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sic k-means clustering with generalized utility functions, bringing potentials for large-scale data clustering

on different types of data. Despite KCC’s applicability and generalizability, implementing this method such

as representing the binary dataset in the k-means heuristic is challenging and has seldom been discussed

in prior work. To fill this gap, we present a MATLAB package, KCC, that completely implements the KCC

framework and utilizes a sparse representation technique to achieve a low space complexity. Compared to

alternative consensus clustering packages, the KCC package is of high flexibility, efficiency, and effectiveness.

Extensive numerical experiments are also included to show its usability on real-world datasets.
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1 INTRODUCTION

Cluster analysis aims at separating instances into various clusters so that instances within a clus-
ter are more similar to each other than to those in other clusters and thus serves as a fundamental
technique in the fields of data mining, machine learning, and artificial intelligence. There are nu-
merous successful clustering applications in diverse domains, including information retrieval [25],
recommender systems [48], and image segmentation [49]. Researchers have proposed different
clustering algorithms under varied assumptions, e.g., subspace [43], density [14], distribution [39],
centroid [37], and connectivity [16]. It is difficult for users to choose between them in practice.
Consensus clustering, a.k.a. ensemble clustering, therefore emerges, with the goal of fusing sev-
eral partitions given by single clustering algorithms into an integrated one. This intuitive idea,
however, faces the challenge of high computational complexity, because it is essentially a combi-
natorial optimization problem [50]. Nevertheless, consensus clustering has been broadly observed
to achieve robust clustering performance with the ability to handle noise, outliers, and sample
variations, due to its nature inherited from ensemble learning [41].

Extensive computational methods have been investigated to solve consensus clustering. Most
previous studies could be categorized into two classes. The first class achieves a final consensus
partition with an explicit objective of maximizing a defined utility function, which quantifies the
similarity between multiple existing basic partitions (BPs) and the consensus partition. For ex-
ample, Topchy et al. [53] designed a consensus clustering objective function based on Quadratic
Mutual Information and utilized k-means clustering to solve it. Their work was further extended
to an Expectation-Maximization (EM) consensus clustering algorithm [54]. This approach uti-
lized the information from basic partition results as the feature vectors of data points, assumed
the feature vectors follow a finite mixture model, and solved consensus clustering by maximum
likelihood estimation with the EM algorithm. Wu et al. [58] offered a unified framework to con-
vert ensemble clustering to k-means clustering with easily derivable k-means-based Consensus

Clustering (KCC) utility functions. Additionally, other interesting consensus clustering objective
functions have been investigated in References [28, 29, 36, 55].

The second class first constructs a co-association matrix by calculating the co-occurrence of each
instance pair with the same assignment in the BPs. Then, different graph partitioning algorithms
could be employed on the obtained co-association matrix for finding a consensus partition. Typi-
cal algorithms include agglomerative hierarchical clustering [17] and graph-based algorithms [50].
Recently, Liu et al. [32] suggested to perform spectral clustering on a co-association matrix and
solved consensus clustering with a weighted k-means algorithm. Other methods include Locally
Adaptive Cluster–based methods [12], genetic algorithm-based methods [60], Relabeling and Vot-
ing [3], locally weighted co-association matrix-based methods [22], fast propagation of clusterwise
similarities–based methods [23], noise evidence removing–based methods [61], and representa-
tive co-association matrix–based methods [31]. More recently, some graph representation learning
techniques [52] have also been utilized for enhanced consensus clustering.

Related packages. In the past few years, researchers in both machine learning and statistical soft-
ware communities have implemented a number of consensus clustering software packages, includ-
ing ClusterEnsemble [50], CLUE [20, 21], LinkCLUE [24], SC2ATmd [42], ConsensusCluster [47],
OpenEnsembles [46], and DiceR [9]. Among them, ClusterEnsemble [50] is the seminal work
that converts the basic partitions into a representation of a hypergraph and solves the consen-
sus clustering problem over the hypergraph with three efficient heuristics, i.e., the HyperGraph

Partitioning Algorithm (HGPA), Cluster-based Similarity Partitioning Algorithm (CSPA),
and Meta-CLustering Algorithm (MCLA). CLUE [21], proposed by Hornik [20], is an exten-
sible framework of consensus clustering and is available on the CRAN package repository. As
described in the original JSS paper [20], CLUE proposes data structures to represent collections
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of partitions or collections of hierarchies and provides different built-in methods to minimize the
dissimilarity between the consensus and basic partitions or hierarchies. LinkCLUE [24] is a vari-
ant based on co-association matrices, which aims to modify the co-association matrix for provid-
ing a better similarity matrix in later agglomerative hierarchical clustering. Three matrices, i.e.,
the SimRank-based Similarity matrix, Connected-triple-based Similarity matrix, and Approximate
SimRank-based Similarity matrix, are designed to replace the co-association matrix. SC2ATmd [42]
employs a resampling scheme to obtain several sub-datasets, runs a clustering algorithm to get the
incomplete basic partitions, and finally builds the co-association matrix based on these incomplete
basic partitions. ConsensusCluster [47] first generates a collection of basic partitions with various
clustering methods to bootstrap over samples and features and then takes an average-linkage hi-
erarchical clustering algorithm to obtain the single best consensus partition. OpenEnsembles [46]
uses open source Python projects to implement majority vote, mixture models, and two additional
co-association matrix–based methods. DiceR [9] achieves the final consensus clustering based on
the R statistical language via four algorithms, including the link-based cluster ensembles,K-modes,
majority voting, and cluster-based similarity partitioning algorithm. Although extensive attempts
have already been devoted to the implementation of consensus clustering, approaches adopted in
the above existing software packages suffer from the following two critical drawbacks:

• Existing packages that implement utility function-based methods are either designed pur-
posefully for one specific utility function or designed for different utility functions in a
non-unified way. This may hinder their applicability in different real-world applications. For
example, CLUE [21] uses different heuristics such as SE, GV1, and DWH to solve the optimiza-
tion problem with objective functions derived by different utility functions. Although this
may provide some flexibility, the performance of different heuristics may vary dramatically,
making it difficult for users to select a good heuristic.
• Existing packages, especially the co-association matrix-based packages, have less consid-

eration of computational efficiency, and their implemented algorithms are of high compu-
tational complexity. This would indeed hinder their applicability to handle large-scale
real-world data. For example, many of them, e.g., LinkCLUE, SC2ATmd, and
ConsensusCluster, employ hierarchical clustering algorithms for the final consensus
clustering, which have a non-linear (at least O (n2)) [45] time complexity in the number of
instances n. The time complexity of the CSPA employed in ClusterEnsemble and DiceR is
also quadratic in n.

Compared to the built-in methods of existing packages, the KCC method [58] has the following
crucial features. (a) Interpretability and robustness: the explicit utility functions and novel objec-
tive functions in KCC have been theoretically and empirically verified to produce interpretable
and robust clustering results. Wu et al. [57] demonstrates that KCC achieves state-of-the-art per-
formance regarding clustering quality on extensive real-world datasets compared to two com-
petitors, i.e., graph partitioning-based algorithms, and hierarchical clustering-based algorithms.
(b) Flexibility and generalizability: KCC obtains excellent flexibility by allowing the choice of differ-
ent utility functions for clustering multiple types of data in a unified framework, which is extremely
important for real-life applications in different domains. Several variants of consensus clustering
algorithms, including the Spectral Ensemble Clustering (SEC) [32, 35], Infinite Ensemble

Clustering (IEC) [33, 34], and Greedy optimization of k-means-based Consensus Clustering [30],
are based on the framework of KCC. This demonstrates the generalization ability of KCC’s frame-
work. (c) Efficiency: by virtue of the k-means like iterative process, KCC is extremely fast compared
with its excellent competitors, e.g., the method based on a co-association matrix [17], and shows
potential for big data clustering. The KCC algorithm has a time complexity ofO (InrK ) with I being
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the number of iterations, r being the number of BPs, and K being the number of clusters. Since in
practice I , r , K are often set to 20, 100, and a relatively small number compared to N , respectively,
KCC’s time complexity can be nearly linear to n [58]. The above merits of KCC, though being very
impressive, are in sharp contrast to the fact that a standard open source KCC software package
for use in academia and industry is not available elsewhere. This indeed motivates us to provide a
high-quality KCC implementation.

To this end, this article presents a KCC package (publicly available on Gitee1) that implements
the KCC method [58] in Matlab for solving the consensus clustering problem. In this package, we
realize the whole framework of KCC, including the generation of basic partitions via random sam-
pling of clustering numbers or data features, the selection of different utility functions originating
from various k-means distances [57], and the k-means like iterative process of knowledge fusion
of BPs. Moreover, considering the longstanding difficulty of cluster validity, multiple external and
internal evaluation measures that assess the clustering quality are also included in this package
for the purpose of self-containment.

The KCC package’s features in software design and implementation are mainly discussed in
Section 3 and are summarized as follows:

• The execution of the package can be achieved without the need of compilation nor the need
of loading any commercial toolbox. The users can install the package by just unpacking the
software archive, which creates a directory with all data and code files in it.
• All functions follow strict naming conventions for ease of use, review, and extension. For

example, names with the prefix distance_ indicate distance functions, and names with the
prefix BasicCluster_ indicate functions for generating BPs.
• The functions for consensus clustering are designed to be foolproof. For example, different

utility functions can be used by calling a single consensus function KCC, which has a param-
eter to indicate the choice of a utility function. The preprocessing and consensus functions
are combined to form a single RunKCC function for reducing the efforts of calling each func-
tion separately. Practical strategies such as running a number of times repeatedly to obtain
the best results are also integrated in the RunKCC function.
• The package utilizes subtle Matlab data variables to decrease the storage space. For example,

the sparse representation of the binary dataset, i.e., Ki , sumKi , and binIDX , can save much
memory space in the k-means heuristic.
• The package is easy to use with rich illustrative examples, e.g., examples of using different

utility functions on extensive datasets, and performing consensus clustering on incomplete
basic partitions. The names of the scripts for illustrating these examples start with demo.
• The package can easily be extended to include new utility functions or new consensus clus-

tering algorithms, e.g., SEC and IEC, under the framework of KCC.

The rest of this article is arranged as follows. Some essential consensus clustering concepts
and the previously proposed KCC method are briefly reviewed in Section 2 to make this article
self-contained. The most important part of this article, i.e., the implementation aspects in KCC, is
described in Section 3. Section 4 presents extensive experimental results. Section 5 concludes the
article.

2 CONSENSUS CLUSTERING AND k-MEANS-BASED CONSENSUS CLUSTERING

This section reviews some mathematical concepts of consensus clustering and the KCC method
that is proposed in Reference [58].

1https://gitee.com/linhaobuaa/KCC
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2.1 Mathematical Background of Consensus Clustering

2.1.1 Problem Definition. Assume that there are a set of n instances X = {x1,x2, . . . ,xn } that
belong to K groups C = {C1, . . . ,Ck }, with the constraint that Ck

⋂
Ck ′ = ∅, ∀k � k ′, and⋃K

k=1Ck = X. Based on X, a collection of r BPs, i.e., Π = {π1,π2, . . . ,πr }, are generated. For
each BP πi , X is partitioned into Ki crisp clusters, and each instance is assigned to a cluster label
index that ranges in [1, Ki ]. A consensus clustering algorithm aims at finding an optimal parti-
tion π to fuse the information from the BPs Π for better clustering quality. We call π a consensus
parition. As mentioned, ensemble clustering methods could be grouped into two main sets, i.e.,
the approaches based on a utility function and approaches based on a co-association matrix. In
the first category, the optimal π is assumed to generate the maximum utility value, which has the
following formulation:

max
π

r∑
i=1

wiU (π ,πi ), (1)

where U denotes a utility function that calculates the similarity between a consensus partition
and a basic partition, and wi ∈ [0, 1] denotes a weight assigned to the basic partition πi with a
constraint of

∑r
i=1wi = 1. Usually all partitions can be of equal weight, but if some partitions are

more important than others, then they can be assigned with a larger weight [50]. Compared to the
co-association matrix-based method, we are more interested in the utility function-based method,
because utility values are interpretable and robust to noise. However, a tradeoff between the com-
putational efficiency and clustering performance is often the difficulty for this line of methods.
As such, it remains an open question on how to design a good utility function to achieve both
excellent clustering performance and high computational efficiency.

2.1.2 Basic Partition Generation Strategy. Consensus clustering algorithms requires the BPs
rather than the raw data as the input. Therefore, it is important to design BP generation strate-
gies. In the following, we introduce three widely used BP generation strategies, which focus on
exploiting the diversity of BPs,

• Random Parameter Selection. Predefined parameters are usually needed for most base cluster-
ing algorithms. For instance, both k-means and K-medoids require the cluster number. For
generating diverse BPs, Random Parameter Selection (RPS) samples values randomly
from a certain range of alternatives as the parameters of a base clustering.
• Random Feature Selection. For generating diverse BPs, Random Feature Selection (RFS)

employs the same base clustering algorithm with fixed parameters but performs clustering
on different subspaces of X. This is achieved by sampling random partial features from the
whole feature space.
• Combination of Different Algorithms. This strategy produces diverse BPs by employing dif-

ferent base clustering algorithms over the same dataset.

2.1.3 Utility Function for Consensus Clustering. Recall that a traditional clustering algorithm
usually quantifies the similarity in an instance level, e.g., by calculating the distance between an
instance and a centroid. Instead, for consensus clustering, the similarity is measured at the partition
level by the utility function; more specifically, the similarity between the consensus partition and
basic partition is calculated. A contingency table as shown in Table 1 is often needed for comparing
the two partitions.

In Table 1, we have two partitions π and πi , of which the first one is the consensus partition,

and the other one is the ith basic partition derived by some algorithm. Let n(i )
k j

be the number

of instances that are simultaneously assigned to Ck in the consensus partition π and C (i )
j in the
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Table 1. Contingency Matrix

πi

C (i )
1 C (i )

2 · · · C (i )
Ki

∑
C1 n(i )

11 n(i )
12 · · · n(i )

1Ki
n(i )

1+

π C2 n(i )
21 n(i )

22 · · · n(i )
2Ki

n(i )
2+

...
...

...
. . .

...
...

CK n(i )
K1 n(i )

K2 · · · n(i )
KKi

n(i )
K+∑

n(i )
+1 n(i )

+2 · · · n(i )
+Ki

n

basic partition πi ; n
(i )
k+
=
∑Ki

j=1 n
(i )
k j

; n(i )
+j =

∑K
k=1 n

(i )
k j

, 1 ≤ k ≤ K , 1 ≤ j ≤ Ki . The Category Utility

Function [38] can then be derived from the elements of the contingency table. This utility function
has the following form:

Uc (π ,πi ) =
K∑

k=1

p (i )
k+

Ki∑
j=1

��
�

p (i )
k j

p (i )
k+

��
�

2

−
Ki∑
j=1

(
p (i )
+j

)2
, (2)

where p (i )
k j
= n(i )

k j
/n denotes one instance’s joint probability of being simultaneously assigned to

Ck in π and C (i )
j in πi ; p

(i )
k+
= n(i )

k+
/n is the portion of Ck in π , and p (i )

+j = n(i )
+j /n is the portion of

C (i )
j in πi . Since the contingency table is a tool to compare two partitions, any utility function can

theoretically be designed based on it.

2.2 k-means-based Consensus Clustering

In this subsection, we do not intend to go through all derivation details of the KCC method but
only remark several key motivations and techniques of KCC that are closely related to its imple-
mentation described in Section 3; we refer to the article [58] for the full details of the KCC method.

2.2.1 General Ideas. The utility function-based consensus clustering methods face several
computational challenges. First, traditional methods usually suffer from using inefficient meta-
heuristics, e.g., the genetic algorithm and simulated annealing, to solve the consensus clustering
problem. An interesting perspective to tackle this issue emerges when Topchy et al. [53] indi-
cates the goal of consensus clustering, i.e., the utility maximization, is proved to be equivalent
to the square-error criterion minimization, and can be achieved by a classical k-means clustering
process. As a simple partition-based clustering method, k-means aims at finding K crisp clusters.
Mathematically,k-means clustering can be regarded as optimizing an objective function as follows:

min

K∑
k=1

∑
x ∈Ck

f (x ,mk ), (3)

where mk denotes Ck ’s cluster centroid and f is a function for computing the distance between
an instance and a centroid, also known as a point-to-centroid distance function. To be specific,
Topchy et al. [53] demonstrates that if a Category Utility Function is used as the utility function
in Equation (1), and a squared Euclidean distance function is adopted as f in Equation (3), then
the maximization of the objective function in consensus clustering is equivalently transformed
into the minimization of the intra-class variance criterion in k-means clustering. In other words, a
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consensus clustering problem with the Category Utility Function could be converted to a k-means
clustering problem with the squared Euclidean distance. As such, consensus clustering could
be solved in a two-phase k-means heuristic, i.e., an iterative process of cluster assignment and
centroid calculation. This process is of high efficiency with a time complexity of O (InrK ). KCC
follows this intuition to efficiently solve the consensus clustering problem.

The second issue lies in that few existing methods are able to provide a unified framework to
flexibly choose different utility functions while this ability is very important in real-world applica-
tions. Flexible choice of utility functions is important in practice, because a certain utility function
may perform excellently on one dataset but perform poorly on another one. For example, another
KCC method [53] restricts their utility function to be the form of the special Category Utility
Function and has weak generalizability on different datasets. Meanwhile, solving the consensus
clustering problem with a chosen utility function usually requires a corresponding heuristic. Since
different heuristic has different computational complexity, we may not guarantee that the prob-
lem can always be solved in an efficient way. For example, the state-of-the-art package CLUE [21]
provides different utility functions but uses different heuristic, e.g., SE, GV1, and DWH, to deal with
the different utility function. As such, it is often hard for users to choose a good utility function
and a satisfied heuristic simultaneously in practice.

In sharp contrast, KCC achieves to convert consensus clustering to k-means clustering for the
efficiency concern and provide choices of different utility functions in a unified way for the flexi-
bility concern, simultaneously. In the following, we introduce multiple key techniques in KCC to
achieve the goal.

2.2.2 Binary Dataset for KCC. Recall that consensus clustering could be intuitively viewed as
finding an ensemble partition π from a set of BPs Π, so that the instances within a cluster of π are
more similar to each other, which is very alike to conventional clustering excepting that consensus
clustering exploits information in Π [53]. Therefore, it is essential to firstly represent the objects

based on Π. Specifically, based on the set of r basic partitions Π, KCC defines a binary datasetX (b )

as follows:

X (b ) =
〈
x (b )

1 , . . . ,x
(b )
l
, . . . ,x (b )

n

〉
, (4)

x (b )
l
=
〈
x (b )

l,1
, . . . ,x (b )

l,i
, . . . ,x (b )

l,r

〉
, (5)

x (b )
l,i
=
〈
x (b )

l,i,1
, . . . ,x (b )

l,i, j
, . . . ,x (b )

l,i,Ki

〉
, (6)

x (b )
l,i, j
=
⎧⎪⎨⎪⎩

1, if Lπi
(xl ) = j

0, otherwise
, (7)

s.t.

Ki∑
j=1

x (b )
l,i, j
= 1, ∀ l ∈ {1, 2, . . . ,n}, i ∈ {1, 2, . . . , r }, (8)

where “〈 〉” indicates a transversal vector, Ki is the number of clusters in πi , and Lπi
(xl ) is one of

the Ki labels in {1, 2, . . . ,Ki } that πi maps xl to.

We can see that X (b ) is a binary representation of objects in the space of BPs. This binary rep-
resentation is one key technique to the KCC framework, since it helps to calculate centroids for
k-means, and derive generalized utility functions for KCC, which are introduced in the following.

2.2.3 Centroids and Generalized Distance Functions. The basic idea of KCC is to assume that
the consensus partition π with K clusters is obtained by employing the k-means algorithm over

the above binary representationX (b ) . Wu et al. [58] demonstrates that the kth cluster’s centroid in
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π , denoted asmk , can be derived based on the binary representation X (b ) and contingency matrix
in Table 1. The centroidmk can be represented as follows:

mk = 〈mk,1, . . . ,mk,i , . . . ,mk,r 〉, (9)

mk,i = 〈mk,i,1, . . . ,mk,i, j , . . . ,mk,i,Ki
〉, (10)

mk,i, j =

∑
xl ∈Ck

x (b )
l,i, j

|Ck |
=

p (i )
k j

p (i )
k+

. (11)

Equation (11) builds a connection between consensus clustering and k-means clustering: The
centroids of k-means could be acquired from the contingency matrix, on which the consensus
clustering’s utility function could also be designed. In other words, the binary representation and
contingency matrix may help to connect the distance function with the utility function.

As inspired by the above connection, we remark on KCC’s intuition to generalize utility func-
tions for consensus clustering as follows: If we can define a generalized point-to-centroid distance
function for k-means, and somehow map it to a utility function via the binary representation and
contingency matrix, then we can achieve the generalization of the utility function.

A family of generalized distance functions, i.e., Bregman divergence [7], has been proved to
preserve the simplicity and scalability of k-means and thus fits the k-means optimization frame-
work [4]. A Bregman divergence f : Rd × Rd 
→ R is defined as follows:

f (x ,y) = ϕ (x ) − ϕ (y) − (x − y)�∇ϕ (y), (12)

where ϕ : Rd 
→ R is a differentiable strictly convex function. This generalized form is intuitive,
since several widely used point-to-centroid distance functions could be easily derived based on it,
e.g., the squared Euclidean distance can be generated by settingϕ (x ) to | |x | |22 . It is worth noting that
we can further relax the strictness property of ϕ’s convexity to form a convex yet not necessarily
strictly convex ϕ [59], which leads to the same mathematical form of f as the Bregman divergence
in Equation (12). Following this intuition, we build KCC based on the generalized point-to-centroid
distance function of k-means, which is f with convex ϕ as shown in Equation (12).

2.2.4 KCC Utility Functions. Before going into more details, we first introduce generalized util-
ity functions of the KCC framework, which are also called KCC utility functions. More formally, a
KCC utility function can be defined in the following way.

Definition 2.1 (KCC Utility Function). A utility function U is called a KCC utility function if
∀ Π = {π1, . . . ,πr } and K ≥ 2; there is a function f defined in Equation (12) with a differentiable
convex function ϕ, so that the following equation holds:

max
π

r∑
i=1

wiU (π ,πi ) ⇔ min
π

K∑
k=1

∑
xl ∈Ck

f
(
x (b )

l
,mk

)
. (13)

The above definition is nothing but to establish the property that the KCC utility function should
be beneficial to convert consensus clustering into k-means clustering with a generalized distance
function.

As outlined in Section 2.2.3, to obtain the generalized utility function, we need to further con-
sider the way to map the generalized distance function f to a utility functionU . Since the convex
function ϕ determines the form of the distance function f , building the mapping is equivalent
to building a connection between ϕ and U . To achieve this, Wu et al. [58] derives the following
theorem based on Definition 2.1, the binary representation, and the contingency matrix.
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Table 2. Sample KCC Utility Functions

μ (mk,i ) Uμ (π ,πi ) f (x (b )
l
,mk )

Uc ‖mk,i ‖22 − ‖P (i ) ‖22
∑K

k=1 p
(i )
k+
‖P (i )

k
‖22 − ‖P (i ) ‖22

∑r
i=1wi ‖x (b )

l,i
−mk,i ‖22

UH (−H (mk,i )) − (−H (P (i ) ))
∑K

k=1 p
(i )
k+

(−H (P (i )
k

)) − (−H (P (i ) ))
∑r

i=1wiD (x (b )
l,i
‖mk,i )

Ucos ‖mk,i ‖2 − ‖P (i ) ‖2
∑K

k=1 p
(i )
k+
‖P (i )

k
‖2 − ‖P (i ) ‖2

∑r
i=1wi (1 − cos(x (b )

l,i
,mk,i ))

ULp
‖mk,i ‖p − ‖P (i ) ‖p

∑K
k=1 p

(i )
k+
‖P (i )

k
‖p − ‖P (i ) ‖p

∑r
i=1wi (1 −

∑Ki
j=1 x

(b )
l,i j

(mk,i j )p−1

‖mk,i ‖
p−1
p

)

Note: ‖x ‖p – Lp norm of x ; H , Shannon entropy; D , KL-divergence; cos , cosine similarity.

Theorem 2.2. U is a KCC utility function if and only if ∀ Π = {π1, . . . ,πr } and K ≥ 2; there is a

set of continuously differentiable convex functions denoted as μ = {μ1, . . . , μr } so that

U (π ,πi ) =
K∑

k=1

p (i )
k+
μi

(
P (i )

k

)
,∀ i ∈ {1, 2, . . . , r }, (14)

where

P (i )
k
=

〈
p (i )

k1

p (i )
k+

, . . . ,
p (i )

k j

p (i )
k+

, . . . ,
p (i )

kKi

p (i )
k+

〉
. (15)

The convex function ϕ for the corresponding k-means clustering is given by

ϕ (mk ) =
r∑

i=1

wiνi (mk,i ),∀ k ∈ {1, 2, . . . ,K }, (16)

where

νi (x ) = aμi (x ) + ci ,∀ i ∈ {1, 2, . . . , r },a ∈ R++, ci ∈ R. (17)

The utility functionU in Equation (14) is indeed a generalized utility function. Theorem 2.2 intu-
itively establishes the specific connection between the convex functionϕ and the utility functionU :
Both of them are dependent on the set of r convex functions, i.e., μ = {μ1, . . . , μr }. In other words,
if the μ is specified as a certain set of functions, then the utility function U and its corresponding
k-means distance function f can be determined accordingly. As such, the theorem guarantees that
KCC can always be solved by using any arbitrary utility function and the efficient k-means heuris-
tic, as long as each μi , ∀i ∈ {1, . . . , r }, follows the continuously differentiable convex property.
Hereinafter, the KCC utility function constructed by the μi in Equation (14) is denoted as Uμ . In
Table 2, we give examples of KCC utility functions stemming from different form of the convex

function μi and their corresponding distance function f . Note that P (i ) � 〈p (i )
+1 , . . . ,p

(i )
+j , . . . ,p

(i )
+Ki
〉,

∀i ∈ {1, . . . , r }. Except for the well-known Category Utility FunctionUc [38], we are not aware of
the other three utility functions mentioned in prior literature.

Moreover, Theorem 2.2 leads to the process of conducting KCC, of which the pseudocode is
shown in Algorithm 1. That is, we should first design a set of convex functions μ = {μ1, . . . , μr } and
then calculate the utility function and consensus function with Equations (14) and (1), respectively;
after setting the values of a and ci in Equation (17) with default settings [58], i.e., a = 1, ci = 0,
∀i , we can obtain ϕ and f with Equations (16) and (12), respectively; and, finally, the consensus
partition can be found with the two-phase k-means heuristic as proposed in Section 2.2.1.

Another issue with the utility function-based consensus clustering methods is how to make the
utility function interpretable. Recall that the utility function is normally viewed as a similarity
measure between a basic partition and a consensus partition. Directly computing utility functions
may lead to positive or negative values of utilities. If we somehow force the utility functionU (π ,πi )
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ALGORITHM 1: KCC algorithm.

Input: basic partition set Π, BP weight set w , a set of convex functions μ = {μ1, . . . , μr }, number
of clusters K

Output: consensus partition π , optimal consensus-function value Γ
1: ∀i ∈ {1, . . . , r }, let νi ≡ μi , get ϕ by Equation (16), and then f by Equation (12);

2: Construct the binary representation X (b ) from Π;

3: Call k-means to cluster X (b ) into K clusters and get π ;
4: Compute Γ by Equations (1) and (14);
5: return π and Γ.

to be non-negative, then it may provide interpretability to some extent, i.e., U (π ,πi ) could be
regarded as a utility gain of the consensus partition π obtained from the ith basic partition πi .
Following this intuition, Wu et al. [58] further introduces two forms, i.e., a standard form and
normalized form, for each utility function to guarantee its non-negativity.

Standard Form. Assume that we have obtained a utility value Uμ (π ,πi ) based on the set of
convex functions μ = {μ1, . . . , μr } by Equation (14). We derive a standard form, i.e., Uμs

, of the
KCC utility function in the following way:

Uμs
(π ,πi ) = Uμ (π ,πi ) − μ (P (i ) ), (18)

where P (i ) = 〈p (i )
+1 , . . . ,p

(i )
+Ki
〉, ∀i ∈ {1, . . . , r } and the standard form, i.e., Uμs

(π ,πi ), can be inter-

preted as the utility gain of the consensus partition π obtained from the ith basic partition πi . Note
that Table 2 presents the standard forms of multiple KCC utility functions.

Normalized Form. Based on the standard form Uμs
, we further derive a normalized form Uμn

in the following way:

Uμn
(π ,πi ) =

Uμs
(π ,πi )

|μ (P (i ) ) |
=
Uμ (π ,πi ) − μ (P (i ) )

|μ (P (i ) ) |
. (19)

The normalized form Uμn
(π ,πi ) can be interpreted as a utility gain ratio.

2.2.5 Handling Incomplete Basic Partitions. Recall that the basic partitions are implicitly as-
sumed to be complete for all data instances. In other words, each of the basic partitions is gener-
ated by conducting clustering on the same complete dataset X. However, it is common that there
are potential data collection or transformation failure issues in real-world applications, and this
results in a scenario that only subsets of X can be observed when conducting consensus cluster-
ing. How can the consensus clustering problem be solved if only subsets of X are offered? More
formally, assume that the ith basic partition πi is generated on a subset of X, i.e., Xi ⊆ X with
the constraint of

⋃r
i=1Xi = X. We call πi an incomplete basic partition (IBP). The problem is

therefore defined as to solve consensus clustering given the set of r IBPs.
We remark that the aforementioned KCC framework can solve this problem with only slight

modifications on the centroid update and distance calculation of the k-means heuristic. More
specifically, we still follow the intuitions of Definition 2.1 and Theorem 2.2 to derive the KCC
utility function but adjust the distance calculation and centroid update for handling IBPs as
follows:

f
(
x (b )

l
,mk

)
=

r∑
i=1

I(xl ∈ Xi ) f ′
(
x (b )

l,i
,mk,i

)
, (20)
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andmk = 〈mk,1, . . . ,mk,i , . . . ,mk,r 〉 with

mk,i =

∑
xl ∈Ck

I(xl ∈ Xi )x (b )
l,i

|Ck ∩ Xi |
, (21)

where I(xl ∈ Xi ) = 1 if xl ∈ Xi and 0 otherwise; f ′ is a k-means distance.
The indicator term I(xl ∈ Xi ) in the above equations is very intuitive: For the lth object in the

dataset, if its clustering label information is missed in the basic partition πi , i.e., I(xl ∈ Xi ) = 0,

then its binary representation x (b )
l,i

would contribute neither to the centroid computation of the

kth cluster in πi nor to the point-to-centroid distance computation.

Remark. Under the framework of KCC, KCC utility functions should help to convert consensus
clustering into k-means clustering with generalized distance functions. If a utility function follows
the property of a KCC utility function, then the consensus clustering problem that aims at finding
the maximum value of the utility function could be transformed into an optimization problem
with a k-means heuristic. The k-means heuristic refers to a two-phase process for conducting
k-means clustering, i.e., an iterative process of cluster assignment and centroid calculation. In the
transformation, the binary dataset plays an important role. Therefore, in the following section, we
will introduce one important aspect in implementing the KCC algorithm, i.e., the implementation
of the binary dataset.

3 IMPLEMENTATION ASPECTS

Although Wu et al. [58] has already presented the whole KCC framework as summarized in
Section 2, aspects in implementing the KCC algorithm have seldomly been addressed in the ex-
isting literature. In this section, we propose the efforts in systematically implementing the KCC
algorithm, building a sparse representation of the binary dataset and using the sparse representa-
tion to efficiently calculate distance and centroid in the k-means heuristic.

3.1 Systematic Implementation of KCC

We have implemented the KCC algorithm systematically in a Matlab package with functional
programming. Figure 1 gives an overview of the package’s structure, which illustrates its main
functions, including the basic partition generation functions, consensus clustering preprocessing
function, consensus functions, and clustering quality evaluation functions. The full details of the
package’s available functions can be found in Section 3 of the user manual that accompanies the
software. The package was developed and tested with Matlab R2022a.

The core function in the package is the consensus function KCC, which provides the function-
ality for the consensus clustering to produce consensus partition results, i.e., the cluster labels
for all data objects. In practical applications, the usage of different utility functions in alternative
packages such as CLUE may result in different optimization problems, which usually need to be
solved with different heuristics, e.g., SE, GV1, and DWH in CLUE. In contrast, the KCC package ad-
dresses this issue by implementing a unified consensus function, i.e., KCC, to solve the consensus
clustering. In other words, it allows for the flexible choices of different utility functions but opti-
mizing them using the same k-means clustering heuristic. Specifically, according to the process
of k-means, the function KCC is mainly built upon the centroid initialization functions, point-to-
centroid distance functions, and cluster centroid update functions. The function KCC achieves the
flexiblity by defining a user input parameter U that indicates the choice of a utility function and
calling different point-to-centroid distance functions according to the choice. For example, if a user
chooses the utility functionUc , then a Euclidean distance function called distance_euc is applied
for computation; if a user chooses the utility function Ucos , then a cosine distance function called
distance_cos is applied for computation.
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Fig. 1. Workflow of the KCC package.

Moreover, from the algorithm input’s perspective, the input dataset may contain IBPs. As indi-
cated in Section 2.2.5, the KCC algorithm may use slightly different manners in handling complete
and incomplete BPs. Hence, we need to consider two scenarios, i.e., datasets with complete and
incomplete BPs. Meanwhile, from the algorithm output’s perspective, the value of the utility func-
tion as in Equation (14), i.e., the consensus clustering’s utility value, may be of interest to a user
if the user regards it as a metric in evaluating the clustering results. A notable aspect is that not
outputing it does not influence the monitoring of convergence in the iteration of KCC algorithm
(see Algorithm 1) but can accelerate the KCC’s computation. As such, we should also consider two
scenarios, i.e., whether or not the algorithm outputs the utility value. In the real implementation,
we divide the KCC’s usage in the following four application scenarios based on whether there exist
IBPs in the input data matrix and whether the algorithm outputs the utility value: (1) the output of
utility value is enabled, and there exist IBPs in the input; (2) the output of utility value is enabled,
and there does not exist IBPs in the input; (3) the output of utility value is disabled, and there exist
IBPs in the input; and (4) the output of utility value is disabled, and there does not exist IBPs in
the input. For different application scenarios, the function KCC uses different combinations of the
centroid initialization functions, point-to-centroid distance functions, and cluster centroid update
functions. For example, the centroid initialization functions, i.e., sCentroid and sCentroid_miss,
are designed to initialize the cluster centroids with complete BPs and with IBPs, respectively. The
distance functions such as distance_euc and distance_euc_miss are designed to calculate point-
to-centroid distance with complete BPs and with IBPs, respectively. The cluster centroid update
functions, i.e., gCentroid and gCentroid_miss, are designed to update cluster centroids with com-
plete BPs and with IBPs, respectively. Thanks to the structure of the KCC function, implementations
of new KCC utility functions with complete/incomplete basic partitions can be easily incorporated
into the package by adding new functions like distance_X and distance_X_miss, respectively.

As indicated in the overview of the KCC package in Figure 1, there are multiple supporting
functions for the function KCC. The functions BasicCluster_RFS and BasicCluster_RPS provide
the functionality for generating the basic partitions. They implement the RFS strategy and RPS
strategy, respectively. More basic partition generation functions can also be incorporated into the
package by adding a new function like BasicCluster_X. The function Preprocess provides the
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Fig. 2. An illustrative example of the binary matrix and sparse representation.

functionality for producing the input directly used by the function KCC. It utilizes the techniques
as described in Sections 3.2 and 3.3 to help to save memory and accelerate computations. The
RunKCC function provides the functionality for combining the two functions Preprocess and
KCC. It performs basic partition preprocessing and consensus clustering in one step. Moreover, it
obtains the best consensus result by running the KCC algorithm in multiple repeated experiments.

Evaluating the clustering solutions in the consensus partition is also an important concern in the
implemented package. The functions inMeasure and exMeasure provide the functionality for mea-
suring the quality of a clustering when the ground-truth cluster label information is unavailable
and available, respectively. In practice, the ground-truth labels are usually annotated by human
experts [18]. The function inMeasure evaluates a clustering by examining how well the clusters
are separated and how compact the clusters are. It calculates three internal validity indices, i.e., the
Distortion Score [6], Silhouette Coefficient [27], and Calinski and Harabasz index [8]. The func-
tion exMeasure evaluates a clustering by comparing the clustering solution with the ground-truth
labels. It calculates five external validity indices, including the classification accuracy [41] (CA),
normalized mutual information [10] (NMI ), normalized Rand statistic [44] (Rn ), normalized van
Dongen criterion [13] (VDn ), and normalized Variation of Information [10] (V In ).

3.2 Sparse Representation of X (b )

As discussed in Section 2.2.2, the binary dataset X (b ) plays a key role in deriving the k-means
heuristic, KCC utility functions, and input for the final ensemble clustering. It can be seen

that X (b ) is typically a three-dimensional variable-length vector, since the length of its third
dimension, i.e., Ki , is usually varied for different partition index i . In other words, considering the
generality in real-world applications, different basic partition πi may have different number of
clusters Ki . Since programming languages cannot easily deal with such a variable-length vector,

it is natural to flatten the last two dimensions of X (b ) to reduce X (b ) into a two-dimensional, i.e.,
(n ×∑r

i=1 Ki )-dimensional, fix-length matrix FullBinIDX (see the upper right of the Figure 2). We
call the FullBinIDX the binary matrix or the full matrix interchangeably hereinafter.

However, directly representing the binary dataset as a two-dimensional Matlab matrix, i.e.,
FullBinIDX , is still problematic, since FullBinIDX is very sparse with many zeros and only a few
ones, and it would consume a huge amount of memory space. Sparse representation has been
a long-standing technique to deal with such memory intensive computations in implementation.
For example, in Matlab the built-in function sparse can convert a full matrix into a sparse form
by squeezing out any zero elements. When the full matrix contains many zero elements, this
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ALGORITHM 2: Algorithm for generating sparse representation of X (b ) .

Input: basic partition result matrix IDX
Output: matrix Ki , index matrix sumKi , index matrix binIDX

1: Calculate number of data objects n, and number of basic partitions r from IDX ;
2: Initialize Ki as a 1 × r matrix with all elements setting to 0s;
3: Initialize sumKi as a 1 × (r + 1) matrix with all elements setting to 0s;
4: Initialize binIDX as a n × r matrix with all elements setting to 0s;
5: for each p ∈ {1, 2, . . . , r } do

6: Set Ki1,p ← max(IDX .,p ). // Computes the maximum value for each column in IDX ;
7: Set sumKi1,p+1 ← sumKi1,p + Ki1,p ;
8: for each q ∈ {1, 2, . . . ,n} do

9: Set binIDXq,p ← sumKi1,p + IDXq,p ;
10: end for

11: end for

12: return Ki , sumKi , and binIDX .

conversion technique can save much memory space. As such, it is essential to adopt a sparse
representation technique to address this issue.

In the KCC package, we propose a sparse technique to represent the binary dataset with three

matrices, i.e., Ki ∈ R1×r , sumKi ∈ R1×(r+1) , and binIDX ∈ Rn×r , where n is the number of data
objects and r is the number of input basic partitions. This sparse representation can be regarded
as a substitute for the full matrix FullBinIDX . More specifically, the matrix Ki contains the num-
ber of clusters for each of the basic partitions. The matrix sumKi contains the starting column
index for each of the basic partitions in FullBinIDX , while the last element of sumKi indicates the
ending column index for the last basic partition. The matrix binIDX indicates the offset column
position of the ones element for each data object in FullBinIDX . For facilitating understanding,
the bottom of the Figure 2 gives an illustrative example of Ki , sumKi , and binIDX . The function
Preprocess in the package produces Ki , sumKi , and binIDX . The pseudocode for generating the
sparse representation is shown in Algorithm 2.

This representation technique can not only keep the essential basic partition information of
FullBinIDX but also avoids the need to store extra zeros. Particularly, by using the three matrices,
we can recover the full matrix FullBinIDX ; in other words, the three matrices can be seen as a
sparse form of FullBinIDX . With this representation, we reduce the space complexity of storing
FullBinIDX , i.e., O (n

∑r
i=1 Ki ), to the space complexity of storing Ki , sumKi , and binIDX , i.e.,

O (nr ). This saves a large amount of memory storage when the sum of the number of clusters in
all basic partitions, i.e.,

∑r
i=1 Ki , is large.

3.3 The Usage of Sparse Representation in Distance and Centroid Calculation

As indicated in Algorithm 1, X (b ) is the input of the k-means clustering for the final consensus

clustering. Therefore, the next key question would be how the sparse representation of X (b ) can
be used in the two-phase computation of k-means, i.e., the point-to-centroid distance and centroid
computation. Since the KCC algorithm supports multiple utility functions, we take one utility
function, i.e.,Uc , as an example and show the complete pesudo code of the corresponding k-means
heuristic in Algorithm 3.

The general idea in Algorithm 3 is to divide the computations of the cluster centroids and point-
to-centroid distances into multiple smaller computations. Concretely, in initializing the cluster
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ALGORITHM 3: Algorithm for consensus clustering with Uc over sparse representation.

Input: matrix Ki , matrix sumKi , matrix binIDX , matrix IDX , the number of clusters K for the
consensus clustering, the number of data objects n, number of basic partitions r , matrix
weiдht ∈ Rr×1 indicating the weights for all basic partitions

Output: consensus partition π
1: Form an index list li by sampling K numbers randomly from the {1, 2, . . . ,n} without

replacement.
2: Initialize the centroids of K clustersm as a K × sumKi1,r+1 matrix with all elements setting to

0s;
3: for each k ∈ {1, 2, . . . ,K } do

4: Setmk,binI DX (l i, .) ← 1; // set values at corresponding indexes ofm to 1s
5: end for

6: Initialize the point-to-centroid distances D as a n × K matrix with all elements setting to 0s;
7: Initialize the cluster assignment matrix π as a n × 1 matrix with all elements setting to 0s;
8: Initialize a temporary matrix m′ as a K × r matrix with all elements setting to 0s;
9: Initialize a temporary matrix ones as a K × r matrix with all elements setting to 1s;

10: repeat

11: for each p ∈ {1, 2, . . . , r } do

12: Set m′.,p ←
∑sumKi1,p+1

q=sumKi1,p+1m
2
.,q ; // calculating the sum square of all components in the

centroid matrix
13: end for

14: for each i ∈ {1, 2, . . . ,n} do

15: Set Di, . ← (m′ − 2m .,binI DXi, .
+ ones ) ∗weiдht ; // The symbol * denotes the matrix mul-

tiplication operator
16: end for

17: Update cluster assignment matrix π ← min(D). // Assign each data object i to the cluster
within the minimum distance.

18: Calculate the distribution for each of the basic partition based on π and IDX to form a

histogram count matrix counts ∈ Rmax(Ki )×r .
19: for each k ∈ {1, 2, . . . ,K } do

20: Calculate the num of data objects in the kth cluster of the consensus partition as countk .
21: for each i ∈ {1, 2, . . . , r } do

22: Update the cluster centroid matrix mk,sumKii :sumKii+1
← counts1:Ki1,i ,i/countk , where

counts1:Ki1,i ,i corresponds to the column vector 〈p (i )
k1
,p (i )

k2
, . . . ,p (i )

kKi
〉
�

as described in

Equation (15).
23: end for

24: end for

25: until convergence;
26: return π .

centroid matrix C ∈ RK×sumKi1,r+1 , instead of using the full matrix FullBinIDX , we divide the
initialization process into three smaller subprocesses: (1) initializing a K × sumKi1,r+1 matrix with
all elements setting to 0s, (2) randomly sampling an index list to indicate the row indexes of the
data objects selected as the initialized centroids, and (3) constructing the final centroid matrix
by setting the values at the positions indicated by the offset matrix binIDX to 1s. An example
illustrating this process is shown in Figure 3.
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Fig. 3. An illustrative example of initializing the centroid matrix using binIDX when K = 2.

Fig. 4. An illustrative example of computing the distance from the data object i = 1 to the second cluster
centroid at the first iteration using binIDX .

In the point-to-centroid distance computation, at each iteration, we divide the computation of
the Euclidean distance from each data object i to the kth cluster centroid, i.e., | |FullBinIDXi, . −
mk, . | |2, into the sum of three smaller terms, including FullBinIDX 2

i, . , −2FullBinIDXi, . � mk, . ,

and m2
k, .

. Figure 4 illustrates an example of such a distance computation. Thanks to the divi-

sion, the first term FullBinIDX 2
i, . is always equal to a 1 × r constant matrix with all values

equal to 1, which could be omited in implementation. Moreover, the computationally expensive
element-wise multiplication operation in the second term −2FullBinIDXi, . � mk, . can be trans-
formed into a simple matrix indexing operation, i.e., −2mk,binI DXi, .

, in Matlab which utilizes
the sparse representation binIDX rather than the full matrix FullBinIDX . In this way, the KCC
package achieves a space complexity of O (nr + nK + n) in the k-means heuristic with the sparse
representation.

4 NUMERICAL EXPERIMENTS

In this section, we conduct multiple numerical experiments on 11 diverse datasets to empirically
evaluate our proposed KCC package. First, we evaluate the performances of the package with
different utility functions. We then report the performances of the KCC package compared to
four alternative consensus clustering packages. Next, we investigate the impact of the number of
clusters in the consensus partition, number of basic partitions, and different basic partition gener-
ation strategies. Finally, we present the performance of the KCC package on handling incomplete
basic partitions. All experiments were conducted on a Linux Server with Intel Xeon E5-2687W v3
3.10GHz CPUs and 503G memory. Some of the numerical experiments are also provided as exam-
ples to illustrate the usage of the package in Section 2 of the user manual that accompanies the
software.
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Table 3. Statistics of Real-world Datasets

Datasets Source #Objects #Attributes #Classes MinClassSize MaxClassSize CV Density

breast_w UCI 699 9 2 241 458 0.439 1.0000
ecoli UCI 332 7 6 5 143 0.899 1.0000
iris UCI 150 4 3 50 50 0.000 1.0000
pendigits UCI 10,992 16 10 6,330 6,864 0.042 1.0000
satimage UCI 4,435 36 6 415 1,072 0.425 1.0000
dermatology UCI 358 33 6 20 111 0.509 1.0000
wine UCI 178 13 3 48 71 0.194 1.0000
mm TREC 2,521 126,373 2 1,133 1,388 0.143 0.0015
reviews TREC 4,069 126,373 5 137 1,388 0.640 0.0015
la12 TREC 6,279 31,472 6 521 1,848 0.503 0.0048
sports TREC 8,580 126,373 7 122 3,412 1.022 0.0010

4.1 Datasets from UCI and TREC Repositories

We use multiple datasets acquired from two large data repositories, i.e., the UCI2 and Text RE-

trieval Conference (TREC)3 repositories, in the experiments. Each dataset contains multiple
attributes of the data objects, and their corresponding classes, which provide ground-truth labels
for evaluating the clustering performance with external validity metrics. The breast_w [56] dataset
is obtained from the clinical cases of Dr. Wolberg in the breast cancer databases of the University of
Wisconsin Hospitals, Madison, and the classes correspond to the diagnosis result of the cases, i.e.,
benign and malignant. The ecoli [40] dataset contains protein information with known localization
sites. The iris [15] dataset contains the attribute information of iris plants, and the classes corre-
spond to the plants’ types. The pendigits [2] dataset is derived from a handwritten digit database
with the numbers 0 to 9 being the class labels. The satimage [51] dataset consists of the multi-
spectral values of pixels in 3 × 3 neighborhoods in a satellite image, and the classes correspond
to the central pixel in each neighborhood. The dermatology [11] dataset contains 33 attributes in-
dicating clinical and histopathological features for diagnosis of the type of Eryhemato-Squamous
Disease. The wine [1] dataset contains chemical features of wines, and the classes correspond to
the origin of wines. The mm, reviews, la12, and sports datasets are all text datasets collected from
the TREC data repository [19]. For example, the reviews dataset is derived from San Jose Mercury

newspaper articles, and contains text documents about food, movies, music, radio, and restaurants.
The la12 dataset is obtained from articles of the Los Angeles Times, and its classes include enter-
tainment, financial, foreign, metro, national, and sports desks. Some dataset statistics are given in
Table 3, whereCV denotes the variation coefficient statistic that measures the cluster imbalance of
ground-truth data and Density denotes the portion of nonzero elements. For preprocessing these
text documents, readers can refer to the technical report [26] of the clustering toolkit CLUTO4 for
more details.

4.2 Comparison of Clustering Quality and Efficiency with Different Utility Functions

Here we evaluate the clustering quality and efficiency of the KCC package with 10 different utility
functions on the 11 real-world datasets. For basic partition generation, we use RPS as the strategy.

For clustering quality evaluation, we only show the results of one metric, i.e., CA, in Table 4
due to the page limit. The full results on all five external metrics including CA, NMI , Rn , V In ,

2https://archive.ics.uci.edu/ml/
3http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz
4http://glaros.dtc.umn.edu/gkhome/home-of-cluto
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Table 4. Clustering Quality of KCC with Different Utility Functions in Terms of CA

Uc UH Ucos UL5 UL8 NUc NUH NUcos NUL5 NUL8

breast_w 0.6403 0.9624 0.7172 0.6820 0.6896 0.6260 0.9639 0.6838 0.6820 0.6820
ecoli 0.5639 0.5789 0.5651 0.5756 0.5590 0.5831 0.5578 0.5880 0.5605 0.5657
iris 0.8940 0.8973 0.9000 0.9000 0.8940 0.8933 0.8907 0.9000 0.9000 0.8880
pendigits 0.6526 0.6584 0.6837 0.6422 0.6520 0.5947 0.6443 0.6833 0.6600 0.6533
satimage 0.5829 0.6571 0.6149 0.6060 0.6290 0.5229 0.6425 0.6594 0.6006 0.5597
dermatology 0.2913 0.3128 0.2729 0.2701 0.2723 0.3075 0.2975 0.2802 0.2760 0.2899
wine 0.5135 0.5247 0.5180 0.5112 0.5112 0.5208 0.5079 0.5219 0.5157 0.5152
mm 0.9337 0.9497 0.9532 0.9336 0.9551 0.7797 0.9495 0.9415 0.9439 0.9093
reviews 0.6153 0.6593 0.6313 0.6407 0.6569 0.6086 0.6698 0.6030 0.6353 0.6198
la12 0.4626 0.4912 0.5064 0.4755 0.4690 0.4349 0.4890 0.4853 0.4491 0.4476
sports 0.4497 0.4858 0.4715 0.4642 0.4502 0.4592 0.4584 0.4764 0.4693 0.4461

score 0.9182 0.9898 0.9462 0.9283 0.9314 0.8910 0.9707 0.9477 0.9265 0.9135

The best results are highlighted with bold.

Table 5. Full Execution Time of the KCC Package with Different Utility Functions

Uc UH Ucos UL5 UL8 NUc NUH NUcos NUL5 NUL8

breast_w 0.83 1.95 0.72 0.88 0.76 0.82 0.99 0.64 0.76 0.86
ecoli 1.61 3.50 1.24 1.67 1.51 1.16 2.06 1.23 1.50 1.40
iris 2.00 7.06 1.61 1.51 1.51 1.49 3.39 1.48 1.46 1.48
pendigits 10.55 12.87 11.45 13.84 11.87 11.39 13.00 11.19 14.01 13.12
satimage 1.25 1.80 1.19 1.42 1.73 1.22 1.62 1.22 1.58 1.96
dermatology 1.11 3.59 1.47 1.37 1.15 1.24 1.90 1.20 1.23 1.29
wine 1.86 6.55 2.30 1.84 1.61 1.80 3.28 1.78 1.56 1.53

mm 622.61 771.60 733.84 571.96 677.55 660.21 739.98 774.26 656.56 588.42
reviews 733.01 1209.34 769.65 693.93 647.68 977.17 1017.01 767.63 756.06 629.17

la12 255.44 302.76 283.09 258.23 252.70 266.36 249.24 256.89 267.51 252.64
sports 1043.65 1701.98 954.64 1008.88 929.79 989.38 1032.93 899.55 952.23 980.68

score 0.55 0.98 0.57 0.57 0.56 0.56 0.69 0.54 0.58 0.57

We collect the raw execution time in milliseconds, and normalize it by the number of data objects of the corresponding

dataset. The best results are highlighted with bold.

andVDn can be found in Section 2 of the user manual that accompanies the software. The results
indicate that 7 of 10 utility functions achieve the best clustering performance over at least 1 dataset.
This suggests providing flexible utility functions can be crucial to accurate ensemble clustering in
real-world applications. In practice, we can hardly know which utility function should be used in
consensus clustering. We recommend to follow the advice of Wu et al. [58] to rate utility functions
over a testbed and select the utility function that achieves the best rating. More specifically, a
final score is defined to assess the overall performance of a utility function on a set of datasets.

The score is calculated as score (Ui ) = 1
11

∑
j

V (Ui ,D j )
maxi V (Ui ,D j ) , where V (Ui ,D j ) denotes the clustering

validity score obtained by applying a utility functionUi on a datasetD j . We observe thatUH obtains
the best score on all five validity metrics and is closely followed by NUH . As such, we take UH as
the default choice for the KCC package unless otherwise specified.

For efficiency evaluation, we show the full execution time of the KCC package with different
utility functions and datasets in Table 5. In the computation of execution time, we consider the
whole process of using the package, including loading data, generating basic partitions, conducting
consensus function, and evaluating the clustering quality. As can be seen, NUcos achieves the best
score in terms of efficiency on the 11 datasets.
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Table 6. Clustering Quality of KCC and Alternative Packages in Terms of CA

KCC ClusterEnsemble CLUE LinkCluE OpenEnsembles

breast_w 0.9624 0.9528 0.6579 0.6544 0.9585
ecoli 0.5789 0.5361 0.5557 0.6892 0.4767
iris 0.8973 0.9733 0.8587 0.8120 0.8867
pendigits 0.6584 0.6760 0.6345 0.2940 —
satimage 0.6571 0.6631 0.5499 0.2421 0.6812

dermatology 0.3128 0.2877 0.2665 0.3883 0.2709
wine 0.5247 0.5056 0.5270 0.3815 0.5000
mm 0.9497 0.9357 0.5945 0.5510 0.5502
reviews 0.6593 0.5766 0.4596 0.3414 0.4896
la12 0.4912 0.5023 0.3376 0.2943 0.3464
sports 0.4858 0.4243 — 0.3971 —

score 0.9527 0.9250 0.7800 0.6845 0.8063

The symbol “—” indicates that it fails to produce results. The best results are highlighted with bold.

4.3 Comparison of Clustering Quality and Efficiency with Alternative Packages

We also compare the clustering quality and efficiency of the KCC package with four alternative
consensus clustering packages, including ClusterEnsemble [50], CLUE [21], LinkCluE [24], and
OpenEnsembles [46], on the 11 real-world datasets. ClusterEnsemble converts the basic partition
results into a representation of hypergraph and solves the consensus clustering problem over the
hypergraph with three heuristics, i.e., the HGPA, CSPA, and MCLA. For evaluation, we chose the
best clustering result of the three heuristics. CLUE implements multiple methods for minimizing
the dissimilarity between the consensus partition and several basic partitions. For evaluation, we
used the default choice of the CLUE package in obtaining the consensus partitions, i.e., a fixed-
point algorithm for obtaining soft least squares Euclidean consensus partitions. LinkCluE is a vari-
ant of co-association matrix-based methods and replaces the co-association matrix with a better
similarity matrix by using three link-based measures, i.e., the connected-triple-based similarity,
SimRank-based similarity, and Approximate SimRank-based Similarity. For evaluation, we used the
connected-triple-based similarity with single link as the baseline. OpenEnsembles is a Python pack-
age, which implements majority vote, mixture models, and two additional co-association matrix-
based methods for consensus clustering. For evaluation, we used the majority vote method as the
baseline.

In Tables 6–10, we report the five external validity metrics as the measurements of the clus-
tering quality for the five packages. From the results, we can see that the KCC package achieves
superior scores compared to the alternative packages in terms of CA, NMI , and Rn . For V In and
VDn , the ClusterEnsemble package obtains the highest scores, but the difference between KCC and
ClusterEnsemble is not large. This indicates that our proposed KCC is at least comparable to alter-
native packages in terms of clustering quality. Notably, some packages have already been computa-
tionally intractable on the sample datasets, such as CLUE on the sports dataset and OpenEnsembles
on the pendigits and sports datasets. They either fail to produce results within a week or run out
of memory on the Linux server.

For fair comparison of efficiency, we only compare the KCC package with two alternative pack-
ages that are also implemented in Matlab i.e., the ClusterEnsemble and LinkCluE packages. For
the KCC package, we adopt the widely used utility function Uc in efficiency comparison. We re-
port the full execution time and peak memory usage of these three packages in Tables 11 and 12,
respectively. Note that we only report the results of peak memory usage on the datasets from the
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Table 7. Clustering Quality of KCC and Alternative Packages in Terms of NMI

KCC ClusterEnsemble CLUE LinkCluE OpenEnsembles

breast_w 0.7558 0.7153 0.2022 0.0009 0.7361
ecoli 0.5941 0.5898 0.5811 0.6200 0.5947
iris 0.7937 0.9011 0.7407 0.7184 0.7419
pendigits 0.6775 0.6708 0.5991 0.4341 —
satimage 0.5747 0.5337 0.4467 0.0178 0.6138

dermatology 0.1417 0.1353 0.0954 0.3728 0.1050
wine 0.1697 0.1613 0.1622 0.0899 0.1338
mm 0.7249 0.6711 0.0279 0.0065 0.0005
reviews 0.5347 0.4441 0.3535 0.0112 0.2480
la12 0.3371 0.3390 0.1964 0.0161 0.1452
sports 0.4641 0.3901 — 0.0125 —

score 0.9227 0.8789 0.6129 0.3729 0.6355

The symbol “—” indicates that it fails to produce results. The best results are highlighted with bold.

Table 8. Clustering Quality of KCC and Alternative Packages in Terms of Rn

KCC ClusterEnsemble CLUE LinkCluE OpenEnsembles

breast_w 0.8537 0.8176 0.0932 -0.0001 0.8391
ecoli 0.4230 0.4075 0.3932 0.5265 0.5286

iris 0.7445 0.9222 0.6875 0.6193 0.7163
pendigits 0.5236 0.5147 0.4761 0.0858 —
satimage 0.5018 0.4479 0.3377 0.0001 0.5345

dermatology 0.0553 0.0602 0.0275 0.1563 0.0279
wine 0.1497 0.1454 0.1490 -0.0010 0.1254
mm 0.8092 0.7594 0.0353 0.0002 -0.0001
reviews 0.5193 0.3833 0.1635 -0.0001 0.0612
la12 0.2671 0.2670 0.0453 0.0000 0.0206
sports 0.3193 0.2657 — -0.0003 —

score 0.9000 0.8559 0.4839 0.2567 0.5523

The symbol “—” indicates that it fails to produce results. The best results are highlighted with bold.

UCI repository, because the profiling processes on the datasets of the TREC repository are com-
putationally intractable, i.e., each algorithm does not produce results after running more than a
week on the testing Linux server. We can see that the KCC package is much more efficient than
the two alternative packages in terms of both execution time and peak memory usage.

4.4 Impact of the Number of Clusters in the Consensus Partition

The number of clusters in the consensus partition, i.e., K , is an important user-defined parameter
for the KCC package. We conduct an analysis on how the three internal metrics, i.e., Distortion
Score, Silhouette Coefficient, and Calinski and Harabasz index, vary with increasing K on the iris

dataset. The results are shown in Figure 5. From the figure, we can see that on the iris dataset, all
three internal metrics generally decrease with the increase of K . Moreover, we show the execution
time of KCC with varying K on three different datasets in Figure 6. The results indicate that the
execution time approximately increases linearly to the number of clusters on all three datasets.

A related important question in practice is how to determine the number of clusters for the con-
sensus clustering. Based on the three internal metrics as in Figure 5, we implement three methods

ACM Transactions on Mathematical Software, Vol. 49, No. 4, Article 40. Publication date: December 2023.



Algorithm 1038: KCC: A MATLAB Package for k-Means-based Consensus Clustering 40:21

Table 9. Clustering Quality of KCC and Alternative Packages in Terms of V In

KCC ClusterEnsemble CLUE LinkCluE OpenEnsembles

breast_w 0.2442 0.2848 0.7979 0.9976 0.2639
ecoli 0.4079 0.4129 0.4213 0.3969 0.4064
iris 0.2064 0.0989 0.2595 0.2832 0.2581
pendigits 0.3227 0.3292 0.4010 0.6331 —
satimage 0.4253 0.4664 0.5534 0.9972 0.3862

dermatology 0.8584 0.8648 0.9046 0.6349 0.8950
wine 0.8303 0.8387 0.8378 0.9231 0.8662
mm 0.2752 0.3289 0.9721 0.9991 0.9993
reviews 0.4660 0.5568 0.6465 0.9982 0.7596
la12 0.6630 0.6611 0.8049 0.9973 0.8651
sports 0.5392 0.6132 — 0.9980 —

score 0.6067 0.6028 0.8240 0.9676 0.7871

The symbol “—” indicates that it fails to produce results. The best results are highlighted with bold.

Table 10. Clustering Quality of KCC and Alternative Packages in Terms of VDn

KCC ClusterEnsemble CLUE LinkCluE OpenEnsembles

breast_w 0.1087 0.1419 0.9087 0.9992 0.1221
ecoli 0.4323 0.4493 0.4367 0.3690 0.3933

iris 0.1675 0.0404 0.2194 0.2814 0.1799
pendigits 0.3386 0.3642 0.3843 0.6990 —
satimage 0.3829 0.4275 0.5478 0.9988 0.3481

dermatology 0.8877 0.8609 0.9352 0.7170 0.9301
wine 0.7399 0.7500 0.7355 0.9927 0.7586
mm 0.1083 0.1372 0.8782 0.9991 1.0000
reviews 0.4042 0.5075 0.7695 0.9989 0.8250
la12 0.6286 0.6024 0.8676 0.9991 0.9076
sports 0.5335 0.5789 — 0.9996 —

score 0.5368 0.5216 0.8017 0.9625 0.7198

The symbol “—” indicates that it fails to produce results. The best results are highlighted with bold.

to automatically select the number of clusters for consensus clustering. The first one is the Elbow
method [5], which picks the elbow point of the Distortion score curve as the the best number of
clusters. The second one is to choose the number of clusters that produces a clustering solution
with the maximum value of average silhouette coefficient. The third one is to choose the number
of clusters that produces a clustering solution with the maximum value of Calinski and Harabasz
index. As indicated by the red line in Figure 5, all three methods consistently find the best number
of clusters as K = 2 on the iris dataset.

4.5 Impact of the Number of Basic Partitions

The number of basic partitions is another important parameter when using the KCC package in
practice. To study the impact of this parameter, we first generate 1,000 BPs as the basic partition set
Π and then do random sampling on Π to generate subsets with different number of basic partitions,
i.e., Πr with r = 10, 20, . . . , 90. Given a specific r , sampling is repeated in 100 runs, and KCC is
conducted on each independent sample for reporting clustering performance. Here we use Rn as
the measure, and each result is the average Rn over 10 runs. The results are reported on three
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Table 11. Full Execution Time of KCC and Two Alternative Packages

KCC LinkCluE ClusterEnsemble

breast_w 0.83 15.10 8.58
ecoli 1.61 18.03 13.56
iris 2.00 23.98 22.26
pendigits 10.55 3620.00 103.87
satimage 1.25 59.94 7.59
dermatology 1.11 16.62 13.96
wine 1.86 20.32 19.16
mm 622.61 30291.15 1116.30
reviews 733.01 35340.38 1967.19
la12 255.44 14032.49 411.04
sports 1043.65 56274.34 2679.64

score 0.04 1.00 0.40

We collect the raw execution time in milliseconds, and normalize it by the

number of data objects of the corresponding dataset. The best results are

highlighted with bold.

Table 12. Peak Memory Usage of KCC and Two Alternative
Packages (in Kilobytes)

KCC LinkCluE ClusterEnsemble

breast_w 64 14204 15524
ecoli 52 8784 12628
iris 52 4380 5240
pendigits 127520 6663344 6821428
satimage 3476 153968 134872
dermatology 52 9908 12800
wine 52 5172 5700

score 0.01 0.87 0.98

The best results are highlighted with bold.

Fig. 5. Impact of the number of clusters in the consensus partition on the iris dataset.

example datasets, i.e., breast_w, reviews, and mm. The results in Figure 7 show that the deviations
of the clustering performance tend to be reduced with the increase of r . This implies that a large
number of BPs could increase the KCC’s robustness. In practice, r = 100 is a reasonable choice for
the number of BPs.
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Fig. 6. Execution time of KCC with varying number of clusters in the consensus partition on three datasets.

Fig. 7. Impact of the number of basic partitions.

4.6 Impact of the Generation Strategy of Basic Partitions

We have used RPS as the BP generation strategy so far. Here in this subsection, we further study
the performance of using RFS. For each dataset, we increase the number of attributes d used to
generate BPs and showcase the clustering performance under different values of d . Experiments
are conducted on three example datasets, i.e., ecoli, wine, and dermatology. The results are shown
in Figure 8, where the red dashed line represents the benchmark clustering performance of using
RPS. We can see that compared to RPS, RFS obtains significant performance gains on wine and
dermatology with small values of d . This demonstrates that RFS is a useful substitute to RPS in
some cases.

4.7 Performance on Incomplete Basic Partitions

To validate KCC’s effectiveness on handling IBPs, we illustrate two strategies for generating IBPs.
In Strategy-I, we randomly eliminate objects from the original dataset to form a subset and con-
duct base clustering on the subset to produce IBPs. In Strategy-II, we conduct a base clustering on
the complete dataset to form a complete BP and eliminate labels randomly from the BP to generate
IBPs. The datasets breast_w, wine, and dermatology are used in this experiment with the default
settings of KCC. The ratio rr denotes the removal portion, which ranges from 0% to 90%. As shown
in Figure 9, IBPs with Strategy-II surprisingly bring barely adverse impact to the clustering perfor-
mance except for rr > 70% on all three datasets. This experiment validates KCC’s robustness in
handling IBPs.

Remark. As validated by the above experiments, the KCC package is a simple yet effective and
efficient package for solving consensus clustering problem with high robustness and generaliza-
tion ability. First, the KCC package’s execution time is of high efficiency. Due to the usage of the
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Fig. 8. Clustering quality with RFS.

Fig. 9. Clustering quality on incomplete basic partitions.

k-means heuristic in solving the consensus clustering problem, the package has approximately lin-
ear complexity to the number of clusters in the consensus partition or number of data objects of the
dataset. Second, the KCC package can fuse knowledge from a certain amount of basic partitions to
reduce the performance variance in multiple independent runs. Moreover, the KCC package has
the emergent property of potentially obtaining surprisingly high clustering quality even if only
partial features are used to produce basic partitions. Last, the KCC package is capable of handling
incomplete basic partitions and is robust to missing values in the raw data features or the basic
partitions.

5 CONCLUSION

In this article, we presented a Matlab package KCC, which implements the consensus clustering
framework with flexible utility functions and a k-means heuristic. The current version of this pack-
age contains numerous useful functions, such as basic partition generation, preprocessing, consen-
sus function, and clustering quality evaluation. The KCC package systematically implements the
underlying KCC algorithm, with a focus on addressing the sparse implementation of the binary
dataset, and distance/centroid computation using this sparse implementation. The efficiency and
effectiveness of the KCC package were validated by the comparisons to multiple alternative pack-
ages on 11 real-life datasets. Impact factors of consensus clustering, such as the number of clusters
for the consensus function, the number of BPs, the BPs’ generation strategy, and the existence of
IBPs, were further investigated to show the emergent properties of the package. The KCC package
provides a data-driven statistical approach to consensus clustering and will have a significant im-
pact due to its simplicity, effectiveness, and flexibility. In the future, we plan to investigate other
sparse techniques to represent the binary dataset and further improve the implementation of the
KCC package.
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