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Abstract. In recent years, learning-based image registration methods 
have gradually moved away from direct supervision with target warps to 
instead use self-supervision, with excellent results in several registration 
benchmarks. These approaches utilize a loss function that penalizes the 
intensity di!erences between the "xed and moving images, along with a 
suitable regularizer on the deformation. However, since images typically 
have large untextured regions, merely maximizing similarity between the 
two images is not su#cient to recover the true deformation. This problem 
is exacerbated by texture in other regions, which introduces severe non-
convexity into the landscape of the training objective and ultimately 
leads to over"tting. In this paper, we argue that the relative failure of 
supervised registration approaches can in part be blamed on the use of 
regular U-Nets, which are jointly tasked with feature extraction, feature 
matching and deformation estimation. Here, we introduce a simple but 
crucial modi"cation to the U-Net that disentangles feature extraction 
and matching from deformation prediction, allowing the U-Net to warp 
the features, across levels, as the deformation "eld is evolved. With this 
modi"cation, direct supervision using target warps begins to outperform 
self-supervision approaches that require segmentations, presenting new 
directions for registration when images do not have segmentations. We 
hope that our "ndings in this preliminary workshop paper will re-ignite 
research interest in supervised image registration techniques. Our code 
is publicly available from http://github.com/balbasty/superwarp. 

Keywords: Image registration, Optical $ow, Supervised learning 

1 Introduction 

In recent years, fully convolutional networks (FCNs) have become a universal 
framework for tackling an array of problems in medical imaging, ranging from 
image denoising and super-resolution [1, 2] and semantic segmentation [3–5] to 
registration [6, 7]. Amongst these, image registration methods have bene!tted 
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immensely from FCNs, allowing methods to transition from optimization-based 
approaches to learning-based ones and accelerate alignment of images that have 
di"erent contrasts or modalities, for example. 
 An overwhelming majority of recent image registration networks [8–11] are 
trained unsupervised, in the sense that ground-truth deformation !elds are not 
required in the supervision of these networks. Instead, a surrogate photometric 
loss is used to maximize the similarity between the !xed image and the moving 
one—warped by the predicted deformation !eld—in lieu of a loss that penalizes 
the di"erences between the predicted and ground-truth deformation !elds. Since 
images typically contain large untextured regions as well as di"erent contrasts 
and voxel intensities, merely minimizing di"erences in the !xed image and the 
moving one is insu#cient to recover the ground truth deformation, even when a 
smoothness prior (or regularization) is imposed on the predicted deformation 
!eld. While supervised [12–14] and self-supervised approaches [9, 10]—based on 
segmentations, for example—produce excellent results, direct supervision using 
target warps is still desirable in many cases especially if the images do not have 
segmentations. However, supervised registration has not been as successful for 
many applications due to severe optimization di#culties faced—the network is 
jointly tasked with feature extraction and matching in addition to deformation 
estimation, which is not handled well by a fully convolutional network. 
 In this work, we will propose SuperWarp, a supervised learning approach to 
medical image registration. We !rst re-visit the classic optical $ow equation of 
Horn and Schunck [15] to analyze its implications for supervised registration—
the duality of intensity-invariant feature extraction and deformation estimation 
and the need for multi-scale warping. With such implications in mind, we make 
one simple but critical modi!cation to the segmentation U-Net that repurposes 
it for subvoxel- (or subpixel-) accurate supervised image registration. With this 
modi!cation, direct supervision using target warps outperforms self-supervised 
registration requiring segmentations. The network, shown in Fig. 1, is strikingly 
similar to a segmentation U-Net except for warping and deformation extraction 
layers, allowing U-Net to warp the features as the deformation !eld is evolved. 
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Fig. 1. The SuperWarp U-Net for image registration. The fixed and moving images are 
concatenated along the batch axis and processed through the network. The two images 
interact at each level of the U-Net’s upward path to produce a residual deformation, used 
to warp the moving features, and scaled and summed to produce the final deformation. 
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2 Related Work 

SuperWarp is heavily inspired by previous work on optical $ow estimation, the 
aim of which is to recover apparent motion from an image pair [15]. Expressed 
mathematically, however, optical $ow estimation and image registration are in 
fact identical problems possibly except for the notion of regularity in each—an 
optical $ow !eld for the former is typically assumed di"erentiable a.e. whereas 
a deformation !eld for the latter in!nitely di"erentiable or di"eomorphic. This 
subtle distinction between the two problems does however disappear under the 
supervised learning paradigm since the type of regularity desired is re$ected in 
the ground-truth optical $ow (or deformation) !elds of the training data. 

2.1 Optical Flow Estimation 

Here, we brie$y recap development in classical and learning-based optical $ow 
estimation methods—see e.g. [16] for a review. In their seminal work, Horn and 
Schunck [15] formulated optical $ow estimation via a regularized optimization 
problem, noting that the problem is generally ill-posed in the absence of local 
smoothness priors. Several works extend the original Horn–Schunck model [15] 
using sub-quadratic regularization and data !delity terms [17–21] that mitigate 
the deleterious e"ects of occlusions on $ow estimation. Oriented regularization 
terms [21–25] regularize the $ow only along the direction tangent to the image 
gradient while non-local terms [26–29] regularize $ow even across disconnected 
pixels subject to similar motion. Median !ltering of intermediate $ows [23, 26] 
achieves similar e"ects to non-local regularity terms. Higher-order regularizers 
[28, 30] assign zero penalty to a#ne trends in the $ow to encourage piecewise- 
linear $ow predictions. Despite the advances, designing a regularizer is highly 
domain-speci!c, suggesting that it can be alleviated via supervised learning. 
 Orthogonally to the choice of regularizers, multi-scale schemes [31–34] have 
been used to estimate larger $ows. Descriptor matching [31, 32] introduces an 
extra data !delity term that penalizes misalignment of scale-invariant features 
(e.g. SIFT), overcoming the deterioration of the conventional data !delity term 
at large scales due to the loss of small image structures. Since the optical $ow 
equation no longer holds in the presence of a global brightness change, several 
authors propose to attenuate the brightness component of the images as a !rst 
step using high-pass !lters [18, 24, 35], structure-texture decomposition [27, 36]  
or color space transforms [24]. Thus, in traditional approaches, both multi-scale 
processing and brightness-invariant transforms require us to handcraft suitable 
pre-processing !lters, which can be highly time-consuming owing to the image-
dependent nature of such !lters. As we will see, the U-Net architecture used in 
the SuperWarp obviates the need to handcraft such !lters, allowing the U-Net 
to learn them directly from the training data, end-to-end, to enable brightness- 
invariant image registration with exceptional generalization ability. 
 Fischer et al. [37] formulate optical $ow estimation as a supervised learning 
problem. They train a U-Net model to output the optical $ow !eld directly for 
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a pair of input images, supervising the training using the ground-truth optical 
$ow !eld as the target. Later works extend [37], cascading multiple instances of 
the network with warping [38], introducing a warping layer [39] or using a !xed 
image pyramid [40] to improve the accuracy of $ow prediction [38, 39] as well as 
reduce the model size. Some authors propose to tackle optical $ow estimation 
as an unsupervised learning task [41, 42], using a photometric loss to penalize 
the intensity di"erences across the !xed and moved images. Recent extensions 
in this unsupervised direction include occlusion-robust losses [43, 44] based on 
forward-backward consistency, and self-supervision losses [45, 42]. These are also 
the basis of unsupervised image registration methods [9–11]. 

3 Mathematical Framework 

3.1 Optical Flow Estimation and Duality Principle 

Under a su#ciently high temporal sampling rate, we can relate the intensities 
of a successive pair of three-dimensional images (!0, !1) to components (", #, $) 
of the displacement between the two images using the optical $ow equation 

 (%!1 %&⁄ ) ⋅ " + (%!1 %(⁄ ) ⋅ # + (%!1 %)⁄ ) ⋅ $ = !0 − !1  (1) 
[15], where (% %&⁄ , % %(⁄ , % %)⁄ ) denotes the 3D spatial gradient operator. PDE 
(1) can also be seen as a linearization of the small deformation model in image 
registration [46]. Since (1) involves three unknowns for every equation, !nding (", #, $) given (!0, !1) is an ill-posed inverse problem. Smoothness assumptions 
are therefore made in optimization-based $ow estimation [17–21] to render the 
inverse problem well-posed again similar to image registration [9–11]. 
 A global change in the brightness or contrast across the image pair (!0, !1) 
introduces an additive bias in the right-hand side of (1) such that the equation 
no longer holds. Compensating for this change in pre-processing would require 
knowledge of the displacement !eld (", #, $) that we seek in the !rst place. A 
similar issue is often met in medical image registration, with di"erent imaging 
modalities across !0 and !1 injecting additive and multiplicative biases in (1). If 
however we knew the ground-truth displacement (", #, $), harmonizing (!0, !1) 
in a normalized intensity space is readily achieved via (1). Conversely, given a 
pair of harmonized images, components (", #, $) of the displacement !eld can 
be recovered readily with (1).  
 Image segmentation [47] is the ultimate form of image harmonization, since 
it removes brightness and contrast from images altogether and turns them into 
piecewise smooth (constant) signals by construction. This suggests that the use 
segmentation maps to supervise registration [9, 10] can be bene!cial. However, 
many types of images do not have segmentations available or lack the notion of  
segmentation altogether, e.g. fMRI activations, so supervision using the ground-
truth warps instead can be an expedient way of learning to register. 
 In practice, images (!0, !1) are acquired at a low temporal sampling rate so 
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(1) holds only over regions where both image intensities are linear functions of 
their spatial coordinates [15]. Equivalently, (1) holds in the general case only if 
the magnitudes of the components (", #, $) are less than one voxel. Since this 
can pose a major limitation for practical applications, multi-scale processing is 
used to linearize the images at gradually smaller scales, with the displacement 
!eld estimated at the larger scale used to initialize the residual $ow estimation 
at the smaller scale. Linearizing images at larger scales, however, results in the 
loss of small structures due to the smoothing !lters. Handcrafting !lters that 
have an optimum tradeo" between linearization and preservation of image 
features at every scale is image-dependent and can be time-consuming, implying 
that learning such !lters end-to-end can be bene!cial for generalization ability. 

3.2 Supervised Learning and Multi-scale Warping 

SuperWarping exploits the duality principle to supervise an image registration 
network equipped with multi-scale warping to estimate large deformations. We 
train a U-Net model on pairs of images with di"erent intensities related via our 
smoothly synthesized ground-truth deformation !elds. The downward path of 
the U-Net model !rst extracts intensity-invariant features from the two images 
separately. The upward path then extracts from the feature pair a deformation 
that minimizes the di"erences with respect to the ground-truth target.  
 SuperWarping makes one important modi!cation to the registration U-Net 
for large deformation estimation. At each level of the U-Net’s upward path, the 
features of the moving image are !rst warped using the deformation !eld from 
the previous level, such that only the residual deformation, less than a voxel in 
magnitude, need be extracted at the current level. Processing the two images 
jointly as a single multi-channel image through U-Net, as done in [9, 10], would 
entangle the features of the !xed and the moving images, so that warping only 
the features of the moving one post hoc is not feasible. Instead, we process the 
two images as a batch with the image pair interacting only during deformation 
extraction, where the two image features are concatenated along the channels 
axis and processed into deformation !eld using a convolution block. 
 Note from the left and the right-hand sides of (1) that it is (!1, !0 − !1), not (!1, !0), which needs to be processed for displacement estimation. This suggests 
that feeding the features of !1 and pre-computed feature di"erences between !0 
and (warped) !1 into deformation blocks can yield a saving of one convolution 
layer per block, which is substantial given that these blocks typically have no 
more than three convolution layers in total. In practice, we reparameterize the 
input further to the features of (!0 + !1, !0 − !1) to help the extraction blocks 
average the spatial derivatives of the features across the two images, similarly 
to the practice in optimization-based approaches [16]. This reparameterization 
can be seen as a Hadamard transform [48] across the two image feature sets. 
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3.3 Deep Supervision, Data Augmentation and Training 

Following the approach of deep supervision for semantic segmentation [49], we 
supervise the deformation block at each level of the U-Net’s upward path with 
a deformation target. We use the mean square end-point error loss between the 
predicted (", #, $) ∈ ℝ#×3 and the target (-, ., /) ∈ ℝ#×3 deformations, which 
is simply the mean square error (MSE) between the predicted and ground-truth 
displacement !elds. The training loss sums the MSEs across all levels without 
further weighting. At each level, the deformation block is supervised using the 
ground-truth deformations trilinearly down-sampled to the spatial dimensions 
of its predictions. 
 To generate training pairs of images with their corresponding ground-truth 
deformation targets, we sample an image !  from the training set and synthesize 
two di"erent smooth displacements (-0, .0, /0) and (-1, .1, /1) that warp !  and 
produce !0 and !1, respectively. The ground-truth displacement is given by 

 (-, ., /) = (01 + (-1, .1, /1))−1(01 + (-0, .0, /0)) − 01, (2) 
in which the identity 01 denotes the (vectorization) of the grid coordinates. To 
facilitate computation, we restrict (-1, .1, /1) to a#ne !elds so that the inverse 
coordinate mapping ( ⋅ )−1 (2) can be computed by inverting a 4 × 4 matrix. We 
apply a small elastic deformation on (-0, .0, /0) to approximate a higher-order 
(non-a#ne) component of the spatial distortion typically seen in MR scans. We 
then transform the voxel intensities of !0 and !1 using a standard augmentation 
pipeline (Gaussian noise, brightness multiplication, contrast augmentation, and 
gamma transform). Table 1 lists the parameter ranges and probabilities of our 
random spatial and intensity augmentations. 
 For training, we use a batch size of 1, which actually becomes 2 because the 
moving and !xed images are concatenated along the batch axis. The Adam [50] 
optimizer is used with an initial learning rate of 10−4, linearly reduced to 10−6 
across 200,000 iterations. We !nd it bene!cial to initially train the network for 
20,000 iterations on training examples with zero displacement and deformation 
but still with intensity augmentations to enable the network to learn to extract 
contrast-invariant features, then introducing deformations to train the network 
to predict deformations with brightness change across the image pair. 
 In Fig. 2, we plot validation Dice and end-point error curves of SuperWarp 
U-Net (ours) and a VoxelMorph-like U-Net baseline for the registration of MR 
brain scans. We train each network using either the Dice loss (in which case the  

Table 1. Parameter ranges and probabilities used for random spatial transformation and 
intensity augmentation of the image pair. Applied separately to each image in the pair. 

 Spatial Transformation  Intensity Augmentation 
 Translate Scale Rotate Shear Elastic  Noise Std Multiply Contrast Gamma 

Range ±12 [0.75,1.25] ±30° ±0.012 ±4 (2562)  [0,0.05] [0.75,1.25] [0.75,1.25] [0.70,1.50] 
Prob. 1.0 1.0 1.0 1.0 1.0  0.5 0.5 0.5 0.5 
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training objective is to maximize the Dice overlap between the !xed and moved 
images) or the MSE loss, where the objective is now to minimize the di"erence 
between the predicted and target deformations. Regardless of the choice of the 
supervision regime, SuperWarp U-Net outperforms the baseline and also trains 
signi!cantly faster, requiring only 20 iterations to reach maximum accuracy in 
the case where the Dice loss is used. Moreover, SuperWarp U-Net trained with 
the MSE loss (which requires no segmentations) outperforms the baseline with 
the Dice loss, which does require segmentations.  

4 Experimental Evaluation 

We validate the proposed SuperWarping approach on two datasets—a set of 2D 
brain magnetic resonance (MR) scans, as well as the Flying Chairs [37] optical 
$ow dataset widely used in computer vision. The brain image registration task 
allows us to benchmark the performance of SuperWarping against related work 
in image registration [9, 10], while Flying Chairs facilitates comparison of our 
SuperWarp U-Net with the state-of-the-art optical $ow estimation networks. In 
addition to Dice scores between !xed and moved images, we also use the mean 
endpoint error (EPE) [16] to evaluate the accuracy of the deformation itself. 

4.1 Invariant Registration of Brain MR Images 

Here, we apply SuperWarp to deformable registration of 2D brain scans within 
a subject. Obviously, SuperWarp could be applied to the cross-subject setting 
too but the accuracy of predicted deformations is easier to assess in the within-
subject case and facilitates comparisons with other methods. We use the whole 
brain dataset of [51] containing 40 T1-weighted brain MR scans, along with the 
corresponding segmentations produced using FreeSurfer [51]. For test, we use a 
collection of 500 T1-weighted brain MR scans curated from: OASIS, ABIDE-I 
and -II, ADHD, COBRE, GSP, MCIC, PPMI, and UK Bio. The scan pairs are 
generated as described in Section 3.3. We do not perform linear registration of 

Fig. 2. Validation registration accuracy. In both self-supervised (MSE) and supervised 
(Dice) cases, SuperWarping the U-Net yields better mean Dice and endpoint error than 
the baseline (similar to VoxelMorph) and trains faster, requiring only 40 epochs to reach  
the final accuracy, which are 0.954, 0.152 (Ours–Dice), 0.906, 0.711 (Baseline–Dice). 
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the images as a preprocessing step in any of the methods since the displacements 
are rather small (Table 1). This setup also helps provide better insight into the 
behavior of each registration method. 
 To show the improvement in the accuracy of the deformation !eld recovered 
using our methods, we plot statistics of the validation end-point error and Dice 
scores produced for all methods including the baseline—similar to VoxelMorph 
[9]—in Fig. 3. While our Dice scores are higher than those of our VoxelMorph-
like baseline by about 0.04, our end-point errors are signi!cantly lower than the 
baseline by 80% on average across foreground pixels. Fig. 4 shows deformations 
predicted by our method, comparing them with those from the baseline (trained 
using the Dice loss) to visually assess the quality of the deformations. 
 To better understand the sources of improvement between the baseline and 
our approach, we conduct an extensive set of ablation studies on SuperWarp as 
listed in Table 2. We see that the multi-scale loss used in [49] can actually hurt 
accuracy for this experiment. Training with the EPE loss produces a worse EPE 
than training with the MSE loss likely due to numerical instability at zero. The 
number of U-Net levels should also be high enough (seven) to cover the largest 
displacements (about ±64) at the coarsest level of the U-Net. 

4.2 Optical Flow Estimation 

To further benchmark the network architecture used by the SuperWarp, we run 
additional experiments on the Flying Chairs optical $ow dataset [37], popularly 
used by the computer vision community. To facilitate a fair comparison, we set 
our network and training hyperparameters very similarly to [39]: 7 U-Net levels 
for a total of 6.9M learnable parameters, 1M steps, EPE loss for training, multi-
scale loss (but weight all scales equally) with the Adam optimizer. Table 3 lists 
the validation EPE of $ow !elds predicted using the SuperWarp, together with 
the accuracies of other well-performing network models. 
 Both PWC-Net [39] and FlowNet-C [37] attribute their good performance to 
the use of the cost-volume layer but we !nd cost volumes to be unnecessary to 
achieve a good accuracy at least on this dataset. While SPY-Net [40] also uses 

 Overall WM Cort Vent Thalam Caud Putam Pallid 3rdV Stem Hippo Overall 

Fig. 3. Test Dice (left) and endpoint error (right) statistics on 10 structures across 500 
T1w brain images. Regardless of the choice of the training loss function, the SuperWarp 
produces better Dice and endpoint error than the baseline (similar to VoxelMorph). Note 
that Ours–MSE does not need or use segmentation information. 
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a multi-scale warping strategy, it is based on a !xed image pyramid. This helps 
bring down the number of trainable parameters but can also lead to a loss of 
image structure at coarser levels. FlowNet2 cascades multiple FlowNet models 
and warps in between, while the SuperWarp U-Net incorporates warps directly 
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of the SuperWarp can produce highly accurate displacements (in the first example, 0.08 
and 0.06 mm, respectively) whereas the baseline (similar to VoxelMorph) prediction has 
larger errors (0.41 mm). Images are 2D, 256 × 256, 1 mm isotropic. Cf. Fig. 3 (right). 
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in the model, signi!cantly reducing the model size with a comparable accuracy. 

5 Discussion 

In this paper we have shown that supervising an image registration network with 
a target warp can achieve state-of-the-art accuracy. Our approach outperforms 
previous ones due to the multi-scale nature of our prediction—compositions of 
deformations at each level of the upward path of the U-Net, each applied to the 
moving image. In this way, each spatial scale receives a moving image as input 
that has been warped by the composition of all larger spatial scales, ensuring 
that optic $ow condition holds for the deformation at that level. We show that 
this recovers the accuracy of the deformation estimation that was lost in previous 
supervised techniques. 
 While segmentation accuracy is itself of course important, we also point out 
that there are instances in which it is important to recover an exact deformation 
!eld. In these causes, using photometric losses will lead to inaccuracies in regions 
in which there is not su#cient image texture to guide the estimation. We show 
that using the architecture we have described, we are able to recover an excellent 
prediction of a true underlying deformation !eld. Uses cases include distortion 
estimation and removal in MRI, such a those caused by inhomogeneities in the 
main magnetic !eld (B0) and image distortions induced by nonlinearities in the 
gradient coils used to encode spatial location. 

5.1 Future Work 

In this proof-of-concept paper, we address only one type of invariance, namely 
invariance to intensity (or illumination) change across images. In the sequel, we 
plan to add contrast and distortion invariance to the network by training it on 
synthetic scans of various contrasts as done in [52] and applying the synthetic 
approach to distortions as well. Also, we plan to run a more comprehensive set 
of experiments on 3D MRI images, showing the bene!ts of our approach in many 
clinical applications. 

Table 2. Ablation of network and training hyperparameters used and their influence on 
the best epoch validation accuracy. Default hyperparameter: (6, MSE, False, True). 

 Number of levels Training loss function Multi-scale loss Multi-scale warp 
 6 7 Dice EPE MSE True False True False 

Dice 0.927 0.947 0.954 0.942 0.947 0.939 0.947 0.947 0.903 
EPE 0.450 0.122 0.103 0.195 0.122 0.270 0.122 0.122 0.738 
 
Table 3. Mean EPE achieved by various network models on the Flying Chairs test set. 

 PWC-Net SPY-Net FlowNetS FlowNetC FlowNet2 Ours–EPE 
Parameters 8.75M 1.20M 32.1M 32.6M 64.2M 6.9M 
EPE 2.00 2.63 2.71 2.19 1.78 1.82 
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