLUE variant (Gao et al., 2021). The evaluation metrics follow Wang et al.
(2018). The best results (according to the pairwise t-test with 95% confidence) are highlighted in bold.

mance gain. In particular, RGL can improve the
performance of PET by 2.38 on average, while SCL
only improves PET by 1.46 on average. Moreover,
RGL obtains more stable results as the variances
are smaller than the others.

Model analysis. Figure 2(a) plots the effect
of varying the number of labeled training sam-
ples. As shown, all methods obtain better per-
formance given more training samples, while
PET+RGL consistently outperforms the others.
We further consider different ways of obtain-
ing é€;; in (4): (1) w/ hICLSI which sets €ij =
cos(hECLs], hECLS]) where cos(+, -) denotes the co-
sine similarity function; (ii)w/ hMASKI which
sets €;; = cos(hEMASK],hEMASK]); and (iii) w/
y which is the one adopted in RGL and sets
éi; = cos(¥i,y;). Results in Figure 2(b) show that
RGL outperforms the others. This validates that
class prediction carries more relevant information
to discriminate samples.

—e— PET
9 PET+SCI

—— PET+RGL

(a) Effect of labeled samples. (b) Effect of estimating é;;.
Figure 2: Model analysis on SST-2 task.

Visualization. Figures 3 plots the t-SNE visual-
ization of the learned sample embeddings. It ap-
parently shows that, when combining RGL with

both fine-tuning and PET, the distances of deep
representations between any two inter-class sam-
ples are much longer than the intra-class distances.
Furthermore, PET+RGL can separate two classes
of samples with clear margin while concentrating
samples of every class closely to the center of the
group, resulting in better discrimination capability.
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PET PET + SCL PET + RGL

Figure 3: t-SNE visualization on SST-2 task.

5 Conclusion

We present RGL to fully exploit the limited super-
vised information of few-shot natural language un-
derstanding tasks. During learning, RGL constructs
batch-wise relation graphs based on label consis-
tency between samples, and explicitly tunes the
pre-trained language models to solve the resultant
node classification and link prediction problems.
In this paper, we provide one way of relation graph
learning. This can be further extended to broader
applications where other ways of relation graph
learning worth trying. In addition, one can explore
how to avoid the interference of noisy samples.
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Appendix: More Experimental Results

All the experiments are conducted on a 32GB
NVIDIA Tesla V100 GPU.

In addition to PET (Schick and Schiitze, 2021b),
we also combine the proposed RGL with other
prompt-based tuning strategies. As for baselines
to incorporate RGL, we take P—tuning4 (Liu et al.,
2021) as the representative for joint prompt and
PLMtuning, and WARP? (Hambardzumyan et al.,
2021) as the representative for prompt tuning with
a fixed PLM. WARP is only evaluated on CB and
RTE as in the original paper.

As both P-tuning and WARP use Super-
GLUE (Wang et al.,, 2019) variant proposed
by Schick and Schiitze (2021b) to evaluate the few-
shot performance and use ALBERT?® (Lan et al.,
2020) as the PLM, we adopt them for fairness.
Schick and Schiitze (2021b) provide one training
set which consists 32 samples per task and a testing
set. Schick and Schiitze (2021b) also use unlabeled
samples, which are not used in this paper. Follow-
ing Liu et al. (2021), a development set consisting
of 32 samples per task are randomly drawn for
model selection. As only one split is provided, we
initialize the parameter with five random seeds and
report the averaged results over five runs.

BoolQ MultiRC WiC WSC
(acc) (EM) (Fla) (acc) (acc)

P—tuning 75.2(5‘2) 32.1(1.0) 74.9(1.9) 55.3(1‘5) 80.8(25)
+RGL 77‘4(0.8) 33.5(0_2) 75.6(]_2) 57‘3<2_9) 81.7(1_0)

relative T +2.2 +1.4 +0.7 +2.0 +0.9
CB RTE COPA
(acc) (F1) (acc) (acc)

P—tuning 87.5(3_0) 82'1(6.0) 74.7(11)) 82.3(2_5)
+RGL 88.1(2_1) 84.2(2'3) 75.5(1_3) 83.7(541)
relative T +0.6 +2.1 +0.7 +1.4

WARP 82230 T77.572) 72805
+RGL 84.3(2_1) 80.5(4'7) 73.2(1_0)
relative T +2.1 +3.0 +0.4

Table 2: Test performance obtained on SuperGLUE
variant (Schick and Schiitze, 2021b). The evaluation
metrics follow Wang et al. (2019). The best results (ac-
cording to the pairwise t-test with 95% confidence) are
highlighted in bold.

Table 2 shows the results obtained on Super-
GLUE variants. The results show that RGL can
consistently boost the performance when it is com-
bined with P-tuning and WARP.

*https://github.com/THUDM/P-tuning.
>https://github.com/YerevaNN/warp.
®https://huggingface.co/albert-xxlarge-v2.
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