Organic Data-Driven Approach for Turkish Grammatical Error Correction
and LLMs

Anonymous EMNLP submission

Abstract

Grammatical Error Correction has seen signif-
icant progress with the recent advancements in
deep learning. As those methods require huge
amounts of data, synthetic datasets are being built
to fill this gap. Unfortunately, synthetic datasets
are not organic enough in some cases and even re-
quire clean data to start with. Furthermore, most
of the work that has been done is focused mostly
on English. In this work, we introduce a new or-
ganic data-driven approach, clean insertions, to
build parallel Turkish Grammatical Error Correc-
tion datasets from any organic data, and to clean
the data used for training Large Language Models.
We achieve state-of-the-art results on two Turkish
Grammatical Error Correction test sets out of the
three publicly available ones. We also show the
effectiveness of our method on the training losses
of training language models.

1 Introduction

Humans naturally tend to make typos for various
factors. Those typos and grammatical errors prop-
agate to the data used in Natural Language Pro-
cessing (NLP) systems and any data-related tasks,
which could lead to unexpected behavior. For in-
stance, a sentiment analysis text classifier that has
been trained with a frequently occurring misspelled
word may produce unexpected results when pro-
cessing correctly spelled words in the input. An-
other example that we looked into closely is Large
Language Models (LLMs) which are trained on
massive amounts of data mostly from the internet
such as the OSCAR dataset'. We observe a signifi-
cant percentage of grammatical mistakes in the OS-
CAR dataset, specifically, in the Turkish OSCAR
data, which has an effect on the training losses and
causes the models sometimes to generate erroneous
text. These examples show the importance of the
NLP task Grammatical Error Correction (GEC) in
facilitating text-based communications.

Given the GEC task’s importance, many works
addressed the task and, with the advancement and

"https://huggingface.co/datasets/oscar

rise of deep learning techniques, achieved signif-
icant progress on the task (Bryant et al., 2023).
Unfortunately, most of that work focused on En-
glish and some other common languages. On the
other hand, the work done for Turkish is few and
limited, which explains how the Turkish GEC task
is barely noticed and paid attention to. There are
only two open-source evaluation sets available with
more than one error type (Koksal et al., 2020; Kara
et al., 2023). And, there is only one open-source
synthetic training set with a pre-defined set of error
types from (Kara et al., 2023) utilizing inorganic
data such as newspaper data to build GEC datasets,
which leads to poor performance on common gen-
eral errors that an average typer could make.

In this work, we tackle the Turkish GEC task
with a new organic data-driven approach, address-
ing the problem of inorganic and artificial datasets
utilized for GEC. We introduce a simple method
that we call clean insertions. It involves building an
incorrect-correct spelling dictionary to be used in
replacing commonly made misspellings of words
and phrases with their correct versions in any or-
ganic text, e.g. text crawled from the internet,
which mostly contains grammatical errors. The
spelling dictionary and its size are crucial and have
a major effect on the produced dataset’s quality.

This method leads to a partially correct paral-
lel text since the spelling dictionary probably does
not contain all the existing mistakes in the dataset.
Despite this fact, our simple method achieves state-
of-the-art results on two different test sets out of the
three available open-source evaluation sets. In ad-
dition to that, we use GPT-4 to automatically build
a parallel GEC dataset and compare the models we
train on those different datasets. Furthermore, we
run experiments to test and show the effectiveness
of our method on cleaning training data for LLMs.
We open-source different datasets and models with
this work for the Turkish GEC task. Here are our
work’s contributions:

* We introduce a new organic data-driven ap-
proach, clean insertions, to build synthetic
GEC datasets from any organic data, which
mostly contains grammatical mistakes. No
clean data is required!

* We find that partially corrected GEC datasets
could be utilized to achieve state-of-the-art
results.

* We find that cleaning the data used for training
LLMs leads to lower loss values.

* We open-source 1) A manually annotated
spelling dictionary consisting of about 150k
incorrect-correct word and phrase pairs. 2)
The largest Turkish GEC parallel dataset con-
sisting of 2.3m sentences. 3) A Turkish GEC
dataset of about 100k sentences annotated by
GPT. 4) The largest test set for Turkish GEC
which consists of about 2,400 manually cor-
rected sentences. 5) All the best-performing
models trained in this work.

We structure our paper as follows: In Section
2, we follow up the introduction with a literature
review of the work done on Grammatical Error
Correction covering the datasets, approaches, and
Turkish GEC. Then, in Section 3, we detail in the
data methodology section the development of the
OSCAR GEC and GPT GEC datasets and our clean
insertions method. Later on, in Section 4, we touch
on the experimental setup, the training, and the
evaluation of our models trained on our datasets
and other open-source datasets. In Section 5, we
show the evaluation results for both correction and
detection. In Section 6, we briefly touch on the
language models and the effect of our method on
the training losses of language models. Finally, we
sum up the work with a conclusion in Section 8.

2 Related Work

Several datasets and models have been developed
to address the grammatical error correction task.
We review some of those in this section:

2.1 Datasets

Datasets that have been utilized for Grammatical
Error Correction mostly consist of English aca-
demic essays authored by either English learners
and native speakers (Yannakoudakis and Briscoe,
2012; Dahlmeier et al., 2013; Napoles et al., 2017;
Bryant et al., 2019). Other datasets included web

data such as in (Flachs et al., 2020) which contains
random paragraphs sampled from the Common-
Crawl dataset®. Some studies put some effort into
filling the gap and built non-English datasets for
less popular languages in NLP such as Arabic (Mo-
hit et al., 2014), Chinese (Lee et al., 2018), and
Turkish (Koksal et al., 2020).

In addition to the human-labeled datasets men-
tioned above, the advancements in deep learn-
ing surged the need for large synthetic datasets.
Mainly, there are two techniques used in building
such datasets: noisy injections and back-translation
(Kiyono et al., 2019). The Noisy injections tech-
nique involves corrupting an already clean text by
inserting some pre-defined errors in a rule-based
way (Ehsan and Faili, 2013; Lichtarge et al., 2019;
Zhao et al., 2019), or by injecting probabilistic error
patterns (Rozovskaya and Roth, 2010; Felice and
Yuan, 2014; Rei et al., 2017). The back-translation
technique, on the other hand, involves training a
noisy channel model to predict a probable source
text given a correct text (Xie et al., 2018).

2.2 Approaches

Approaches used in Grammatical Error Correction
developed over time, beginning with rule-based ap-
proaches (Naber et al., 2003) due to their straight-
forwardness. Later on, data-driven approaches
emerged such as single-error-type classifiers (Lee,
2004; Chodorow et al., 2007; Berend et al., 2013;
Lee and Seneff, 2008), where each classifier targets
a specific error type independently, assuming the
surrounding context is correct (Bryant et al., 2023),
which is a limitation of rule-based approaches. Sta-
tistical Machine Translation (SMT) approaches
(Brockett et al., 2006; Mizumoto et al., 2011; Yuan
and Felice, 2013) come into the picture to address
the limitation of the rule-based approaches by cor-
recting all error types simultaneously (Bryant et al.,
2023). SMT systems leverage statistical models
trained on parallel corpora to generate translations
by estimating the likelihood of different transla-
tions and selecting the most probable one, treating
the GEC task as a translation task (Bryant et al.,
2023). The complexity of the SMT approaches,
e.g. relying on separate translation and language
models, is addressed by neural machine translation
(NMT), which consists of a single neural network.

NMT approaches, which achieve state-of-the-art
results, are encoder-decoder methods (Cho et al.,

Zhttps://commoncrawl.org/

2014) where encoders and decoders could be of dif-
ferent possible architectures such as RNNS (Bah-
danau et al., 2014), CNNS (Gehring et al., 2016),
or Transformers (Vaswani et al., 2017), which
were applied successfully on the GEC task (Yuan
and Briscoe, 2016; Yuan et al., 2019; Junczys-
Dowmunt et al., 2018). Recent approaches, uti-
lize pre-trained large language models and achieve
state-of-the-art results (Rothe et al., 2021; Tar-
navskyi et al., 2022) by only fine-tuning them, solv-
ing the data bottleneck requirement for large net-
works.

2.3 Turkish Grammatical Error Correction

Turkish Grammatical Error Correction hasn’t been
paid as much attention as English GEC. For exam-
ple, recent work, (Arikan et al., 2019) builds a syn-
thetic dataset considering only a single error type.
Later, (Koksal et al., 2020) proposed the first pub-
lic benchmark dataset of manually annotated 2000
Turkish tweets covering different error types. Then,
recently, (Kara et al., 2023) built and open-sourced
the first Turkish GEC synthetic large dataset, by
making noisy injections into clean newspaper data,
covering 25 error types. Additionally, they released
a manually curated test set of 300 movie reviews
to the public.

3 Data Methodology

We detail in this section the procedure followed in
developing our datasets and give an overview of all
the datasets utilized in this work.

3.1 OSCARGEC

Our data pipeline starts with building a manually
annotated spelling dictionary of incorrect-correct
148,932 word and phrase pairs. To build this dic-
tionary, we collected Turkish text from various
sources and asked native Turkish speakers to ex-
tract incorrect words and write down their cor-
rect versions. We open-source with this work the
spelling dictionary and its expanded version com-
prised of 703,938 pairs, which we introduce in the
following sections.

Given the manually created spelling dictionary,
we expand our dictionary and build our OSCAR
GEC dataset following the pipeline shown in Fig-
ure 1. We first use the Turkish OSCAR Dataset to
create a word-index dictionary, having each word
in the corpus as a key and a list of indexes where
the corresponding incorrect word occurs. Then,

we apply the following steps: 1) Look up each
incorrect word in our spelling dictionary in the
word-index OSCAR dictionary. 2) Create a dataset
of those texts we extract from OSCAR, each may
contain one sentence or more. 3) Create a list of
the unique words in the extracted OSCAR texts.
4) Run a word-level Deasciifier 1.0.1 and Spell
Checker 1.0.2 to correct each word of the distinct
words if possible. 5) Expand our spelling dictio-
nary with these incorrect-correct pairs. The above
steps are repeated until the increase in the size of
the spelling dictionary stops.

Table 4 shows the details of each iteration. In
the first iteration, the manually created spelling dic-
tionary is used. Starting from the 2nd iteration we
notice an increase in the size of the spelling dic-
tionary which leads to an increase in the size of
the extracted OSCAR text. In the final iterations,
the amount of increase in the spelling dictionary
size starts to decrease until it becomes zero and the
size of the spelling dictionary stabilizes and does
not expand. Finally, all the text extracted from
OSCAR is tokenized with a sentence tokenizer,
merged, and deduplicated forming 2,326,921 sen-
tences (or a text containing more than one sentence
that couldn’t be tokenized properly). Since we ap-
plied the tokenization later and some of the texts
we extracted from OSCAR may composed of more
than one sentence, some of those sentences do not
necessarily contain any incorrect word or phrase
and may be completely correct.

To build our OSCAR GEC dataset, we apply our
novel approach clean-insertions, which involves
substituting incorrectly spelled words or phrases
with their correct counterparts. We iterate over
the final 2,326,921 sentences and for every word
in each sentence, we perform a lookup in our ex-
panded spelling dictionary of 703,938 incorrect-
correct word pairs and replace the incorrect words
with their counterparts. We end up with our OS-
CAR GEC dataset which contains 2,326,921 paral-
lel sentences of incorrect-correct sentence pairs.

3.2 GPTGEC

The emergence of ChatGPT (Ouyang et al., 2022)
has significantly impacted the field of Natural Lan-
guage Processing (NLP), marking the start of a
new era of language generation and understanding.
ChatGPT, based on OpenAl’s GPT architecture,
has demonstrated remarkable capabilities in gen-
erating human-like responses to text inputs across

START

Lookup Incorrect Words

the new incorrect-correct pairs

1

1

|

Expanded the Spelling Dictionary with :
1

A 1

1

|

|

1
1
i
[P OO e e e oy Sy |
' I
i = julihete afe o new candidates ¥l Replace |
i Incorrect-Correct ! Replace incorect words RO
' Spelling Dictionary ! E !
1 ! 1
- T)
* ————— 1| Combine all the incorrect-correct | ! unted H
sttt | 0l N ' candidate pairs] | B |
] [unique_word_1: [1st index, 5th index], : \\I H] H
ey —---—-- > [unique_word_2: [1000st index, 1200th index]] REPEAT] ettt ! E— ! i
(e 1 5 1 | 1 - |
1 Spell Checker Deasciifier 1
Turkish OSCAR .~ - o PP | | oo
e S, | | f
! 1
! | Passall distinct words through | v
i 1 _the Spell Checker and the Deascilfier_}
1 1
1 1 = ===
| Extract text where - 1 ==
1 incorrect words occur Extract all distinct words — —
-------------- —— | Bctaldstnctwords_____ 5 9
— 3 —
Extracted Errorful Distinct Words OSCAR GEC Dataset
OSCAR Text

Figure 1: A pipeline of the creation process of OSCAR GEC showing all the steps involved in creating the OSCAR

GEC dataset

various domains. Its versatile applications span
from conversational agents and chatbots to content
generation, summarization, and translation tasks.

Moreover, researchers and developers leverage
ChatGPT as a benchmark for evaluating language
understanding and generation models (Wang et al.,
2023). It has also been used in many cases as
an annotation means to annotate unlabeled data
(Gilardi et al., 2023; Zhu et al., 2023), which we
do in this work. We randomly sample 100k sen-
tences from our OSCAR GEC dataset and prompt
ChatGPT to correct the incorrect sentences, gener-
ating a parallel GPT GEC dataset of 100k parallel
incorrect-correct sentences.

3.3 Datasets Overview

Table 1 presents a summary of the datasets em-
ployed in this study. We utilize three datasets, in-
cluding two internally developed ones named OS-
CAR GEC and GPT GEC, which we introduced in
previous sections, as well as an open-source dataset
called GECTurk (Kara et al., 2023), which we com-
pare with our datasets.

As for evaluation, we randomly pick 2,408 sen-
tences from our OSCAR GEC dataset, which we
exclude from training and validation, and manu-
ally annotate them forming a manually annotated
evaluation set of organic 2,408 sentences. We also
test and benchmark on open-source evaluation sets
such as (Koksal et al., 2020), which contains 1,996
tweets, and (Kara et al., 2023)’s curated evaluation
set which includes 300 movie reviews. In Table 5,
we show the percentages of the frequencies of the

error types found in the three evaluation sets OS-
CAR GEC (22,366 errors), Turkish Tweets (6,201
errors), and Movie Reviews (227 errors) classified
by ERRANT-TR. The Table shows that the OS-
CAR GEC evaluation set has more error types than
the other two.

4 Experimental Setup

4.1 Models

We perform several experiments in this work with
the mT5 model (Xue et al., 2020), a multilin-
gual pre-trained encoder-decoder text-to-text trans-
former trained on a Common Crawl-based dataset
covering 101 languages. We fine-tune the model
on three different datasets: the OSCAR GEC, GPT
GEC, and GECTurk (Kara et al., 2023). Even
though we train an mT5 model on the GECTurk
dataset, we compare our mT5 models to their
model, which is a sequence tagger based on a pre-
trained Turkish cased Bert model (Schweter, 2020)
with extra linear and softmax layers similar to the
work done in (Omelianchuk et al., 2020).

We train our models on one NVIDIA GeForce
RTX 3090 for 10 epochs while only saving the best
three checkpoints. Since some of the sentences
extracted from OSCAR are long, we truncate the
sentences to a max length of 48.

4.2 Evaluation

We evaluate our models and GECturk’s sequence
tagger on three different evaluation sets listed in
Table 1: OSCAR GEC, Movie Reviews, and Turk-

Dataset Name Split Sentences Tokens Error Types Domain
OSCAR GEC (ours) Train 2.3m 213.2m ERRANT Web

GPT GEC (ours) Train 100k 3.6m ERRANT Web
GECTurk (Kara et al., 2023) Train 138k 58m 25 Newspapers
OSCAR GEC (ours) Test 2.4k 142k ERRANT Web

Movie Reviews (Kara et al., Test 300 2.7k 25 Movie Re-
2023) views
Turkish Tweets (Koksal et al., Test 2k 116.2k 13 Tweets
2020)

Table 1: An overview of the datasets utilized in this work. The datasets in the top half are synthetic and the bottom
ones, the evaluation sets, are humanly annotated. The error type ERRANT refers to the automatic annotation tool
ERRANT (Bryant et al., 2017; Felice et al., 2016), which automatically annotates parallel sentences with error-type
information. Tokens information is based on OpenAl’s tokenizer tiktoken with gpt2 encodings

ish Tweets. To automatically annotate the parallel
sentences of our evaluation sets and model outputs,
we use ERRANT-TR (Uz and Eryigit, 2023), a vari-
ant of ERRANT (Bryant et al., 2017; Felice et al.,
2016) developed for the Turkish language. Table
7 shows the error types, descriptions, and exam-
ples defined in the original ERRANT framework,
while Table 8 shows the mapped error types in the
ERRANT-TR framework.

ERRANT-TR outputs the annotations in M2 for-
mat (Dahlmeier and Ng, 2012), which can be evalu-
ated using ERRANT’s evaluation scripts that calcu-
late the FO0.5 score given two M2 files: a reference
file (i.e. the gold M2 file) and a hypothesis file (i.e.
the model output M2 file). ERRANT provides dif-
ferent scoring modes such as span-based correction,
span-based detection, and token-based detection.

To sum things up, we follow the following steps
in evaluating our models: 1) Generate a parallel
tab-separated file of the source-gold sentences. 2)
Generate a parallel tab-separated file of the source-
model_output sentences. 3) Generate M2 files for
the previously mentioned two tab-separated files.
4) Calculate the score of each model on every
evaluation set given the corresponding gold and
model_output M2 files.

We post-process the Turkish Tweets evaluation
set in Table 1 and the model outputs of it for a fair
evaluation and comparison. We apply two trans-
formations to it. First, to the evaluation set: 1) We
capitalize the first letter of each correct sentence in
the dataset since most models are trained with the
data that way. Second, to the model outputs: 2) We
remove the punctuation marks from the model out-
puts since they were removed from the evaluation

set (Koksal et al., 2020). We apply the previous
two transformations for all models making sure our
results and comparisons are accurate.

5 Results

Table 2 shows the precision, recall, and F0.5 scores
of correction and detection, respectively, for all
models tested on three different test sets. We eval-
uate four different models on every test set. GEC-
Turk (Seq Tagger), is a sequence tagger trained by
(Kara et al., 2023) on their GECTurk training set.
We also fine-tune mT5 on the same dataset, which
is the model GECTurk (mT5) in the table. The re-
maining two models GPT GEC and OSCAR GEC
are also fine-tuned mT5 models on our GPT GEC
and OSCAR GEC training sets respectively.

5.1 Correction

In Table 2, which shows the ERRANT span-based
correction scores, we notice the poor performance,
on the OSCAR GEC test set, of both models trained
on the GECTurk dataset achieving an F.05 score of
14.7 by the Sequence Tagger and 18.2 by the fine-
tuned mT5. Surprisingly, those models’ recall is
significantly lower than the recall of the other two
models being at most 5.7, which can be interpreted
by the fact that the GECTurk dataset covers only
25 error types of all possible error types. Besides,
the fact that the fine-tuned mT5 on the GECTurk
dataset is doing better than the sequence tagger
supports our claim that relying on the knowledge
in large models such as mT5 is beneficial. For
example, the GECTurk (mT5) model transforms
the word Yuzune (to your face), which contains a
deasciification error, into Yiiziine, the correct ver-

Model Correction Detection

P R F0.5 P R F0.5

OSCAR GEC (ours)
GECTurk (Seq Tagger) (Kara et al., 2023) 49.0 3.9 14.7 79.2 6.2 23.7
GECTurk (mT5) 42.5 5.7 18.2 73.0 9.6 31.3
GPT GEC (mT5) 69.8 44.9 62.8 85.7 551 771
OSCAR GEC (mT5) 68.7 31.2 55.4 82.1 37.3 66.2
Turkish Tweets (Koksal et al., 2020)
GECTurk (Seq Tagger) (Kara et al., 2023) 64.7 19.8 44.5 90.5 27.6 62.2
GECTurk (mT5) 57.2 20.7 42.3 85.4 30.9 63.1
GPT GEC (mT5) 77.7 68.9 75.8 92.0 81.7 89.7
OSCAR GEC (mT5) 85.1 61.3 79.0 95.3 68.5 88.4
Movie Reviews (Kara et al., 2023)

GECTurk (Seq Tagger) (Kara et al., 2023) 86.5 76.2 84.2 90.5 79.7 88.1
GECTurk (mT5) 73.1 71.8 72.8 78.5 77.1 78.2
GPT GEC (mT5) 36.0 46.3 37.6 43.2 55.5 45.2
OSCAR GEC (mT5) 30.0 22.5 28.1 34.1 25.6 32.0

Table 2: ERRANT span-based correction and detection scores (precision, recall, and F0.5) of every model on all the
evaluation sets. All mT5 are trained are ours. GECTurk (Seq Tagger) is trained by the referenced work. The highest
value of all models on each metric is bolded per evaluation set.

sion despite the fact this error type is missing in
the GECTurk dataset. On the other hand, GPT
GEC and OSCAR GEC models perform signifi-
cantly better with an F0.5 score of 62.8 and 55.4
respectively.

For the Turkish Tweets test set, the OSCAR GEC
model is achieving the highest FO.5 score of 79.0,
slightly higher than the GPT GEC model, and sig-
nificantly higher than the models trained on the
GECTurk dataset, which score at most an FO0.5
score of 44.5. One of the reasons the OSCAR GEC
model is slightly better than the GPT GEC is that
GPT sometimes considered hashtags as grammati-
cal mistakes in its annotations and replaced them.
Perhaps prompting with this in mind could help in
overcoming this problem. We show an example
from the Turkish Tweets evaluation set in Figure 2.
The OSCAR GEC and GPT GEC models correct
the text with a slight difference in punctuation. The
sequence Tagger from (Kara et al., 2023), on the
other hand, leaves half of the sentence incorrect
and even corrupts the last word.

On the Movie Reviews evaluation set, which is
annotated by the same authors who built the GEC-
Turk training set, the GECTurk models achieve
noticeably a higher F0.5 score, 84.2 by the Se-

quence Tagger, than the GPT GEC and OSCAR
GEC models which at most score an F0.5 score of
37.6. One of the reasons our models score low here
is the annotation inconsistencies in the Movie Re-
views evaluation set. For instance, the GPT GEC
model capitalizes people’s names such as Matt Da-
mon while the evaluation set’s gold annotations
are sometimes capitalized and sometimes left in
lowercase. Another reason is that the evaluation
set has wrong annotations such as Matrixten (from
the Matrix) which the GPT GEC model corrects
as Matrix’ten, its correct version. Another wrong
annotation example is the word orjinalinde (in the
original one) that GPT GEC corrects as orijinalinde,
which is its correct version.

5.2 Detection

The detection results in Table 2 mostly follow the
trend of the correction results. On the OSCAR
GEC test set, the GPT GEC model scores the high-
est FO.5 score of 77.1. Besides, the GECTurk mod-
els also perform poorly here with at most an F0.5
score of 31.3. The gap between the correction and
detection FO.5 scores is high because, for example,
the GPT GEC makes word-choice corrections that
aren’t wrong but unnecessary or missing in the gold

annotations.

On the Turkish Tweets evaluation set, GPT GEC
and OSCAR GEC models also significantly do bet-
ter than GECTurk models with scores F0.5 scores
of 89.7 and 88.4 respectively. While the GECTurk
models, the Sequence Tagger, and the fine-tuned
mT3, only scored 62.2 and 63.1 respectively. The
OSCAR GEC model here, again, is more precise
than the GPT GEC model because, for example, it
does not make as many corrections, e.g. contextual
ones, as GPT GEC does.

Finally, the GECTurk models again do well on
the Movie Reviews evaluation set with at most
an F0.5 score of 88.1 and at least a score of 78.2
by the Sequence Tagger and the fine-tuned mT5
models respectively. GPT GEC and OSCAR GEC,
on the other hand, struggle again in detection with
at most an F0.5 score of 45.2 by the Sequence
Tagger. Again, the OSCAR GEC and the GPT
GEC models struggle here for many reasons such
as the ones we mentioned in the previous section.

6 Language Models (LMs)

The rise of large language models marks a trans-
formative era in artificial intelligence and natural
language processing. These models, such as GPT-3
(Brown et al., 2020) and LLaMA(Touvron et al.,
2023) have been given significant attention due to
their impressive capabilities in generating human-
like text and performing various language-related
tasks.

Large language models require billions of tokens,
one of the bottlenecks of training large language
models for low-resource languages, to achieve
high performance on NLP tasks. Most large lan-
guage models depend on web-based multilingual
resources and datasets such as CommonCrawl, C4
(Raffel et al., 2020), and OSCAR.

Unfortunately, web-crawled datasets are noisy
and therefore need to be cleaned. For instance, we
find that Turkish OSCAR?, which has around 11.6
million text documents, has at least one spelling
mistake in 10% of the documents based on our
spelling dictionary.

In this chapter, we train four language models
with different settings to show the effectiveness of
our clean-insertions method for language models.

*https://huggingface.co/datasets/oscar

6.1 Data Processing

We use our OSCAR GEC parallel dataset which
contains around 113.9 million training tokens in
the original sentences, and 117.2 million training
tokens in the parallel corrected sentences. We add
a sample of around 2 million text documents from
the untouched Turkish OSCAR samples to the orig-
inal sentences and the parallel corrected sentences.
With the added sample, we end up with two dif-
ferent datasets: 1) the original sentences and the
OSCAR sample (305 million training tokens) and
2) the corrected sentences and the OSCAR sample
(314.4 million training tokens). All token informa-
tion is obtained from Karpathy’s GPT-2 implemen-
tation code*.

6.2 Training

We train four different GPT-2 models, following
Karpathy’s GPT-2 implementation, with two dif-
ferent sizes: 30M and 124M. We train the models
on one NVIDIA GeForce RTX 3090. We train
the 30M size model for 300k iterations, and the
124M size model for 8k iterations. Table 3 shows
the training and validation losses. We notice lower
training and validation losses for both sizes for the
models trained on the corrected sentences and the
Turkish OSCAR sample. This indicates the effec-
tiveness of cleaning the Turkish OSCAR dataset
with clean insertions using our spelling dictionary
on the training losses. Maybe to be certain of this
effect, we need to train different architectures other
than GPT-2, which we leave as a future work.

6.3 Evaluation

We also evaluate our GPT models manually to see
if there is an effect on the generated text. We gener-
ate 50 samples for every model using 50 common
Turkish-word prompts and ask 5 evaluators to eval-
uate the total 200 samples from 1 to 5 based only
on their cohesiveness, ignoring the spelling mis-
takes in the generated text since we observe that
the models trained with the misspelled words are
already biased towards generating misspelled text.

Table 6 shows the average rating by each anno-
tator, from Al to AS for every model. As we see
in the table, the clean insertions method did not
lead to higher ratings for all models despite its ob-
vious effect on the training losses. This could be
because this is a small experiment with only 50
prompts. Or, maybe corrupting misspellings, i.e.

*https://github.com/karpathy/nanoGPT

Model

Train Val Loss

Loss

Original sentences + Turkish OSCAR sample

GPT-2 (30M) 2.38 2.39
GPT-2 (124M) 1.85 2.11
Corrected sentences + Turkish OSCAR sample
GPT-2 (30M) 2.26 2.28
GPT-2 (124M) 1.77 2.01

Table 3: Trainig and validation losses of 4 different GPT-2 models of two different sizes trained on two dataset
combinations having a common Turkish OSCAR sample and either the original sentences of our OSCAR GEC
dataset or the corrected sentences of our OSCAR GEC dataset cleaned using our clean insertions method. Bolded

values show lower training and validation losses.

correcting them, this way corrupts the context or
causes imbalances in the training data.

7 Limitations

While this study provides valuable insights, it is
important to acknowledge its limitations, such as
the need for a manually annotated spelling dictio-
nary to start with. Another limitation is the lack
of a clear and specific error-type annotation. Since
we use ERRANT, which automatically classifies
the errors, the set of error types is limited and not
detailed and specialized enough for the Turkish
language

8 Conclusion

In summary, this study addresses the lack of atten-
tion within the research community to the Turkish
Grammatical Error Correction task by introducing
a method, clean insertions, that helps in creating
organic Turkish GEC datasets. We open-source
several datasets two of which are training datasets
and one evaluation set. In addition to that, we share
our models that achieve state-of-the-art results on
two evaluation sets out of the three available evalu-
ation sets.

Our method, clean insertions, is simple to under-
stand and apply. Other than the starting spelling
dictionary that we build manually, it is fully au-
tomated. Normally, a synthetic dataset requires
clean data to start with, which may not be avail-
able, however, our method works with any organic
data, which usually contains grammatical errors.
This leads to datasets that contain various types of
errors and not only a set of pre-defined injected
error types, which could cause the models trained

on such datasets to perform poorly on evaluation
sets containing error types out of the pre-defined
set as we show in section 5.

While our method yields partially correct par-
allel GEC datasets, since the spelling dictionary
would not contain all possible errors, it can be used
to obtain state-of-the-art results by relying on the
knowledge in the large pre-trained models such as
mTS5. This finding is surprising and raises the ques-
tion of whether we can solve other tasks the same
way with partially correct or partially correctly an-
notated datasets. Certainly, such datasets would
confuse the models in tasks such as text classifica-
tion, but it is maybe worth trying for tasks that can
be formulated as text-to-text problems.

In addition to the dataset we build using clean
insertions, OSCAR GEC, we use GPT as an anno-
tator and build a GEC dataset, GPT GEC, to show
the potential of using such models as annotators.
Indeed, the models trained on the GPT GEC show
promising results surpassing the other models on
most evaluation sets as we show in Table 2.

Future work could focus more on using other or
even more complex and context-aware components
in addition to the Spelling Checker and Deasciifier
we utilize in our OSCAR GEC pipeline. With more
components, more incorrect-correct pairs would be
added to the spelling dictionary, which could lead
to higher-quality datasets. Besides, applying the
approach to datasets other than Turkish OSCAR
could enrich the OSCAR GEC dataset with exam-
ples that contain missing error types in the current
dataset.

References

Ugurcan Arikan, Onur Giingor, and Suzan Uskudarli.
2019. Detecting clitics related orthographic errors
in turkish. In Proceedings of the International Con-
ference on Recent Advances in Natural Language
Processing (RANLP 2019), pages 71-76.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Gabor Berend, Veronika Vincze, Sina Zarrie3, and
Richard Farkas. 2013. Lfg-based features for noun
number and article grammatical errors. Association
for Computational Linguistics.

Chris Brockett, Bill Dolan, and Michael Gamon. 2006.
Correcting esl errors using phrasal smt techniques.
In 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the ACL,
Sydney, Australia.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Christopher Bryant, Mariano Felice, @istein E Ander-
sen, and Ted Briscoe. 2019. The bea-2019 shared
task on grammatical error correction. In Proceed-
ings of the Fourteenth Workshop on Innovative Use
of NLP for Building Educational Applications, pages
52-75.

Christopher Bryant, Zheng Yuan, Muhammad Reza
Qorib, Hannan Cao, Hwee Tou Ng, and Ted Briscoe.
2023. Grammatical error correction: A survey of
the state of the art. Computational Linguistics,
49(3):643-701.

CJ Bryant, Mariano Felice, and Edward Briscoe. 2017.
Automatic annotation and evaluation of error types
for grammatical error correction. Association for
Computational Linguistics.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Martin Chodorow, Joel Tetreault, and Na-Rae Han.
2007. Detection of grammatical errors involving
prepositions. In Proceedings of the fourth ACL-
SIGSEM workshop on prepositions, pages 25-30.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages
568-572.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
english: The nus corpus of learner english. In Pro-
ceedings of the eighth workshop on innovative use
of NLP for building educational applications, pages
22-31.

Nava Ehsan and Heshaam Faili. 2013. Grammatical and
context-sensitive error correction using a statistical
machine translation framework. Software: Practice
and Experience, 43(2):187-206.

Mariano Felice, Christopher Bryant, and Ted Briscoe.
2016. Automatic extraction of learner errors in esl
sentences using linguistically enhanced alignments.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 825-835.

Mariano Felice and Zheng Yuan. 2014. Generating ar-
tificial errors for grammatical error correction. In
Proceedings of the Student Research Workshop at the
14th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 116—

126.

Simon Flachs, Ophélie Lacroix, Helen Yannakoudakis,
Marek Rei, and Anders Sggaard. 2020. Grammat-
ical error correction in low error density domains:
A new benchmark and analyses. arXiv preprint
arXiv:2010.07574.

Jonas Gehring, Michael Auli, David Grangier, and
Yann N Dauphin. 2016. A convolutional encoder
model for neural machine translation. arXiv preprint
arXiv:1611.02344.

Fabrizio Gilardi, Meysam Alizadeh, and Maél Kubli.
2023. Chatgpt outperforms crowd workers for
text-annotation tasks. Proceedings of the National
Academy of Sciences, 120(30):¢2305016120.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Shubha Guha, and Kenneth Heafield. 2018. Ap-
proaching neural grammatical error correction as
a low-resource machine translation task. arXiv
preprint arXiv:1804.05940.

Atakan Kara, Farrin Marouf Sofian, Andrew Bond, and
Gozde Giil Sahin. 2023. Gecturk: Grammatical error
correction and detection dataset for turkish. In Find-
ings of the Association for Computational Linguistics:
IJCNLP-AACL 2023 (Findings), pages 278-290.

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizu-
moto, and Kentaro Inui. 2019. An empirical study
of incorporating pseudo data into grammatical error
correction. arXiv preprint arXiv:1909.00502.

Asiye Tuba Koksal, Ozge Bozal, Emre Yiirekli, and
Gizem Gezici. 2020. #turki$hTweets: A bench-
mark dataset for Turkish text correction. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 41904198, Online. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/2020.findings-emnlp.374
https://doi.org/10.18653/v1/2020.findings-emnlp.374
https://doi.org/10.18653/v1/2020.findings-emnlp.374

John SY Lee. 2004. Automatic article restoration. In
Proceedings of the Student Research Workshop at
HLT-NAACL 2004, pages 31-36.

John SY Lee and Stephanie Seneff. 2008. Correcting
misuse of verb forms. In Proceedings of ACL-08:
HLT, pages 174-182.

Lung-Hao Lee, Yuen-Hsien Tseng, and Li-Ping Chang.
2018. Building a tocfl learner corpus for chinese
grammatical error diagnosis. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018).

Jared Lichtarge, Chris Alberti, Shankar Kumar, Noam
Shazeer, Niki Parmar, and Simon Tong. 2019. Cor-
pora generation for grammatical error correction.
arXiv preprint arXiv:1904.05780.

Tomoya Mizumoto, Mamoru Komachi, Masaaki Na-
gata, and Yuji Matsumoto. 2011. Mining revision log
of language learning sns for automated japanese error
correction of second language learners. In Proceed-
ings of Sth International Joint Conference on Natural
Language Processing, pages 147-155.

Behrang Mohit, Alla Rozovskaya, Nizar Habash, Wajdi
Zaghouani, and Ossama Obeid. 2014. The first qalb
shared task on automatic text correction for arabic.
In Proceedings of the EMNLP 2014 Workshop on
Arabic Natural Language Processing (ANLP), pages
39-47.

Daniel Naber et al. 2003. A rule-based style and gram-
mar checker.

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2017. Jfleg: A fluency corpus and
benchmark for grammatical error correction. arXiv
preprint arXiv:1702.04066.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR - grammatical error correction: Tag, not
rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163-170, Seattle, WA, USA —
Online. Association for Computational Linguistics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text

transformer. Journal of machine learning research,
21(140):1-67.

Marek Rei, Mariano Felice, Zheng Yuan, and Ted
Briscoe. 2017. Aurtificial error generation with
machine translation and syntactic patterns. arXiv
preprint arXiv:1707.05236.

10

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021. A simple
recipe for multilingual grammatical error correction.
arXiv preprint arXiv:2106.03830.

Alla Rozovskaya and Dan Roth. 2010. Training
paradigms for correcting errors in grammar and us-
age. In Human language technologies: The 2010
annual conference of the north american chapter of

the association for computational linguistics, pages
154-162.

Stefan Schweter. 2020. Berturk - bert models for turk-
ish.

Maksym Tarnavskyi, Artem Chernodub, and Kostiantyn
Omelianchuk. 2022. Ensembling and knowledge
distilling of large sequence taggers for grammatical
error correction. arXiv preprint arXiv:2203.13064.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Harun Uz and Giilgen Eryigit. 2023. Towards automatic
grammatical error type classification for Turkish. In
Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Student Research Workshop, pages 134—
142, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui
Sun, Haoxiang Shi, Zhixu Li, Jinan Xu, Jianfeng
Qu, and Jie Zhou. 2023. Is chatgpt a good nlg
evaluator? a preliminary study. arXiv preprint
arXiv:2303.04048.

Ziang Xie, Guillaume Genthial, Stanley Xie, Andrew Y
Ng, and Dan Jurafsky. 2018. Noising and denois-
ing natural language: Diverse backtranslation for
grammar correction. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 619-628.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2020. mt5: A massively multilingual
pre-trained text-to-text transformer. arXiv preprint
arXiv:2010.11934.

Helen Yannakoudakis and Ted Briscoe. 2012. Model-
ing coherence in esol learner texts. In Proceedings
of the Seventh Workshop on Building Educational
Applications Using NLP, pages 33—43.

https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.5281/zenodo.3770924
https://doi.org/10.5281/zenodo.3770924
https://doi.org/10.5281/zenodo.3770924
https://doi.org/10.18653/v1/2023.eacl-srw.14
https://doi.org/10.18653/v1/2023.eacl-srw.14
https://doi.org/10.18653/v1/2023.eacl-srw.14

Zheng Yuan and Ted Briscoe. 2016. Grammatical er-
ror correction using neural machine translation. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 380-386.

Zheng Yuan and Mariano Felice. 2013. Constrained
grammatical error correction using statistical ma-
chine translation. In Proceedings of the Seventeenth
Conference on Computational Natural Language
Learning: Shared Task, pages 52—61.

Zheng Yuan, Felix Stahlberg, Marek Rei, Bill Byrne,
and Helen Yannakoudakis. 2019. Neural and fst-
based approaches to grammatical error correction. In
Proceedings of the Fourteenth Workshop on Innova-
tive Use of NLP for Building Educational Applica-
tions, pages 228-239.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving grammatical er-
ror correction via pre-training a copy-augmented
architecture with unlabeled data. arXiv preprint
arXiv:1903.00138.

Yiming Zhu, Peixian Zhang, Ehsan-Ul Haq, Pan Hui,
and Gareth Tyson. 2023. Can chatgpt reproduce
human-generated labels? a study of social computing
tasks. arXiv preprint arXiv:2304.10145.

11

A OSCAR GEC pipeline

This section provides further information about the
OSCAR GEC pipeline and the two open-source
components used in it: a word-level Deasciifier
and a Spell Checker.

1.0.1 Deasciifier

Deasciification is a process used in Turkish natural
language processing (NLP) to convert text written
in the Turkish language using ASCII characters
into its proper form with Turkish-specific charac-
ters.

Turkish has specific characters such as "1," "s,"
"g," "¢," and "i" that are not present in the standard
ASCII character set. However, due to historical
reasons, limitations of older computer systems, or
simply out of habit, many texts written in Turkish
may use ASCII characters as substitutes for these
specific Turkish characters. For instance, "i" might
be used instead of "1," "s" instead of "s," and so on.

Deasciification algorithms aim to detect and cor-
rect these substitutions, transforming the text into
its correctly spelled Turkish form. We utilize a
Deasciification algorithm® that works in the follow-
ing steps: 1) Generates candidates of all the possi-
ble combinations of those characters in a word. 2)
Uses a morphological analyzer to analyze each can-
didate version of the word. 3) Returns a candidate
from those that pass the morphological analyzer
i.e. are analyzable. However, we only include the
words that have a single candidate to make sure
that the candidate is indeed the correct version of
the word.

1.0.2 Spell Checker

We make use of a Spell Checker® which generates
a list of candidate words by performing various op-
erations such as swapping adjacent letters, deleting
letters, replacing letters with different characters,
and adding new characters. The algorithm passes
those candidates through a morphological analyzer
and returns only the analyzable candidates, similar
to the Deasciifier algorithm. And, again similar
to the Deasciifier, we only consider the words that
have one candidate.

1.0.3 Iteration Details

We show in table 4 the iteration details of the ex-
pansion of the Spelling Dictionary utilized in the
OSCAR GEC pipeline.

Shttps://github.com/StarlangSoftware/TurkishDeasciifier
®https://github.com/StarlangSoftware/TurkishSpellChecker

Iteration Spelling Dictionary Extracted OSCAR Distinct Spelling Dictionary

Number Size OSCAR Texts Words Size Difference (+)
Ist 148,932 864,013 1,852,426 -
2nd 463,072 1,220,251 1,025,942 314,140
3rd 670,319 354.423 1,036,973 207,247
4th 698,008 827,72 459,200 27,689
5th 702,887 12,010 143,546 4,879
6th 703,705 2,711 51,348 818
7th 703,901 416 12,887 196
8th 703,937 52 1,341 36
Oth 703,938 1 12 1
10th 703,938 0 0

Table 4: Spelling dictionary expansion iterations details, showing for each iteration the size of the spelling dictionary,
the number of extracted OSCAR texts and distinct words, and the size difference increase of the spelling dictionary.

1.0.4 Evaluation Sets

A comparison between our OSCAR GEC evalua-
tion set and the open-source Turkish GEC evalua-
tion sets. Table 5 shows the error types and their
percentages in those evaluation sets.

B Example Results

We show in Figure 2 example outputs from our
models and an open-source model.

C Language Models Evaluation

We show here the manual evaluation results of our
GPT models. Table 6 shows the average rating
ratings of 50 generated texts sampled per model.

D ERRANT Error Types

This section shows the error types pre-defined in
the ERRANT framework and their mapped Turkish
version. Table 7 shows the error types, descriptions,
and examples defined in the original ERRANT
framework, while Table 8 shows the mapped er-
ror types in the ERRANT-TR framework

12

Error Type OSCAR GEC | Turkish Tweets | Movie Reviews

SPELL 0.4442 0.5175 0.0925

ORTH 0.1131 0.2579 0.5727

OTHER 0.1441 0.1116 0.1894

NOUN 0.0160 0.0155 0.0529

NOUN:INFL 0.0180 0.0108 0.0044

NOUN:NUM - 0.0026 0.0044
PRON 0.0014 0.0037 -

VERB:INFL 0.0133 0.0363 0.0088

ADJ 0.0059 0.0077 0.0220

CONJ 0.0048 0.0103 0.0352
NUM 0.0047 - -
DET 0.0020 0.0019 -

QUES 0.0008 0.0015 0.0044
ADJ:POSS 0.0003 - -
ADJ-VERB:INFL:POSS 0.0004 0.0002 -
ADJ-VERB:INFL:CASE 0.0000 - -
ADV-VERB:INFL:CASE 0.0001 - -
ADV 0.0043 0.0065 -

PUNC 0.2070 0.0002 0.0132
VERB:SVA 0.0021 0.0011 -
VERB 0.0064 0.0071 -
PREP 0.0040 0.0044 -
NOUN-VERB:INFL:POSS 0.0001 - -
VERB:TENSE 0.0022 0.0005 -
WO 0.0014 - -

Table 5: Error Types and their percentages in the evaluation sets mentioned in Table 1 classified by ERRANT-TR

ORIGINAL: BEnimarkadasimdiyelbenim halletmem gerekmiyo

(Just because he's my friend, | don't have to handle it.)
OSCAR GEC: Benim arkadasim diye benim halletmem gerekmiyor
GPT GEC: Benim arkadasim diye benim halletmem gerekmiyor.

Sequence Tagger: BERIMIaIkadasim dyEBERIN halletmem gerek|Hiyos

Figure 2: One example from the Turkish Tweets and the output of the three models OSCAR GEC, GPT GEC, and
Sequence Tagger. The red segments are incorrect and the green ones are correct.

13

Model Al A2 A3 A4 A5

Original sentences + Turkish OSCAR sample

GPT-2 (30M) 3.6 2.84 3.76 3.12 3.74
GPT-2 (124M) 296 2.94 3.82 3.36 3.54

Corrected sentences + Turkish OSCAR sample

GPT-2 (30M) 3.06 2.78 3.58 2.64 3.44

GPT-2 (124M)

31

2.74

3.68 2.96 3.74

Table 6: The average ratings of 50 generated texts sampled per model. The samples are rated from 1 to 5 by five

annotators (A1-A5).

Code Meaning Description / Example

ADJ Adjective big — wide

ADJ:FORM Adjective Form Comparative or superlative adjective errors. goodest
— best, bigger — biggest, more easy — easier

ADV Adverb speedily — quickly

CONJ Conjunction and — but

CONTR Contraction n’t — not

DET Determiner the — a

MORPH Morphology Tokens have the same lemma but nothing else in
common. quick (adj)— quickly (adv)

NOUN Noun person — people

NOUN:INFL Noun Inflection Count-mass noun errors. informations — informa-
tion

NOUN:NUM Noun Number cat — cats

NOUN:POSS Noun Possessive friends — friend’s

ORTH Orthography Case and/or whitespace errors. Bestfriend — best
friend

OTHER Other Errors that do not fall into any other category (e.g.
paraphrasing). at his best — well, job — professional

PART Particle (look) in — (look) at

PREP Preposition of — at

PRON Pronoun ours — ourselves

PUNCT Punctuation I—.

SPELL Spelling genectic — genetic, color — colour

UNK Unknown The annotator detected an error but was unable to
correct it.

VERB Verb ambulate — walk

VERB:FORM Verb Form Infinitives (with or without "to"), gerunds (-ing) and
participles. to eat — eating, dancing — danced

VERB:INFL Verb Inflection Misapplication of tense morphology. getted — got,
fliped — flipped

VERB:SVA Subject-Verb Agreement (He) have — (He) has

VERB:TENSE Verb Tense Includes inflectional and periphrastic tense, modal
verbs and passivization. eats — ate, eats — has eaten,
eats — can eat, eats — was eaten

WO Word Order only can — can only

Table 7: The list of 25 main error categories in the ERRANT framework with examples and explanations as listed in

their work.

14

Error Code Meaning Example

ADJ Wrong choice of adjective biiytik — kiiciik

ADJ:FORM Wrong usage of comparative or superlative adjective

ADV Wrong choice of adverb once — sonra

CONJ Wrong choice of conjunction ama — belki

CONTR Wrong choice of contraction

DET Wrong choice of determiner bu elma — o elma

MORPH Tokens have the same lemma but nothing else in | kalem — silgi

common

NOUN Wrong choice of nouns

NOUN:INFL Count-mass noun errors

NOUN:NUM Wrong usage of noun number elma — elmalar

NOUN:POSS Wrong usage of noun possessive hastalarimin ilaglan —
hastalarin ilaglari

ORTH Case and/or whitespace errors hersey — her sey

OTHER Errors that do not fall into any other category

PART Wrong choice of particle

PREP Wrong choice of preposition gibi — icin

PRON Wrong usage of pronoun sen — ben

PUNCT Wrong usage of punctuation 71

SPELL Misspelling broblem — problem

UNK A detected but not corrected error

VERB Wrong choice of verbs geldim — gittim

VERB:FORM Infinitives, gerunds and participles gitmek, gitme, giden

VERB:INFL Wrong usage of tense morphology (biz) yaptik — (biz) yaptik

VERB:SVA Subject-verb agreement sen geliyorum — sen
geliyorsun

VERB:TENSE | Wrong choice of inflectional and periphrastic tense, | geliyorum — gelmistim

modal verbs and passivization

WO Word order elma kirmizi — kirmizi

elma

Table 8: ERRANT-TR’s Error Codes, Descriptions, and Examples as they list in their work. An empty cell indicates
that the category has no example of being either too wide or not useful for Turkish.

15

