
Organic Data-Driven Approach for Turkish Grammatical Error Correction
and LLMs

Anonymous EMNLP submission

Abstract001

Grammatical Error Correction has seen signif-002
icant progress with the recent advancements in003
deep learning. As those methods require huge004
amounts of data, synthetic datasets are being built005
to fill this gap. Unfortunately, synthetic datasets006
are not organic enough in some cases and even re-007
quire clean data to start with. Furthermore, most008
of the work that has been done is focused mostly009
on English. In this work, we introduce a new or-010
ganic data-driven approach, clean insertions, to011
build parallel Turkish Grammatical Error Correc-012
tion datasets from any organic data, and to clean013
the data used for training Large Language Models.014
We achieve state-of-the-art results on two Turkish015
Grammatical Error Correction test sets out of the016
three publicly available ones. We also show the017
effectiveness of our method on the training losses018
of training language models.019

1 Introduction020

Humans naturally tend to make typos for various021

factors. Those typos and grammatical errors prop-022

agate to the data used in Natural Language Pro-023

cessing (NLP) systems and any data-related tasks,024

which could lead to unexpected behavior. For in-025

stance, a sentiment analysis text classifier that has026

been trained with a frequently occurring misspelled027

word may produce unexpected results when pro-028

cessing correctly spelled words in the input. An-029

other example that we looked into closely is Large030

Language Models (LLMs) which are trained on031

massive amounts of data mostly from the internet032

such as the OSCAR dataset1. We observe a signifi-033

cant percentage of grammatical mistakes in the OS-034

CAR dataset, specifically, in the Turkish OSCAR035

data, which has an effect on the training losses and036

causes the models sometimes to generate erroneous037

text. These examples show the importance of the038

NLP task Grammatical Error Correction (GEC) in039

facilitating text-based communications.040

Given the GEC task’s importance, many works041

addressed the task and, with the advancement and042

1https://huggingface.co/datasets/oscar

rise of deep learning techniques, achieved signif- 043

icant progress on the task (Bryant et al., 2023). 044

Unfortunately, most of that work focused on En- 045

glish and some other common languages. On the 046

other hand, the work done for Turkish is few and 047

limited, which explains how the Turkish GEC task 048

is barely noticed and paid attention to. There are 049

only two open-source evaluation sets available with 050

more than one error type (Koksal et al., 2020; Kara 051

et al., 2023). And, there is only one open-source 052

synthetic training set with a pre-defined set of error 053

types from (Kara et al., 2023) utilizing inorganic 054

data such as newspaper data to build GEC datasets, 055

which leads to poor performance on common gen- 056

eral errors that an average typer could make. 057

In this work, we tackle the Turkish GEC task 058

with a new organic data-driven approach, address- 059

ing the problem of inorganic and artificial datasets 060

utilized for GEC. We introduce a simple method 061

that we call clean insertions. It involves building an 062

incorrect-correct spelling dictionary to be used in 063

replacing commonly made misspellings of words 064

and phrases with their correct versions in any or- 065

ganic text, e.g. text crawled from the internet, 066

which mostly contains grammatical errors. The 067

spelling dictionary and its size are crucial and have 068

a major effect on the produced dataset’s quality. 069

This method leads to a partially correct paral- 070

lel text since the spelling dictionary probably does 071

not contain all the existing mistakes in the dataset. 072

Despite this fact, our simple method achieves state- 073

of-the-art results on two different test sets out of the 074

three available open-source evaluation sets. In ad- 075

dition to that, we use GPT-4 to automatically build 076

a parallel GEC dataset and compare the models we 077

train on those different datasets. Furthermore, we 078

run experiments to test and show the effectiveness 079

of our method on cleaning training data for LLMs. 080

We open-source different datasets and models with 081

this work for the Turkish GEC task. Here are our 082

work’s contributions: 083

1

• We introduce a new organic data-driven ap-084

proach, clean insertions, to build synthetic085

GEC datasets from any organic data, which086

mostly contains grammatical mistakes. No087

clean data is required!088

• We find that partially corrected GEC datasets089

could be utilized to achieve state-of-the-art090

results.091

• We find that cleaning the data used for training092

LLMs leads to lower loss values.093

• We open-source 1) A manually annotated094

spelling dictionary consisting of about 150k095

incorrect-correct word and phrase pairs. 2)096

The largest Turkish GEC parallel dataset con-097

sisting of 2.3m sentences. 3) A Turkish GEC098

dataset of about 100k sentences annotated by099

GPT. 4) The largest test set for Turkish GEC100

which consists of about 2,400 manually cor-101

rected sentences. 5) All the best-performing102

models trained in this work.103

We structure our paper as follows: In Section104

2, we follow up the introduction with a literature105

review of the work done on Grammatical Error106

Correction covering the datasets, approaches, and107

Turkish GEC. Then, in Section 3, we detail in the108

data methodology section the development of the109

OSCAR GEC and GPT GEC datasets and our clean110

insertions method. Later on, in Section 4, we touch111

on the experimental setup, the training, and the112

evaluation of our models trained on our datasets113

and other open-source datasets. In Section 5, we114

show the evaluation results for both correction and115

detection. In Section 6, we briefly touch on the116

language models and the effect of our method on117

the training losses of language models. Finally, we118

sum up the work with a conclusion in Section 8.119

2 Related Work120

Several datasets and models have been developed121

to address the grammatical error correction task.122

We review some of those in this section:123

2.1 Datasets124

Datasets that have been utilized for Grammatical125

Error Correction mostly consist of English aca-126

demic essays authored by either English learners127

and native speakers (Yannakoudakis and Briscoe,128

2012; Dahlmeier et al., 2013; Napoles et al., 2017;129

Bryant et al., 2019). Other datasets included web130

data such as in (Flachs et al., 2020) which contains 131

random paragraphs sampled from the Common- 132

Crawl dataset2. Some studies put some effort into 133

filling the gap and built non-English datasets for 134

less popular languages in NLP such as Arabic (Mo- 135

hit et al., 2014), Chinese (Lee et al., 2018), and 136

Turkish (Koksal et al., 2020). 137

In addition to the human-labeled datasets men- 138

tioned above, the advancements in deep learn- 139

ing surged the need for large synthetic datasets. 140

Mainly, there are two techniques used in building 141

such datasets: noisy injections and back-translation 142

(Kiyono et al., 2019). The Noisy injections tech- 143

nique involves corrupting an already clean text by 144

inserting some pre-defined errors in a rule-based 145

way (Ehsan and Faili, 2013; Lichtarge et al., 2019; 146

Zhao et al., 2019), or by injecting probabilistic error 147

patterns (Rozovskaya and Roth, 2010; Felice and 148

Yuan, 2014; Rei et al., 2017). The back-translation 149

technique, on the other hand, involves training a 150

noisy channel model to predict a probable source 151

text given a correct text (Xie et al., 2018). 152

2.2 Approaches 153

Approaches used in Grammatical Error Correction 154

developed over time, beginning with rule-based ap- 155

proaches (Naber et al., 2003) due to their straight- 156

forwardness. Later on, data-driven approaches 157

emerged such as single-error-type classifiers (Lee, 158

2004; Chodorow et al., 2007; Berend et al., 2013; 159

Lee and Seneff, 2008), where each classifier targets 160

a specific error type independently, assuming the 161

surrounding context is correct (Bryant et al., 2023), 162

which is a limitation of rule-based approaches. Sta- 163

tistical Machine Translation (SMT) approaches 164

(Brockett et al., 2006; Mizumoto et al., 2011; Yuan 165

and Felice, 2013) come into the picture to address 166

the limitation of the rule-based approaches by cor- 167

recting all error types simultaneously (Bryant et al., 168

2023). SMT systems leverage statistical models 169

trained on parallel corpora to generate translations 170

by estimating the likelihood of different transla- 171

tions and selecting the most probable one, treating 172

the GEC task as a translation task (Bryant et al., 173

2023). The complexity of the SMT approaches, 174

e.g. relying on separate translation and language 175

models, is addressed by neural machine translation 176

(NMT), which consists of a single neural network. 177

NMT approaches, which achieve state-of-the-art 178

results, are encoder-decoder methods (Cho et al., 179

2https://commoncrawl.org/

2

2014) where encoders and decoders could be of dif-180

ferent possible architectures such as RNNS (Bah-181

danau et al., 2014), CNNS (Gehring et al., 2016),182

or Transformers (Vaswani et al., 2017), which183

were applied successfully on the GEC task (Yuan184

and Briscoe, 2016; Yuan et al., 2019; Junczys-185

Dowmunt et al., 2018). Recent approaches, uti-186

lize pre-trained large language models and achieve187

state-of-the-art results (Rothe et al., 2021; Tar-188

navskyi et al., 2022) by only fine-tuning them, solv-189

ing the data bottleneck requirement for large net-190

works.191

2.3 Turkish Grammatical Error Correction192

Turkish Grammatical Error Correction hasn’t been193

paid as much attention as English GEC. For exam-194

ple, recent work, (Arikan et al., 2019) builds a syn-195

thetic dataset considering only a single error type.196

Later, (Koksal et al., 2020) proposed the first pub-197

lic benchmark dataset of manually annotated 2000198

Turkish tweets covering different error types. Then,199

recently, (Kara et al., 2023) built and open-sourced200

the first Turkish GEC synthetic large dataset, by201

making noisy injections into clean newspaper data,202

covering 25 error types. Additionally, they released203

a manually curated test set of 300 movie reviews204

to the public.205

3 Data Methodology206

We detail in this section the procedure followed in207

developing our datasets and give an overview of all208

the datasets utilized in this work.209

3.1 OSCAR GEC210

Our data pipeline starts with building a manually211

annotated spelling dictionary of incorrect-correct212

148,932 word and phrase pairs. To build this dic-213

tionary, we collected Turkish text from various214

sources and asked native Turkish speakers to ex-215

tract incorrect words and write down their cor-216

rect versions. We open-source with this work the217

spelling dictionary and its expanded version com-218

prised of 703,938 pairs, which we introduce in the219

following sections.220

Given the manually created spelling dictionary,221

we expand our dictionary and build our OSCAR222

GEC dataset following the pipeline shown in Fig-223

ure 1. We first use the Turkish OSCAR Dataset to224

create a word-index dictionary, having each word225

in the corpus as a key and a list of indexes where226

the corresponding incorrect word occurs. Then,227

we apply the following steps: 1) Look up each 228

incorrect word in our spelling dictionary in the 229

word-index OSCAR dictionary. 2) Create a dataset 230

of those texts we extract from OSCAR, each may 231

contain one sentence or more. 3) Create a list of 232

the unique words in the extracted OSCAR texts. 233

4) Run a word-level Deasciifier 1.0.1 and Spell 234

Checker 1.0.2 to correct each word of the distinct 235

words if possible. 5) Expand our spelling dictio- 236

nary with these incorrect-correct pairs. The above 237

steps are repeated until the increase in the size of 238

the spelling dictionary stops. 239

Table 4 shows the details of each iteration. In 240

the first iteration, the manually created spelling dic- 241

tionary is used. Starting from the 2nd iteration we 242

notice an increase in the size of the spelling dic- 243

tionary which leads to an increase in the size of 244

the extracted OSCAR text. In the final iterations, 245

the amount of increase in the spelling dictionary 246

size starts to decrease until it becomes zero and the 247

size of the spelling dictionary stabilizes and does 248

not expand. Finally, all the text extracted from 249

OSCAR is tokenized with a sentence tokenizer, 250

merged, and deduplicated forming 2,326,921 sen- 251

tences (or a text containing more than one sentence 252

that couldn’t be tokenized properly). Since we ap- 253

plied the tokenization later and some of the texts 254

we extracted from OSCAR may composed of more 255

than one sentence, some of those sentences do not 256

necessarily contain any incorrect word or phrase 257

and may be completely correct. 258

To build our OSCAR GEC dataset, we apply our 259

novel approach clean-insertions, which involves 260

substituting incorrectly spelled words or phrases 261

with their correct counterparts. We iterate over 262

the final 2,326,921 sentences and for every word 263

in each sentence, we perform a lookup in our ex- 264

panded spelling dictionary of 703,938 incorrect- 265

correct word pairs and replace the incorrect words 266

with their counterparts. We end up with our OS- 267

CAR GEC dataset which contains 2,326,921 paral- 268

lel sentences of incorrect-correct sentence pairs. 269

3.2 GPT GEC 270

The emergence of ChatGPT (Ouyang et al., 2022) 271

has significantly impacted the field of Natural Lan- 272

guage Processing (NLP), marking the start of a 273

new era of language generation and understanding. 274

ChatGPT, based on OpenAI’s GPT architecture, 275

has demonstrated remarkable capabilities in gen- 276

erating human-like responses to text inputs across 277

3

Figure 1: A pipeline of the creation process of OSCAR GEC showing all the steps involved in creating the OSCAR
GEC dataset

various domains. Its versatile applications span278

from conversational agents and chatbots to content279

generation, summarization, and translation tasks.280

Moreover, researchers and developers leverage281

ChatGPT as a benchmark for evaluating language282

understanding and generation models (Wang et al.,283

2023). It has also been used in many cases as284

an annotation means to annotate unlabeled data285

(Gilardi et al., 2023; Zhu et al., 2023), which we286

do in this work. We randomly sample 100k sen-287

tences from our OSCAR GEC dataset and prompt288

ChatGPT to correct the incorrect sentences, gener-289

ating a parallel GPT GEC dataset of 100k parallel290

incorrect-correct sentences.291

3.3 Datasets Overview292

Table 1 presents a summary of the datasets em-293

ployed in this study. We utilize three datasets, in-294

cluding two internally developed ones named OS-295

CAR GEC and GPT GEC, which we introduced in296

previous sections, as well as an open-source dataset297

called GECTurk (Kara et al., 2023), which we com-298

pare with our datasets.299

As for evaluation, we randomly pick 2,408 sen-300

tences from our OSCAR GEC dataset, which we301

exclude from training and validation, and manu-302

ally annotate them forming a manually annotated303

evaluation set of organic 2,408 sentences. We also304

test and benchmark on open-source evaluation sets305

such as (Koksal et al., 2020), which contains 1,996306

tweets, and (Kara et al., 2023)’s curated evaluation307

set which includes 300 movie reviews. In Table 5,308

we show the percentages of the frequencies of the309

error types found in the three evaluation sets OS- 310

CAR GEC (22,366 errors), Turkish Tweets (6,201 311

errors), and Movie Reviews (227 errors) classified 312

by ERRANT-TR. The Table shows that the OS- 313

CAR GEC evaluation set has more error types than 314

the other two. 315

4 Experimental Setup 316

4.1 Models 317

We perform several experiments in this work with 318

the mT5 model (Xue et al., 2020), a multilin- 319

gual pre-trained encoder-decoder text-to-text trans- 320

former trained on a Common Crawl-based dataset 321

covering 101 languages. We fine-tune the model 322

on three different datasets: the OSCAR GEC, GPT 323

GEC, and GECTurk (Kara et al., 2023). Even 324

though we train an mT5 model on the GECTurk 325

dataset, we compare our mT5 models to their 326

model, which is a sequence tagger based on a pre- 327

trained Turkish cased Bert model (Schweter, 2020) 328

with extra linear and softmax layers similar to the 329

work done in (Omelianchuk et al., 2020). 330

We train our models on one NVIDIA GeForce 331

RTX 3090 for 10 epochs while only saving the best 332

three checkpoints. Since some of the sentences 333

extracted from OSCAR are long, we truncate the 334

sentences to a max length of 48. 335

4.2 Evaluation 336

We evaluate our models and GECturk’s sequence 337

tagger on three different evaluation sets listed in 338

Table 1: OSCAR GEC, Movie Reviews, and Turk- 339

4

Dataset Name Split Sentences Tokens Error Types Domain

OSCAR GEC (ours) Train 2.3m 213.2m ERRANT Web
GPT GEC (ours) Train 100k 3.6m ERRANT Web
GECTurk (Kara et al., 2023) Train 138k 5.8m 25 Newspapers

OSCAR GEC (ours) Test 2.4k 142k ERRANT Web
Movie Reviews (Kara et al.,
2023)

Test 300 2.7k 25 Movie Re-
views

Turkish Tweets (Koksal et al.,
2020)

Test 2k 116.2k 13 Tweets

Table 1: An overview of the datasets utilized in this work. The datasets in the top half are synthetic and the bottom
ones, the evaluation sets, are humanly annotated. The error type ERRANT refers to the automatic annotation tool
ERRANT (Bryant et al., 2017; Felice et al., 2016), which automatically annotates parallel sentences with error-type
information. Tokens information is based on OpenAI’s tokenizer tiktoken with gpt2 encodings

ish Tweets. To automatically annotate the parallel340

sentences of our evaluation sets and model outputs,341

we use ERRANT-TR (Uz and Eryiğit, 2023), a vari-342

ant of ERRANT (Bryant et al., 2017; Felice et al.,343

2016) developed for the Turkish language. Table344

7 shows the error types, descriptions, and exam-345

ples defined in the original ERRANT framework,346

while Table 8 shows the mapped error types in the347

ERRANT-TR framework.348

ERRANT-TR outputs the annotations in M2 for-349

mat (Dahlmeier and Ng, 2012), which can be evalu-350

ated using ERRANT’s evaluation scripts that calcu-351

late the F0.5 score given two M2 files: a reference352

file (i.e. the gold M2 file) and a hypothesis file (i.e.353

the model output M2 file). ERRANT provides dif-354

ferent scoring modes such as span-based correction,355

span-based detection, and token-based detection.356

To sum things up, we follow the following steps357

in evaluating our models: 1) Generate a parallel358

tab-separated file of the source-gold sentences. 2)359

Generate a parallel tab-separated file of the source-360

model_output sentences. 3) Generate M2 files for361

the previously mentioned two tab-separated files.362

4) Calculate the score of each model on every363

evaluation set given the corresponding gold and364

model_output M2 files.365

We post-process the Turkish Tweets evaluation366

set in Table 1 and the model outputs of it for a fair367

evaluation and comparison. We apply two trans-368

formations to it. First, to the evaluation set: 1) We369

capitalize the first letter of each correct sentence in370

the dataset since most models are trained with the371

data that way. Second, to the model outputs: 2) We372

remove the punctuation marks from the model out-373

puts since they were removed from the evaluation374

set (Koksal et al., 2020). We apply the previous 375

two transformations for all models making sure our 376

results and comparisons are accurate. 377

5 Results 378

Table 2 shows the precision, recall, and F0.5 scores 379

of correction and detection, respectively, for all 380

models tested on three different test sets. We eval- 381

uate four different models on every test set. GEC- 382

Turk (Seq Tagger), is a sequence tagger trained by 383

(Kara et al., 2023) on their GECTurk training set. 384

We also fine-tune mT5 on the same dataset, which 385

is the model GECTurk (mT5) in the table. The re- 386

maining two models GPT GEC and OSCAR GEC 387

are also fine-tuned mT5 models on our GPT GEC 388

and OSCAR GEC training sets respectively. 389

5.1 Correction 390

In Table 2, which shows the ERRANT span-based 391

correction scores, we notice the poor performance, 392

on the OSCAR GEC test set, of both models trained 393

on the GECTurk dataset achieving an F.05 score of 394

14.7 by the Sequence Tagger and 18.2 by the fine- 395

tuned mT5. Surprisingly, those models’ recall is 396

significantly lower than the recall of the other two 397

models being at most 5.7, which can be interpreted 398

by the fact that the GECTurk dataset covers only 399

25 error types of all possible error types. Besides, 400

the fact that the fine-tuned mT5 on the GECTurk 401

dataset is doing better than the sequence tagger 402

supports our claim that relying on the knowledge 403

in large models such as mT5 is beneficial. For 404

example, the GECTurk (mT5) model transforms 405

the word Yuzune (to your face), which contains a 406

deasciification error, into Yüzüne, the correct ver- 407

5

Model Correction Detection

P R F0.5 P R F0.5

OSCAR GEC (ours)

GECTurk (Seq Tagger) (Kara et al., 2023) 49.0 3.9 14.7 79.2 6.2 23.7
GECTurk (mT5) 42.5 5.7 18.2 73.0 9.6 31.3
GPT GEC (mT5) 69.8 44.9 62.8 85.7 55.1 77.1
OSCAR GEC (mT5) 68.7 31.2 55.4 82.1 37.3 66.2

Turkish Tweets (Koksal et al., 2020)

GECTurk (Seq Tagger) (Kara et al., 2023) 64.7 19.8 44.5 90.5 27.6 62.2
GECTurk (mT5) 57.2 20.7 42.3 85.4 30.9 63.1
GPT GEC (mT5) 77.7 68.9 75.8 92.0 81.7 89.7
OSCAR GEC (mT5) 85.1 61.3 79.0 95.3 68.5 88.4

Movie Reviews (Kara et al., 2023)

GECTurk (Seq Tagger) (Kara et al., 2023) 86.5 76.2 84.2 90.5 79.7 88.1
GECTurk (mT5) 73.1 71.8 72.8 78.5 77.1 78.2
GPT GEC (mT5) 36.0 46.3 37.6 43.2 55.5 45.2
OSCAR GEC (mT5) 30.0 22.5 28.1 34.1 25.6 32.0

Table 2: ERRANT span-based correction and detection scores (precision, recall, and F0.5) of every model on all the
evaluation sets. All mT5 are trained are ours. GECTurk (Seq Tagger) is trained by the referenced work. The highest
value of all models on each metric is bolded per evaluation set.

sion despite the fact this error type is missing in408

the GECTurk dataset. On the other hand, GPT409

GEC and OSCAR GEC models perform signifi-410

cantly better with an F0.5 score of 62.8 and 55.4411

respectively.412

For the Turkish Tweets test set, the OSCAR GEC413

model is achieving the highest F0.5 score of 79.0,414

slightly higher than the GPT GEC model, and sig-415

nificantly higher than the models trained on the416

GECTurk dataset, which score at most an F0.5417

score of 44.5. One of the reasons the OSCAR GEC418

model is slightly better than the GPT GEC is that419

GPT sometimes considered hashtags as grammati-420

cal mistakes in its annotations and replaced them.421

Perhaps prompting with this in mind could help in422

overcoming this problem. We show an example423

from the Turkish Tweets evaluation set in Figure 2.424

The OSCAR GEC and GPT GEC models correct425

the text with a slight difference in punctuation. The426

sequence Tagger from (Kara et al., 2023), on the427

other hand, leaves half of the sentence incorrect428

and even corrupts the last word.429

On the Movie Reviews evaluation set, which is430

annotated by the same authors who built the GEC-431

Turk training set, the GECTurk models achieve432

noticeably a higher F0.5 score, 84.2 by the Se-433

quence Tagger, than the GPT GEC and OSCAR 434

GEC models which at most score an F0.5 score of 435

37.6. One of the reasons our models score low here 436

is the annotation inconsistencies in the Movie Re- 437

views evaluation set. For instance, the GPT GEC 438

model capitalizes people’s names such as Matt Da- 439

mon while the evaluation set’s gold annotations 440

are sometimes capitalized and sometimes left in 441

lowercase. Another reason is that the evaluation 442

set has wrong annotations such as Matrixten (from 443

the Matrix) which the GPT GEC model corrects 444

as Matrix’ten, its correct version. Another wrong 445

annotation example is the word orjinalinde (in the 446

original one) that GPT GEC corrects as orijinalinde, 447

which is its correct version. 448

5.2 Detection 449

The detection results in Table 2 mostly follow the 450

trend of the correction results. On the OSCAR 451

GEC test set, the GPT GEC model scores the high- 452

est F0.5 score of 77.1. Besides, the GECTurk mod- 453

els also perform poorly here with at most an F0.5 454

score of 31.3. The gap between the correction and 455

detection F0.5 scores is high because, for example, 456

the GPT GEC makes word-choice corrections that 457

aren’t wrong but unnecessary or missing in the gold 458

6

annotations.459

On the Turkish Tweets evaluation set, GPT GEC460

and OSCAR GEC models also significantly do bet-461

ter than GECTurk models with scores F0.5 scores462

of 89.7 and 88.4 respectively. While the GECTurk463

models, the Sequence Tagger, and the fine-tuned464

mT5, only scored 62.2 and 63.1 respectively. The465

OSCAR GEC model here, again, is more precise466

than the GPT GEC model because, for example, it467

does not make as many corrections, e.g. contextual468

ones, as GPT GEC does.469

Finally, the GECTurk models again do well on470

the Movie Reviews evaluation set with at most471

an F0.5 score of 88.1 and at least a score of 78.2472

by the Sequence Tagger and the fine-tuned mT5473

models respectively. GPT GEC and OSCAR GEC,474

on the other hand, struggle again in detection with475

at most an F0.5 score of 45.2 by the Sequence476

Tagger. Again, the OSCAR GEC and the GPT477

GEC models struggle here for many reasons such478

as the ones we mentioned in the previous section.479

6 Language Models (LMs)480

The rise of large language models marks a trans-481

formative era in artificial intelligence and natural482

language processing. These models, such as GPT-3483

(Brown et al., 2020) and LLaMA(Touvron et al.,484

2023) have been given significant attention due to485

their impressive capabilities in generating human-486

like text and performing various language-related487

tasks.488

Large language models require billions of tokens,489

one of the bottlenecks of training large language490

models for low-resource languages, to achieve491

high performance on NLP tasks. Most large lan-492

guage models depend on web-based multilingual493

resources and datasets such as CommonCrawl, C4494

(Raffel et al., 2020), and OSCAR.495

Unfortunately, web-crawled datasets are noisy496

and therefore need to be cleaned. For instance, we497

find that Turkish OSCAR3, which has around 11.6498

million text documents, has at least one spelling499

mistake in 10% of the documents based on our500

spelling dictionary.501

In this chapter, we train four language models502

with different settings to show the effectiveness of503

our clean-insertions method for language models.504

3https://huggingface.co/datasets/oscar

6.1 Data Processing 505

We use our OSCAR GEC parallel dataset which 506

contains around 113.9 million training tokens in 507

the original sentences, and 117.2 million training 508

tokens in the parallel corrected sentences. We add 509

a sample of around 2 million text documents from 510

the untouched Turkish OSCAR samples to the orig- 511

inal sentences and the parallel corrected sentences. 512

With the added sample, we end up with two dif- 513

ferent datasets: 1) the original sentences and the 514

OSCAR sample (305 million training tokens) and 515

2) the corrected sentences and the OSCAR sample 516

(314.4 million training tokens). All token informa- 517

tion is obtained from Karpathy’s GPT-2 implemen- 518

tation code4. 519

6.2 Training 520

We train four different GPT-2 models, following 521

Karpathy’s GPT-2 implementation, with two dif- 522

ferent sizes: 30M and 124M. We train the models 523

on one NVIDIA GeForce RTX 3090. We train 524

the 30M size model for 300k iterations, and the 525

124M size model for 8k iterations. Table 3 shows 526

the training and validation losses. We notice lower 527

training and validation losses for both sizes for the 528

models trained on the corrected sentences and the 529

Turkish OSCAR sample. This indicates the effec- 530

tiveness of cleaning the Turkish OSCAR dataset 531

with clean insertions using our spelling dictionary 532

on the training losses. Maybe to be certain of this 533

effect, we need to train different architectures other 534

than GPT-2, which we leave as a future work. 535

6.3 Evaluation 536

We also evaluate our GPT models manually to see 537

if there is an effect on the generated text. We gener- 538

ate 50 samples for every model using 50 common 539

Turkish-word prompts and ask 5 evaluators to eval- 540

uate the total 200 samples from 1 to 5 based only 541

on their cohesiveness, ignoring the spelling mis- 542

takes in the generated text since we observe that 543

the models trained with the misspelled words are 544

already biased towards generating misspelled text. 545

Table 6 shows the average rating by each anno- 546

tator, from A1 to A5 for every model. As we see 547

in the table, the clean insertions method did not 548

lead to higher ratings for all models despite its ob- 549

vious effect on the training losses. This could be 550

because this is a small experiment with only 50 551

prompts. Or, maybe corrupting misspellings, i.e. 552

4https://github.com/karpathy/nanoGPT

7

Model Train
Loss

Val Loss

Original sentences + Turkish OSCAR sample

GPT-2 (30M) 2.38 2.39
GPT-2 (124M) 1.85 2.11

Corrected sentences + Turkish OSCAR sample

GPT-2 (30M) 2.26 2.28
GPT-2 (124M) 1.77 2.01

Table 3: Trainig and validation losses of 4 different GPT-2 models of two different sizes trained on two dataset
combinations having a common Turkish OSCAR sample and either the original sentences of our OSCAR GEC
dataset or the corrected sentences of our OSCAR GEC dataset cleaned using our clean insertions method. Bolded
values show lower training and validation losses.

correcting them, this way corrupts the context or553

causes imbalances in the training data.554

7 Limitations555

While this study provides valuable insights, it is556

important to acknowledge its limitations, such as557

the need for a manually annotated spelling dictio-558

nary to start with. Another limitation is the lack559

of a clear and specific error-type annotation. Since560

we use ERRANT, which automatically classifies561

the errors, the set of error types is limited and not562

detailed and specialized enough for the Turkish563

language564

8 Conclusion565

In summary, this study addresses the lack of atten-566

tion within the research community to the Turkish567

Grammatical Error Correction task by introducing568

a method, clean insertions, that helps in creating569

organic Turkish GEC datasets. We open-source570

several datasets two of which are training datasets571

and one evaluation set. In addition to that, we share572

our models that achieve state-of-the-art results on573

two evaluation sets out of the three available evalu-574

ation sets.575

Our method, clean insertions, is simple to under-576

stand and apply. Other than the starting spelling577

dictionary that we build manually, it is fully au-578

tomated. Normally, a synthetic dataset requires579

clean data to start with, which may not be avail-580

able, however, our method works with any organic581

data, which usually contains grammatical errors.582

This leads to datasets that contain various types of583

errors and not only a set of pre-defined injected584

error types, which could cause the models trained585

on such datasets to perform poorly on evaluation 586

sets containing error types out of the pre-defined 587

set as we show in section 5. 588

While our method yields partially correct par- 589

allel GEC datasets, since the spelling dictionary 590

would not contain all possible errors, it can be used 591

to obtain state-of-the-art results by relying on the 592

knowledge in the large pre-trained models such as 593

mT5. This finding is surprising and raises the ques- 594

tion of whether we can solve other tasks the same 595

way with partially correct or partially correctly an- 596

notated datasets. Certainly, such datasets would 597

confuse the models in tasks such as text classifica- 598

tion, but it is maybe worth trying for tasks that can 599

be formulated as text-to-text problems. 600

In addition to the dataset we build using clean 601

insertions, OSCAR GEC, we use GPT as an anno- 602

tator and build a GEC dataset, GPT GEC, to show 603

the potential of using such models as annotators. 604

Indeed, the models trained on the GPT GEC show 605

promising results surpassing the other models on 606

most evaluation sets as we show in Table 2. 607

Future work could focus more on using other or 608

even more complex and context-aware components 609

in addition to the Spelling Checker and Deasciifier 610

we utilize in our OSCAR GEC pipeline. With more 611

components, more incorrect-correct pairs would be 612

added to the spelling dictionary, which could lead 613

to higher-quality datasets. Besides, applying the 614

approach to datasets other than Turkish OSCAR 615

could enrich the OSCAR GEC dataset with exam- 616

ples that contain missing error types in the current 617

dataset. 618

8

References619

Ugurcan Arikan, Onur Güngör, and Suzan Uskudarli.620
2019. Detecting clitics related orthographic errors621
in turkish. In Proceedings of the International Con-622
ference on Recent Advances in Natural Language623
Processing (RANLP 2019), pages 71–76.624

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-625
gio. 2014. Neural machine translation by jointly626
learning to align and translate. arXiv preprint627
arXiv:1409.0473.628

Gábor Berend, Veronika Vincze, Sina Zarrieß, and629
Richárd Farkas. 2013. Lfg-based features for noun630
number and article grammatical errors. Association631
for Computational Linguistics.632

Chris Brockett, Bill Dolan, and Michael Gamon. 2006.633
Correcting esl errors using phrasal smt techniques.634
In 21st International Conference on Computational635
Linguistics and 44th Annual Meeting of the ACL,636
Sydney, Australia.637

Tom Brown, Benjamin Mann, Nick Ryder, Melanie638
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind639
Neelakantan, Pranav Shyam, Girish Sastry, Amanda640
Askell, et al. 2020. Language models are few-shot641
learners. Advances in neural information processing642
systems, 33:1877–1901.643

Christopher Bryant, Mariano Felice, Øistein E Ander-644
sen, and Ted Briscoe. 2019. The bea-2019 shared645
task on grammatical error correction. In Proceed-646
ings of the Fourteenth Workshop on Innovative Use647
of NLP for Building Educational Applications, pages648
52–75.649

Christopher Bryant, Zheng Yuan, Muhammad Reza650
Qorib, Hannan Cao, Hwee Tou Ng, and Ted Briscoe.651
2023. Grammatical error correction: A survey of652
the state of the art. Computational Linguistics,653
49(3):643–701.654

CJ Bryant, Mariano Felice, and Edward Briscoe. 2017.655
Automatic annotation and evaluation of error types656
for grammatical error correction. Association for657
Computational Linguistics.658

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-659
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger660
Schwenk, and Yoshua Bengio. 2014. Learning661
phrase representations using rnn encoder-decoder662
for statistical machine translation. arXiv preprint663
arXiv:1406.1078.664

Martin Chodorow, Joel Tetreault, and Na-Rae Han.665
2007. Detection of grammatical errors involving666
prepositions. In Proceedings of the fourth ACL-667
SIGSEM workshop on prepositions, pages 25–30.668

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better669
evaluation for grammatical error correction. In Pro-670
ceedings of the 2012 Conference of the North Amer-671
ican Chapter of the Association for Computational672
Linguistics: Human Language Technologies, pages673
568–572.674

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu. 675
2013. Building a large annotated corpus of learner 676
english: The nus corpus of learner english. In Pro- 677
ceedings of the eighth workshop on innovative use 678
of NLP for building educational applications, pages 679
22–31. 680

Nava Ehsan and Heshaam Faili. 2013. Grammatical and 681
context-sensitive error correction using a statistical 682
machine translation framework. Software: Practice 683
and Experience, 43(2):187–206. 684

Mariano Felice, Christopher Bryant, and Ted Briscoe. 685
2016. Automatic extraction of learner errors in esl 686
sentences using linguistically enhanced alignments. 687
In Proceedings of COLING 2016, the 26th Inter- 688
national Conference on Computational Linguistics: 689
Technical Papers, pages 825–835. 690

Mariano Felice and Zheng Yuan. 2014. Generating ar- 691
tificial errors for grammatical error correction. In 692
Proceedings of the Student Research Workshop at the 693
14th Conference of the European Chapter of the As- 694
sociation for Computational Linguistics, pages 116– 695
126. 696

Simon Flachs, Ophélie Lacroix, Helen Yannakoudakis, 697
Marek Rei, and Anders Søgaard. 2020. Grammat- 698
ical error correction in low error density domains: 699
A new benchmark and analyses. arXiv preprint 700
arXiv:2010.07574. 701

Jonas Gehring, Michael Auli, David Grangier, and 702
Yann N Dauphin. 2016. A convolutional encoder 703
model for neural machine translation. arXiv preprint 704
arXiv:1611.02344. 705

Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. 706
2023. Chatgpt outperforms crowd workers for 707
text-annotation tasks. Proceedings of the National 708
Academy of Sciences, 120(30):e2305016120. 709

Marcin Junczys-Dowmunt, Roman Grundkiewicz, 710
Shubha Guha, and Kenneth Heafield. 2018. Ap- 711
proaching neural grammatical error correction as 712
a low-resource machine translation task. arXiv 713
preprint arXiv:1804.05940. 714

Atakan Kara, Farrin Marouf Sofian, Andrew Bond, and 715
Gözde Gül Şahin. 2023. Gecturk: Grammatical error 716
correction and detection dataset for turkish. In Find- 717
ings of the Association for Computational Linguistics: 718
IJCNLP-AACL 2023 (Findings), pages 278–290. 719

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizu- 720
moto, and Kentaro Inui. 2019. An empirical study 721
of incorporating pseudo data into grammatical error 722
correction. arXiv preprint arXiv:1909.00502. 723

Asiye Tuba Koksal, Ozge Bozal, Emre Yürekli, and 724
Gizem Gezici. 2020. #turki$hTweets: A bench- 725
mark dataset for Turkish text correction. In Find- 726
ings of the Association for Computational Linguistics: 727
EMNLP 2020, pages 4190–4198, Online. Association 728
for Computational Linguistics. 729

9

https://doi.org/10.18653/v1/2020.findings-emnlp.374
https://doi.org/10.18653/v1/2020.findings-emnlp.374
https://doi.org/10.18653/v1/2020.findings-emnlp.374

John SY Lee. 2004. Automatic article restoration. In730
Proceedings of the Student Research Workshop at731
HLT-NAACL 2004, pages 31–36.732

John SY Lee and Stephanie Seneff. 2008. Correcting733
misuse of verb forms. In Proceedings of ACL-08:734
HLT, pages 174–182.735

Lung-Hao Lee, Yuen-Hsien Tseng, and Li-Ping Chang.736
2018. Building a tocfl learner corpus for chinese737
grammatical error diagnosis. In Proceedings of the738
Eleventh International Conference on Language Re-739
sources and Evaluation (LREC 2018).740

Jared Lichtarge, Chris Alberti, Shankar Kumar, Noam741
Shazeer, Niki Parmar, and Simon Tong. 2019. Cor-742
pora generation for grammatical error correction.743
arXiv preprint arXiv:1904.05780.744

Tomoya Mizumoto, Mamoru Komachi, Masaaki Na-745
gata, and Yuji Matsumoto. 2011. Mining revision log746
of language learning sns for automated japanese error747
correction of second language learners. In Proceed-748
ings of 5th International Joint Conference on Natural749
Language Processing, pages 147–155.750

Behrang Mohit, Alla Rozovskaya, Nizar Habash, Wajdi751
Zaghouani, and Ossama Obeid. 2014. The first qalb752
shared task on automatic text correction for arabic.753
In Proceedings of the EMNLP 2014 Workshop on754
Arabic Natural Language Processing (ANLP), pages755
39–47.756

Daniel Naber et al. 2003. A rule-based style and gram-757
mar checker.758

Courtney Napoles, Keisuke Sakaguchi, and Joel759
Tetreault. 2017. Jfleg: A fluency corpus and760
benchmark for grammatical error correction. arXiv761
preprint arXiv:1702.04066.762

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem763
Chernodub, and Oleksandr Skurzhanskyi. 2020.764
GECToR – grammatical error correction: Tag, not765
rewrite. In Proceedings of the Fifteenth Workshop766
on Innovative Use of NLP for Building Educational767
Applications, pages 163–170, Seattle, WA, USA →768
Online. Association for Computational Linguistics.769

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,770
Carroll Wainwright, Pamela Mishkin, Chong Zhang,771
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.772
2022. Training language models to follow instruc-773
tions with human feedback. Advances in neural in-774
formation processing systems, 35:27730–27744.775

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine776
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,777
Wei Li, and Peter J Liu. 2020. Exploring the lim-778
its of transfer learning with a unified text-to-text779
transformer. Journal of machine learning research,780
21(140):1–67.781

Marek Rei, Mariano Felice, Zheng Yuan, and Ted782
Briscoe. 2017. Artificial error generation with783
machine translation and syntactic patterns. arXiv784
preprint arXiv:1707.05236.785

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas- 786
tian Krause, and Aliaksei Severyn. 2021. A simple 787
recipe for multilingual grammatical error correction. 788
arXiv preprint arXiv:2106.03830. 789

Alla Rozovskaya and Dan Roth. 2010. Training 790
paradigms for correcting errors in grammar and us- 791
age. In Human language technologies: The 2010 792
annual conference of the north american chapter of 793
the association for computational linguistics, pages 794
154–162. 795

Stefan Schweter. 2020. Berturk - bert models for turk- 796
ish. 797

Maksym Tarnavskyi, Artem Chernodub, and Kostiantyn 798
Omelianchuk. 2022. Ensembling and knowledge 799
distilling of large sequence taggers for grammatical 800
error correction. arXiv preprint arXiv:2203.13064. 801

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 802
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 803
Baptiste Rozière, Naman Goyal, Eric Hambro, 804
Faisal Azhar, et al. 2023. Llama: Open and effi- 805
cient foundation language models. arXiv preprint 806
arXiv:2302.13971. 807

Harun Uz and Gülşen Eryiğit. 2023. Towards automatic 808
grammatical error type classification for Turkish. In 809
Proceedings of the 17th Conference of the European 810
Chapter of the Association for Computational Lin- 811
guistics: Student Research Workshop, pages 134– 812
142, Dubrovnik, Croatia. Association for Computa- 813
tional Linguistics. 814

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 815
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 816
Kaiser, and Illia Polosukhin. 2017. Attention is all 817
you need. Advances in neural information processing 818
systems, 30. 819

Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui 820
Sun, Haoxiang Shi, Zhixu Li, Jinan Xu, Jianfeng 821
Qu, and Jie Zhou. 2023. Is chatgpt a good nlg 822
evaluator? a preliminary study. arXiv preprint 823
arXiv:2303.04048. 824

Ziang Xie, Guillaume Genthial, Stanley Xie, Andrew Y 825
Ng, and Dan Jurafsky. 2018. Noising and denois- 826
ing natural language: Diverse backtranslation for 827
grammar correction. In Proceedings of the 2018 828
Conference of the North American Chapter of the 829
Association for Computational Linguistics: Human 830
Language Technologies, Volume 1 (Long Papers), 831
pages 619–628. 832

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, 833
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and 834
Colin Raffel. 2020. mt5: A massively multilingual 835
pre-trained text-to-text transformer. arXiv preprint 836
arXiv:2010.11934. 837

Helen Yannakoudakis and Ted Briscoe. 2012. Model- 838
ing coherence in esol learner texts. In Proceedings 839
of the Seventh Workshop on Building Educational 840
Applications Using NLP, pages 33–43. 841

10

https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.5281/zenodo.3770924
https://doi.org/10.5281/zenodo.3770924
https://doi.org/10.5281/zenodo.3770924
https://doi.org/10.18653/v1/2023.eacl-srw.14
https://doi.org/10.18653/v1/2023.eacl-srw.14
https://doi.org/10.18653/v1/2023.eacl-srw.14

Zheng Yuan and Ted Briscoe. 2016. Grammatical er-842
ror correction using neural machine translation. In843
Proceedings of the 2016 Conference of the North844
American Chapter of the Association for Computa-845
tional Linguistics: Human Language Technologies,846
pages 380–386.847

Zheng Yuan and Mariano Felice. 2013. Constrained848
grammatical error correction using statistical ma-849
chine translation. In Proceedings of the Seventeenth850
Conference on Computational Natural Language851
Learning: Shared Task, pages 52–61.852

Zheng Yuan, Felix Stahlberg, Marek Rei, Bill Byrne,853
and Helen Yannakoudakis. 2019. Neural and fst-854
based approaches to grammatical error correction. In855
Proceedings of the Fourteenth Workshop on Innova-856
tive Use of NLP for Building Educational Applica-857
tions, pages 228–239.858

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and859
Jingming Liu. 2019. Improving grammatical er-860
ror correction via pre-training a copy-augmented861
architecture with unlabeled data. arXiv preprint862
arXiv:1903.00138.863

Yiming Zhu, Peixian Zhang, Ehsan-Ul Haq, Pan Hui,864
and Gareth Tyson. 2023. Can chatgpt reproduce865
human-generated labels? a study of social computing866
tasks. arXiv preprint arXiv:2304.10145.867

A OSCAR GEC pipeline 868

This section provides further information about the 869

OSCAR GEC pipeline and the two open-source 870

components used in it: a word-level Deasciifier 871

and a Spell Checker. 872

1.0.1 Deasciifier 873

Deasciification is a process used in Turkish natural 874

language processing (NLP) to convert text written 875

in the Turkish language using ASCII characters 876

into its proper form with Turkish-specific charac- 877

ters. 878

Turkish has specific characters such as "ı," "ş," 879

"ğ," "ç," and "ü" that are not present in the standard 880

ASCII character set. However, due to historical 881

reasons, limitations of older computer systems, or 882

simply out of habit, many texts written in Turkish 883

may use ASCII characters as substitutes for these 884

specific Turkish characters. For instance, "i" might 885

be used instead of "ı," "s" instead of "ş," and so on. 886

Deasciification algorithms aim to detect and cor- 887

rect these substitutions, transforming the text into 888

its correctly spelled Turkish form. We utilize a 889

Deasciification algorithm5 that works in the follow- 890

ing steps: 1) Generates candidates of all the possi- 891

ble combinations of those characters in a word. 2) 892

Uses a morphological analyzer to analyze each can- 893

didate version of the word. 3) Returns a candidate 894

from those that pass the morphological analyzer 895

i.e. are analyzable. However, we only include the 896

words that have a single candidate to make sure 897

that the candidate is indeed the correct version of 898

the word. 899

1.0.2 Spell Checker 900

We make use of a Spell Checker6 which generates 901

a list of candidate words by performing various op- 902

erations such as swapping adjacent letters, deleting 903

letters, replacing letters with different characters, 904

and adding new characters. The algorithm passes 905

those candidates through a morphological analyzer 906

and returns only the analyzable candidates, similar 907

to the Deasciifier algorithm. And, again similar 908

to the Deasciifier, we only consider the words that 909

have one candidate. 910

1.0.3 Iteration Details 911

We show in table 4 the iteration details of the ex- 912

pansion of the Spelling Dictionary utilized in the 913

OSCAR GEC pipeline. 914

5https://github.com/StarlangSoftware/TurkishDeasciifier
6https://github.com/StarlangSoftware/TurkishSpellChecker

11

Iteration Spelling Dictionary Extracted OSCAR Distinct Spelling Dictionary
Number Size OSCAR Texts Words Size Difference (+)

1st 148,932 864,013 1,852,426 -
2nd 463,072 1,220,251 1,025,942 314,140
3rd 670,319 354.423 1,036,973 207,247
4th 698,008 827,72 459,200 27,689
5th 702,887 12,010 143,546 4,879
6th 703,705 2,711 51,348 818
7th 703,901 416 12,887 196
8th 703,937 52 1,341 36
9th 703,938 1 12 1
10th 703,938 0 0 0

Table 4: Spelling dictionary expansion iterations details, showing for each iteration the size of the spelling dictionary,
the number of extracted OSCAR texts and distinct words, and the size difference increase of the spelling dictionary.

1.0.4 Evaluation Sets915

A comparison between our OSCAR GEC evalua-916

tion set and the open-source Turkish GEC evalua-917

tion sets. Table 5 shows the error types and their918

percentages in those evaluation sets.919

B Example Results920

We show in Figure 2 example outputs from our921

models and an open-source model.922

C Language Models Evaluation923

We show here the manual evaluation results of our924

GPT models. Table 6 shows the average rating925

ratings of 50 generated texts sampled per model.926

D ERRANT Error Types927

This section shows the error types pre-defined in928

the ERRANT framework and their mapped Turkish929

version. Table 7 shows the error types, descriptions,930

and examples defined in the original ERRANT931

framework, while Table 8 shows the mapped er-932

ror types in the ERRANT-TR framework933

12

Error Type OSCAR GEC Turkish Tweets Movie Reviews
SPELL 0.4442 0.5175 0.0925
ORTH 0.1131 0.2579 0.5727

OTHER 0.1441 0.1116 0.1894
NOUN 0.0160 0.0155 0.0529

NOUN:INFL 0.0180 0.0108 0.0044
NOUN:NUM - 0.0026 0.0044

PRON 0.0014 0.0037 -
VERB:INFL 0.0133 0.0363 0.0088

ADJ 0.0059 0.0077 0.0220
CONJ 0.0048 0.0103 0.0352
NUM 0.0047 - -
DET 0.0020 0.0019 -

QUES 0.0008 0.0015 0.0044
ADJ:POSS 0.0003 - -

ADJ-VERB:INFL:POSS 0.0004 0.0002 -
ADJ-VERB:INFL:CASE 0.0000 - -
ADV-VERB:INFL:CASE 0.0001 - -

ADV 0.0043 0.0065 -
PUNC 0.2070 0.0002 0.0132

VERB:SVA 0.0021 0.0011 -
VERB 0.0064 0.0071 -
PREP 0.0040 0.0044 -

NOUN-VERB:INFL:POSS 0.0001 - -
VERB:TENSE 0.0022 0.0005 -

WO 0.0014 - -

Table 5: Error Types and their percentages in the evaluation sets mentioned in Table 1 classified by ERRANT-TR

Figure 2: One example from the Turkish Tweets and the output of the three models OSCAR GEC, GPT GEC, and
Sequence Tagger. The red segments are incorrect and the green ones are correct.

13

Model A1 A2 A3 A4 A5

Original sentences + Turkish OSCAR sample

GPT-2 (30M) 3.6 2.84 3.76 3.12 3.74
GPT-2 (124M) 2.96 2.94 3.82 3.36 3.54

Corrected sentences + Turkish OSCAR sample

GPT-2 (30M) 3.06 2.78 3.58 2.64 3.44
GPT-2 (124M) 3.1 2.74 3.68 2.96 3.74

Table 6: The average ratings of 50 generated texts sampled per model. The samples are rated from 1 to 5 by five
annotators (A1-A5).

Code Meaning Description / Example

ADJ Adjective big → wide
ADJ:FORM Adjective Form Comparative or superlative adjective errors. goodest

→ best, bigger → biggest, more easy → easier
ADV Adverb speedily → quickly
CONJ Conjunction and → but
CONTR Contraction n’t → not
DET Determiner the → a
MORPH Morphology Tokens have the same lemma but nothing else in

common. quick (adj)→ quickly (adv)
NOUN Noun person → people
NOUN:INFL Noun Inflection Count-mass noun errors. informations → informa-

tion
NOUN:NUM Noun Number cat → cats
NOUN:POSS Noun Possessive friends → friend’s
ORTH Orthography Case and/or whitespace errors. Bestfriend → best

friend
OTHER Other Errors that do not fall into any other category (e.g.

paraphrasing). at his best → well, job → professional
PART Particle (look) in → (look) at
PREP Preposition of → at
PRON Pronoun ours → ourselves
PUNCT Punctuation !→.
SPELL Spelling genectic → genetic, color → colour
UNK Unknown The annotator detected an error but was unable to

correct it.
VERB Verb ambulate → walk
VERB:FORM Verb Form Infinitives (with or without "to"), gerunds (-ing) and

participles. to eat → eating, dancing → danced
VERB:INFL Verb Inflection Misapplication of tense morphology. getted → got,

fliped → flipped
VERB:SVA Subject-Verb Agreement (He) have → (He) has
VERB:TENSE Verb Tense Includes inflectional and periphrastic tense, modal

verbs and passivization. eats → ate, eats → has eaten,
eats → can eat, eats → was eaten

WO Word Order only can → can only

Table 7: The list of 25 main error categories in the ERRANT framework with examples and explanations as listed in
their work.

14

Error Code Meaning Example
ADJ Wrong choice of adjective büyük → küçük
ADJ:FORM Wrong usage of comparative or superlative adjective
ADV Wrong choice of adverb önce → sonra
CONJ Wrong choice of conjunction ama → belki
CONTR Wrong choice of contraction
DET Wrong choice of determiner bu elma → o elma
MORPH Tokens have the same lemma but nothing else in

common
kalem → silgi

NOUN Wrong choice of nouns
NOUN:INFL Count-mass noun errors
NOUN:NUM Wrong usage of noun number elma → elmalar
NOUN:POSS Wrong usage of noun possessive hastalarının ilaçları →

hastaların ilaçları
ORTH Case and/or whitespace errors herşey → her şey
OTHER Errors that do not fall into any other category
PART Wrong choice of particle
PREP Wrong choice of preposition gibi → için
PRON Wrong usage of pronoun sen → ben
PUNCT Wrong usage of punctuation ? → !
SPELL Misspelling broblem → problem
UNK A detected but not corrected error
VERB Wrong choice of verbs geldim → gittim
VERB:FORM Infinitives, gerunds and participles gitmek, gitme, giden
VERB:INFL Wrong usage of tense morphology (biz) yaptık → (biz) yaptık
VERB:SVA Subject-verb agreement sen geliyorum → sen

geliyorsun
VERB:TENSE Wrong choice of inflectional and periphrastic tense,

modal verbs and passivization
geliyorum → gelmiştim

WO Word order elma kırmızı → kırmızı
elma

Table 8: ERRANT-TR’s Error Codes, Descriptions, and Examples as they list in their work. An empty cell indicates
that the category has no example of being either too wide or not useful for Turkish.

15

