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Abstract

Pre-trained language models (PLMs) which001
carry generic knowledge can be a good start-002
ing point for adapting to downstream appli-003
cations. However, it is difficult to generalize004
PLMs to new tasks with only a limited num-005
ber of labeled samples given. In this work, we006
show that Relation Graph augmented Learning007
RGL method can obtain better performance in008
few-shot natural language understanding tasks.009
During learning, RGL constructs a relation010
graph based on the label consistency between011
samples in the same batch, and learns to solve012
the resultant node classification and link pre-013
diction problems of the relation graphs. In014
this way, RGL fully exploits the limited su-015
pervised information, which can boost the tun-016
ing effectiveness. Extensive experiments on017
benchmark tasks show that RGL consistently018
improve the performance of prompt-based tun-019
ing strategies.020

1 Introduction021

Pre-trained language models (PLMs), such as022

BERT (Devlin et al., 2019) and RoBERTa (Liu023

et al., 2019), has become the standard workhorse024

for nowadays natural language processing (NLP)025

tasks. A direct way of leveraging these PLMs026

is to fine-tune them by taking gradient descent027

w.r.t. the objective of downstream tasks. How-028

ever, tuning the large PLM by a few labeled sam-029

ples has a high risk of overfitting (Dodge et al.,030

2020; Zhang et al., 2021; Gunel et al., 2020). Be-031

sides, as PLMs are trained by an objective different032

from the downstream tasks, the ability of PLM may033

not be fully exploited. Recently, prompt-based034

tuning methods emerge and show promising re-035

sults on adapting PLMs to new tasks with a few036

labeled samples (Liu et al., 2021). In particular,037

prompts are used to reformulate the downstream038

tasks into the same form of pre-training tasks such039

that the gap between pre-training and fine-tuning is040

reduced (Brown et al., 2020; Schick and Schütze,041

2021a). Concretely, prompt-based tuning strate- 042

gies rewrite the input sequence into cloze-style 043

question with masks (Schick and Schütze, 2021a). 044

The input sequence is rewritten as prompts, while 045

the corresponding label is replaced by answer to- 046

kens. Some methods use hard prompts and an- 047

swers which use text strings with semantic meaning 048

conveyed (Schick and Schütze, 2021b; Tam et al., 049

2021; Gao et al., 2021), while others take learnable 050

parameters as soft prompts and answers (Liu et al., 051

2021; Li and Liang, 2021; Lester et al., 2021). In 052

addition, multiple prompts can be used to boost 053

the performance of prompt-based tuning (Brown 054

et al., 2020; Schick and Schütze, 2021b). While 055

the above strategies improve few-shot performance, 056

they pay less attention to representation learning 057

through fully utilizing supervisions from few-shot 058

training datasets. 059

In this work, we propose a simple yet effec- 060

tive relation graph augmented approach which can 061

enhance the performance of prompt-based tuning 062

strategies PLM in few-shot natural language un- 063

derstanding tasks. Specifically, our proposal aims 064

at fully exploiting the limited supervised informa- 065

tion via Relation Graph augmented Learning, we 066

thus call the proposed method RGL. RGL first con- 067

structs batch-wise relation graph, where every node 068

refers to a labeled sample and the edge between 069

nodes refers to the similarity between the two sam- 070

ples. RGL establishes edge in the relation graph 071

w.r.t whether the two samples are from the same 072

class and regularizes the similarity of representa- 073

tions learned by PLMs between every two samples 074

to fit the edge of relation graph. RGL can easily 075

scale up as the relation graph is constructed w.r.t. 076

only a mini-batch of sampled data points per it- 077

eration. Empirical results on benchmark datasets 078

show that RGL can consistently improve the per- 079

formance of prompt-based tuning. We make our 080

codes1 publicly available. 081

1https://github.com/[XXX]/RGL
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2 Background082

In this paper, we target at generalizing a pre-trained083

language model (PLM) to text classification tasks084

with a few labeled examples. Following the prob-085

lem definition of (Schick and Schütze, 2021b;086

Gao et al., 2021), each task T with label space087

Y consists of three datasets: (i) training dataset088

Dtrain = {(xi, yi)} containing a few labeled ex-089

amples where xi is the sequence and yi is the090

corresponding label, (ii) development(validation)091

dataset Ddev containing the same number of sam-092

ples as Dtrain and is used for model selection, and093

(iii) testing dataset Dtest containing samples to be094

predicted.095

In prompt-based tuning, each input sample096

(xi, yi) is reformulated as a pattern-verbalizer097

pair (PVP) (Schick and Schütze, 2021a) in098

terms of (p(xi), v(yi)). The pattern map-099

ping function p(·) maps xi to cloze ques-100

tions with masks. For example, a single sentence101

“xi = [CLS]s[SEP]” can be mapped as “p(xi) =102

[CLS]s It was [MASK].[SEP]”, where [CLS] and103

[SEP] are special start and end tokens. As for a sen-104

tence pair “xi = [CLS]s1[SEP]s2[SEP]”, it can be105

mapped as “p(xi) = [CLS]s1[MASK], s2[SEP]”.106

The verbalizer v(·) maps yi to tokens expressing107

the semantic meaning of yi. For examples, “posi-108

tive/negative" can be mapped as “good/bad". With109

PVPs, the token embedding h[MASK]
i is taken as the110

representation of xi. The class prediction ŷi con-111

tains conditional probability distribution of each112

possible class label given xi, whose entry corre-113

sponds to yi is estimated as114

q(yi|xi)=
exp(p([MASK]=v(yi)|p(xi)))∑

yj∈Y exp(p([MASK]=v(yj)|p(xi)))
115

=
exp(w>

v(yi)
· h[MASK]

i )∑
yj∈Y exp(w>

v(yj)
· h[MASK]

i )
, (1)116

where wv is the logit vector of token v existing in117

the vocabulary. Let yi be a one-hot vector with all118

0s but a single one denoting the index of the ground119

truth class label yi ∈ {1, . . . , C}. The model is120

optimized with respect to loss LCE defined as121

LCE =
∑N

i=1
− log(ŷi)

>yi, (2)122

where (·)> denotes the transpose operation.123

3 RGL: Our Proposed Method124

In this section, we present the proposed RGL (Fig-125

ure 1). We manage to exploit more supervised126

signals out of the training samples by constructing 127

and learning on batch-wise relation graphs, which 128

can boost the effectiveness of prompt-based tuning. 129

PLM
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learn relation graph
' '

others in 
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Figure 1: A high-level illustration of prompt-based tun-
ing with the proposed RGL (marked by the square with
blue dotted lines).

3.1 Defining the Relation Graphs 130

Consider a mini-batch B = {(xi, yi)}Ni=1 con- 131

taining N randomly sampled sequence-label pairs, 132

whose indexes are kept in I = {1, . . . , N}. We try 133

to exploit more supervised information by model- 134

ing its relation graph. Let G = {V, E} denotes the 135

relation graph among the N training samples in B. 136

In particular, V is a set of nodes where each node 137

vi ∈ V corresponds to one training sample xi, and 138

E = {eij} is a set of edges between the N training 139

samples. As we mainly consider text classification 140

tasks, the edge eij between a node vi and another 141

node vj is established if these nodes come from the 142

same class. Formally, eij is set as 143

eij =

{
1 if yj = yi

0 otherwise
. (3) 144

Note that (3) is just an example of defining eij in 145

classification tasks, which already obtains good 146

performance. One can define eij in other ways as 147

extension, such as modeling both the intra- and 148

inter-class relations (Kim et al., 2019), using auxil- 149

iary information to it, and using real-valued eij for 150

regression tasks. 151

3.2 Learning with Relation Graphs 152

On the relation graph G of mini-batchB, we expand 153

the origin classification task into two problems: (i) 154

a node classification problem to predict the cor- 155

rect class of each node, and (ii) a link prediction 156

problem to connect nodes of the same classes and 157

disconnect nodes from different classes. 158
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The node classification problem corresponds ex-159

actly to the original classification task. Therefore,160

we obtain class prediction ŷi of vi (corresponding161

to xi) by (1) and calculate LCE loss by (2).162

As for the link prediction problem, we estab-163

lish êij between vi and vj based on the relevance164

between ŷi and ŷj :165

êij = g(ŷi, ŷj), (4)166

where ŷi, ŷj are obtained by (1), and g(·, ·) is sim-167

ply set as cosine similarity in this paper. There168

exist other choices to obtain êij such as calculate169

g(h[CLS]
i ,h[CLS]

j ) or g(h[MASK]
i ,h[MASK]

j ) instead.170

We use ŷi, ŷj as they carry more semantic infor-171

mation relevant to each class, which are more pre-172

dictive and obtain better empirical performance.173

One may also consider using parameterized g(·, ·)174

instead of using cosine similarity. However, con-175

sidering the limited number of labeled samples, we176

avoid bringing in extra parameters to reduce the177

risk of overfitting. To measure the losses of link178

prediction, We design LLink loss as179

−
∑
i∈I

∑
j∈A(i)

eij log(êij)+(1−eij) log(1−êij), (5)180

where A(i) = {j ∈ I and i 6= j}.181

For each mini-batch B , we optimize the model182

to minimize the combination of node classification183

loss LCE and link prediction loss LLink as a whole:184

LCE + αLLink, (6)185

where α is a hyperparameter to control the contri-186

bution of this LLink.187

3.3 Comparisons with SCL188

The most relevant work to RGL is SCL(Gunel et al.,189

2020) which applies supervised contrastive learn-190

ing (SCL) on a batch level while fine-tuning PLM191

(rather than prompt-based tuning PLM). SCL opti-192

mizes for the following objective:193

LCE + βLSCL, (7)194

where LSCL takes the following form:195

−
∑
i∈I

∑
j∈P(i)

log
exp(f(xi)·f(xj)/τ)∑

k∈A(i) exp(f(xi)·f(xk)/τ)
, (8)196

where P(i) = {j ∈ A(i) : yj = yi}, τ is a hyper-197

parameter. f(xi) is the representation of xi, which198

is chosen as h[CLS]
i in (Gunel et al., 2020) and is199

changed to h[MASK]
i following routine in prompt- 200

based tuning strategies (Liu et al., 2021). 201

Our RGL is different from SCL in three aspects: 202

(i) RGL constructs relation graphs and aims to ap- 203

proximate the edge labels êij defined in (3), while 204

SCL does not use any precise measures (e.g., edge 205

labels) constraining similarities/distances between 206

intra/inter-class samples; (ii) RGL rules samples 207

from the same class to be connected and otherwise 208

disconnected, while SCL only enforces samples 209

from the same class to be close without explicitly 210

pushing those from different classes to be farther 211

apart; and (iii) RGL estimates edge labels êij us- 212

ing the prediction ŷi and ŷi to regularize the target 213

task-dependent representations, while SCL uses 214

representation of xi (outputs of PLM) which might 215

be irrelevant to the target task. 216

4 Experiments 217

Experimental settings. We use RoBERTa- 218

large2 (Liu et al., 2019) as the PLM. We take 219

PET3 (Schick and Schütze, 2021b) as the basic 220

prompt-based tuning method. Upon PET, we 221

compare the benefits of applying the proposed 222

RGL versus SCL (Gunel et al., 2020). We imple- 223

ment RGL in PyTorch. All the hyperparameters 224

are selected using the provided development set 225

via grid search following Gao et al. (2021). We 226

first select Adam optimizer learning rate from 227

{1e − 5, 2e − 5, 5e − 5} and batch size from 228

{2, 4, 8} for PET. Then, we select hyperparameter 229

α from [0 : 0.2 : 1] for RGL and hyperparameters 230

β and τ for SCL. We train all methods for a 231

maximum number of 1000 steps and evaluate the 232

performance on development set every 100 steps. 233

Dataset. Experiments are performed on a vari- 234

ant of GLUE benchmarks (Wang et al., 2018) for 235

few-shot setting, which is provided by Gao et al. 236

(2021). Gao et al. (2021) provide 5 different train- 237

ing sets and developing sets where each of them 238

consist of 16 labeled samples per class. The aver- 239

aged performance over these 5 splits are reported. 240

We also evaluate the proposed RGL on the Su- 241

perGLUE (Wang et al., 2019) variant proposed 242

by Schick and Schütze (2021b), whose results are 243

put in Appendix due to space limit. 244

Results. Table 1 shows the results. As shown, 245

both RGL and SCL can bring in additional perfor- 246

2https://huggingface.co/roberta-large.
3https://github.com/timoschick/pet.
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SST-2 SST-5 MR CR MPQA Subj TREC CoLA
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)

PET 92.7(0.9) 47.4(2.5) 87.0(1.2) 90.3(1.0) 84.7(2.2) 91.2(1.1) 84.8(5.1) 9.3(7.3)
PET+SCL 92.9(1.9) 48.0(1.9) 87.1(1.8) 90.3(1.5) 84.9(2.4) 91.2(1.7) 85.5(2.6) 20.9(16.5)
relative ↑ +0.2 +0.6 +0.1 +0.0 +0.2 +0.0 +0.7 +11.6
PET+RGL 93.4(0.5) 49.3(1.2) 87.3(0.8) 90.3(0.9) 85.6(1.5) 91.4(1.5) 86.8(2.9) 22.7(14.1)
relative ↑ +0.7 +1.9 +0.3 +0.0 +0.9 +0.2 +2.0 +13.4

MNLI MNLI-mm SNLI QNLI RTE MRPC QQP STS-B
(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Pear.)

PET 68.3(2.3) 70.5(1.9) 77.2(3.7) 64.5(4.2) 69.1(3.6) 74.5(5.3) 65.5(5.3) 71.0(7.0)
PET+SCL 69.5(3.2) 71.3(3.1) 77.2(2.9) 69.2(2.7) 69.3(4.1) 75.8(4.0) 66.7(3.7) 71.6(6.5)
relative ↑ +1.2 +0.8 +0.0 +4.7 +0.2 +1.3 +1.2 +0.6
PET+RGL 70.8(2.3) 72.7(1.9) 77.5(1.7) 70.3(1.7) 69.7(2.6) 77.0(6.7) 68.8(1.8) 72.5(6.2)
relative ↑ +2.5 +2.2 +0.3 +5.8 +0.6 +2.5 +3.3 +1.5

Table 1: Test performance obtained on GLUE variant (Gao et al., 2021). The evaluation metrics follow Wang et al.
(2018). The best results (according to the pairwise t-test with 95% confidence) are highlighted in bold.

mance gain. In particular, RGL can improve the247

performance of PET by 2.38 on average, while SCL248

only improves PET by 1.46 on average. Moreover,249

RGL obtains more stable results as the variances250

are smaller than the others.251

Model analysis. Figure 2(a) plots the effect252

of varying the number of labeled training sam-253

ples. As shown, all methods obtain better per-254

formance given more training samples, while255

PET+RGL consistently outperforms the others.256

We further consider different ways of obtain-257

ing êij in (4): (i) w/ h[CLS] which sets êij =258

cos(h[CLS]
i ,h[CLS]

i ) where cos(·, ·) denotes the co-259

sine similarity function; (ii)w/ h[MASK] which260

sets êij = cos(h[MASK]
i ,h[MASK]

i ); and (iii) w/261

ŷ which is the one adopted in RGL and sets262

êij = cos(ŷi, ŷj). Results in Figure 2(b) show that263

RGL outperforms the others. This validates that264

class prediction carries more relevant information265

to discriminate samples.266

(a) Effect of labeled samples. (b) Effect of estimating êij .

Figure 2: Model analysis on SST-2 task.

Visualization. Figures 3 plots the t-SNE visual-267

ization of the learned sample embeddings. It ap-268

parently shows that, when combining RGL with269

both fine-tuning and PET, the distances of deep 270

representations between any two inter-class sam- 271

ples are much longer than the intra-class distances. 272

Furthermore, PET+RGL can separate two classes 273

of samples with clear margin while concentrating 274

samples of every class closely to the center of the 275

group, resulting in better discrimination capability. 276

Figure 3: t-SNE visualization on SST-2 task.

5 Conclusion 277

We present RGL to fully exploit the limited super- 278

vised information of few-shot natural language un- 279

derstanding tasks. During learning, RGL constructs 280

batch-wise relation graphs based on label consis- 281

tency between samples, and explicitly tunes the 282

pre-trained language models to solve the resultant 283

node classification and link prediction problems. 284

In this paper, we provide one way of relation graph 285

learning. This can be further extended to broader 286

applications where other ways of relation graph 287

learning worth trying. In addition, one can explore 288

how to avoid the interference of noisy samples. 289
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Appendix: More Experimental Results400

All the experiments are conducted on a 32GB401

NVIDIA Tesla V100 GPU.402

In addition to PET (Schick and Schütze, 2021b),403

we also combine the proposed RGL with other404

prompt-based tuning strategies. As for baselines405

to incorporate RGL, we take P-tuning4 (Liu et al.,406

2021) as the representative for joint prompt and407

PLMtuning, and WARP5 (Hambardzumyan et al.,408

2021) as the representative for prompt tuning with409

a fixed PLM. WARP is only evaluated on CB and410

RTE as in the original paper.411

As both P-tuning and WARP use Super-412

GLUE (Wang et al., 2019) variant proposed413

by Schick and Schütze (2021b) to evaluate the few-414

shot performance and use ALBERT6 (Lan et al.,415

2020) as the PLM, we adopt them for fairness.416

Schick and Schütze (2021b) provide one training417

set which consists 32 samples per task and a testing418

set. Schick and Schütze (2021b) also use unlabeled419

samples, which are not used in this paper. Follow-420

ing Liu et al. (2021), a development set consisting421

of 32 samples per task are randomly drawn for422

model selection. As only one split is provided, we423

initialize the parameter with five random seeds and424

report the averaged results over five runs.425

BoolQ MultiRC WiC WSC
(acc) (EM) (F1a) (acc) (acc)

P-tuning 75.2(5.2) 32.1(1.0) 74.9(1.9) 55.3(1.5) 80.8(2.5)
+RGL 77.4(0.8) 33.5(0.2) 75.6(1.2) 57.3(2.9) 81.7(1.0)

relative ↑ +2.2 +1.4 +0.7 +2.0 +0.9

CB RTE COPA
(acc) (F1) (acc) (acc)

P-tuning 87.5(3.0) 82.1(6.0) 74.7(1.0) 82.3(2.5)
+RGL 88.1(2.1) 84.2(2.3) 75.5(1.3) 83.7(5.1)

relative ↑ +0.6 +2.1 +0.7 +1.4

WARP 82.2(3.0) 77.5(7.2) 72.8(0.5)
+RGL 84.3(2.1) 80.5(4.7) 73.2(1.0)
relative ↑ +2.1 +3.0 +0.4

Table 2: Test performance obtained on SuperGLUE
variant (Schick and Schütze, 2021b). The evaluation
metrics follow Wang et al. (2019). The best results (ac-
cording to the pairwise t-test with 95% confidence) are
highlighted in bold.

Table 2 shows the results obtained on Super-426

GLUE variants. The results show that RGL can427

consistently boost the performance when it is com-428

bined with P-tuning and WARP.429

4https://github.com/THUDM/P-tuning.
5https://github.com/YerevaNN/warp.
6https://huggingface.co/albert-xxlarge-v2.
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