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ABSTRACT

Text-based speech editing systems are developed to enable users to select, cut,
copy, and paste speech based on the transcript. Existing state-of-the-art editing
systems based on neural networks do partial inferences with no exception, that is,
only generate new words that need to be replaced or inserted. This manner usu-
ally leads to the prosody of the edited part being inconsistent with the previous
and subsequent speech and a failure to handle the alteration of intonation. To ad-
dress these problems, we propose a cross-utterance conditioned coherent speech
editing system, that first does the entire reasoning at inference time. Benefiting
from a cross-utterance conditioned variational autoencoder, our proposed system
can generate speech by utilizing speaker information, context, acoustic features,
and the mel-spectrogram of unedited fragments from the original audio. Also,
we apply biased training to concentrate more attention on the part that needs to
be reconstructed throughout training. Experiments conducted on subjective and
objective metrics demonstrate that our approach outperforms the partial inference
method on various editing operations regarding naturalness and prosody consis-
tency.

1 INTRODUCTION

Speech editing can be applied to a variety of areas with personalized voice needs and higher demands
for speech naturalness, including video creation for social media, games, and movie dubbing. The
traditional voice editing tool (Derry, 2012) allows users to pitch bend, denoise, modify volume, cut,
copy, and paste waveform, among other features. Among these, standard voice editing work will be
fairly cumbersome when the transcript of the audio that needs editing needs to be revised. Especially
when new words that are not in the transcript occur, editors can only re-record the corresponding
clips and then splice them with the original audio. According to this scheme, it can be expected that
that variations of the recording environment may impact the background noise, while the changes
in the speaker’s condition could also lead difference to the loudness, pitch, and rhythm between the
re-recorded voice clip and the original voice, further resulting in an unnatural hearing.

A promising neural-network-based audio editing technology is to synthesize speech according to
text transcription and original audio. This system is capable of synthesizing speech that matches the
tone and timbre of the original audio, according to the aligned transcription altered by content au-
thors. As a result, rather than editing the original audio, editors could perhaps lessen their burden by
altering the text transcription. Previous work (Moulines & Charpentier, 1990; Morise et al., 2016;
Kawahara, 2006) based on digital signal processing (DSP) has partially overcome the problem of
prosody mismatch created by directly concatenating the audio in different scenarios. Morrison et al.
(2021) utilizes neural network to predict prosodic information and integrates the TD-PSOLA algo-
rithm, denoising, and de-reverberation (Su et al., 2020) approaches to realize prosodic modification.
Although the above systems support cut, copy, and paste operations, they cannot insert or replace a
new word that doesn’t exist in the voice data of the same speaker.

More recent research has applied text-to-speech (TTS) systems to synthesize the missing inserted
word. VoCo (Jin et al., 2017) synthesizes the inserted word using a comparable TTS voice, then
transforms it using the voice conversion (VC) model to fit the target speaker. EditSpeech (Tan et al.,

1



Under review as a conference paper at ICLR 2023

(a) Partial inference (b) Entire inference

Figure 1: Illustrations for different inference ways of speech editing system.

2021) proposes the partial inference and bidirectional fusion method to achieve smooth transitions
at edit boundaries. CampNet (Wang et al., 2022) conducts mask-training on a context-aware neural
network based on Transformer to improve the quality of the edited voice. Bai et al. (2022) suggests
an alignment-aware acoustic and text pretraining method, which can be directly applied to speech
editing by reconstructing masked acoustic signals through text input and acoustic text alignment.
What’s more, SpeechPainter(Borsos et al., 2022) leverages an auxiliary textual input to fill in gaps
of up to one second in speech samples and generalize it to unseen speakers.

However, when applied to speech editing, all the existing methods (Jin et al., 2017; Tan et al., 2021;
Wang et al., 2022; Bai et al., 2022) based on neural networks do partial inference instead of entire
inference, as shown in Figure 1(a). Specifically, the input of existing systems is the waveform or
mel-spectrogram of the segments that do not need editing. Although the direct output of the editing
module is the complete waveform or mel-spectrogram corresponding to the edited transcripts, in
order to improve the similarity with the original audio, the existing methods select only the segments
that must be modified and then insert them back into the original waveform or mel-spectrogram.
Although retaining the original audio as much as possible adheres to our intuition, it will also lead
to the following potential problems,

1. Since partial inference artificially inserts the predicted acoustic characteristics of the editing area
into the corresponding positions of the original waveform, the discontinuity near the boundary of
the editing area is almost inevitable to a certain extent. Meanwhile, the output of the existing speech
synthesis system based on partial inference is still the whole audio, including the context. Therefore,
it will not spare time or resources compared with the entire inference.

2. When the transcript is modified, the tone and prosody could also change accordingly. That is,
the audio corresponding to the altered text might not be intended to sound exactly like the original
audio. A special example is when a general question sentence can be modified into a declarative
sentence, partial inference will be difficult to deal with the mood change.

To address the issues raised above, we propose a cross-utterance conditioned coherent speech editing
system. This text-based speech editing system applies the variational autoencoder with masked
training to reconstruct the unmodified area of the original waveform with high fidelity. Therefore,
the entire inference can replace partial inference, so as to avoid the incoherence of the junctions
caused by splicing. Also, compared with the existing partial reasoning editing system, our method
does not consume additional resources. This point can be intuitively accepted through Figure 1,
where the framework of entire inference is more concise than partial inference.

Moreover, to ensure that the generated audio conforms to both the original audio features and the
context after the edition, the variational autoencoder is conditioned on the semantic information of
the context and audio features extracted from the original waveform. Apart from that, we set a bias
to mask segments of the mel-spectrogram during training to enable the system to be more focused
on the part that needs to be reconstructed. The subjective and objective results on a challenging
dataset show that our proposed model can ensure a high degree of similarity with real audio, while
the coherency of entire inference is significantly better than that of partial inference.
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The rest of this paper is organized as follows. The background of the non-autoregressive TTS
system and mask training are introduced in Section 2. Section 3 illustrates our proposed speech
editing system. The experimental setup, results, and conclusion are presented in Sections 4, 5 and 6,
respectively.

2 LITERATURE REVIEW

2.1 NON-AUTOREGRESSIVE TTS

Existing speech synthesis systems based on neural networks can be divided into two categories, in-
cluding attention-based autoregressive (AR) systems and duration-based non-autoregressive (NAR)
systems. Unlike AR systems, NAR systems can decode time series in parallel without internal de-
pendency. Fastspeech 2 (Ren et al., 2021) is a representative of the NAR TTS system, which first
predicts the duration and prosody information explicitly. Based on this system, Li et al. (2022)
presents a cross-utterance conditional VAE component to estimate a posterior probability distribu-
tion of the latent prosody features for each phoneme by conditioning on acoustic parameters, speaker
information, and context text features, further improving the expressiveness of prosody while main-
taining high fidelity in synthesized speech.

2.2 MASK TRAINING

Masked signal modeling is a representation learning method that learns to understand and create,
that is, masking a part of input signals and trying to predict these masked signals. This technology
has been widely used in various fields and its effectiveness has been verified (Xie et al., 2022). In
the natural language processing task, the pre-training language model BERT (Devlin et al., 2019),
which is based on the mask language modeling task, has been proven to be widely extended to the
downstream tasks, and has reshaped this field to a large extent. In the field of computer vision,
MAE He et al. (2021) selected a high mask rate of 75% to add noise to the image, forcing the
encoder to reconstruct the masked image by learning the semantic information in the image rather
than simply surrounding pixels. In terms of speech recognition, wav2vec2.0 (Baevski et al., 2020)
completes the modeling task by predicting the speech input of the hidden part in the potential space
and defining the comparison task on the quantization of the potential representation. Similar to the
BERT model, the speech editing model A3T (Bai et al., 2022) uses phonemes and partially masked
mel-spectrograms as inputs during training, which verifies that mask training can reconstruct mel-
spectrograms with high quality.

3 OUR SYSTEM

Our proposed text-based speech editing system aims to synthesize the new audio that is consistent
with the original audio rhythm and to truly restore the unmodified part of the audio, by virtue of the
reconstruction ability of a variational autoencoder conditioned on context information. Figure 2(a)
describes the model architecture, which takes the mel-spectrogram xi extracted from the original
waveform, current utterance ui, and l utterances before and after ui as the input. Using an additional
G2P conversion tool, the utterance ui is translated into phonemes pi. Following Li et al. (2022), the
2l+1 neighboring utterances into 2l pairs, i.e. [(ui−l,ui−l+1), · · · , (ui+l−1,ui+l)], and use BERT
to capture the cross-utterance information, yeilding 2l BERT embeddings [b−l, · · · , bl−1]. Also,
the start and end times of each phoneme can be extracted by Montreal forced alignment (McAuliffe
et al., 2017). The following part details the design of our system and biased training.

3.1 MASK CU-ENHANCED CVAE

The mask CU-Enhanced CVAE module, as shown in Figure 2(b), is proposed to overcome the
limitation that existing speech editing systems cannot restore the unmodified portion of audio and
must splice the modified portion with the original mel-spectrogram or audio.
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(a) Our system (b) Mask CU-CVAE encoder (c) CU-embedding module

Figure 2: The overall architecture of our system, consisting of the mask cross-utterance enhanced
CVAE and cross-utterance embedding module, is integrated into and jointly optimized with the
FastSpeech 2 system. ⊕ and ⊗ are element-wise addition and multiplication operations. cat⃝ is the
concatenate operation.

3.1.1 IMPLEMENTATION OF TEXT-BASED SPEECH EDITING OPERATIONS

To start with, a text-based speech editing system supports the operations of deletion, insertion, and
replacement. Without loss of generality, we can divide the original utterance transcript of the original
speech as [ua,ub,uc] and the modified utterance to be [ua,ub′ ,uc], where ub′ is the modified
segment and ua,uc remain the same. Correspondingly, the phonemes translated by G2P can be
denoted as pi = [pa,pb,pc], with original speech’s mel-spectrogram denoted as xi = [xa,xb,xc].
For i ∈ {a, b, c}, xi contains a sequence of frame-level mel-spectrogram. Since the replacement
operation in editing can be regarded as deletion before addition, we can use two flags instead of
three to indicate the place to delete and add the corresponding content, i.e., Flagdel and Flagadd.

Deletion
The deletion procedure enables the user to eliminate a segment of the speech waveform which
is associated with a set of certain words. The target utterance to be synthesized after deletion is
[ua,uc], where ub is the part to be deleted. By comparing the utterance before and after editing,
we can get the corresponding deletion indicator, which is further used to instruct the editing of
mel-spectrogram

Flagdel = [0a,1b,0c].

Insertion and Replacement
Different from the deletion operation, the target synthesized speech after insertion or replacement
is based on the edited utterance [ua,ub′ ,uc], where ub′ is the content to replace ub. Noted that
insertion process can considered as the special case where ub = pb = xb = ∅. Correspond to the
deletion operation, we have the addition indicator

Flagadd = [0a,1b′ ,0c].

Based on Flagdel, the reference mel-spectrogram [xa,xc] is sent into the Mask CU-Enhanced
CVAE module since xb′ is to be generated. The mean µ and variance σ are learnt from two one-
dimensional convolutions. Referring to Flagadd, 0 and 1s are added to the corresponding position
of µ and σ, that is, µ̂ = [µa,0b′ ,µc] and σ̂ = [σa,1b′ ,σc]. This allows the speech generated by
the editing area to be sampled from the utterance-specific prior, while the audio of the area that has
no modification is sampled from the real audio and the utterance-specific prior. During the training
process, actually the edited real audio is unavailable, so we can only mask certain audio segment
and restore the same content to simulate the editing scenario, that is b

′
= b.

3.1.2 ENHANCEMENT OF COHERENCE AND PROSODY

We have introduced more mechanisms to ensure that the output of mask CU-CVAE module can
further synthesize coherent and contextual audio. In order to make the editing boundary more fluent,
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µ
′

and σ
′

are further generated through one-dimensional convolution from µ̂ and σ̂. At this time,
the module can sample from the estimated prior and can be re-parameterized as

z = µ
′
⊕ σ

′
⊗ zprior

where ⊕,⊗ are element-wise addition and multiplication operations, and zprior is sampled from
the learned utterance-specific prior, corresponding to Li et al. (2022). The re-parameterization is as
follows,

zprior = µprior ⊕ σprior ⊗ ϵ

where µprior,σprior are learned from the utterance-specific prior module, and ϵ is sampled from the
standard Gaussian N (0, 1). Hi is the output of CU-Embedding, as shown in Figur 2(c). The CU-
embedding module encodes cross-utterance information into a sequence of mixture embeddings,
with a pretained BERT to capture the contextual information [b−l, · · · , bl−1] of the first and last l
utterances surrounding the current one ui, a Transformer encoder to encode the phoneme sequence,
and a multi-head attention layer to capture contextual information. Also, an additional duration
predictor takes Hi as inputs and predicts the duration Di of each phoneme. In addition, in order to
effectively utilize the duration information extracted from the original audio, similar to the method
in Tan et al. (2021); Bai et al. (2022), we further adjust the phoneme duration of the edited area by
multiplying it with the ratio of the original audio and the predicted audio duration of the unedited
area to get D

′

i. The estimated duration is rounded after the duration predictor and the adjustor.

Therefore, the ELBO objective can be expressed as

L(x | H,D
′
) = Eqϕ(z|D′ ,H)[log pθ(x | z,D

′
,H)]

− β1

t∑
n=1

D
′

KL

(
qϕ1

(
zn | zn

prior,x
)
∥qϕ2

(
zn
prior | D

′
,H

))
− β2

t∑
n=1

D
′

KL

(
qϕ2

(
zn
prior | D

′
,H

)
∥p(zn

prior)
)
,

where the index i which denotes the current instance, is omitted for simplicity. θ is the decoder
module parameters, ϕ1, ϕ2 are two parts of mask CU-CVAE encoder ϕ to obtain z from zprior,x

and zprior from D
′
,H respectively, β1, β2 are two balance constants, p(zn

prior) is chosen to be
standard Gaussian N (0, 1). Meanwhile, zn and zn

prior represent the latent representation for the
n-th phoneme, and t = a+ b

′
+ c is the length of the phoneme sequence.

3.2 BIASED TRAINING

To reconstruct the waveform of the given transcript for each masked phonemes, the commonly
adapted loss function for acoustic model is the mean absolute error (MAE) between the recon-
structed and original mel-spectrogram, most compute the loss only on masked segments, similar to
BERT (Devlin et al., 2019). In the training process, the input reference mel-spectrogram only in-
cludes the unmasked part. To enable the system more focus on masked part, it is rational to increase
the loss weight of this area.

However, although during training, we can only imitate the audio editing operation by reconstructing
the mel-spectrogram, during inference process, the purpose is to synthesize naturally coherent audio
with rhythm conforming to the modified text context. Therefore, setting the loss weight of the
unmasked area to zero is not appropriate in the case of speech editing.

In this way, we expect to be able to balance the two purposes of approaching the original audio and
the context of the newly modified transcript. In the experiment, we set the loss ratio of the masked
and the unmasked parts to λ=1.5.

Lmel =
1

# of frames
(

∑
i∈unmask

|xpred
i − xtarget

i |+ λ
∑

i∈mask

|xpred
i − xtarget

i |)

The results of the subsequent experiments also show that, compared to other weight settings, in-
creasing the weight of the loss function of the reconstructed mel-spectrogram of the masked part
can make the synthesized sound more natural and coherent.
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4 EXPERIMENTAL SETUP

4.1 DATASET

We conducted experiments on a multi-speaker dataset, LibriTTS. Both the train-clean-100 and train-
clean-360 subsets were used, containing 245 hours of English audiobook from 1151 speakers (553
female speakers and 598 male speakers). The dataset (Zen et al., 2019) includes adjacent sen-
tences from which context information can be extracted. We randomly select 90%,5%,5% data from
datasets for train, valid and test set, respectively. All audio clips were re-sampled at 22.04 kHz.

4.2 CONFIGURATION DETAIL

The proposed Mask CU-CVAE TTS system was based on the framework of FastSpeech 2. In
the CU-embedding module, a Transformer is utilized to learn the current utterance representation,
where the dimension of phoneme embeddings and the size of the self-attention were both set to 256.
Meanwhile, we used “BERT BASE” configuration, including 12 Transformer blocks; each block
has 12-head attention layers; and the hidden size is 768. Also, the BERT model and associated
embeddings were fixed throughout TTS system training. Additionally, information about different
speakers learned from a 256-dim embedding layer was added to the Transformer output.

In the Mask CU-enhanced CVAE module, four 1D-convolutional (1D-Conv) layers with kernel sizes
of 1 were used to predict the mean and variance of 2-dim latent features. Meanwhile, an additional
upsampling layer was applied to make the predicted sequence length consistent with the phoneme
sequence length after editing, and also promote the naturalness of synthesized audio. We randomly
select the part to be masked by taking a word instead of a phoneme as a unit to faithfully recreate
the actual editing scenario. In addition, to balance the system’s ability to learn and predict audio
information, we set the shielding rate to 50%, which has been proven effective in Bai et al. (2022).

Then, the sampled latent feature was converted to a 256-dim vector by a linear layer. The length
regulator in FastSpeech 2’s duration predictor, which consisted of two 1D convolutional blocks
with ReLU activation, followed by layer normalization and an additional linear layer to predict the
length of each phoneme, was adapted to take in the outputs of the CU-embedding module. Each
convolutional block was comprised of a 1D-Conv network with ReLU activation, followed by layer
normalization and a dropout layer. Four feed-forward Transformer blocks were used by the decoder
to transform hidden sequences into an 80-dim mel-spectrogram sequence.

Finally, the vocoder HifiGAN (Kong et al., 2020) was finetuned for 1200 steps on an open-
sourced, pre-trained version of ”UNIVERSAL V1” to synthesize a waveform from the predicted
mel-spectrogram.

4.3 EVALUATION METRICS

Both subjective and objective tests were conducted in order to measure the performance of our
proposed method. First of all, 20 volunteers participated in a subjective listening test over 15 syn-
thesized audios in which they were asked to assess the level of naturalness and similarity of speech
samples using a 5-scale mean opinion score (MOS) evaluation. 95% confidence intervals and p-
value were provided with the MOS results.

For the objective evaluation, F0 frame error (FFE) (Chu & Alwan, 2009) and mel-cepstral distor-
tion (MCD) (Kubichek, 1993) were used to measure the reconstruction performance of different
VAEs and different settings of loss weights. FFE was used to assess the accuracy of the F0 track
reconstruction by combining the Gross Pitch Error (GPE) and the Voicing Decision Error (VDE). In
detail,

FFE =
# of error frames
# of total frames

× 100%

=
NU→V +NV→U +NF0E

N
× 100%.
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where NU→V and NV→U are the numbers of unvoiced/voiced frames classified as voiced/unvoiced
frames, N is the number of the frames in the utterance, and NF0E is number of frames for which∣∣∣∣F0i, estimated

F0i, reference
− 1

∣∣∣∣ > 20%

where i is the frame number.

Besides, MCD evaluated the timbral distortion, computing from the first 13 MFCCs in our trials.

MCD(y, ŷ) =
10
√
2

ln 10
∥y − ŷ∥2 (dB)

where y and ŷ are the MFCCs of original and reconstructed waveform. The coefficient is used
to convert MCD units into decibels. The smaller the MCD between the synthesized and natural
mel-spectrogram sequences, the closer it is to natural speech.

Moreover, word error rates (WER) from an automatic speech recognition model was also reported.
Complementary to naturalness, the WER metric demonstrated the degree of intelligibility and con-
sistency between synthetic and real speech. The attention-based encoder-decoder model utilized in
this study, which was trained on Librispeech 960-hour data, is open-sourced1.

5 RESULTS

This section presents a series of experiments for our proposed speech editing system. First, the
naturalness and similarity of synthesized audio generated by EditSpeech (Tan et al., 2021) and our
system via both partial and entire inference were evaluated. Next, an ablation study was performed to
progressively show the influence of restrictions on context information in our system, based on MOS
and reconstruction performance. At last, the effect of the degree of biased training on reconstruction
performance was also investigated. Our audio examples are available on the demo page 2.

5.1 PARTIAL VS. ENTIRE INFERENCE

To investigate the performance of partial inference versus entire inference, experiments were con-
ducted on the following systems: 1) GT, the ground truth audio; 2) GT (Mel+HifiGAN), first convert
the ground truth audio to the ground truth mel-spectrogram, and then convert it back to audio using
HifiGAN vocoder; 3) Wave cut, manually cut the modified region from the generated waveform,
and insert it back to the original waveform; 4) EditSpeech (Tan et al., 2021), using partial infer-
ence and bidirectional fusion to improve the prosody near boundaries; 5) Our system (Mel cut),
cut the modified region from the generated mel-spectrogram, and insert it back to the original mel-
spectrogram with a forced aligner; 6) Our system, regenerate a complete mel-spectrogram from the
whole sentence to be edited, and then use HifiGAN vocoder to generate the complete waveform;

Note that since ground truth audios do not include the edited audio, GT and GT (Mel+HifiGAN) are
used to evaluate the reconstruction performance. For the editing operations, we manually spliced
the audio waveform, and the MOS similarity score of Wave cut serves as an upper bound indicator.

According to the MOS scores on naturalness shown in Table 1, our model with entire inference
achieved the highest score on all the editing operations. The gap in replacement was noticeable, as
the speech editing models based on partial reasoning have difficulty dealing with intonation conver-
sion. The score of “Mel cut” in deletion was relatively low since “Mel Cut” is highly dependent on
the accuracy of MFA. Especially when short words were deleted, its performance could be worse
than manually careful deletion based on waveform. “Wave cut” had a relatively lower naturalness
MOS score in insertion and replacement since it involves the insertion of new words, and there is
disharmony between the original audio and the generated audio.

MOS scores on similarity suggested that the performance of our system based on entire inference
was close to partial inference “Mel cut” and surpassed EditSpeech in insertion and replacement. It
was also close to “Wave cut”, which is served as an upper bound indicator of similarity, with the
maximum difference around 0.2.

1http://bitly.ws/uMKv
2http://bitly.ws/uMFd
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Method Insert Replace Delete

Nat. Sim. Nat. Sim. Nat. Sim.
Wave cut 2.93 3.76 2.82 3.50 3.25 3.82

EditSpeech (Mel cut) 2.35 3.21 2.47 3.36 2.82 3.81
Our system (Mel cut) 3.11 3.57 2.97 3.41 2.82 3.81

Our system 3.37 3.56 3.39 3.43 3.37 3.67

Table 1: Subjective naturalness and similarity results on EditSpeech and our system using partial
and entire inference. Note that since the deletion operation of EditSpeech, which can only do partial
inference, is to combine segments of the real mel-spectrogram, there is no difference in the results
of different editing systems using partial inference.

The p-value in Table 2 presented that the naturalness of our model using entire inference was obvi-
ously superior to “Mel cut” and “Wave cut”, while there was no significant difference in similarity
between entire and the two partial inference methods. The only exception was in the case of deletion,
where the naturalness of our model using entire inference was not significantly different from that of
the “Wave cut”. Table 3 also demonstrated the capability of our mask CU-enhanced CVAE module
to reconstruct the mel-spectrogram. Since partial inference directly copied the real mel-spectrogram
of the unedited area, it is reasonable that partial inference had better reconstruction performance on
similarity and MCD(mel-cepstral distortion). Nevertheless, our system using entire inference still
surpassed EditSpeech on FFE and WER.

Method Insert Replace Delete Reconstruct

Nat. Sim. Nat. Sim. Nat. Sim. Nat. Sim.
Our system vs. Mel cut 0.0662 0.793 0.0294 0.771 0.0168 0.298 0.0525 0.691

Our system vs. Wave cut 0.0219 0.135 0.0163 0.287 0.369 0.310 0.0564 0.143

Table 2: The significance analysis of our system using entire inference vs. “Mel cut” and
“Wave cut” on naturalness and similarity MOS scores.

Method Nat. Sim. FFE MCD WER
GT 4.56 - - - 3.124

GT (Mel+HifiGAN) 4.39 4.68 0.170 4.651 3.887
EditSpeech 3.14 3.80 0.372 6.345 6.702

Our system (Mel cut) 3.66 3.91 0.326 5.957 5.174
Our system 3.90 3.83 0.327 6.657 5.377

Table 3: EditSpeech and our system’s reconstruction per-
formance using partial and entire inference. Lower objec-
tive results imply better similarity to the original audio.

Method FFE MCD WER
GT - - 3.124

GT (Mel+HifiGAN) 0.170 4.651 3.887
Baseline1 0.371 6.919 7.404
Baseline2 0.333 6.750 5.503
Baseline3 0.332 6.697 5.392

Our system 0.327 6.657 5.377

Table 4: Objective metrics of the re-
construction performance of our system
with different VAEs.

5.2 ABLATION STUDY

In this section, we investigate the performance impact of using different VAEs in our system. We
compare the reconstruction performance and MOS scores of the synthesized audio among the fol-
lowing systems: 1-2) same as the above experimental settings; 3) Baseline1, use a fine-grained VAE
instead of CU-CVAE; 4) Baseline2, use a CVAE without the context embeddings, i.e.l = 0; 5) Base-
line2, use CU-CVAE with 2 neighbouring utterances, i.e.l = 2; 6) Our system, use CU-CVAE with
5 neighbouring utterances, i.e.l = 5.

As shown in Table 4 and 5,when semantic restriction of edited text and context embeddings were
added in consecutively, both the MOS scores on naturalness of edited and reconstructed waveforms
and objective scores on reconstruction performance progressively increased. Also, the reconstruc-
tion metrics in Table 4 suggest that using more cross-utterances can improve the reconstruction
capability. These results indicated that the CU-embedding and mask CU-CVAE module played a
crucial role in generating more coherent audio.
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Method Insert Replace Delete Reconstruct
GT - - - 4.56±0.06

GT (Mel+HifiGAN) - - - 4.39±0.05
Baseline1 2.91±0.11 2.87±0.10 3.31±0.15 2.90±0.08
Baseline2 3.43±0.12 3.11±0.09 3.52±0.14 3.45±0.10

Our system 3.93±0.10 3.43±0.13 4.29±0.12 3.90±0.10

Table 5: Subjective results of editing performance of our system with different VAEs. Baseline1
adds a fine-grained VAE to FastSpeech 2. Baseline2 represents a CVAE editing system without
context embeddings.

5.3 DEGREE OF BIASED TRAINING

The ablation study in this section was conducted based on reconstruction performance. To inves-
tigate the effect of the different intensity of attention to the masked mel-spectrogram, our system
trained with ratio=1:1,1:1.5,1:2,1:5, and 0:1 were evaluated, where ratio=1: 1 implied using the nor-
mal loss function of the reconstructed mel-spectrogram, treating the masked and unmasked areas
equally, and ratio=0:1 is applied by the existing speech editing systems which all use partial infer-
ence, only focusing on the masked areas. The purpose of this experiment is to find a parameter in
the above two scenarios, namely, common TTS overall reasoning and partial reasoning of existing
speech editing systems, so that the generated edited audio can be coherent and have the prosody
characteristics of the original audio at the same time.

Method Loss ratio (unmasked:masked part) FFE MCD WER

Our system

1:1 0.437 6.931 5.406
1:1.5 0.327 6.657 5.377
1:2 0.326 6.697 5.377
1:5 0.434 6.824 5.525
0:1 0.457 7.596 14.808

Table 6: Reconstruction performance of our system trained in different loss ratio.

Table 6 shows system trained with ratio=1:1.5 achieved the smallet MCD and WER results, with
FFE score slightly higher than system trained with ratio=1:2. The results demonstrates that properly
paying more attention to the masked mel-spectrogram can effectively improve the overall quality of
generated audio.

6 CONCLUSION

In this paper, we propose a cross-utterance conditioned coherent speech editing system, which is the
first text-based speech editing system that can entirely generate audio corresponding to the edited
transcript. A variational autoencoder conditioned on speaker information, context, and audio prior
is integrated into a high-quality text-to-speech model to ensure both the restoration and generation
quality of audio. Experiments show that our proposed system has the ability to reconstruct the
acoustic characteristics of original audio with high fidelity and that the prosody of the synthesized
speech conforms to the context of the edited transcript.

7 ETHICS STATEMENT

The experiments in this paper were carried out under the assumption that the user of the model is
the target speaker and has been approved by the speaker. However, when the model is generalized to
unseen speakers, relevant components should be accompanied by speech editing models, including
the protocol to ensure that the speaker agrees to execute the modification and the system to detect
the edited speech.
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