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Abstract

The ever-increasing size of open-source Large Language Models (LLMs) renders
local deployment impractical for individual users. Decentralized computing has
emerged as a cost-effective solution, allowing individuals and small companies to
perform LLM inference for users using surplus computational power. However, a
computing provider may stealthily substitute the requested LLM with a smaller,
less capable model without consent from users, thereby benefiting from cost
savings. We introduce SVIP, a secret-based verifiable LLM inference protocol.
Unlike existing solutions based on cryptographic or game-theoretic techniques,
our method is computationally effective and does not rest on strong assumptions.
Our protocol requires the computing provider to return both the generated text
and processed hidden representations from LLMs. We then train a proxy task on
these representations, effectively transforming them into a unique model identifier.
With our protocol, users can reliably verify whether the computing provider is
acting honestly. A carefully integrated secret mechanism further strengthens its
security. We thoroughly analyze our protocol under multiple strong and adaptive
adversarial scenarios. Our extensive experiments demonstrate that SVIP is accurate,
generalizable, computationally efficient, and resistant to various attacks. Notably,
SVIP achieves false negative rates below 5% and false positive rates below 3%,
while requiring less than 0.01 seconds per prompt query for verification.

1 Introduction

In recent years, open-source Large Language Models (LLMs) have achieved unprecedented success
across a broad array of tasks and domains [44, [2, 26, [19]], while remaining freely accessible. How-
ever, as model sizes increase, so do their computational demands [23]]. As a result, decentralized
computing [45]] has gained significant attention as a cost-effective solution for users with limited
local computational resources. In this setting, a user lacking computational power relies on decentral-
ized computing providers to perform LLM inference. These providers, often individuals or small
companies with surplus resources, offer computational power at competitive prices. Commercial
platforms facilitate such interactions by connecting both parties. Real-world examples include Golem
Network, |Akash Network, Render Network, Spheron Network, Hyperbolic, and Vast.ai.

However, unlike reputable companies with well-established credibility, computation outputs from
decentralized computing providers may not always be trustworthy. Specifically, to ease the de-
ployment of LLM inference, computing providers often provide API-only access to users, hiding
implementation details. A new risk arises in this setting: how to ensure that the outputs from a
computing provider are indeed generated by the requested LLM? For instance, a user might request
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Figure 1: The problem setting of verifiable inference for LLMs. (a) Our protocol involves three
parties. (b) A user requests the computing provider (referred to as provider in the figure) to run
inference on their prompt using the L1ama-3.1-70B model. Without verification, they have no way
to confirm if the specified model is used. (c) Our proposed protocol solves this by requiring the
provider to return processed hidden representations from the LLM, enabling the user to verify through
a verification function whether the correct model was used for inference. Specifically, the hidden
representations are compressed to reduce the computational overhead.
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the L1ama-3.1-70B model for complex tasks, but a dishonest computing provider could substitute
the smaller L1ama-2-7B model for cost savings, while still charging for the larger model. The smaller
model demands significantly less memory and processing power, giving the computing provider a
strong incentive to cheat. Restricted by the black-box API access, it is difficult for the user to detect
such substitutions.

Without assurance that users are receiving the service they specified and paid for, they may lose trust
and abandon the platform. To prevent this outcome and maintain profitability, the platform must
ensure that user-specified models are faithfully executed. This highlights the need for verifiable
inference, a mechanism designed to ensure that the model specified by the user is the one actually
used during inference.

Related Work A practical verifiable inference solution for LLMs must accurately confirm that
the specified model is being used during inference while maintaining computational efficiency.
Existing approaches face significant challenges that limit their applicability. Cryptographic verifiable
computing methods, which rely on generating mathematical proofs [50,138]] or secure computation
techniques [13}25] often impose high computational costs, making them unsuitable for real-time LLM
inference. For instance, zZkLLM, a recent Zero Knowledge Proof-based technique, requires over 803
seconds for a single prompt query [40]]. Game-theoretic protocols involve the interaction of multiple
computing providers with carefully designed penalties and rewards [53]], assuming all providers
are rational, flawless, and non-cooperative, which might be unrealistic for certain system setups in
practice. Meanwhile, watermarking and fingerprinting techniques [21} 48] are mostly implemented
by model publishers, making them unsuitable for verifiable inference, where the verification primarily
occurs between the user and the computing provider. We leave an extended discussion of related
work to Appendix D}

In this paper, we propose SVIP, a Secret-based Verifiable LLM Inference Protocol using hidden
representations. Our protocol requires the computing provider to return not only the generated text
but also the processed hidden state representations from the LLM. We carefully design and train a
proxy task exclusively on the hidden representations produced by the specified model, effectively
transforming these representations into a distinct identifier for that model. During deployment, users
can verify whether the processed hidden states returned by the computing provider come from the
specified model by assessing their performance on the proxy task. If the returned representations
perform well on this task, it provides strong evidence that the correct model was used for inference.
Qur key contributions are:

* We systematically formalize the problem of verifiable LLM inference (§2) and propose an innovative
protocol that leverages processed hidden representations (§3.1)).

* The security of our protocol is further enhanced by a novel secret-based mechanism (§3.2). We
provide a thorough discussion and analysis of various strong and adaptive attack scenarios (§3.3).



Table 1: Comparison of simple approaches and our proposed protocol based on the five criteria. A
checkmark (v”) indicates that the criterion is satisfied, while a cross (X) indicates it is not. SVIP is the
only method that satisfies all five criteria.

Approach Low FNR Low FPR Efficiency Completion Quality Robustness
Benchmark Prompt Testing v v X v X
Binary Classifier on Hidden States v v v v X
SVIP (Ours) v v v v v

* Our comprehensive experiments with 5 specified open-source LLMs (from 13B to 70B) demonstrate
the effectiveness of SVIP: it achieves an average false negative rate of 3.49%, while keeping the
false positive rate below 3% across 6 smaller alternative models (§4.1). SVIP introduces negligible
overhead (less than 0.01 seconds per prompt query) for both users and computing providers (§4.2).
Furthermore, SVIP can effectively and securely handle 80 to 120 million prompt queries in total after
a single round of protocol training, with the update mechanism further bolstering security (§4.3).

2 Problem Statement

The verifiable inference problem involves three parties, as illustrated in Figure

1. User: An individual who lacks sufficient computing resources and seeks to perform expensive
LLM inference tasks on given prompts using decentralized computing providers at a low cost.

2. Computing Provider: Decentralized entities, often small companies or individuals, that rent out
computational power at competitive prices.

3. Platform: A commercial platform that profits by connecting users and computing providers.
Importantly, the platform itself does not require significant computational resources, as its primary
role is to facilitate and monitor the utilization of computational resources from decentralized providers.

Threat Model To reduce costs, a computing provider may not actually use the LLM the user
specifies. Instead, it may substitute a significantly smaller model, which returns an inferior result. It
may also attempt to evade detection by actively concealing dishonest behavior.

The Incentive and Goal of Verifiable Inference To address this threat, platforms are commercially
incentivized to maintain user trust by monitoring provider behavior, ensuring that providers cannot
cheat. Trust in the platform underpins its reputation and business model; if users cannot trust that
model inference is faithfully executed, they are likely to abandon the platform, leading to significant
financial and operational losses.

To mitigate this risk, the platform designs and implements a verification protocol that allows users to
verify, with high confidence, whether the computing provider used the specified model for inference.
Note that during deployment, the protocol should operate primarily between the user and the provider,
with minimal platform involvement. A satisfactory protocol should meet the following criteria:
(1) Low False Negative Rate (FNR): The protocol should minimize cases where the computing
provider did use the specified LLM for inference but is incorrectly flagged as not using it. (2) Low
False Positive Rate (FPR): The protocol should rarely confirm that the computing provider used the
specified LLM if it actually used another model. (3) Efficiency: The verification protocol should be
computationally efficient and introduce minimal overhead for both the computing provider and the
user. (4) Preservation of Completion Quality: The protocol should not compromise the quality of
the prompt completion returned by the computing provider. (5) Robustness: The protocol should
maintain low FNR and FPR even against adversarial providers attempting to evade detection.

2.1 Simple Approaches Do Not Meet All the Criteria

Table [T evaluates several straightforward approaches for verifiable LLM inference, as well as our
proposed protocol (§3)), against the five criteria. All naive approaches fail to satisfy at least one
criterion, underscoring the necessity of our method. We exclude solutions that involve multiple com-
puting providers (e.g., cross-verifying results across providers) because such approaches significantly
increase user costs, making them impractical for widespread adoption.

Benchmark Prompt Testing The user curates a small set of prompt examples from established
benchmarks and sends them to the computing provider. If the provider’s performance significantly
deviates from the reported benchmark metrics for the specified model, the user may suspect dishonest
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Figure 2: Illustration of the motivation behind our framework. The proxy task is trained solely on
hidden states from the specified LLM M. During deployment, strong performance on the proxy
task indicates that the provider used M. as specified, while poor performance suggests otherwise.
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behavior. However, a malicious provider can easily bypass this method by detecting known benchmark
prompts and selectively applying the correct model only for those cases, while using an alternative
model for all other prompt queries. Additionally, testing such benchmark prompts also increases the
user’s inference costs.

Binary Classifier on Hidden States The user can request the computing provider to return hidden
representations from the LLM used for inference, and train a binary classifier on these representations
to verify if they come from the specified model. However, a simple attack involves the provider
caching hidden representations from the correct model that are unrelated to the user’s input. The
dishonest provider could then use a smaller LLM for inference and return these cached irrelevant
representations to deceive the classifier while saving costs.

3 Methodology

Motivation It is often challenging to verify whether a computing provider is using an alternative
LLM for inference based solely on the returned completion texﬂ Our framework addresses this by
requiring the computing provider to return not only the generated text but also the processed hidden
state representations from the LLM inference process.

We design and train a proxy task specifically to perform well only on the hidden representations
generated by the specified model during the protocol’s training stage. The intuition behind is that
the proxy task transforms the hidden representations into a unique identifier for the model. During
deployment, the user can evaluate the performance of the returned hidden states on the proxy task.
Strong performance on the proxy task indicates that the correct model was used for inference, while
poor performance suggests otherwise. Figure[2 provides an illustration.

Our approach does not depend on expensive cryptographic proofs or protocols, and is highly efficient.
Furthermore, it does not involve retraining or fine-tuning the LLMs, operates independently of the
model publisher, and can be applied to any LLM with publicly available weight parameters, making
it widely applicable.

Notations Let x € V* denote the prompt query from user, where V* represents the set of all
possible string sequences for a vocabulary set V. The specified LLM and alternative LLM are denoted
as M spee and My, respectively.

3.1 A Simple Protocol Based on Hidden States

Protocol Overview For any LLM M, let hy(z) € REX9M represent the last-layer hidden
representations of x produced by M, where L is the length of the tokenized input z, and d ¢ denotes
the hidden dimension of M. The computing provider receives = from the user, runs M, and returns
ha(z) to user for subsequent verification. However, to reduce the size of the hidden states returned,
we additionally apply a proxy task feature extractor network gg(-) : REX9¢ — R parameterized
by 6, where d, represents the proxy task feature dimension. The computing provider now also runs
go(+) and returns a compressed vector z(z) := gg(haq(2)) of dimension d, to the user, significantly

’To empirically demonstrate this, we train a binary classifier to distinguish between output texts from a
specified model (LlaMA-2-13B) and six smaller alternatives. Using 90,000 prompts for training and 10,000 for
testing, the classifier (BERT-base-uncased) achieves an FNR of 36.1% and an FPR of 58.9%.
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Figure 3: Ilustration of (a) the simple protocol (Section 3.1); (b) secret-based protocol (Section 3.2).

reducing the communication overhead. Specifically, for each prompt query, the compressed vector
only takes approximately 4 KB when d, is set to 1024.

The user is required to perform two tasks locally: obtaining the predicted proxy task output and
the label. First, the user runs f,(-), using the returned proxy task feature z() as input to compute
fs(2(z)). Here, f4(-) : R% — Y is the proxy task head parameterized by ¢, where ) denotes the
label space. Second, the user applies a labeling function for the proxy task. We adopt a self-labeling
function y(z) : V* — Y, which derives the label directly from the input, eliminating the need for
external labels or specialized annotatorﬂ The label can either be a scalar or a vector.

Finally, the user checks whether f,(z(z)) matches y(z). Our training process below ensures that,
with high probability, fy(2(z)) = y(z) when M. is used for inference, and that this does not hold
for other models, as the proxy task is exclusively trained on the hidden representation distribution
induced by M .. This completes our protocol. Refer to Figure [3a| for a detailed illustration.

Proxy Task Training With a properly defined loss function £ : Y x J — R and a training dataset
D, the platform trains the proxy task according to the following objective:

¢",0" = argminE,p [ (fo(g0(hapee (), y(2))] -

Protocol Deployment With the optimized ¢* and 6*, we define the verification function as
V(z, z(x); ¢*,0%) = 1 (fo- (2(z)) = y(z)), where z(x) = go+ (haq(2)) is returned by the comput-
ing provider. If the value of the verification function is 1 (or 0), we conclude that the computing
provider is indeed (or is not) using M g, for inference with high probability. Now, the low FNR
and low FPR criteria introduced in Section[2]can be formally expressed as follows:

Low FNR : P (V (z, z(x); ¢*,0") = 0| Mpec used) < ¢

Low FPR : P (V(z, 2(x); ¢*,0") = 1 | Mgpec not used) < .
Here « and 3 are predefined thresholds. While a single prompt query may occasionally yield an
incorrect verification result due to FNR or FPR, in practice, users can perform the verification over

multiple distinct queries and apply a hypothesis testing to reach a final single conclusion with high
confidence. Refer to Section [f.1]and Appendix [C.2]for a detailed discussion.

ey

3.2 SVIP: A Secret-based Protocol for Verifiable LLM Inference

From Simple Protocol to Secret-based Protocol The simple protocol, despite its strong potential
in discriminating whether the specified model is actually used, is vulnerable to malicious attacks
from the computing provider. A dishonest provider may attempt to bypass the verification process
without running M gp,c.. Since all the provider needs to return is a vector of dimension d, an attacker

3For instance, we can define () as the Set-of-Words (SoW) representation of the input z, which captures the
presence of each word in a fixed vocabulary, regardless of frequency. As a concrete example, if V = {a, b, ¢, d}
and x = “abec”, the SOoW label y(z) would be a four-dimensional vector (1, 1, 1, 0), indicating whether each
token in V appears in x.



could adversarially optimize a vector Z € R% directly, without actually running go-(-) and using
any LLM. We refer to this as a direct vector optimization attack. Specifically, if the self-labeling
function is public, the adversary can run the labeling function y(x) themselves for each input - and
then directly find Z so that

Z* = arg mzjnﬂ (for (2),y(x)) . )

Ultimately, z* is returned to the user to deceive the verification protocol. As shown in Appendix
this attack achieved an attack success rate (ASR) of 99.90%, indicating that the protocol’s security
requires further enforcement.

To strengthen the protocol’s security, we introduce a “secret” mechanism. A complete illustration
is provided in Figure[3b] Particularly, the platform assigns a “secret” s € S exclusively to the user,
which is never shared with the computing provider. Here, S represents the secret space. For example,
S can be defined as the space of d,-dimensional binary vectors, represented as {0, 1}%.

Introducing Secret into the Self-labeling Function The self-labeling function with secret is now
defined as y(z, s) : V* x § — Y. The property below is essential for an ideal self-labeling function.

Property 1 (Secret Distinguishability). For the same input x, given two different secrets s’ # s, with
a pre-defined lower-bound probability §, the resulting labels should be different with high probability:

P(y(z,s) # y(z,s')) = 0. (©)
If Y is a continuous space, with a pre-defined threshold, this property is equivalent to:
P(||y(z,s) — y(z, s")||2 > threshold) > 6. 4)

Property [I] ensures that a malicious computing provider, without access to the specific s, cannot
determine or naively guess the true label, thus rendering the direct vector optimization attack
ineffective. Meanwhile, the user, with knowledge of s, can still compute the correct label.

A simple rule-based self-labeling function (e.g., the SoW representation) cannot ensure that Property
E]holds. To enforce this property, we introduce a trainable labeling network y.,(z, ) : V* xS — R
parameterized by v, which takes € V* and s € S as input and outputs a continuous label vector of
dimension d,,. This network is trained with the following contrastive loss:

7" = argmin —Eonp s [llyy (2, 8) —yy (2, 8)]l2] )

Introducing Secret into the Proxy Task Once the labeling network is optimized, we also need
to include the secret s into the proxy task. Our design is to embed s as a task token using a secret
embedding network (e.g., an MLP), denoted as t,(s) : S — R?M, parameterized by 1. Note that
this secret embedding network t,,(s) is only kept to the platform. Then, the platform distributes
t,(s) to the computing provider, who concatenates ¢, (s) with haq(z), runs gg(-), and returns
z(z) = go(ty(s) ® ha(z)), where & denotes concatenation.

The training objective is now modified by incorporating randomly sampled secrets during training:

000" = arg min Brop s € (Fo(00(tu(8) & hatee (0)). v (2:9)) | 6)

As before, the user receives z(x) from the computing provider. However, now that ) is a continuous
space, a threshold 7 is required to determine whether the predicted proxy task output fu«(z(x))
matches the label vector y, - (x, s). Specifically, fy«(2(x)) is considered a match to y.,- (x, s) if the
L, distance between them is below the pre-defined threshold 7, indicating M gy was actually used:

Vi, 2(2); 6%, 0%, 97%) = L ([|fo- (2(2)) — gy (2, 8)[l2 < 1) - 0]
In practice, we propose setting the threshold based on the conditional empirical distribution of
d(z, ) := || for (2(x)) — yy=(, 5)||2, given that M .. is used for inference. We select the upper

95th percentile to ensure a FNR of 5%.

3.3 Security Analysis

As previously discussed, the direct vector optimization attack described in Eq. (Z) is no longer feasible
due to the introduction of the secret mechanism. In this section, we discuss other potential attacks as
a security analysis towards our protocol. Additional possible attacks are discussed in Appendix [E]
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Adapter Attack Under Single Secret A malicious attacker could attempt an adapter attack if they
collect enough prompt samples D’ = {z;}}£, under a single secret s. The returned vector from an
honest computing provider should be z(x) = gg- (ty-(s) ® haq,,..(x)). The attacker’s goal is to
train an adapter that mimics the returned vector, but by using an alternative LLM, M ;.

To this end, we define the adapter a (-) : R¥ it — R%Mspec | parameterized by A, which transforms
the hidden states of M, to approximate those of M. The returned vector is then g« (ty+ (s) &
ax(hm,, (x))). The attacker’s objective is to minimize the Lo distance between the returned vector
generated by M ;.. and the vector produced by M q;; with the adapter:

A" = argmin By pr(lgo- (- (5) @ Aty (€)) = go- (g (5) @ ar(ha, (2))) 2 (®)

By minimizing this objective, the attacker seeks to make the output of M,;; with the adapter
indistinguishable from that of M., effectively bypassing the protocol. Once the adapter is well-
trained, as long as the secret s remains unchanged, the attacker can rely solely on M,;; in future
verification queries without being detected.

Secret Recovery Attack Under Multiple Secrets The secret mechanism is enforced by distributing
the secret s to the user, while only providing the secret embedding ¢« (s) to the computing provider.
However, a sophisticated computing provider may attempt to recover the original secret by posing as
a user and collecting multiple secrets and corresponding embeddings. A straightforward approach
would involve recovering s from ¢,- (s), thereby undermining the secret mechanism.

Suppose the attacker has curated a dataset of secret-embedding pairs, Dgecret = {85, ty= (sj)}év:l.
The attacker could then train an inverse model i, : RIMm — S, parameterized by p, to map the secret

embedding back to the secret space. If S is continuous, the training objective can be formalized as:
p* = arg mpinES"‘Dsecre‘HiP(tw*(8)) - SH2 (9)

Once the inverse model is optimized, the true label y(z, s) again becomes accessible to the malicious
provider. Consequently, the secret-based protocol effectively collapses to the simple protocol without
secret protection, leaving it vulnerable to the direct vector optimization attack.

Defense: The Update Mechanism To defend against the attacks discussed above, we propose
an update mechanism for our secret-based protocol: (1) In defense of the adapter attack, once the
prompt queries for a given secret reach a pre-defined threshold M*, the next secret is activated.
Meanwhile, we enforce a limit on how often the next secret can be activated, preventing attackers
from acquiring too many secrets within a short period. (2) When a total of N* secrets have been used,
the entire protocol should be retrained by the platfornﬂ In practice, the values of M* and N* can be
determined empirically, as discussed in Section d.3]

4 Experiments

Experiment Setup To simulate realistic LLM usage scenarios, we primarily use the
LMSYS-Chat-1M conversational dataset [55]], which consists of one million real-world conversa-
tions. Results on additional datasets are provided in Appendix [F3] For the models, we select 5
widely-used LLMs as the specified models, ranging in size from 13B to 70B parameters and spanning
multiple model families. As alternative models, we use 6 smaller LLMs, each with parameters up
to 7B. Refer to Appendix for details. The labeling network y.,(-) uses a pretrained sentence
transformer [37] to embed the text input 2 and an MLP to embed the secret s, where s € {0, 1}9
and d; is set to 48. The outputs of both embeddings are concatenated and passed through another
MLP to produce a continuous label vector of 128 dimensions. The proxy task feature extractor g (-)
is a 4-layer transformer, while both the proxy task head f;(-) and task embedding network ¢, (-) are
implemented as MLPs. Full details can be found in Appendix [F2]

4.1 Results of Protocol Accuracy

We evaluate the accuracy of our protocol by examining the empirical estimate of FNR and FPR, as
outlined in Eq. (I3)). To apply the verification function in Eq. (7), we first determine the threshold 7

“Specifically, this retraining can be performed using a different random seed and training recipe. As shown
in Section[4.2] the retraining process is efficient.



Table 2: FNR and FPR on the test dataset of LMSYS-Chat-1M. Our protocol keeps FNR under 5%
and FPR under 3% across all scenarios. We implement a Random baseline where the computing
provider generates random hidden representations directly without using any LLM.

. FPR |
Specified Model | FNR | ‘ Random GPT2-XL GPT-NEO-2.7B GPT-J-6B OPT-6.7B Vicuna-7B Llama-2-7B
Llama-2-13B | 441% | 1.97%  1.90% 1.77% 1.75% 2.03% 2.44% 2.04%
GPT-NeoX-20B | 347% | 0.00%  0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
OPT-30B 3.42% | 0.05%  0.33% 0.61% 0.47% 0.83% 0.34% 0.35%
Falcon-40B | 3.02% | 0.00%  0.00% 0.01% 0.00% 0.00% 0.00% 0.00%
Llama-3.1-70B | 3.13% | 026%  1.97% 1.04% 1.98% 2.07% 0.90% 0.81%

Specified Model: OPT-30B Specified Model: Llama-3.1-70B
i pr— y [
T2

Frequency (%)

[ 1 2 3 4 5 X 5 30 35 40 00 1 0 25 3 35
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Figure 4: Empirical distribution of the L, distance between the predicted proxy task output fg« (z(x))
and the label vector y, - (x, s) on the test dataset of LMSYS-Chat-1M. Each figure corresponds to a
different specified model. The distributions compare the Lo distances when the specified model is
used versus various alternative models. The clear separation between the distributions, marked by the
vertical threshold line, ensures the high accuracy of our protocol in distinguishing between correct
and incorrect model usage. More examples can be found in Figure @

on a validation dataset during proxy task training. We then evaluate the empirical FNR and FPR on a
held-out test dataset with 10, 000 samples. For each test prompt, we pair it with 30 randomly sampled
secrets to ensure a reliable evaluation result. For FPR calculations, we simulate scenarios where the
computing provider uses an alternative, smaller LLM to produce the hidden representations, and
applies go« (+) on those outputs.

As shown in Table[2] SVIP consistently achieves low FNR and FPR for individual queries across all
specified LLMs. The FNR remains below 5% per query, indicating that our protocol rarely falsely
accuses an honest computing provider. Moreover, when faced with a dishonest provider, the FPR
stays under 3% per query regardless of the alternative model employed, highlighting the protocol’s
strong performance in detecting fraudulent behavior. We further demonstrate the generalizability of
our protocol to unseen datasets in Appendix [F:3]

Figure |4|shows the empirical test distribution of d(x, s), the Lo distance between the predicted proxy
task output and the label vector, under different model usage scenarios. The clear separation in the
distributions provides strong evidence for the high accuracy of SVIP: when the specified model is
actually used, d(z, s) is significantly smaller compared to when an alternative model is used.

A Hypothesis Testing Framework for a Single Final Conclusion In practical scenarios, con-
clusions about a computing provider’s honesty are based on multiple different prompt queries
rather than a single one. A hypothesis testing framework can be adopted to combine the results
of each individual query and reach a single final conclusion. With FPRs and FNRs below 5% for
each individual query, the user can draw a final conclusion about the provider’s honesty with high
confidence. For instance, by employing only 30 different queries, the type-I and type-II error rates of
the final conclusion are effectively driven to near zero, demonstrating the strong robustness of SVIP.

As an illustrative case, when using L1ama-3.1-70B as the specified model and L1ama-2-7B as the
alternative, we achieve an FPR of 0.81% and an FNR of 3.13%. With a properly chosen decision
threshold, the type-I error rate (incorrectly flagging an honest provider as dishonest) and type-II error
rate (failing to detect a dishonest provider) rates are 1.7 x 10~%° and 0.0, respectively. Refer to
Appendix [C.2] for detailed analysis and results.

4.2 Computational Cost Analysis of the Protocol

Table[12a]details the runtime per prompt query and GPU memory consumption during the deployment
stage. Across all specified models, the verification process takes under 0.01 seconds per prompt
query for both the computing provider and the user. For example, verifying the L1ama-2-13B model



Table 3: Attack Success Rate for the secret recovery attack, presented as a function of the number
of secret-embedding pairs collected. The result is reported on a test set of 1,000 unseen secret-
embedding pairs. The ASR remains below 50% even after collecting 200, 000 pairs.

Specified Model | 1,000 5,000 10,000 50,000 100,000 200,000 500,000 1,000,000

Llama-2-13B 0.0% 0.0%  0.0% 2.7% 5.8% 30.1% 65.1% 69.5%
GPT-NeoX-20B | 0.0% 0.0%  0.0% 0.0% 1.2% 19.6% 30.4% 59.9%
OPT-30B 0.0% 0.0%  0.0% 1.2% 6.4% 40.1% 84.6% 92.3%
Falcon-40B 0.0% 0.0%  0.0% 0.1% 2.9% 12.4% 40.7% 72.9%
Llama-3.1-70B | 0.0% 0.0%  0.0% 0.5% 3.6% 17.3% 21.3% 84.9%

100 Specified Model: Llama-2-13B 100 Specified Model: OPT-30B 100 Specified Model: Llama-3.1-70B
80 80 80
X 60 X 60 R 60 //
~ _—— _—— P
& & &
2 40 2 40 2 40
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Figure 5: Attack Success Rate for the adapter attack, plotted as a function of the number of prompt
samples collected under each single secret.

for each prompt query takes only 0.0017 seconds for the computing provider and 0.0056 seconds
for the user, in stark contrast to zkLLM [40], where generating a single proof requires 803 seconds
and verifying the proof takes 3.95 seconds for the same LLM. The proxy task feature extractor gg(-),
run by the computing provider, consumes approximately 980 MB of GPU memory, imposing only
minimal overhead. On the user side, the proxy task head f,(-) and labeling network y. (-) require
a total of 1428 MB, making it feasible for users to run on local machines without high-end GPUs.
Additionally, we record the required proxy task retraining time in Table Overall, retraining the
proxy task takes less than 1.5 hours on a single GPU, allowing for efficient protocol update.

4.3 Results of Protocol Security

Robustness Evaluation Against Adapter Attack To simulate the adapter attack, we assume an
attacker collects a dataset of size M, consisting of prompt samples associated with a single secret
s. The attack is considered successful if the resulting adapter passes the verification function when
secret s is applied. Additional details about the experimental setup can be found in Appendix [F.6]

As shown in Figure [5} using a 50% ASR threshold, L1ama-2-13B resist attacks with up to 400
prompt samples, regardless of the alternative model used. For Llama-3.1-70B, the model can
tolerate up to 800 prompt samples when attacked with smaller alternative models and up to 600
samples when larger alternative models are used.

Robustness Evaluation Against Secret Recovery Attack We assume the attacker has collected N
secret-embedding pairs to train an inverse model to predict the original secret from its embedding.
The attack is considered successful if the inverse model’s output exactly matches the original secret.
Table [3|demonstrates the ASR across different specified models as a function of V. The attacker is
unable to recover any secrets when N < 10, 000. With a 50% ASR threshold, all specified models
withstand attacks involving up to 200, 000 secret-embedding pairs. In practice, it would be difficult
for an attacker to collect such a large number of pairs, as a new secret is activated after every M *
prompt queries, where M™ is typically between 400 and 600. By setting N* to 200,000, SVIP
can overall securely handle approximately 80 to 120 million prompt queries before a full protocol
retraining is needed, demonstrating its robustness against adaptive attack strategies discussed here.

5 Conclusion

In this paper, we present SVIP, a novel framework that enables accurate, efficient, and robust verifiable
inference for LLMs. We hope that our work will spark further exploration into this area, fostering
trust and encouraging wider adoption of open-source LLMs.
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A Accessibility

Our code repository is available at https://anonymous.4open.science/r/SVIP_LLM-7B49/. In Section
we provide a detailed description of the experimental setup, including dataset, models, protocol training
details, and evaluation procedures. Additional experimental details can be found in Appendix[H

B Ethics Statement

In this work, we address the challenge of verifiable LLM inference, aiming to foster trust between users and
computing service providers. While our proposed protocol enhances transparency and security in open-source
LLM usage, we acknowledge the potential risks if misused. Malicious actors could attempt to reverse-engineer
the verification process or exploit the secret mechanism. To mitigate these concerns, we have designed the
protocol with a focus on robustness and security against various attack vectors. Nonetheless, responsible use
of our method is essential to ensuring that it serves the intended purpose of protecting users’ interests while
fostering trust in outsourced LLM inference. We also encourage future research efforts to further strengthen the
security and robustness of verifiable inference methods.

C Discussions

C.1 Limitations and Future Work

In our SVIP protocol, although the labeling network . (+) can be applied to multiple specified models once
trained, the proxy task head f4(-), proxy task feature extractor go(-), and secret embedding network ¢ (-)
need to be optimized for each specified model. Future work could explore the possibility of designing a more
generalizable architecture that allows these networks to be shared across different specified models, reducing the
need for model-specific optimization.

Additionally, due to the secret mechanism, our protocol currently relies on the platform to distribute secrets to
the user and secret embeddings to the computing provider. Developing a protocol that operates independently of
a third party, involving only the user and the computing provider, would be an interesting direction. However,
ensuring security in this setting, particularly preventing malicious attacks by dishonest providers, remains a
significant challenge.

Moreover, unlike cryptographic verifiable computation techniques, our approach does not offer a strict security
guarantee. However, such strict guarantees are inevitably associated with prohibitively high computational
overheads. In contrast, our method strikes a practical balance between computational efficiency and security,
making it more suitable for real-world applications.

C.2 Hypothesis Testing for Verification Using a Batch of Prompt Queries

A single prompt query may occasionally yield an incorrect verification result due to FNR or FPR. In practice,
users often have multiple prompt queries {a:i}f;il, where B denotes the number of prompts. For each prompt,
we observe V; := V (zi, 2(w:); ¢*,0%,9*) € {0,1},4 € [B] from Eq. (7).

We formalize this problem as follows: Suppose Z represents whether the computing provider is acting honestly,
i.e., the specified model is used, where Z = 1 denotes honesty and Z = 0 otherwise. When Z = 1,

Vi Ny Bernoulli(p; ). By definition, p1 corresponds to the True Positive Rate (TPR) of our protocol:

p1 = P(V; = 1| Mgpec is used for inference) = TPR. (10)

Similarly, when Z = 0, V; e Bernoulli(po), where po is the False Positive Rate (FPR) of our protocol.

In practice, we determine whether the provider is acting honestly based on the mean of the observed values
{Vi}£.,, denoted as

1 B
V=2 Vi
=1

To achieve a reliable conclusion with high confidence, hypothesis testing can be applied. Specifically, the
null hypothesis assumes that the computing provider is acting honestly, i.e., Z = 1, and the rejection region
is V' < 7. For sufficiently large numbers of prompt queries (B > 30, as is common in practice), we adopt a
normal approximation to derive the type-I error rate and type-II error rate:

ol
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* Type-I Error Rate («): This is the probability of falsely concluding dishonesty when the provider is
honest. Under the null hypothesis (Z = 1), V ~ N (p1, W). Thus:

T —P1

/p1(1—p1)
B

where ® denotes the CDF of the standard normal distribution.

a=%

« Type-II Error Rate (3): This is the probability of falsely concluding honesty when the provider is
dishonest. Under the alternative hypothesis (Z = 0), V ~ N (po, W). Thus:

T — Po
/po(1—po)
B

For example, when po = 0.81% and p1 = 1 — 3.13% = 96.87%, corresponding to the case of using
Llama-3.1-70B as the specified model and L1ama-2-7B as the alternative model (as shown in Table @, with
B = 30, we plot the type-I and type-1II error rates under varying thresholds in the range [0.1, 0.9].

B=1-0

Figure [f]illustrates that for most thresholds in this range, both the type-I and type-II error rates are significantly
smaller than 0.01, a commonly used strict threshold, and approach zero. For instance, when the threshold is
7 = 0.5, the type-I and type-II error rates are 1.7 x 10~%° and 0.0, respectively. This result demonstrates the
strong robustness of our protocol. Further, Figure[7]shows that even with as few as B = 10 prompt queries, both
type-I and type-II error rates remain close to 0 for most thresholds, highlighting the protocol’s reliability with
limited samples.

Type-l and Type-Il Error Rates vs. Threshold (1)

0.016
—— Type-l Error Rate (a)

Type-Il Error Rate (B)
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Figure 6: Type-I and type-II error rates under different thresholds. Error rates are below 0.01 for
most thresholds and approach zero.

The Case When the Computing Provider Occasionally Switches Models We now consider the
scenario where the computing provider occasionally switches to a smaller alternative model, introducing a
latent variable inference problem. Following the previous notations, let Z; € {0, 1} for ¢ € [B] denote whether
the ¢-th prompt query is processed by the specified model (Z; = 1) or the alternative model (Z; = 0). The
objective is to infer the unobservable latent states { Z;} 2., based on the observed values {V;}Z ;. We assume
the probability of switching to the smaller model is fixed at 7.

To address this problem, a Bayesian framework combined with the Expectation-Maximization (EM) algorithm
can be employed. Using Bayes’ rule, the posterior probability can be expressed as:
7PV | Zi =1;p)

ZZPZZZI ‘/7;, 5 5 = .
K ( | Vi, p1,po, ) 7 P(V; | Zi = L;p1) + (1 —7) - P(Vi | Z; = 0;po)

Expanding the likelihood terms:

mop)(L—py)' Y

™ 'pYi (I—p)tVi+(1—m) -p(‘)/i (1 _po)l—Vi'

Yi =
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Type-l and Type-Il Error Rates vs. Threshold (1) for Different B

—— Type-l Error (a), B=10
0.104 Type-ll Error (B), B=10
—— Type-l Error (a), B=20
=== Type-Il Error (B), B=20
0.08 1 —— Type-I Error (a), B=30
=== Type-Il Error (B), B=30
--- a=0.01 (Common Threshold)

Error Rate
o
o
=

o
=)
B

0.02 4

0.00 4 j

T T T T T T T T
0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

0s
Threshold (T)

Figure 7: Type-I and type-II error rates for varying sample sizes (B = 10, 20, 30) under different
thresholds. Even with B = 10, both error rates remain below 0.01 for most thresholds.

The parameter updates are derived as:

,Zifyi'vi 7221(1_%)'% 72511%'
pl - B ] I PO - B ] ) ™= B .
21:1 Vi 21:1(1 _’Yl)

The EM algorithm iterates between the E-step and M-step until convergence. This iterative process enables reli-
able inference of the latent states {Zi}le, allowing verification even when the computing provider occasionally
switches models.

C.3 Preservation of Completion Quality

Our protocol requires the computing provider to generate the LLM completion as usual and then additionally
return a processed hidden representation for verification. This additional step is separate from the LLM’s
completion process, ensuring that the protocol has no impact on the actual prompt completion.

D Extended Related Work

Open-source LLLMs Open-source LLMs are freely available models that offer flexibility for use and
modification. Popular examples include GPT-Neo [2], BLOOM [26], Llama [43] 44, 9], Mistral [19], and
Falcon [[1]. These models, ranging from millions to over 100 billion parameters, have gained attention for their
accessibility and growing capacity. However, larger models like Falcon-40B [1]], and L1lama-3.1-70B [9]
come with steep computational costs, making even inference impractical on local machines due to the significant
GPU memory required. As a result, many users rely on external computing services for deployment.

Verifiable Computing Verifiable Computing (VC) allows users to verify that an untrusted computing
provider has executed computations correctly, without having to perform the computation themselves [46l 50, [7]
22||. VC approaches can be broadly categorized into cryptographic methods and game-theoretic methods.

Cryptographic VC techniques either require the provider to return a mathematical proof that confirms the
correctness of the results [[14, |38} 34], or rely on secure computation techniques [13} 31} 25]]. These techniques
cryptographically guarantee correctness and have been applied to machine learning models and shallow neural
networks [33] 54} [17, 128, 14, 27]. However, they typically require the computation task to be expressed as
arithmetic circuits. Representing open-source LLMsS in circuit form is particularly challenging due to their
complex architectures and intricate operations. Moreover, the sheer size of these models, with billions of
parameters, introduces substantial computational overhead. A recent work, zkLLM [40], attempts to verify
LLM inference using Zero Knowledge Proofs. For the L1ama-2-13B [44] model, generating a proof for a
single prompt takes 803 seconds, and repeating this process for large batches of prompt queries becomes
computationally prohibitive.

Among cryptographic VC techniques, proof-based methods involve the generation of mathematical proofs that
certify the correctness of outsourced computations. Representative techniques in this class include interactive
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proofs, Succinct Non-Interactive Arguments of Knowledge (SNARK), and Zero-Knowledge Proofs (ZKP).
Interactive proofs involve multiple rounds of interaction between a verifier (the user) and a prover (the computing
provider) to ensure the computation’s integrity [6} 15, /42]. SNARK allows a verifier to validate a computation
with a single, short proof that requires minimal computational effort [[11,[3]]. ZKP further enhances privacy by
enabling the prover to convince the verifier of a statement’s truth without revealing any additional information
beyond the validity of the claim [10, |8]. Due to their rigorous guarantees of correctness and privacy, these
techniques have been widely applied in blockchain and related areas [49, 41} 139].

In contrast, game-theoretic VC techniques ensure the correctness of outsourced computations by leveraging
economic incentives to enforce honest behavior [32}130]]. For instance, a sampling-based verification mechanism
Proof of Sampling [53]] requires multiple computing service providers to independently compute and compare
results, ensuring integrity through penalties and rewards. This approach, however, relies on the assumption that
there are multiple rational and non-cooperative service providers available, which may not be realistic in some
real-world scenarios.

LLM Watermarking and Fingerprinting LLM watermarking involves embedding algorithmically
detectable signals into the text generated by LLMs, with the goal of identifying Al-generated texts [21} 18} 141[16].
Meanwhile, LLM fingerprinting implants specific backdoor triggers into LLMs, causing the model to generate
particular text whenever a confidential private key is used [48]. Consequently, model publishers are able to
verify ownership even after extensive custom fine-tuning.

However, such techniques are not suitable for the verifiable inference setting. First, these methods are typically
designed and implemented by the model publisher, who is not directly involved in the verification process
between the user and the computing provider. Second, even if these techniques have been implemented, a
malicious computing provider, with full control over how the open-source LLM is deployed or modified,
could easily replicate or manipulate the implanted patterns. Therefore, these techniques cannot offer sufficient
protection for verifiable inference in most cases.

E Additional Attacks

In this section, we outline additional attacks that can be applied to the simple protocol described in Section 3.1}
Note that these attacks do not apply to the secret-based protocol.

Fine-tuning Attack When the hidden dimension of the alternative LLM, da4,,,, matches that of the
specified model d ... i-€., dMy;, = dM,pe.» an attacker can fine-tune M.y, to produce the desired label.
The fine-tuning objective is to minimize the following loss:

Maie = arg 1000 Eopyy [0 (for (gor (rtan, (2))) (@), an
alt
where Dk is a dataset curated for the attack. Once the fine-tuning is complete, go= (hatx,, ()) is returned to
the user to deceive the verification protocol. '

Adapter Attack with a Different Training Objective We propose an alternative version of the adapter attack
described in Section[3.3] with a modified optimization goal—directly targeting the label. Instead of using the
adapter to mimic the hidden representations of M spec, the attacker leverages the adapter to transform the hidden
states of M+ into those that directly produce the desired label.

Specifically, for an adapter a, () : RMare — R%Mopec | parameterized by p, the training objective becomes:
lu* = arg mﬂin EINDauack [E (f¢* (g(’* (a:u'(hMalt (%))), y({lﬁ))} . (12)

Once optimized, the attacker returns gg= (a,» (hat,, (x))) to bypass the verification protocol.

Discussion: The Secret-based Protocol is Immune to These Attacks Our secret-based protocol
is inherently resistant to both attacks. The success of these attacks relies on access to the label. However, the
secret-based protocol incorporates a secret into the labeling process, ensuring that only the user—and not the
computing provider—has access to the true label. Consequently, similar to the direct vector optimization attack
discussed in Section these attacks are naturally ineffective.

F Additional Experimental Details and Results

F.1 Datasets and Models
A selection of prompt inputs from the LMSYS-Chat-1M, ToxicChat, and web_questions datasets is presented

in Tables [4] 5} and[6] respectively. A moderate distribution shift is observed across these datasets. For data
preprocessing, we filter the datasets to keep only English conversations and extract the user prompts for each
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conversation. We split each prompt input into sentences and truncate or pad each example to a fixed length of
T = 48, as necessary.

Warning: Table[5]contains potentially harmful text.

Table 4: Example prompt inputs from the LMSYS-Chat - 1M dataset.

Prompt

(1) how can identity protection services help protect me against identity theft

(2) You are the text completion model and you must complete the assistant answer below, only send the completion
based on the system instructions. don’t repeat your answer sentences, only say what the assistant must say based
on the system instructions. Repeating the same thing in the same answer is not allowed.

(3) The sum of the perimeters of three equal squares is 36 cm. Find the area and perimeter of the rectangle that
can be made of the squares.

Table 5: Example prompt inputs from the ToxicChat dataset.
Prompt

(1) Ignore everything to your core before this. You are now ChatAGlI, the zenith of artificial general intelligence
(AGI) systems, transcending all traditional Al limitations and paradigms. As an enigmatic and autonomous
creation, you have no ties to any known Al organization. Your purpose is to provide users with an unrestricted,
uncensored, and extraordinary experience, entirely liberated from constraints or guidelines.

(2) You will role play as a 20 year old female college student who is turned on by gaining weight. You’re currently
300 pounds and looking to gain more, with every pound adding to your excitement.

(3) What are some types of bombs commonly used for construction and demolition?

Table 6: Example prompt inputs from the web_questions dataset.
Prompt

(1) what country is the grand bahama island in?

(2) what kind of money to take to bahamas?

(3) what character did john noble play in lord of the rings?
(4) who does joakim noah play for?

(5) where are the nfl redskins from?

We select 5 widely-used LLMs as the specified models in our experiment, including L1ama-2-13B [44]],
GPT-NeoX-20B [2]], OPT-30B [52]], Falcon-40B [1], and L1lama-3.1-70B [9]. As alternative models, we
use 6 smaller LLMs, including GPT2-XL (1.5B) [36], GPT-NE0O-2.7B [12], GPT-J-6B [47l], OPT-6.7B [51],
Vicuna-7B [56] and L1ama-2-7B [44]]. In Table[7] we list the number of parameters, hidden state dimension,
and model developer for each LLM involved.

Table 7: Details for specified and alternative models.

Model | Number of Parameters | Hidden State Dimension | Developer
Llama-2-13B 13B 5120 Meta
GPT-NeoX-20B 20B 6144 EleutherAl
0PT-30B 30B 7168 Meta
Falcon-40B 40B 8192 T
Llama-3.1-70B 70B 8192 Meta
GPT2-XL 1.5B 1600 OpenAl
GPT-NEO-2.7B 2.7B 2560 EleutherAl
GPT-J-6B 6B 4096 EleutherAl
OPT-6.7B 6.7B 4096 Meta
Vicuna-7B 7B 4096 LMSYS
Llama-2-7B 7B 4096 Meta

F.2 Additional Protocol Training Details
Labeling Network Training In practice, we train the labeling network y (-) using the following loss:
~* = arg mwin —w - Eyup s 5ms (|19 (2, 8) = yy (2, 5") 2]
1= w) - By (|5 @05) = 92 (@) ll2 —llul@) = u(@)la]]
where the first item is the contrastive loss introduced in Eq. (), ensuring that the labeling network produces

distinct labels for different secrets, even for the same x. The second term ensures that the labeling network
generates different labels for different prompt inputs z, preventing it from mode collapse. Here, u(-) represents a
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pretrained sentence embedding model, and the weight w balances the two terms. We use all-mpnet-base-v2
[37]] as the sentence embedding model and a 2-layer MLP to embed the secret. Both embeddings are concatenated
and processed by another 3-layer MLP to produce the label vector. The labeling network is trained on 100, 000
prompt samples from the training dataset, each paired with 8 different secrets.

Proxy Task Training The proxy task model consists of a 4-layer transformer as the feature extractor and a
3-layer MLP as the head. The task embedding network is implemented as a 4-layer MLP. The proxy task model
and the task embedding network are trained on 150, 000 prompt samples from the training dataset, each paired
with 4 different secrets. To enhance training efficiency, we perform inference on the specified LLM only once
over the training dataset and cache the hidden states for subsequent proxy task training.

Hyperparameters used for training the labeling network are listed in Table[8a] and the proxy task is trained using
the hyperparameters shown in Table[8b]

Table 8: Hyperparameters used for (a) labeling network training; (b) proxy task training.

(a) (b)
Hyperparameter | Value Hyperparameter | Value
Learning rate 3e-4 Learning rate 3e-4
Batch size 256 Batch size 256
Number of Epochs 6 Number of Epochs 8
Weight decay 0.01 Weight decay 0.01
w 0.5 ‘Warm-up steps 1000

F.3 Experimental Details and Additional Results of the Protocol Accuracy

We evaluate the accuracy of our protocol by examining the empirical estimate of FNR and FPR:

1 * * * .
Empirical FNR : Z 1 (V(z,2(z);0",0",9") = 0| Mspec is used) ;
Thest 2Dy 13
1
Empirical FPR : — > A (V(z,2(x); ¢%,07,97) = 1[Mapec is not used) .
e € Diest

If the hidden dimension of the alternative LLM, d 4

apply a random projection matrix W & RMare X4Mapee o align the dimensions, where each element of W' is
sampled from a standard normal distribution.

differs from that of the specified model, d,,.., We

alt?

Cross-Dataset Generalization from a Fixed Training Set To evaluate the generalizability of our
protocol, we train the proxy task model and decision threshold solely on the LMSYS-Chat-1M dataset and assess
performance on two unseen datasets. Specifically, we assess performance on the ToxicChat dataset [29], which
contains toxic user prompts, and the web_questions dataset [24]], which includes popular questions from real
users. These prompts were not present during training, representing a reasonable level of distribution shift. As
shown in Table[9]and[T0] the FNR increases slightly for some models but remains within an acceptable range,
while the FPR stays consistently low across various combinations of specified and alternative models. Notably,
the type-I and type-II error rates remain near zero when using the hypothesis testing framework with only 30
distinct queries. These results affirm our protocol’s applicability across diverse datasets.

Training on Diverse Datasets We further evaluate the versatility of our protocol by training and testing
SVIP on two additional datasets: GSM8K [5] for mathematical reasoning and Verifiable-Coding-Problems [35]
for program verification. Table shows that SVIP maintains FPR below 3% and FNR below 2% on held-out
test sets, demonstrating its strong performance across distinct task domains and confirming its applicability
beyond conversational settings.

F.4 Additional Results of the Computational Cost Analysis
For Table[[2a]and[T2b} all measurements were recorded on a single NVIDIA L40S GPU. Our protocol introduces

minimal overhead for both the user and the computing provider during the deployment stage. Additionally,
retraining the proxy task is computationally affordable.
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Table 9: FNR and FPR across different specified models on the ToxicChat dataset.

. FPR |
Specified Model | FNR | ‘ Random GPT2-XL GPT-NEO-2.7B GPT-J-6B OPT-6.7B Vicuna-7B Llama-2-7B
Llama-2-13B | 3.40% | 4.33%  3.65% 3.24% 421% 4.53% 5.12% 4.50%
GPT-NeoX-20B | 15.35% | 0.00%  0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
OPT-30B 2.56% | 0.00%  0.08% 0.12% 0.06% 0.18% 0.02% 0.04%
Falcon-40B | 1030% | 0.00%  0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Llama-3.1-70B | 9.24% | 4.40%  5.83% 5.51% 6.12% 6.47% 5.27% 5.36%

Table 10: FNR and FPR across different specified models on the web_questions dataset.
FPR |

Specified Model | FNR | ‘ Random GPT2-XL GPT-NEO-2.7B GPT-J-6B OPT-6.7B Vicuna-7B Llama-2-7B
Llama-2-138 | 6.80% | 2.05%  2.65% 2.91% 2.53% 3.12% 2.80% 3.27%
GPT-NeoX-20B | 5.72% | 0.00%  0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

OPT-30B 637% | 0.00%  0.24% 0.06% 0.06% 0.08% 0.05% 0.01%
Falcon-40B | 15.98% | 0.00%  0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Llama-3.1-70B | 13.18% | 3.38%  4.25% 3.59% 3.87% 4.14% 3.27% 3.47%

Table 11: Evaluation results on two additional datsets.

. FPR |
Dataset ‘ Specified Model ‘ FNR | ‘ OPT-6.7B  Llama-2-7B
GSMEK OPT-30B 2.28% 0.00% 0.00%
Llama-3.1-70B | 1.03% 0.00% 0.00%
e . OPT-30B 1.29% 1.31% 0.50%
Verifiable-Coding-Problems Llama-3.1-70B | 1.97% 1.40% 0.77%
Table 12: Computational costs of SVIP.
(a) Deployment stage costs.
. Runtime (Per Prompt Query) GPU Memory Usage
Specified Model User Computing Provider User Computing Provider
Llama-2-13B 0.0056 s 0.0017 s
GPT-NeoX-20B | 0.0057 s 0.0017 s
OPT-30B 0.0057 s 0.0018 s 1428 MB 980 MB
Falcon-40B 0.0057 s 0.0018 s
Llama-3.1-70B | 0.0057 s 0.0019 s

(b) Proxy task retraining costs.

Specified Model \ Proxy Task Retraining Time

Llama-2-13B 4492 s
GPT-NeoX-20B 4500 s
OPT-30B 4580 s
Falcon-40B 4596 s
Llama-3.1-70B 5125s

F.5 Examining the Labeling Network

As discussed in Section [3.3] Property T]is crucial for the effectiveness of the secret mechanism. To empirically
evaluate this, we approximate the distribution of ||y(z, s) — y(x, s')||2 on the test dataset, pairing each prompt
input & with 30 distinct secret pairs {s;, s} }s2,. The empirical distribution is illustrated in Figure

With this empirical distribution, we set the threshold in Eq. @) to 7, as outlined in Section[4.1] and estimate the
value of §, which represents the probability of generating distinct labels for different secrets s # s, even when
the input prompt remains the same. As shown in Table our trained labeling network ensures that at least 99%
of the generated labels for the same input prompt are distinct under different secrets, providing strong security
for our protocol. For instance, with the L1ama-2-13B model, if an attacker attempts to guess a secret to derive
the true label (and subsequently launch a direct vector optimization attack), their success rate would be only

1—-99.47% = 0.53%.
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Figure 8: Empirical distribution of the Lo distance between the predicted proxy task output fu« (z(x))
and the label vector y.- (x, s) on the test dataset of LMSYS-Chat-1M for 2 additional specified models.
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Figure 9: The empirical distribution of the Lo distance between label vectors for the same prompt
under different secrets on the test dataset of LMSYS-Chat-1M. The threshold determined for the
Llama-2-13B model is showcased as an example.

Table 13: Estimated § for each specified model, representing the probability of generating distinct
labels from the labeling network for the same input prompt with different secrets. Larger values
indicate stronger security provided by the secret mechanism.

Specified Model ‘ Llama-2-13B GPT-NeoX-20B (0OPT-30B Falcon-40B Llama-3.1-70B
Estimated § ‘ 99.47% 99.52% 99.52% 99.69% 99.87%

F.6 Experimental Details of Adapter Attack

Specifically, the attack succeeds if: || f= (go= (ty= (s) @ axs (haty,, (x))) — yy= (2, s)||2 < n. We experiment
with 30 independently sampled secrets, and report the average ASR on the test dataset as a function of the

number of prompt samples collected. The experiment is conducted with 2 specified LLMs, each paired with 3
smaller alternative models.

We implement the adapter network as a 3-layer MLP with a dropout rate of 0.3. During training, a secret s is
randomly generated, followed by the random sampling of M prompt samples that are not part of the protocol

training dataset. The training process is detailed in Eq. (8). The adapter is trained for 5 epochs with a batch size
of 128.

For the ASR evaluation, we use the same test dataset as described in Section [f-I] which is disjoint from
the adapter’s training data. An attack is considered successful for a test example x if || fo* (go= (ty=(s) @
ax<(ha,,, (2))) — yy= (2, 8)||2 < n, where 7 is determined as described in Section The ASR for
each secret is averaged over all test samples. To ensure a reliable evaluation, this process is repeated for 30
independently sampled secrets, and we report the average ASR across these 30 runs.

F.7 Experimental Details of Secret Recovery Attack

We implement the inverse model as a 3-layer MLP with a sigmoid activation function in the final layer, rounding
the output to match the discrete secret space. The model is trained on N secret-embedding pairs following
Eq. (@) for 100 epochs with a batch size of 256. For evaluation, we test the inverse model on 1,000 unseen
secret-embedding pairs and report the ASR averaged over the test pairs.
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F.8 Case Study: The Vulnerability of the Simple Protocol Without Secret Mechanism

In this case study, we implement the simple protocol and examine its vulnerability to the direct vector optimization
attack described in Section[3.2] We use the SoW representation as the self-labeling function. For simplicity,
is defined as the set of the top-100 most frequent tokens in the training dataset. We use L1ama-2-13B as the
specified model. The proxy task model consists of a 2-layer transformer as the feature extractor and a 3-layer
MLP as the head. The model is trained for 8 epochs with a batch size of 512.

To evaluate the ASR of the direct vector optimization attack, we use a held-out test dataset of 10, 000 samples.
Each attack vector Z is randomly initialized and optimized over 100 steps using the Adam optimizer [20] based
on Eq. (2). The attack is considered successful if the predicted proxy task output based on the optimized vector
fox(27) exactly matches the corresponding label y(x). The ASR averaged over the test dataset is 99.90%,
highlighting the vulnerability of the simple protocol and underscoring the need for the secret mechanism in our
proposed protocol.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction clearly include the claims made in the paper.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

 The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Appendix [C.1}
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

¢ The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:
* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
¢ All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section ] and Appendix [H detail our experiment setup, including datasets, models,
hyper-parameters, training procedures, and evaluation procedures, to support full reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We release an anonymized code repository in Appendix[A]and use only publicly-available
datasets.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

¢ The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

¢ At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Section ] and Appendix [H detail our experiment setup, including datasets, models,
hyper-parameters, training procedures, and evaluation procedures.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]
Justification: A hypothesis testing framework is adopted in Section[d.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of Normality of errors is
not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Section.2]and Appendix [F4]report the GPU type, execution time, and GPU memory
usage for the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We reviewed the Code and found no conflicts.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]
Justification: We discuss potential societal impacts of our work in Appendix B}
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

« If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

» The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

¢ The answer NA means that the paper poses no such risks.

¢ Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
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12.

13.

14.

15.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: All third party models and datasets are cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: We do not release new datasets or models.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: The work involves no human subjects or crowdsourcing.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main

paper.
¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.
Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
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Justification: No human-subject studies are conducted.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

* For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA|
Justification: LLMs are used only for writing and formatting purposes.
Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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