
Under review as a conference paper at ICLR 2023

STEPGCN: STEP-ORIENTED GRAPH CONVOLUTIONAL
NETWORKS IN REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph convolutional networks (GCNs) are employed to address a number of tasks
in the society through their representation learning approach. Nonetheless, despite
their effectiveness and usefulness, the majority of GCN-oriented approaches face
the over-smoothing problem. Over-smoothing is the problem of node represen-
tations converging into a certain value, making the nodes indistinguishable. To
effectively address the over-smoothing problem, we introduce StepGCN, a GCN
model that integrates step learning techniques with graph residual connection net-
works. As a result, we achieved significant performance improvements in multiple
representations learning benchmark datasets, demonstrating that step learning can
be expanded to other graph networks.

1 INTRODUCTION

Graph convolutional networks (GCNs) are one of the important research trends in a field of repre-
sentation learning for graph-structured datasets (Kipf & Welling, 2017). Thus, a number of scholars
have improved GCNs with unique techniques and approaches (Chen et al., 2018; Hamilton et al.,
2017; Veličković et al., 2018). With these improvements, GCNs are employed in a number of re-
search topics, which are represented by graph-oriented structures, such as social networks (Bian
et al., 2020; Wu et al., 2019), recommendation systems (Ding et al., 2022; Yang et al., 2020; Zhang
et al., 2019), and object detections (Li et al., 2020; Liu et al., 2020b; Wang et al., 2021).

However, despite these improvements, the majority of GCN-oriented approaches face the over-
smoothing concern, which converges node representations to certain value, making them indis-
tinguishable (Li et al., 2018; 2019; Liu et al., 2020a). Over-smoothing is reported as one of the
common phenomena in deep GCNs (Chen et al., 2020a; Li et al., 2018). GCNs update node repre-
sentations by aggregating messages passed from neighbor nodes. However, in this procedure, noise
is presented during message passing, while a low information-to-noise ratio of received messages
leads to over-smoothing problem (Chen et al., 2020a). In addition, due to layer stacking, Laplacian
smoothing is repeated, which is one reason for over-smoothing problems (Li et al., 2018).

Considering that a number of recent deep neural network frameworks achieved powerful perfor-
mance by increasing the depth of their architectures (He et al., 2016; Szegedy et al., 2015), deeper
architectures can also be helpful for GCNs. Since shallow GCNs could not extract favorable infor-
mation from nodes far hops away, deeper GCNs are vital for conducting more accurate representa-
tion learning. Thus, to make GCNs deeper, it is necessary to overcome over-smoothing. To alleviate
over-smoothing, several unique techniques and methods are proposed (e.g., the integrated method
of co-training and self-training procedures (Li et al., 2018), normalization layers (Zhao & Akoglu,
2019), application of transformation, and propagation (Liu et al., 2020a)).

He et al. (2016) addressed a comparable problem by suggesting residual connections considering
visual-oriented tasks. Kipf & Welling (2017) attempted to apply residual connections to GCNs
but indicated that examining residual connections is not one of the absolute solutions for the over-
smoothing problem. Xu et al. (2018) introduced jumping knowledge network (JKNet), which ag-
gregates the outputs of each layer at the last layer and then combines them by concatenating, max-
pooling, and using LSTM-attention mechanism that computes the importance of the features. Li
et al. (2019) applied residual connections at GCNs using both vertex-wise addition and vertex-
wise concatenation, and they used dilated aggregation to enlarge the receptive fields of deep GCNs.
Graph residual network (GResNet) was proposed by examining the correlations between graph

1



Under review as a conference paper at ICLR 2023

nodes (Zhang & Meng, 2019). Zhang & Meng (2019) focused on the correlations between nodes
and pointed out that the residual connections of CNNs assumed the independence of data. However,
when the graph nodes were closely correlated, they applied a normalized adjacency matrix to resid-
ual connections. Li & King (2020) proposed GCNII, using two techniques, namely, initial residual
connection and identity mapping, to alleviate the over-smoothing problem. They used the informa-
tion from the initial layer, not the previous one, to apply residual connection, and added identity
matrix to weight matrix, allowing regularization and application to semi-supervised learning.

A number of scholars introduced several solutions to address the over-smoothing problems in uti-
lizing GCNs; however, there is still room to effectively and simply address these issues. Therefore,
we propose new concise and compatible approaches to stack additional layers in GCNs, called step
graph convolutional network (StepGCN). We consider several traditional graph residual connection
networks (GRCNs) as our base architectures. We then introduce a step learning technique, that is,
a method to improve model performance considering the hops of neighbor nodes. At each step,
ResBlock, an additional block extracting information from multi-hop, is attached to the prior model,
and the learning rate, which controls the volume of information that is passed from neighbors, is
decreased by a certain amount.

We empirically demonstrate that StepGCN successfully conducts representation learning by extract-
ing distinctive information from similar receptive fields according to position in graph-structured
data. In general, the model performance of StepGCN is better compared to those of other GCN-
based models. We also indicate that step learning techniques can simply be applied to other GCN-
based models. Our implementation code is publicly available1.

2 PRELIMINARIES

2.1 GRAPH CONVOLUTIONAL NETWORK

GCN successfully employed convolutional operation (LeCun et al., 1995) to graph-structured
data (Kipf & Welling, 2017). For a given undirected graph G = {V, E} with vertex set V = {vi}Ni=1,
which contains feature X ∈ RN×d and edge set E = {ei}Ei=1, the graph convolutional operation
can be described as follows:

, H(l+1) = σ(ÃH(l)W (l)). (1)

Note that H(l+1) is the output of the l-th layer and H(0) = X is input features. Ã = D̂− 1
2 ÂD̂− 1

2

is a normalized adjacency matrix, where Â = A + I is an adjacency matrix of graph G with self-
loop, and D̂ denotes its degree matrix with D̂ii =

∑
j âij . W (l) ∈ Rd

(l)
in×d

(l)
out contains trainable

parameters of the l-th layer. σ is a nonlinear activation function such as ReLU.

The graph convolutional operation can be decomposed into two steps, namely, aggregation step (or
message passing step) and feature extraction step. ÃH(l) in Equation 1 is an aggregation step, which
aggregates information from neighbor nodes in single hop, while H(l)W (l) is a feature extraction
step, which extracts a feature of a target node from aggregated information in the prior step.

2.2 RESIDUAL CONNECTION

He et al. (2016) advanced the depth of deep convolutional neural networks (CNNs) by attaching
shortcuts from the inputs to outputs of each layer, called residual connection. A layer H(x) with
residual connection can be represented as follows:

H(x) = F (x) +R(x), (2)

where F (x) denotes the original computational layer and the residual term R(x) connects the input
to the output, where He et al. (2016) used R(x) = x. It showed great performance in computer vision
tasks. However, that was not the case with graph-structured data. Zhang & Meng (2019) claimed

1https://anonymous.4open.science/r/StepGCN-7709/

2

https://anonymous.4open.science/r/StepGCN-7709/


Under review as a conference paper at ICLR 2023

that this naive residual connection could not consider connectivity among the nodes. Therefore,
they proposed graph residual connection, which considers connectivity of the nodes with normalized
adjacency matrix. GCNs with graph residual connection can be computed using

H(l+1) = σ(ÃH(l)W (l)) +R(H(l), X;G), (3)

where R(H(l), X;G) = ÃH(l) for the most simple graph residual connection, and nonlinearity σ
can also be applied including R(H(l), X;G).

3 STEP GRAPH CONVOLUTIONAL NETWORK

3.1 GRAPH RESIDUAL CONNECTION NETWORK

Based on the residual connections proposed by He et al. (2016) and Zhang & Meng (2019), we
build GRCNs using naive residual connections and graph residual connections. Figure 1 shows the
structure of GRCNs.

Figure 1: Graph residual connection networks (GRCNs). (a) is a vanilla GCN model; (b), (c), (d),
and (e) are GRCNs with naive residual connections. (b) and (c) connect the input and the output
of each layer. (d) propagates the initial input feature to every layer. (e) converges each layer to the
output of the last layer. Note that L denotes linear layers

Basically, we construct a GCN structure, introduced by Kipf & Welling (2017) (Figure 1 (a)). The
initial node feature and normalized adjacency matrix are given as inputs of the model. It then
transforms them to objective space, which means the labels of the nodes. In addition, we consider
four types of GRCNs with naive residual connections and four types of GRCNs with graph residual
connections. Figure 1 (b) employs residual connections to create a linkage between the input and
output of each layer. The linear layers are employed in the first and last layers to correspond to the
dimensional sizes. Figure 1 (c) has the same architecture as Figure 1 (b). Meanwhile, linear layers
are applied at every residual connection. Figure 1 (d) propagates the initial node features, the input
of the model, to every output of layers. Finally, in Figure 1 (e), every input fed into each layer is
converged to the output of the last layer. Linear layers are also applied to every residual connection
of Figure 1 (d) and (e).

There are four types of GRCNs with naive residual connections. Multiplying normalized adjacency
matrix to every residual connections, we also construct GRCNs with graph residual connections and
call them graph-seq., graph-lin., graph-div., and graph-conv. type. ReLU is used as an activation
function, except the last layer, which used softmax to specify labels. Both the depth of the models
and the dimensions in the hidden layers are hyperparameters.

3



Under review as a conference paper at ICLR 2023

3.2 STEP LEARNING

GCNs aggregate the information of the neighbor nodes within several hops, which are the same as
the depth of the model, to compute the embedding of the target node. The set of neighbor nodes is
called a receptive field. If the depth of the model increases, its receptive fields of different nodes will
overlap a lot, blurring their embedding and causing over-smoothing problems. Therefore, different
nodes should aggregate distinctive information to prevent this. To achieve it within similar recep-
tive fields, different nodes should reference different amounts of information from neighbor nodes
depending on their location. To implement it with graph-structured data, we attempt to extract such
information from near nodes, with less information from far nodes. Step learning accomplishes it
with additional ResBlocks and model tuning procedure. Figure 2 shows the entire process of step
learning. At every step, we attach another ResBlock and perform model tuning, while the number
of steps and layers of each ResBlock are the hyperparameters of step learning.

Figure 2: Step learning procedures

ResBlock. ResBlocks, which are organized by GCN layers and residual connections, are attached to
a prior pretrained model. The input and the output dimensions of these blocks should be the same as
the dimension of the input node feature, because the block is added at the front end of prior models.
After attaching ResBlocks to prior models, the performance of prior model should be maintained.
Thus, the initial state of ResBlocks should take a form of identity layers, delivering the input of
layers to their output as it is. Each layer of ResBlocks H(x) can be represented as F (x) + R(x),
the same as in Equation 2, and the initial form of the layer as H(x) = x can be accomplished by
setting initial value of F (x) = 0 and R(x) = x. By specifying all the parameters of GCN layers to
0, and those of residual connections to identity matrix, the initial state of ResBlocks could be set as
the desired form. Figure 3 shows the four types of ResBlocks employed in this study.

Figure 3: Types of ResBlocks. (a) is naive residual connection, (b) adjusts linear layer, while (c)
and (d) multiply normalize adjacency matrix to (a) and (b) structure. L and A mean linear layer,
whose initial parameters are set to identity matrix, and a normalized adjacency matrix, respectively

Model Tuning. The degree of learning should be distinctive for each layer to differentiate the
amount of information propagated from neighbor nodes at different hops. It could be computed by
tuning learning rates in training procedures, for example, training layers that extract information

4



Under review as a conference paper at ICLR 2023

from close neighbor nodes with a higher learning rate while layers that extract information from far
neighbor nodes with a lower learning rate could differentiate the amount of information depending
on the hops of each neighbor node. In each step, after appending another ResBlock, its training
is conducted after decaying the learning rate by a certain level, making each layers trained with
different learning rates.

4 EXPERIMENTS

We examined semi-supervised node classification experiments to demonstrate the performance of
the StepGCN model. We employed three benchmark citation network datasets, namely, Cora, Cite-
Seer, and PubMed (Kipf & Welling, 2017; Sen et al., 2008). Nodes and edges are documents and
citations, respectively. The features of nodes are bag-of-words representations of each document in
these datasets. The task is to classify subjects of each document. Table 1 presents the statistics of
the datasets.

Dataset Nodes Edges Features Classes Label Rate
Cora 2,708 5,429 1,433 7 0.052
CiteSeer 3,327 4,732 3,703 6 0.036
Pubmed 19,717 44,338 500 3 0.003

Table 1: Dataset statistics

4.1 STEPGCN

Settings. Table 1 presents both classes and label rates to configure the training datasets. We
employed 300 and 1,000 nodes in our validation and testing procedures. The employed GRCNs were
evaluated with several depths, from 1 to 10, to decide which base models are fed into step learning.
Step learning was then adjusted to demonstrate its capacity for extracting further information from
data. We tested each model with every step (from the first to tenth steps).

All the numbers of the hidden nodes in every model were set to 16. In Figure 3, ResBlocks with
single GCN layer were utilized for step learning. Adam optimizer (Kingma & Ba, 2015), with a
learning rate of 0.01, was used. In each step, we dropped a learning rate by a tenth of its previous
step. The dropout rate was fixed to 0.5, and L2 regularization was set to 0.0005 on model parameters.
All the reported results were mean accuracy of 100 independent runs with early stopping with a
patience of 100 epochs. All the experiments were conducted on a NVIDIA A100 40 GB GPU and
implemented in Python 3.6.

Results. Table 2 presents the performance of the experiments. GRCNs with graph residual con-
nections generally outperform the matched GRCNs with naive residual connections, indicating that
using graph residual connections can benefit from neighbor information. However, vanilla GCN
surpasses most of the GRCNs, while the differences are within one percent even if GRCNs perform
better than vanilla GCN. In addition, the depth of the best models of GRCNs does not exceed three.
It corresponds to the finding of Kipf & Welling (2017), which reported that residual connections
have no effects on examining over-smoothing problems.

Table 3 presents the results of step learning applications on the models based on the results of base
models, as presented in Table 2. The graph-lin.-type StepGCN with graph-type ResBlocks achieves
the highest accuracy in the Cora dataset (0.84280) in six steps. None-type models with graph-type
ResBlocks accomplish best results in both CiteSeer (0.69234) and PubMed (0.81041) datasets in ten
steps.

The performances of models with none-type ResBlock are slightly improved, when lower than five
steps are employed. Among the four ResBlock types, the graph-type ResBlock achieves the greatest
performance in our experiment. The majority of the performances are examined in the last step
(10th). The results of graph-linear-type ResBlock show the contrasting results in using step learning.
Thus, we found that using a linear layer is ineffective in StepGCN.

5



Under review as a conference paper at ICLR 2023

Model Cora CiteSeer Pubmed
Accuracy Depth Accuracy Depth Accuracy Depth

none type 0.82411 2-layer 0.68268 2-layer 0.77318 2-layer
seq. type 0.80146 3-layer 0.66765 2-layer 0.75099 3-layer
lin. type 0.79108 3-layer 0.66684 2-layer 0.74575 3-layer
div. type 0.80970 3-layer 0.67458 2-layer 0.76261 3-layer
conv. type 0.82091 2-layer 0.68437 2-layer 0.77667 2-layer
graph-seq. type 0.82304 2-layer 0.67245 2-layer 0.76604 2-layer
graph-lin. type 0.82110 2-layer 0.67528 2-layer 0.76668 2-layer
graph-div. type 0.82407 2-layer 0.68054 2-layer 0.77089 2-layer
graph-conv. type 0.82344 2-layer 0.68329 2-layer 0.77308 2-layer

Table 2: The performance of GRCNs

Base Model ResBlock Type Cora CiteSeer Pubmed
Accuracy Step Accuracy Step Accuracy Step

none type

none 0.82714 4-step 0.68647 3-step 0.77623 3-step
linear 0.82410 0-step 0.68301 0-step 0.77445 0-step
graph 0.83862 4-step 0.69234 10-step 0.81041 10-step

graph-linear 0.82346 0-step 0.68276 0-step 0.79428 10-step

seq. type

none 0.81541 5-step 0.67118 4-step 0.75905 4-step
linear 0.80372 0-step 0.66672 0-step 0.74891 0-step
graph 0.83172 9-step 0.68662 10-step 0.80473 10-step

graph-linear 0.80810 10-step 0.66760 0-step 0.79434 10-step

lin. type

none 0.80643 5-step 0.67075 2-step 0.75178 1-step
linear 0.79220 0-step 0.66695 0-step 0.74294 0-step
graph 0.82962 7-step 0.68671 10-step 0.80436 10-step

graph-linear 0.80622 10-step 0.66807 0-step 0.79449 10-step

div. type

none 0.82055 3-step 0.67854 3-step 0.77143 2-step
linear 0.81117 0-step 0.67502 0-step 0.75994 0-step
graph 0.83186 8-step 0.68796 10-step 0.80637 10-step

graph-linear 0.81083 0-step 0.67505 0-step 0.79684 10-step

conv. type

none 0.82412 3-step 0.68835 3-step 0.77790 2-step
linear 0.81804 0-step 0.68484 0-step 0.77568 0-step
graph 0.83773 4-step 0.69186 9-step 0.80905 10-step

graph-linear 0.82049 10-step 0.68507 0-step 0.79223 10-step

graph-seq. type

none 0.82838 3-step 0.67802 3-step 0.76977 3-step
linear 0.82215 0-step 0.67448 0-step 0.76729 0-step
graph 0.84251 6-step 0.68524 10-step 0.80724 10-step

graph-linear 0.82282 0-step 0.67454 0-step 0.79442 10-step

graph-lin. type

none 0.82745 3-step 0.67767 5-step 0.77006 2-step
linear 0.82337 0-step 0.67482 0-step 0.76771 0-step
graph 0.84280 6-step 0.68491 10-step 0.80706 10-step

graph-linear 0.82318 0-step 0.67462 0-step 0.79351 10-step

graph-div. type

none 0.82925 4-step 0.68351 5-step 0.77464 2-step
linear 0.82310 0-step 0.67910 0-step 0.77099 0-step
graph 0.84084 5-step 0.68871 10-step 0.81014 10-step

graph-linear 0.82377 0-step 0.67891 0-step 0.79433 10-step

graph-conv. type

none 0.82758 4-step 0.68634 4-step 0.77563 3-step
linear 0.82154 0-step 0.68359 0-step 0.77306 0-step
graph 0.83805 2-step 0.69141 10-step 0.81027 10-step

graph-linear 0.82327 0-step 0.68263 0-step 0.79310 10-step

Table 3: The performance of StepGCN

4.2 COMPARISON WITH EXISTING MODELS

Settings. Identical datasets and their settings with Section 4.1 were used to compare StepGCN
with other GCN-based existing models. We employed JKNet (Xu et al., 2018) and GCNII (Chen
et al., 2020b) as our baseline models. They were evaluated with several depths, from 1 to 10 for

6



Under review as a conference paper at ICLR 2023

JKNet, and from 1 to 100 for GCNII. Step learning was also applied to their best models found in
the previous evaluation. The models were assessed until the tenth step, based on similar procedures
in Section 4.1.

Except the depth of the models, we employed a set of hyperparameters used in Xu et al. (2018) and
Chen et al. (2020b). In detail, Table 4 summarizes the employed hyperparameters for JKNet and
GCNII. ResBlocks with single GCN layer were employed for step learning, and learning rate was
decayed by a rate of 0.1 in each step. Adam optimizer (Kingma & Ba, 2015) was utilized in every
training. The results of 100 independent runs with early stopping with a patience of 100 epochs
were averaged to report the final results.

Model Hyperparameter Values

JKNet

hidden node 16
learning rate 0.005
dropout rate 0.5
L2 regularization 0.0005
aggregation max-pooling

GCNII

hidden node 64
learning rate 0.01
dropout rate 0.6
convs L2 regularization 0.01
fcs L2 regularization 0.0005
α 0.1
λ 0.5

Table 4: Hyperparameters of JKNet and GCNII

Results. Table 5 presents the results of baseline models. StepGCN refers to the best models of
GCNs with residual connections in Table 2, as well as StepGCN* in Table 3. JKNet achieved their
best performances with two layers, and much deeper depth was accomplished for GCNII. GCNII
outperformed the other models before step learning in case of CiteSeer and PubMed datasets. The
result also shows that step learning enhanced the accuracy of every model, regardless of the depth of
the base model. From this, it can be concluded that step learning can be generalized to GCN-based
models other than GRCNs. StepGCN* achieved the best accuracy in Cora (0.84280) and PubMed
(0.81041) datasets. It proves that extracting information from nodes multi-hops away is favorable,
and an effective learning procedure can be more powerful than complicated model architecture.

Model
Cora CiteSeer Pubmed

Accuracy ResBlock Depth Accuracy ResBlock Depth Accuracy ResBlock Depth
& Step & Step & Step

JKNet 0.80807 - 2-layer 0.68179 - 2-layer 0.77572 - 2-layer
0.81175 graph 3-step 0.69144 graph 3-step 0.80392 graph 9-step

GCNII 0.79903 - 26-layer 0.70274 - 37-layer 0.79292 - 96-layer
0.82085 linear 1-step 0.70758 none 1-step 0.80513 graph 6-step

StepGCN 0.82411 - 2-layer 0.68437 - 2-layer 0.77667 - 2-layer
0.83862 graph 4-step 0.69186 graph 9-step 0.80905 graph 10-step

StepGCN* 0.82110 - 2-layer 0.68268 - 2-layer 0.77318 - 2-layer
0.84280 graph 6-step 0.69234 graph 10-step 0.81041 graph 10-step

Table 5: The performance of baseline

5 CONCLUDING REMARKS

We propose StepGCN with various types of residual connections as base model and step learning,
extracting information from neighbor nodes, considering that their hops from target node are ad-
justed. The experiments demonstrate that StepGCN is effective for learning representations from
graph-structured data, without suffering from an over-smoothing. Moreover, additional experiments
show that step learning can be generalized to other GCN-based models. Interesting directions for fu-
ture work include applying step learning to other models and expanding its effectiveness to inductive
tasks.

7



Under review as a conference paper at ICLR 2023

ETHICS STATEMENT

This study does not have any ethical concerns. We do not address any human subjects, potential
harmful insights, methodologies and potential conflicts of interest. Moreover, this study does not
have any privacy, security, illegal, and research integrity concerns.

REPRODUCIBILITY STATEMENT

To make sure the reporducibility and readability of our experimental results, all code and instructions
are available at https://anonymous.4open.science/r/StepGCN-7709/.

REFERENCES

Tian Bian, Xi Xiao, Tingyang Xu, Peilin Zhao, Wenbing Huang, Yu Rong, and Junzhou Huang. Ru-
mor detection on social media with bi-directional graph convolutional networks. In Proceedings
of the AAAI conference on artificial intelligence, volume 34, pp. 549–556, 2020.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pp. 3438–3445, 2020a.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling. In International Conference on Learning Representations, 2018.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph con-
volutional networks. In International Conference on Machine Learning, pp. 1725–1735. PMLR,
2020b.

Sihao Ding, Fuli Feng, Xiangnan He, Yong Liao, Jun Shi, and Yongdong Zhang. Causal incremental
graph convolution for recommender system retraining. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (Poster), 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. International Conference on Learning Representations, 2017.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks, 3361(10):1995, 1995.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In Proceedings of the IEEE/CVF international conference on computer vision, pp.
9267–9276, 2019.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Thirty-Second AAAI conference on artificial intelligence, 2018.

Yaoman Li and Irwin King. Autograph: Automated graph neural network. In International Confer-
ence on Neural Information Processing, pp. 189–201. Springer, 2020.

Zheng Li, Xiaocong Du, and Yu Cao. Gar: Graph assisted reasoning for object detection. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1295–
1304, 2020.

8

https://anonymous.4open.science/r/StepGCN-7709/


Under review as a conference paper at ICLR 2023

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
338–348, 2020a.

Zheng Liu, Zidong Jiang, Wei Feng, and Hui Feng. Od-gcn: object detection boosted by knowledge
gcn. In 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp.
1–6. IEEE, 2020b.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. International Conference on Learning Representations, 2018.

Li Wang, Chenfei Wang, Xinyu Zhang, Tianwei Lan, and Jun Li. S-at gcn: Spatial-attention
graph convolution network based feature enhancement for 3d object detection. arXiv preprint
arXiv:2103.08439, 2021.

Yongji Wu, Defu Lian, Shuowei Jin, and Enhong Chen. Graph convolutional networks on user mo-
bility heterogeneous graphs for social relationship inference. In International Joint Conferences
on Artificial Intelligence, pp. 3898–3904, 2019.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
conference on machine learning, pp. 5453–5462. PMLR, 2018.

Carl Yang, Aditya Pal, Andrew Zhai, Nikil Pancha, Jiawei Han, Charles Rosenberg, and Jure
Leskovec. Multisage: Empowering gcn with contextualized multi-embeddings on web-scale
multipartite networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 2434–2443, 2020.

Jiani Zhang, Xingjian Shi, Shenglin Zhao, and Irwin King. Star-gcn: Stacked and reconstructed
graph convolutional networks for recommender systems. In International Joint Conference on
Artificial Intelligence, pp. 4264, 2019.

Jiawei Zhang and Lin Meng. Gresnet: Graph residual network for reviving deep gnns from sus-
pended animation. International Conference on Learning Representations, 2019.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In International
Conference on Learning Representations, 2019.

9


	Introduction
	Preliminaries
	Graph Convolutional Network
	Residual Connection

	Step Graph Convolutional Network
	Graph Residual Connection Network
	Step Learning

	Experiments
	StepGCN
	Comparison with Existing Models

	Concluding Remarks

