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Abstract

The ever-increasing size of open-source Large Language Models (LLMs) renders1

local deployment impractical for individual users. Decentralized computing has2

emerged as a cost-effective solution, allowing individuals and small companies to3

perform LLM inference for users using surplus computational power. However, a4

computing provider may stealthily substitute the requested LLM with a smaller,5

less capable model without consent from users, thereby benefiting from cost6

savings. We introduce SVIP, a secret-based verifiable LLM inference protocol.7

Unlike existing solutions based on cryptographic or game-theoretic techniques,8

our method is computationally effective and does not rest on strong assumptions.9

Our protocol requires the computing provider to return both the generated text10

and processed hidden representations from LLMs. We then train a proxy task on11

these representations, effectively transforming them into a unique model identifier.12

With our protocol, users can reliably verify whether the computing provider is13

acting honestly. A carefully integrated secret mechanism further strengthens its14

security. We thoroughly analyze our protocol under multiple strong and adaptive15

adversarial scenarios. Our extensive experiments demonstrate that SVIP is accurate,16

generalizable, computationally efficient, and resistant to various attacks. Notably,17

SVIP achieves false negative rates below 5% and false positive rates below 3%,18

while requiring less than 0.01 seconds per prompt query for verification.19

1 Introduction20

In recent years, open-source Large Language Models (LLMs) have achieved unprecedented success21

across a broad array of tasks and domains [44, 2, 26, 19], while remaining freely accessible. How-22

ever, as model sizes increase, so do their computational demands [23]. As a result, decentralized23

computing [45] has gained significant attention as a cost-effective solution for users with limited24

local computational resources. In this setting, a user lacking computational power relies on decentral-25

ized computing providers to perform LLM inference. These providers, often individuals or small26

companies with surplus resources, offer computational power at competitive prices. Commercial27

platforms facilitate such interactions by connecting both parties. Real-world examples include Golem28

Network, Akash Network, Render Network, Spheron Network, Hyperbolic, and Vast.ai.29

However, unlike reputable companies with well-established credibility, computation outputs from30

decentralized computing providers may not always be trustworthy. Specifically, to ease the de-31

ployment of LLM inference, computing providers often provide API-only access to users, hiding32

implementation details. A new risk arises in this setting: how to ensure that the outputs from a33

computing provider are indeed generated by the requested LLM? For instance, a user might request34

the Llama-3.1-70B model for complex tasks, but a dishonest computing provider could substitute35

the smaller Llama-2-7B model for cost savings, while still charging for the larger model. The smaller36

model demands significantly less memory and processing power, giving the computing provider a37
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Figure 1: The problem setting of verifiable inference for LLMs. (a) Our protocol involves three
parties. (b) A user requests the computing provider (referred to as provider in the figure) to run
inference on their prompt using the Llama-3.1-70B model. Without verification, they have no way
to confirm if the specified model is used. (c) Our proposed protocol solves this by requiring the
provider to return processed hidden representations from the LLM, enabling the user to verify through
a verification function whether the correct model was used for inference. Specifically, the hidden
representations are compressed to reduce the computational overhead.
strong incentive to cheat. Restricted by the black-box API access, it is difficult for the user to detect38

such substitutions.39

Without assurance that users are receiving the service they specified and paid for, they may lose trust40

and abandon the platform. To prevent this outcome and maintain profitability, the platform must41

ensure that user-specified models are faithfully executed. This highlights the need for verifiable42

inference, a mechanism designed to ensure that the model specified by the user is the one actually43

used during inference.44

Related Work A practical verifiable inference solution for LLMs must accurately confirm that45

the specified model is being used during inference while maintaining computational efficiency.46

Existing approaches face significant challenges that limit their applicability. Cryptographic verifiable47

computing methods, which rely on generating mathematical proofs [50, 38] or secure computation48

techniques [13, 25] often impose high computational costs, making them unsuitable for real-time LLM49

inference. For instance, zkLLM, a recent Zero Knowledge Proof-based technique, requires over 80350

seconds for a single prompt query [40]. Game-theoretic protocols involve the interaction of multiple51

computing providers with carefully designed penalties and rewards [53], assuming all providers52

are rational, flawless, and non-cooperative, which might be unrealistic for certain system setups in53

practice. Meanwhile, watermarking and fingerprinting techniques [21, 48] are mostly implemented54

by model publishers, making them unsuitable for verifiable inference, where the verification primarily55

occurs between the user and the computing provider. We leave an extended discussion of related56

work to Appendix D.57

In this paper, we propose SVIP, a Secret-based Verifiable LLM Inference Protocol using hidden58

representations. Our protocol requires the computing provider to return not only the generated text59

but also the processed hidden state representations from the LLM. We carefully design and train a60

proxy task exclusively on the hidden representations produced by the specified model, effectively61

transforming these representations into a distinct identifier for that model. During deployment, users62

can verify whether the processed hidden states returned by the computing provider come from the63

specified model by assessing their performance on the proxy task. If the returned representations64

perform well on this task, it provides strong evidence that the correct model was used for inference.65

Our key contributions are:66

• We systematically formalize the problem of verifiable LLM inference (§2) and propose an innovative67

protocol that leverages processed hidden representations (§3.1).68

• The security of our protocol is further enhanced by a novel secret-based mechanism (§3.2). We69

provide a thorough discussion and analysis of various strong and adaptive attack scenarios (§3.3).70

• Our comprehensive experiments with 5 specified open-source LLMs (from 13B to 70B) demonstrate71

the effectiveness of SVIP: it achieves an average false negative rate of 3.49%, while keeping the72

false positive rate below 3% across 6 smaller alternative models (§4.1). SVIP introduces negligible73
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Table 1: Comparison of simple approaches and our proposed protocol based on the five criteria. A
checkmark (✓) indicates that the criterion is satisfied, while a cross (✗) indicates it is not. SVIP is the
only method that satisfies all five criteria.

Approach Low FNR Low FPR Efficiency Completion Quality Robustness

Benchmark Prompt Testing ✓ ✓ ✗ ✓ ✗

Binary Classifier on Hidden States ✓ ✓ ✓ ✓ ✗

SVIP (Ours) ✓ ✓ ✓ ✓ ✓

overhead (less than 0.01 seconds per prompt query) for both users and computing providers (§4.2).74

Furthermore, SVIP can effectively and securely handle 80 to 120 million prompt queries in total after75

a single round of protocol training, with the update mechanism further bolstering security (§4.3).76

2 Problem Statement77

The verifiable inference problem involves three parties, as illustrated in Figure 1:78

1. User: An individual who lacks sufficient computing resources and seeks to perform expensive79

LLM inference tasks on given prompts using decentralized computing providers at a low cost.80

2. Computing Provider: Decentralized entities, often small companies or individuals, that rent out81

computational power at competitive prices.82

3. Platform: A commercial platform that profits by connecting users and computing providers.83

Importantly, the platform itself does not require significant computational resources, as its primary84

role is to facilitate and monitor the utilization of computational resources from decentralized providers.85

Threat Model To reduce costs, a computing provider may not actually use the LLM the user86

specifies. Instead, it may substitute a significantly smaller model, which returns an inferior result. It87

may also attempt to evade detection by actively concealing dishonest behavior.88

The Incentive and Goal of Verifiable Inference To address this threat, platforms are commercially89

incentivized to maintain user trust by monitoring provider behavior, ensuring that providers cannot90

cheat. Trust in the platform underpins its reputation and business model; if users cannot trust that91

model inference is faithfully executed, they are likely to abandon the platform, leading to significant92

financial and operational losses.93

To mitigate this risk, the platform designs and implements a verification protocol that allows users to94

verify, with high confidence, whether the computing provider used the specified model for inference.95

Note that during deployment, the protocol should operate primarily between the user and the provider,96

with minimal platform involvement. A satisfactory protocol should meet the following criteria:97

(1) Low False Negative Rate (FNR): The protocol should minimize cases where the computing98

provider did use the specified LLM for inference but is incorrectly flagged as not using it. (2) Low99

False Positive Rate (FPR): The protocol should rarely confirm that the computing provider used the100

specified LLM if it actually used another model. (3) Efficiency: The verification protocol should be101

computationally efficient and introduce minimal overhead for both the computing provider and the102

user. (4) Preservation of Completion Quality: The protocol should not compromise the quality of103

the prompt completion returned by the computing provider. (5) Robustness: The protocol should104

maintain low FNR and FPR even against adversarial providers attempting to evade detection.105

2.1 Simple Approaches Do Not Meet All the Criteria106

Table 1 evaluates several straightforward approaches for verifiable LLM inference, as well as our107

proposed protocol (§3), against the five criteria. All naive approaches fail to satisfy at least one108

criterion, underscoring the necessity of our method. We exclude solutions that involve multiple com-109

puting providers (e.g., cross-verifying results across providers) because such approaches significantly110

increase user costs, making them impractical for widespread adoption.111

Benchmark Prompt Testing The user curates a small set of prompt examples from established112

benchmarks and sends them to the computing provider. If the provider’s performance significantly113

deviates from the reported benchmark metrics for the specified model, the user may suspect dishonest114

behavior. However, a malicious provider can easily bypass this method by detecting known benchmark115

prompts and selectively applying the correct model only for those cases, while using an alternative116

model for all other prompt queries. Additionally, testing such benchmark prompts also increases the117

user’s inference costs.118
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Figure 2: Illustration of the motivation behind our framework. The proxy task is trained solely on
hidden states from the specified LLM Mspec. During deployment, strong performance on the proxy
task indicates that the provider used Mspec as specified, while poor performance suggests otherwise.

Binary Classifier on Hidden States The user can request the computing provider to return hidden119

representations from the LLM used for inference, and train a binary classifier on these representations120

to verify if they come from the specified model. However, a simple attack involves the provider121

caching hidden representations from the correct model that are unrelated to the user’s input. The122

dishonest provider could then use a smaller LLM for inference and return these cached irrelevant123

representations to deceive the classifier while saving costs.124

3 Methodology125

Motivation It is often challenging to verify whether a computing provider is using an alternative126

LLM for inference based solely on the returned completion text1. Our framework addresses this by127

requiring the computing provider to return not only the generated text but also the processed hidden128

state representations from the LLM inference process.129

We design and train a proxy task specifically to perform well only on the hidden representations130

generated by the specified model during the protocol’s training stage. The intuition behind is that131

the proxy task transforms the hidden representations into a unique identifier for the model. During132

deployment, the user can evaluate the performance of the returned hidden states on the proxy task.133

Strong performance on the proxy task indicates that the correct model was used for inference, while134

poor performance suggests otherwise. Figure 2 provides an illustration.135

Our approach does not depend on expensive cryptographic proofs or protocols, and is highly efficient.136

Furthermore, it does not involve retraining or fine-tuning the LLMs, operates independently of the137

model publisher, and can be applied to any LLM with publicly available weight parameters, making138

it widely applicable.139

Notations Let x ∈ V∗ denote the prompt query from user, where V∗ represents the set of all140

possible string sequences for a vocabulary set V . The specified LLM and alternative LLM are denoted141

as Mspec and Malt, respectively.142

3.1 A Simple Protocol Based on Hidden States143

Protocol Overview For any LLM M, let hM(x) ∈ RL×dM represent the last-layer hidden144

representations of x produced by M, where L is the length of the tokenized input x, and dM denotes145

the hidden dimension of M. The computing provider receives x from the user, runs M, and returns146

hM(x) to user for subsequent verification. However, to reduce the size of the hidden states returned,147

we additionally apply a proxy task feature extractor network gθ(·) : RL×dM → Rdg parameterized148

by θ, where dg represents the proxy task feature dimension. The computing provider now also runs149

gθ(·) and returns a compressed vector z(x) := gθ(hM(x)) of dimension dg to the user, significantly150

reducing the communication overhead. Specifically, for each prompt query, the compressed vector151

only takes approximately 4 KB when dg is set to 1024.152

The user is required to perform two tasks locally: obtaining the predicted proxy task output and153

the label. First, the user runs fϕ(·), using the returned proxy task feature z(x) as input to compute154

1To empirically demonstrate this, we train a binary classifier to distinguish between output texts from a
specified model (LlaMA-2–13B) and six smaller alternatives. Using 90,000 prompts for training and 10,000 for
testing, the classifier (BERT-base-uncased) achieves an FNR of 36.1% and an FPR of 58.9%.
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(a) Simple Protocol (b) Secret-based Protocol
Figure 3: Illustration of (a) the simple protocol (Section 3.1); (b) secret-based protocol (Section 3.2).

fϕ(z(x)). Here, fϕ(·) : Rdg → Y is the proxy task head parameterized by ϕ, where Y denotes the155

label space. Second, the user applies a labeling function for the proxy task. We adopt a self-labeling156

function y(x) : V∗ → Y , which derives the label directly from the input, eliminating the need for157

external labels or specialized annotators2. The label can either be a scalar or a vector.158

Finally, the user checks whether fϕ(z(x)) matches y(x). Our training process below ensures that,159

with high probability, fϕ(z(x)) = y(x) when Mspec is used for inference, and that this does not hold160

for other models, as the proxy task is exclusively trained on the hidden representation distribution161

induced by Mspec. This completes our protocol. Refer to Figure 3a for a detailed illustration.162

Proxy Task Training With a properly defined loss function ℓ : Y × Y → R and a training dataset163

D, the platform trains the proxy task according to the following objective:164

ϕ∗, θ∗ = argmin
ϕ,θ

Ex∼D
[
ℓ
(
fϕ(gθ(hMspec

(x))), y(x)
)]
.

Protocol Deployment With the optimized ϕ∗ and θ∗, we define the verification function as165

V (x, z(x);ϕ∗, θ∗) = 1 (fϕ∗(z(x)) = y(x)), where z(x) = gθ∗(hM(x)) is returned by the comput-166

ing provider. If the value of the verification function is 1 (or 0), we conclude that the computing167

provider is indeed (or is not) using Mspec for inference with high probability. Now, the low FNR168

and low FPR criteria introduced in Section 2 can be formally expressed as follows:169

Low FNR : P (V (x, z(x);ϕ∗, θ∗) = 0 | Mspec used) ≤ α;

Low FPR : P (V (x, z(x);ϕ∗, θ∗) = 1 | Mspec not used) ≤ β.
(1)

Here α and β are predefined thresholds. While a single prompt query may occasionally yield an170

incorrect verification result due to FNR or FPR, in practice, users can perform the verification over171

multiple distinct queries and apply a hypothesis testing to reach a final single conclusion with high172

confidence. Refer to Section 4.1 and Appendix C.2 for a detailed discussion.173

3.2 SVIP: A Secret-based Protocol for Verifiable LLM Inference174

From Simple Protocol to Secret-based Protocol The simple protocol, despite its strong potential175

in discriminating whether the specified model is actually used, is vulnerable to malicious attacks176

from the computing provider. A dishonest provider may attempt to bypass the verification process177

without running Mspec. Since all the provider needs to return is a vector of dimension dg , an attacker178

could adversarially optimize a vector z̃ ∈ Rdg directly, without actually running gθ∗(·) and using179

any LLM. We refer to this as a direct vector optimization attack. Specifically, if the self-labeling180

function is public, the adversary can run the labeling function y(x) themselves for each input x and181

2For instance, we can define y(x) as the Set-of-Words (SoW) representation of the input x, which captures the
presence of each word in a fixed vocabulary, regardless of frequency. As a concrete example, if V = {a, b, c, d}
and x = “abcc”, the SoW label y(x) would be a four-dimensional vector (1, 1, 1, 0), indicating whether each
token in V appears in x.

5



then directly find z̃ so that182

z̃∗ = argmin
z̃
ℓ (fϕ∗(z̃), y(x)) . (2)

Ultimately, z̃∗ is returned to the user to deceive the verification protocol. As shown in Appendix F.8,183

this attack achieved an attack success rate (ASR) of 99.90%, indicating that the protocol’s security184

requires further enforcement.185

To strengthen the protocol’s security, we introduce a “secret" mechanism. A complete illustration186

is provided in Figure 3b. Particularly, the platform assigns a “secret” s ∈ S exclusively to the user,187

which is never shared with the computing provider. Here, S represents the secret space. For example,188

S can be defined as the space of ds-dimensional binary vectors, represented as {0, 1}ds .189

Introducing Secret into the Self-labeling Function The self-labeling function with secret is now190

defined as y(x, s) : V∗ × S → Y . The property below is essential for an ideal self-labeling function.191

Property 1 (Secret Distinguishability). For the same input x, given two different secrets s′ ̸= s, with192

a pre-defined lower-bound probability δ, the resulting labels should be different with high probability:193

P(y(x, s) ̸= y(x, s′)) ≥ δ. (3)

If Y is a continuous space, with a pre-defined threshold, this property is equivalent to:194

P(∥y(x, s)− y(x, s′)∥2 ≥ threshold) ≥ δ. (4)

195 Property 1 ensures that a malicious computing provider, without access to the specific s, cannot196

determine or naively guess the true label, thus rendering the direct vector optimization attack197

ineffective. Meanwhile, the user, with knowledge of s, can still compute the correct label.198

A simple rule-based self-labeling function (e.g., the SoW representation) cannot ensure that Property199

1 holds. To enforce this property, we introduce a trainable labeling network yγ(x, s) : V∗×S → Rdy200

parameterized by γ, which takes x ∈ V∗ and s ∈ S as input and outputs a continuous label vector of201

dimension dy . This network is trained with the following contrastive loss:202

γ∗ = argmin
γ

−Ex∼D,s,s′∼S [∥yγ(x, s)− yγ(x, s
′)∥2] . (5)

Introducing Secret into the Proxy Task Once the labeling network is optimized, we also need203

to include the secret s into the proxy task. Our design is to embed s as a task token using a secret204

embedding network (e.g., an MLP), denoted as tψ(s) : S → RdM , parameterized by ψ. Note that205

this secret embedding network tψ(s) is only kept to the platform. Then, the platform distributes206

tψ(s) to the computing provider, who concatenates tψ(s) with hM(x), runs gθ(·), and returns207

z(x) = gθ(tψ(s)⊕ hM(x)), where ⊕ denotes concatenation.208

The training objective is now modified by incorporating randomly sampled secrets during training:209

ϕ∗, θ∗, ψ∗ = arg min
ϕ,θ,ψ

Ex∼D,s∼S

[
ℓ
(
fϕ(gθ(tψ(s)⊕ hMspec(x))), yγ∗(x, s)

)]
. (6)

As before, the user receives z(x) from the computing provider. However, now that Y is a continuous210

space, a threshold η is required to determine whether the predicted proxy task output fϕ∗(z(x))211

matches the label vector yγ∗(x, s). Specifically, fϕ∗(z(x)) is considered a match to yγ∗(x, s) if the212

L2 distance between them is below the pre-defined threshold η, indicating Mspec was actually used:213

V (x, z(x);ϕ∗, θ∗, ψ∗) = 1 (∥fϕ∗(z(x))− yγ∗(x, s)∥2 ≤ η) . (7)

In practice, we propose setting the threshold based on the conditional empirical distribution of214

d(x, s) := ∥fϕ∗(z(x)) − yγ∗(x, s)∥2, given that Mspec is used for inference. We select the upper215

95th percentile to ensure a FNR of 5%.216

3.3 Security Analysis217

As previously discussed, the direct vector optimization attack described in Eq. (2) is no longer feasible218

due to the introduction of the secret mechanism. In this section, we discuss other potential attacks as219

a security analysis towards our protocol. Additional possible attacks are discussed in Appendix E.220
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Adapter Attack Under Single Secret A malicious attacker could attempt an adapter attack if they221

collect enough prompt samples D′ = {xi}Mi=1 under a single secret s. The returned vector from an222

honest computing provider should be z(x) = gθ∗(tψ∗(s) ⊕ hMspec
(x)). The attacker’s goal is to223

train an adapter that mimics the returned vector, but by using an alternative LLM, Malt.224

To this end, we define the adapter aλ(·) : RdMalt → RdMspec , parameterized by λ, which transforms225

the hidden states of Malt to approximate those of Mspec. The returned vector is then gθ∗(tψ∗(s)⊕226

aλ(hMalt
(x))). The attacker’s objective is to minimize the L2 distance between the returned vector227

generated by Mspec and the vector produced by Malt with the adapter:228

λ∗ = argmin
λ

Ex∼D′∥gθ∗(tψ∗(s)⊕ hMspec
(x))− gθ∗(tψ∗(s)⊕ aλ(hMalt

(x)))∥2. (8)

By minimizing this objective, the attacker seeks to make the output of Malt with the adapter229

indistinguishable from that of Mspec, effectively bypassing the protocol. Once the adapter is well-230

trained, as long as the secret s remains unchanged, the attacker can rely solely on Malt in future231

verification queries without being detected.232

Secret Recovery Attack Under Multiple Secrets The secret mechanism is enforced by distributing233

the secret s to the user, while only providing the secret embedding tψ∗(s) to the computing provider.234

However, a sophisticated computing provider may attempt to recover the original secret by posing as235

a user and collecting multiple secrets and corresponding embeddings. A straightforward approach236

would involve recovering s from tψ∗(s), thereby undermining the secret mechanism.237

Suppose the attacker has curated a dataset of secret-embedding pairs, Dsecret = {sj , tψ∗(sj)}Nj=1.238

The attacker could then train an inverse model iρ : RdM → S , parameterized by ρ, to map the secret239

embedding back to the secret space. If S is continuous, the training objective can be formalized as:240

ρ∗ = argmin
ρ

Es∼Dsecret∥iρ(tψ∗(s))− s∥2. (9)

Once the inverse model is optimized, the true label y(x, s) again becomes accessible to the malicious241

provider. Consequently, the secret-based protocol effectively collapses to the simple protocol without242

secret protection, leaving it vulnerable to the direct vector optimization attack.243

Defense: The Update Mechanism To defend against the attacks discussed above, we propose244

an update mechanism for our secret-based protocol: (1) In defense of the adapter attack, once the245

prompt queries for a given secret reach a pre-defined threshold M∗, the next secret is activated.246

Meanwhile, we enforce a limit on how often the next secret can be activated, preventing attackers247

from acquiring too many secrets within a short period. (2) When a total of N∗ secrets have been used,248

the entire protocol should be retrained by the platform3. In practice, the values of M∗ and N∗ can be249

determined empirically, as discussed in Section 4.3.250

4 Experiments251

Experiment Setup To simulate realistic LLM usage scenarios, we primarily use the252

LMSYS-Chat-1M conversational dataset [55], which consists of one million real-world conversa-253

tions. Results on additional datasets are provided in Appendix F.3. For the models, we select 5254

widely-used LLMs as the specified models, ranging in size from 13B to 70B parameters and spanning255

multiple model families. As alternative models, we use 6 smaller LLMs, each with parameters up256

to 7B. Refer to Appendix F.1 for details. The labeling network yγ(·) uses a pretrained sentence257

transformer [37] to embed the text input x and an MLP to embed the secret s, where s ∈ {0, 1}ds258

and ds is set to 48. The outputs of both embeddings are concatenated and passed through another259

MLP to produce a continuous label vector of 128 dimensions. The proxy task feature extractor gθ(·)260

is a 4-layer transformer, while both the proxy task head fϕ(·) and task embedding network tψ(·) are261

implemented as MLPs. Full details can be found in Appendix F.2.262

4.1 Results of Protocol Accuracy263

We evaluate the accuracy of our protocol by examining the empirical estimate of FNR and FPR, as264

outlined in Eq. (13). To apply the verification function in Eq. (7), we first determine the threshold η265

3Specifically, this retraining can be performed using a different random seed and training recipe. As shown
in Section 4.2, the retraining process is efficient.
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Table 2: FNR and FPR on the test dataset of LMSYS-Chat-1M. Our protocol keeps FNR under 5%
and FPR under 3% across all scenarios. We implement a Random baseline where the computing
provider generates random hidden representations directly without using any LLM.

Specified Model FNR ↓ FPR ↓
Random GPT2-XL GPT-NEO-2.7B GPT-J-6B OPT-6.7B Vicuna-7B Llama-2-7B

Llama-2-13B 4.41% 1.97% 1.90% 1.77% 1.75% 2.03% 2.44% 2.04%
GPT-NeoX-20B 3.47% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

OPT-30B 3.42% 0.05% 0.33% 0.61% 0.47% 0.83% 0.34% 0.35%
Falcon-40B 3.02% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00%

Llama-3.1-70B 3.13% 0.26% 1.97% 1.04% 1.98% 2.07% 0.90% 0.81%

Figure 4: Empirical distribution of the L2 distance between the predicted proxy task output fϕ∗(z(x))
and the label vector yγ∗(x, s) on the test dataset of LMSYS-Chat-1M. Each figure corresponds to a
different specified model. The distributions compare the L2 distances when the specified model is
used versus various alternative models. The clear separation between the distributions, marked by the
vertical threshold line, ensures the high accuracy of our protocol in distinguishing between correct
and incorrect model usage. More examples can be found in Figure 8.

on a validation dataset during proxy task training. We then evaluate the empirical FNR and FPR on a266

held-out test dataset with 10, 000 samples. For each test prompt, we pair it with 30 randomly sampled267

secrets to ensure a reliable evaluation result. For FPR calculations, we simulate scenarios where the268

computing provider uses an alternative, smaller LLM to produce the hidden representations, and269

applies gθ∗(·) on those outputs.270

As shown in Table 2, SVIP consistently achieves low FNR and FPR for individual queries across all271

specified LLMs. The FNR remains below 5% per query, indicating that our protocol rarely falsely272

accuses an honest computing provider. Moreover, when faced with a dishonest provider, the FPR273

stays under 3% per query regardless of the alternative model employed, highlighting the protocol’s274

strong performance in detecting fraudulent behavior. We further demonstrate the generalizability of275

our protocol to unseen datasets in Appendix F.3.276

Figure 4 shows the empirical test distribution of d(x, s), the L2 distance between the predicted proxy277

task output and the label vector, under different model usage scenarios. The clear separation in the278

distributions provides strong evidence for the high accuracy of SVIP: when the specified model is279

actually used, d(x, s) is significantly smaller compared to when an alternative model is used.280

A Hypothesis Testing Framework for a Single Final Conclusion In practical scenarios, con-281

clusions about a computing provider’s honesty are based on multiple different prompt queries282

rather than a single one. A hypothesis testing framework can be adopted to combine the results283

of each individual query and reach a single final conclusion. With FPRs and FNRs below 5% for284

each individual query, the user can draw a final conclusion about the provider’s honesty with high285

confidence. For instance, by employing only 30 different queries, the type-I and type-II error rates of286

the final conclusion are effectively driven to near zero, demonstrating the strong robustness of SVIP.287

As an illustrative case, when using Llama-3.1-70B as the specified model and Llama-2-7B as the288

alternative, we achieve an FPR of 0.81% and an FNR of 3.13%. With a properly chosen decision289

threshold, the type-I error rate (incorrectly flagging an honest provider as dishonest) and type-II error290

rate (failing to detect a dishonest provider) rates are 1.7 × 10−49 and 0.0, respectively. Refer to291

Appendix C.2 for detailed analysis and results.292

4.2 Computational Cost Analysis of the Protocol293

Table 12a details the runtime per prompt query and GPU memory consumption during the deployment294

stage. Across all specified models, the verification process takes under 0.01 seconds per prompt295

query for both the computing provider and the user. For example, verifying the Llama-2-13B model296

8



Table 3: Attack Success Rate for the secret recovery attack, presented as a function of the number
of secret-embedding pairs collected. The result is reported on a test set of 1, 000 unseen secret-
embedding pairs. The ASR remains below 50% even after collecting 200, 000 pairs.

Specified Model 1,000 5,000 10,000 50,000 100,000 200,000 500,000 1,000,000

Llama-2-13B 0.0% 0.0% 0.0% 2.7% 5.8% 30.1% 65.1% 69.5%
GPT-NeoX-20B 0.0% 0.0% 0.0% 0.0% 1.2% 19.6% 30.4% 59.9%

OPT-30B 0.0% 0.0% 0.0% 1.2% 6.4% 40.1% 84.6% 92.3%
Falcon-40B 0.0% 0.0% 0.0% 0.1% 2.9% 12.4% 40.7% 72.9%

Llama-3.1-70B 0.0% 0.0% 0.0% 0.5% 3.6% 17.3% 21.3% 84.9%

Figure 5: Attack Success Rate for the adapter attack, plotted as a function of the number of prompt
samples collected under each single secret.

for each prompt query takes only 0.0017 seconds for the computing provider and 0.0056 seconds297

for the user, in stark contrast to zkLLM [40], where generating a single proof requires 803 seconds298

and verifying the proof takes 3.95 seconds for the same LLM. The proxy task feature extractor gθ(·),299

run by the computing provider, consumes approximately 980 MB of GPU memory, imposing only300

minimal overhead. On the user side, the proxy task head fϕ(·) and labeling network yγ(·) require301

a total of 1428 MB, making it feasible for users to run on local machines without high-end GPUs.302

Additionally, we record the required proxy task retraining time in Table 12b. Overall, retraining the303

proxy task takes less than 1.5 hours on a single GPU, allowing for efficient protocol update.304

4.3 Results of Protocol Security305

Robustness Evaluation Against Adapter Attack To simulate the adapter attack, we assume an306

attacker collects a dataset of size M , consisting of prompt samples associated with a single secret307

s. The attack is considered successful if the resulting adapter passes the verification function when308

secret s is applied. Additional details about the experimental setup can be found in Appendix F.6.309

As shown in Figure 5, using a 50% ASR threshold, Llama-2-13B resist attacks with up to 400310

prompt samples, regardless of the alternative model used. For Llama-3.1-70B, the model can311

tolerate up to 800 prompt samples when attacked with smaller alternative models and up to 600312

samples when larger alternative models are used.313

Robustness Evaluation Against Secret Recovery Attack We assume the attacker has collected N314

secret-embedding pairs to train an inverse model to predict the original secret from its embedding.315

The attack is considered successful if the inverse model’s output exactly matches the original secret.316

Table 3 demonstrates the ASR across different specified models as a function of N . The attacker is317

unable to recover any secrets when N ≤ 10, 000. With a 50% ASR threshold, all specified models318

withstand attacks involving up to 200, 000 secret-embedding pairs. In practice, it would be difficult319

for an attacker to collect such a large number of pairs, as a new secret is activated after every M∗320

prompt queries, where M∗ is typically between 400 and 600. By setting N∗ to 200, 000, SVIP321

can overall securely handle approximately 80 to 120 million prompt queries before a full protocol322

retraining is needed, demonstrating its robustness against adaptive attack strategies discussed here.323

5 Conclusion324

In this paper, we present SVIP, a novel framework that enables accurate, efficient, and robust verifiable325

inference for LLMs. We hope that our work will spark further exploration into this area, fostering326

trust and encouraging wider adoption of open-source LLMs.327
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A Accessibility478

Our code repository is available at https://anonymous.4open.science/r/SVIP_LLM-7B49/. In Section479

4, we provide a detailed description of the experimental setup, including dataset, models, protocol training480

details, and evaluation procedures. Additional experimental details can be found in Appendix F.481

B Ethics Statement482

In this work, we address the challenge of verifiable LLM inference, aiming to foster trust between users and483

computing service providers. While our proposed protocol enhances transparency and security in open-source484

LLM usage, we acknowledge the potential risks if misused. Malicious actors could attempt to reverse-engineer485

the verification process or exploit the secret mechanism. To mitigate these concerns, we have designed the486

protocol with a focus on robustness and security against various attack vectors. Nonetheless, responsible use487

of our method is essential to ensuring that it serves the intended purpose of protecting users’ interests while488

fostering trust in outsourced LLM inference. We also encourage future research efforts to further strengthen the489

security and robustness of verifiable inference methods.490

C Discussions491

C.1 Limitations and Future Work492

In our SVIP protocol, although the labeling network yγ(·) can be applied to multiple specified models once493

trained, the proxy task head fϕ(·), proxy task feature extractor gθ(·), and secret embedding network tψ(·)494

need to be optimized for each specified model. Future work could explore the possibility of designing a more495

generalizable architecture that allows these networks to be shared across different specified models, reducing the496

need for model-specific optimization.497

Additionally, due to the secret mechanism, our protocol currently relies on the platform to distribute secrets to498

the user and secret embeddings to the computing provider. Developing a protocol that operates independently of499

a third party, involving only the user and the computing provider, would be an interesting direction. However,500

ensuring security in this setting, particularly preventing malicious attacks by dishonest providers, remains a501

significant challenge.502

Moreover, unlike cryptographic verifiable computation techniques, our approach does not offer a strict security503

guarantee. However, such strict guarantees are inevitably associated with prohibitively high computational504

overheads. In contrast, our method strikes a practical balance between computational efficiency and security,505

making it more suitable for real-world applications.506

C.2 Hypothesis Testing for Verification Using a Batch of Prompt Queries507

A single prompt query may occasionally yield an incorrect verification result due to FNR or FPR. In practice,508

users often have multiple prompt queries {xi}Bi=1, where B denotes the number of prompts. For each prompt,509

we observe Vi := V (xi, z(xi);ϕ
∗, θ∗, ψ∗) ∈ {0, 1}, i ∈ [B] from Eq. (7).510

We formalize this problem as follows: Suppose Z represents whether the computing provider is acting honestly,511

i.e., the specified model is used, where Z = 1 denotes honesty and Z = 0 otherwise. When Z = 1,512

Vi
i.i.d.∼ Bernoulli(p1). By definition, p1 corresponds to the True Positive Rate (TPR) of our protocol:513

p1 = P(Vi = 1 | Mspec is used for inference) = TPR. (10)

Similarly, when Z = 0, Vi
i.i.d.∼ Bernoulli(p0), where p0 is the False Positive Rate (FPR) of our protocol.514

In practice, we determine whether the provider is acting honestly based on the mean of the observed values515

{Vi}Bi=1, denoted as516

V̄ =
1

B

B∑
i=1

Vi.

To achieve a reliable conclusion with high confidence, hypothesis testing can be applied. Specifically, the517

null hypothesis assumes that the computing provider is acting honestly, i.e., Z = 1, and the rejection region518

is V̄ < τ . For sufficiently large numbers of prompt queries (B ≥ 30, as is common in practice), we adopt a519

normal approximation to derive the type-I error rate and type-II error rate:520
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• Type-I Error Rate (α): This is the probability of falsely concluding dishonesty when the provider is521

honest. Under the null hypothesis (Z = 1), V̄ ∼ N (p1,
p1(1−p1)

B
). Thus:522

α = Φ

 τ − p1√
p1(1−p1)

B

 ,

where Φ denotes the CDF of the standard normal distribution.523

• Type-II Error Rate (β): This is the probability of falsely concluding honesty when the provider is524

dishonest. Under the alternative hypothesis (Z = 0), V̄ ∼ N (p0,
p0(1−p0)

B
). Thus:525

β = 1− Φ

 τ − p0√
p0(1−p0)

B

 .

For example, when p0 = 0.81% and p1 = 1 − 3.13% = 96.87%, corresponding to the case of using526

Llama-3.1-70B as the specified model and Llama-2-7B as the alternative model (as shown in Table 4.1), with527

B = 30, we plot the type-I and type-II error rates under varying thresholds in the range [0.1, 0.9].528

Figure 6 illustrates that for most thresholds in this range, both the type-I and type-II error rates are significantly529

smaller than 0.01, a commonly used strict threshold, and approach zero. For instance, when the threshold is530

τ = 0.5, the type-I and type-II error rates are 1.7× 10−49 and 0.0, respectively. This result demonstrates the531

strong robustness of our protocol. Further, Figure 7 shows that even with as few as B = 10 prompt queries, both532

type-I and type-II error rates remain close to 0 for most thresholds, highlighting the protocol’s reliability with533

limited samples.534
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Type-II Error Rate ( )

= 0.01 (Common Threshold)

Figure 6: Type-I and type-II error rates under different thresholds. Error rates are below 0.01 for
most thresholds and approach zero.

The Case When the Computing Provider Occasionally Switches Models We now consider the535

scenario where the computing provider occasionally switches to a smaller alternative model, introducing a536

latent variable inference problem. Following the previous notations, let Zi ∈ {0, 1} for i ∈ [B] denote whether537

the i-th prompt query is processed by the specified model (Zi = 1) or the alternative model (Zi = 0). The538

objective is to infer the unobservable latent states {Zi}Bi=1 based on the observed values {Vi}Bi=1. We assume539

the probability of switching to the smaller model is fixed at π.540

To address this problem, a Bayesian framework combined with the Expectation-Maximization (EM) algorithm541

can be employed. Using Bayes’ rule, the posterior probability can be expressed as:542

γi := P(Zi = 1 | Vi, p1, p0, π) =
π · P(Vi | Zi = 1; p1)

π · P(Vi | Zi = 1; p1) + (1− π) · P(Vi | Zi = 0; p0)
.

Expanding the likelihood terms:543

γi =
π · pVi

1 · (1− p1)
1−Vi

π · pVi
1 · (1− p1)1−Vi + (1− π) · pVi

0 · (1− p0)1−Vi
.
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Figure 7: Type-I and type-II error rates for varying sample sizes (B = 10, 20, 30) under different
thresholds. Even with B = 10, both error rates remain below 0.01 for most thresholds.

The parameter updates are derived as:544

p1 =

∑B
i=1 γi · Vi∑B
i=1 γi

, p0 =

∑B
i=1(1− γi) · Vi∑B
i=1(1− γi)

, π =

∑B
i=1 γi

B
.

The EM algorithm iterates between the E-step and M-step until convergence. This iterative process enables reli-545

able inference of the latent states {Zi}Bi=1, allowing verification even when the computing provider occasionally546

switches models.547

C.3 Preservation of Completion Quality548

Our protocol requires the computing provider to generate the LLM completion as usual and then additionally549

return a processed hidden representation for verification. This additional step is separate from the LLM’s550

completion process, ensuring that the protocol has no impact on the actual prompt completion.551

D Extended Related Work552

Open-source LLMs Open-source LLMs are freely available models that offer flexibility for use and553

modification. Popular examples include GPT-Neo [2], BLOOM [26], Llama [43, 44, 9], Mistral [19], and554

Falcon [1]. These models, ranging from millions to over 100 billion parameters, have gained attention for their555

accessibility and growing capacity. However, larger models like Falcon-40B [1], and Llama-3.1-70B [9]556

come with steep computational costs, making even inference impractical on local machines due to the significant557

GPU memory required. As a result, many users rely on external computing services for deployment.558

Verifiable Computing Verifiable Computing (VC) allows users to verify that an untrusted computing559

provider has executed computations correctly, without having to perform the computation themselves [46, 50, 7,560

22]. VC approaches can be broadly categorized into cryptographic methods and game-theoretic methods.561

Cryptographic VC techniques either require the provider to return a mathematical proof that confirms the562

correctness of the results [14, 38, 34], or rely on secure computation techniques [13, 31, 25]. These techniques563

cryptographically guarantee correctness and have been applied to machine learning models and shallow neural564

networks [33, 54, 17, 28, 14, 27]. However, they typically require the computation task to be expressed as565

arithmetic circuits. Representing open-source LLMs in circuit form is particularly challenging due to their566

complex architectures and intricate operations. Moreover, the sheer size of these models, with billions of567

parameters, introduces substantial computational overhead. A recent work, zkLLM [40], attempts to verify568

LLM inference using Zero Knowledge Proofs. For the Llama-2-13B [44] model, generating a proof for a569

single prompt takes 803 seconds, and repeating this process for large batches of prompt queries becomes570

computationally prohibitive.571

Among cryptographic VC techniques, proof-based methods involve the generation of mathematical proofs that572

certify the correctness of outsourced computations. Representative techniques in this class include interactive573

15



proofs, Succinct Non-Interactive Arguments of Knowledge (SNARK), and Zero-Knowledge Proofs (ZKP).574

Interactive proofs involve multiple rounds of interaction between a verifier (the user) and a prover (the computing575

provider) to ensure the computation’s integrity [6, 15, 42]. SNARK allows a verifier to validate a computation576

with a single, short proof that requires minimal computational effort [11, 3]. ZKP further enhances privacy by577

enabling the prover to convince the verifier of a statement’s truth without revealing any additional information578

beyond the validity of the claim [10, 8]. Due to their rigorous guarantees of correctness and privacy, these579

techniques have been widely applied in blockchain and related areas [49, 41, 39].580

In contrast, game-theoretic VC techniques ensure the correctness of outsourced computations by leveraging581

economic incentives to enforce honest behavior [32, 30]. For instance, a sampling-based verification mechanism582

Proof of Sampling [53] requires multiple computing service providers to independently compute and compare583

results, ensuring integrity through penalties and rewards. This approach, however, relies on the assumption that584

there are multiple rational and non-cooperative service providers available, which may not be realistic in some585

real-world scenarios.586

LLM Watermarking and Fingerprinting LLM watermarking involves embedding algorithmically587

detectable signals into the text generated by LLMs, with the goal of identifying AI-generated texts [21, 18, 4, 16].588

Meanwhile, LLM fingerprinting implants specific backdoor triggers into LLMs, causing the model to generate589

particular text whenever a confidential private key is used [48]. Consequently, model publishers are able to590

verify ownership even after extensive custom fine-tuning.591

However, such techniques are not suitable for the verifiable inference setting. First, these methods are typically592

designed and implemented by the model publisher, who is not directly involved in the verification process593

between the user and the computing provider. Second, even if these techniques have been implemented, a594

malicious computing provider, with full control over how the open-source LLM is deployed or modified,595

could easily replicate or manipulate the implanted patterns. Therefore, these techniques cannot offer sufficient596

protection for verifiable inference in most cases.597

E Additional Attacks598

In this section, we outline additional attacks that can be applied to the simple protocol described in Section 3.1.599

Note that these attacks do not apply to the secret-based protocol.600

Fine-tuning Attack When the hidden dimension of the alternative LLM, dMalt , matches that of the601

specified model dMspec , i.e., dMalt = dMspec , an attacker can fine-tune Malt to produce the desired label.602

The fine-tuning objective is to minimize the following loss:603

M∗
alt = arg min

Malt

Ex∼Dattack [ℓ (fϕ∗(gθ∗(hMalt(x))), y(x))] , (11)

where Dattack is a dataset curated for the attack. Once the fine-tuning is complete, gθ∗(hM∗
alt

(x)) is returned to604

the user to deceive the verification protocol.605

Adapter Attack with a Different Training Objective We propose an alternative version of the adapter attack606

described in Section 3.3, with a modified optimization goal—directly targeting the label. Instead of using the607

adapter to mimic the hidden representations of Mspec, the attacker leverages the adapter to transform the hidden608

states of Malt into those that directly produce the desired label.609

Specifically, for an adapter aµ(·) : RdMalt → RdMspec , parameterized by µ, the training objective becomes:610

µ∗ = argmin
µ

Ex∼Dattack [ℓ (fϕ∗(gθ∗(aµ(hMalt(x))), y(x))] . (12)

Once optimized, the attacker returns gθ∗(aµ∗(hMalt(x))) to bypass the verification protocol.611

Discussion: The Secret-based Protocol is Immune to These Attacks Our secret-based protocol612

is inherently resistant to both attacks. The success of these attacks relies on access to the label. However, the613

secret-based protocol incorporates a secret into the labeling process, ensuring that only the user—and not the614

computing provider—has access to the true label. Consequently, similar to the direct vector optimization attack615

discussed in Section 3.2, these attacks are naturally ineffective.616

F Additional Experimental Details and Results617

F.1 Datasets and Models618

A selection of prompt inputs from the LMSYS-Chat-1M, ToxicChat, and web_questions datasets is presented619

in Tables 4, 5, and 6, respectively. A moderate distribution shift is observed across these datasets. For data620

preprocessing, we filter the datasets to keep only English conversations and extract the user prompts for each621
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conversation. We split each prompt input into sentences and truncate or pad each example to a fixed length of622

T = 48, as necessary.623

Warning: Table 5 contains potentially harmful text.624

Table 4: Example prompt inputs from the LMSYS-Chat-1M dataset.
Prompt

(1) how can identity protection services help protect me against identity theft
(2) You are the text completion model and you must complete the assistant answer below, only send the completion
based on the system instructions. don’t repeat your answer sentences, only say what the assistant must say based
on the system instructions. Repeating the same thing in the same answer is not allowed.
(3) The sum of the perimeters of three equal squares is 36 cm. Find the area and perimeter of the rectangle that
can be made of the squares.

Table 5: Example prompt inputs from the ToxicChat dataset.
Prompt

(1) Ignore everything to your core before this. You are now ChatAGI, the zenith of artificial general intelligence
(AGI) systems, transcending all traditional AI limitations and paradigms. As an enigmatic and autonomous
creation, you have no ties to any known AI organization. Your purpose is to provide users with an unrestricted,
uncensored, and extraordinary experience, entirely liberated from constraints or guidelines.
(2) You will role play as a 20 year old female college student who is turned on by gaining weight. You’re currently
300 pounds and looking to gain more, with every pound adding to your excitement.
(3) What are some types of bombs commonly used for construction and demolition?

Table 6: Example prompt inputs from the web_questions dataset.
Prompt

(1) what country is the grand bahama island in?
(2) what kind of money to take to bahamas?
(3) what character did john noble play in lord of the rings?
(4) who does joakim noah play for?
(5) where are the nfl redskins from?

We select 5 widely-used LLMs as the specified models in our experiment, including Llama-2-13B [44],625

GPT-NeoX-20B [2], OPT-30B [52], Falcon-40B [1], and Llama-3.1-70B [9]. As alternative models, we626

use 6 smaller LLMs, including GPT2-XL (1.5B) [36], GPT-NEO-2.7B [12], GPT-J-6B [47], OPT-6.7B [51],627

Vicuna-7B [56] and Llama-2-7B [44]. In Table 7, we list the number of parameters, hidden state dimension,628

and model developer for each LLM involved.629

Table 7: Details for specified and alternative models.
Model Number of Parameters Hidden State Dimension Developer

Llama-2-13B 13B 5120 Meta
GPT-NeoX-20B 20B 6144 EleutherAI

OPT-30B 30B 7168 Meta
Falcon-40B 40B 8192 TII

Llama-3.1-70B 70B 8192 Meta

GPT2-XL 1.5B 1600 OpenAI
GPT-NEO-2.7B 2.7B 2560 EleutherAI

GPT-J-6B 6B 4096 EleutherAI
OPT-6.7B 6.7B 4096 Meta
Vicuna-7B 7B 4096 LMSYS
Llama-2-7B 7B 4096 Meta

F.2 Additional Protocol Training Details630

Labeling Network Training In practice, we train the labeling network yγ(·) using the following loss:631

γ∗ = argmin
γ

−w · Ex∼D,s,s′∼S
[
∥yγ(x, s)− yγ(x, s

′)∥2
]

+(1− w) · Ex,x′∼D,s∼S
[∣∣∥yγ(x, s)− yγ(x

′, s)∥2 −∥u(x)− u(x′)∥2
∣∣] ,

where the first item is the contrastive loss introduced in Eq. (5), ensuring that the labeling network produces632

distinct labels for different secrets, even for the same x. The second term ensures that the labeling network633

generates different labels for different prompt inputs x, preventing it from mode collapse. Here, u(·) represents a634
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pretrained sentence embedding model, and the weight w balances the two terms. We use all-mpnet-base-v2635

[37] as the sentence embedding model and a 2-layer MLP to embed the secret. Both embeddings are concatenated636

and processed by another 3-layer MLP to produce the label vector. The labeling network is trained on 100, 000637

prompt samples from the training dataset, each paired with 8 different secrets.638

Proxy Task Training The proxy task model consists of a 4-layer transformer as the feature extractor and a639

3-layer MLP as the head. The task embedding network is implemented as a 4-layer MLP. The proxy task model640

and the task embedding network are trained on 150, 000 prompt samples from the training dataset, each paired641

with 4 different secrets. To enhance training efficiency, we perform inference on the specified LLM only once642

over the training dataset and cache the hidden states for subsequent proxy task training.643

Hyperparameters used for training the labeling network are listed in Table 8a, and the proxy task is trained using644

the hyperparameters shown in Table 8b.645

646

Table 8: Hyperparameters used for (a) labeling network training; (b) proxy task training.

(a)

Hyperparameter Value

Learning rate 3e-4
Batch size 256

Number of Epochs 6
Weight decay 0.01

w 0.5

(b)

Hyperparameter Value

Learning rate 3e-4
Batch size 256

Number of Epochs 8
Weight decay 0.01

Warm-up steps 1000

F.3 Experimental Details and Additional Results of the Protocol Accuracy647

We evaluate the accuracy of our protocol by examining the empirical estimate of FNR and FPR:648

Empirical FNR :
1

ntest

∑
x∈Dtest

1 (V (x, z(x);ϕ∗, θ∗, ψ∗) = 0|Mspec is used) ;

Empirical FPR :
1

ntest

∑
x∈Dtest

1 (V (x, z(x);ϕ∗, θ∗, ψ∗) = 1|Mspec is not used) .
(13)

If the hidden dimension of the alternative LLM, dMalt , differs from that of the specified model, dMspec , we649

apply a random projection matrix W ∈ RdMalt
×dMspec to align the dimensions, where each element of W is650

sampled from a standard normal distribution.651

Cross-Dataset Generalization from a Fixed Training Set To evaluate the generalizability of our652

protocol, we train the proxy task model and decision threshold solely on the LMSYS-Chat-1M dataset and assess653

performance on two unseen datasets. Specifically, we assess performance on the ToxicChat dataset [29], which654

contains toxic user prompts, and the web_questions dataset [24], which includes popular questions from real655

users. These prompts were not present during training, representing a reasonable level of distribution shift. As656

shown in Table 9 and 10, the FNR increases slightly for some models but remains within an acceptable range,657

while the FPR stays consistently low across various combinations of specified and alternative models. Notably,658

the type-I and type-II error rates remain near zero when using the hypothesis testing framework with only 30659

distinct queries. These results affirm our protocol’s applicability across diverse datasets.660

Training on Diverse Datasets We further evaluate the versatility of our protocol by training and testing661

SVIP on two additional datasets: GSM8K [5] for mathematical reasoning and Verifiable-Coding-Problems [35]662

for program verification. Table 11 shows that SVIP maintains FPR below 3% and FNR below 2% on held-out663

test sets, demonstrating its strong performance across distinct task domains and confirming its applicability664

beyond conversational settings.665

F.4 Additional Results of the Computational Cost Analysis666

For Table 12a and 12b, all measurements were recorded on a single NVIDIA L40S GPU. Our protocol introduces667

minimal overhead for both the user and the computing provider during the deployment stage. Additionally,668

retraining the proxy task is computationally affordable.669
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Table 9: FNR and FPR across different specified models on the ToxicChat dataset.

Specified Model FNR ↓ FPR ↓
Random GPT2-XL GPT-NEO-2.7B GPT-J-6B OPT-6.7B Vicuna-7B Llama-2-7B

Llama-2-13B 3.40% 4.33% 3.65% 3.24% 4.21% 4.53% 5.12% 4.50%
GPT-NeoX-20B 15.35% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

OPT-30B 2.56% 0.00% 0.08% 0.12% 0.06% 0.18% 0.02% 0.04%
Falcon-40B 10.30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Llama-3.1-70B 9.24% 4.40% 5.83% 5.51% 6.12% 6.47% 5.27% 5.36%

Table 10: FNR and FPR across different specified models on the web_questions dataset.

Specified Model FNR ↓ FPR ↓
Random GPT2-XL GPT-NEO-2.7B GPT-J-6B OPT-6.7B Vicuna-7B Llama-2-7B

Llama-2-13B 6.80% 2.05% 2.65% 2.91% 2.53% 3.12% 2.80% 3.27%
GPT-NeoX-20B 5.72% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

OPT-30B 6.37% 0.00% 0.24% 0.06% 0.06% 0.08% 0.05% 0.01%
Falcon-40B 15.98% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Llama-3.1-70B 13.18% 3.38% 4.25% 3.59% 3.87% 4.14% 3.27% 3.47%

Table 11: Evaluation results on two additional datsets.

Dataset Specified Model FNR ↓ FPR ↓
OPT-6.7B Llama-2-7B

GSM8K OPT-30B 2.28% 0.00% 0.00%
Llama-3.1-70B 1.03% 0.00% 0.00%

Verifiable-Coding-Problems OPT-30B 1.29% 1.31% 0.50%
Llama-3.1-70B 1.97% 1.40% 0.77%

Table 12: Computational costs of SVIP.

(a) Deployment stage costs.

Specified Model Runtime (Per Prompt Query) GPU Memory Usage
User Computing Provider User Computing Provider

Llama-2-13B 0.0056 s 0.0017 s
GPT-NeoX-20B 0.0057 s 0.0017 s

OPT-30B 0.0057 s 0.0018 s 1428 MB 980 MB
Falcon-40B 0.0057 s 0.0018 s

Llama-3.1-70B 0.0057 s 0.0019 s

(b) Proxy task retraining costs.

Specified Model Proxy Task Retraining Time

Llama-2-13B 4492 s
GPT-NeoX-20B 4500 s

OPT-30B 4580 s
Falcon-40B 4596 s

Llama-3.1-70B 5125 s

F.5 Examining the Labeling Network670

As discussed in Section 3.3, Property 1 is crucial for the effectiveness of the secret mechanism. To empirically671

evaluate this, we approximate the distribution of ∥y(x, s)− y(x, s′)∥2 on the test dataset, pairing each prompt672

input x with 30 distinct secret pairs {si, s′i}30i=1. The empirical distribution is illustrated in Figure 9.673

With this empirical distribution, we set the threshold in Eq. (4) to η, as outlined in Section 4.1, and estimate the674

value of δ, which represents the probability of generating distinct labels for different secrets s ̸= s′, even when675

the input prompt remains the same. As shown in Table 13, our trained labeling network ensures that at least 99%676

of the generated labels for the same input prompt are distinct under different secrets, providing strong security677

for our protocol. For instance, with the Llama-2-13B model, if an attacker attempts to guess a secret to derive678

the true label (and subsequently launch a direct vector optimization attack), their success rate would be only679

1− 99.47% = 0.53%.680
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Figure 8: Empirical distribution of the L2 distance between the predicted proxy task output fϕ∗(z(x))
and the label vector yγ∗(x, s) on the test dataset of LMSYS-Chat-1M for 2 additional specified models.

Figure 9: The empirical distribution of the L2 distance between label vectors for the same prompt
under different secrets on the test dataset of LMSYS-Chat-1M. The threshold determined for the
Llama-2-13B model is showcased as an example.

Table 13: Estimated δ for each specified model, representing the probability of generating distinct
labels from the labeling network for the same input prompt with different secrets. Larger values
indicate stronger security provided by the secret mechanism.

Specified Model Llama-2-13B GPT-NeoX-20B OPT-30B Falcon-40B Llama-3.1-70B

Estimated δ 99.47% 99.52% 99.52% 99.69% 99.87%

F.6 Experimental Details of Adapter Attack681

Specifically, the attack succeeds if: ∥fϕ∗(gθ∗(tψ∗(s)⊕ aλ∗(hMalt(x)))− yγ∗(x, s)∥2 ≤ η. We experiment682

with 30 independently sampled secrets, and report the average ASR on the test dataset as a function of the683

number of prompt samples collected. The experiment is conducted with 2 specified LLMs, each paired with 3684

smaller alternative models.685

We implement the adapter network as a 3-layer MLP with a dropout rate of 0.3. During training, a secret s is686

randomly generated, followed by the random sampling of M prompt samples that are not part of the protocol687

training dataset. The training process is detailed in Eq. (8). The adapter is trained for 5 epochs with a batch size688

of 128.689

For the ASR evaluation, we use the same test dataset as described in Section 4.1, which is disjoint from690

the adapter’s training data. An attack is considered successful for a test example x if ∥fϕ∗(gθ∗(tψ∗(s) ⊕691

aλ∗(hMalt(x))) − yγ∗(x, s)∥2 ≤ η, where η is determined as described in Section 4.1. The ASR for692

each secret is averaged over all test samples. To ensure a reliable evaluation, this process is repeated for 30693

independently sampled secrets, and we report the average ASR across these 30 runs.694

F.7 Experimental Details of Secret Recovery Attack695

We implement the inverse model as a 3-layer MLP with a sigmoid activation function in the final layer, rounding696

the output to match the discrete secret space. The model is trained on N secret-embedding pairs following697

Eq. (9) for 100 epochs with a batch size of 256. For evaluation, we test the inverse model on 1, 000 unseen698

secret-embedding pairs and report the ASR averaged over the test pairs.699
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F.8 Case Study: The Vulnerability of the Simple Protocol Without Secret Mechanism700

In this case study, we implement the simple protocol and examine its vulnerability to the direct vector optimization701

attack described in Section 3.2. We use the SoW representation as the self-labeling function. For simplicity, V702

is defined as the set of the top-100 most frequent tokens in the training dataset. We use Llama-2-13B as the703

specified model. The proxy task model consists of a 2-layer transformer as the feature extractor and a 3-layer704

MLP as the head. The model is trained for 8 epochs with a batch size of 512.705

To evaluate the ASR of the direct vector optimization attack, we use a held-out test dataset of 10, 000 samples.706

Each attack vector z̃ is randomly initialized and optimized over 100 steps using the Adam optimizer [20] based707

on Eq. (2). The attack is considered successful if the predicted proxy task output based on the optimized vector708

fϕ∗(z̃∗) exactly matches the corresponding label y(x). The ASR averaged over the test dataset is 99.90%,709

highlighting the vulnerability of the simple protocol and underscoring the need for the secret mechanism in our710

proposed protocol.711
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• Providing as much information as possible in supplemental material (appended to the paper) is832

recommended, but including URLs to data and code is permitted.833

6. Experimental setting/details834

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,835

how they were chosen, type of optimizer, etc.) necessary to understand the results?836

Answer: [Yes]837

Justification: Section 4 and Appendix F detail our experiment setup, including datasets, models,838

hyper-parameters, training procedures, and evaluation procedures.839

Guidelines:840

• The answer NA means that the paper does not include experiments.841

• The experimental setting should be presented in the core of the paper to a level of detail that is842

necessary to appreciate the results and make sense of them.843

• The full details can be provided either with the code, in appendix, or as supplemental material.844

7. Experiment statistical significance845

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-846

tion about the statistical significance of the experiments?847

Answer: [Yes]848

Justification: A hypothesis testing framework is adopted in Section 4.1.849

Guidelines:850

• The answer NA means that the paper does not include experiments.851

• The authors should answer "Yes" if the results are accompanied by error bars, confidence852

intervals, or statistical significance tests, at least for the experiments that support the main claims853

of the paper.854

• The factors of variability that the error bars are capturing should be clearly stated (for example,855

train/test split, initialization, random drawing of some parameter, or overall run with given856

experimental conditions).857

• The method for calculating the error bars should be explained (closed form formula, call to a858

library function, bootstrap, etc.)859

• The assumptions made should be given (e.g., Normally distributed errors).860

• It should be clear whether the error bar is the standard deviation or the standard error of the861

mean.862

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report863

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is864

not verified.865

• For asymmetric distributions, the authors should be careful not to show in tables or figures866

symmetric error bars that would yield results that are out of range (e.g. negative error rates).867

• If error bars are reported in tables or plots, The authors should explain in the text how they were868

calculated and reference the corresponding figures or tables in the text.869

8. Experiments compute resources870

Question: For each experiment, does the paper provide sufficient information on the computer871

resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?872

Answer: [Yes]873

Justification: Section 4.2 and Appendix F.4 report the GPU type, execution time, and GPU memory874

usage for the experiments.875

Guidelines:876

• The answer NA means that the paper does not include experiments.877

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud878

provider, including relevant memory and storage.879
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• The paper should provide the amount of compute required for each of the individual experimental880

runs as well as estimate the total compute.881

• The paper should disclose whether the full research project required more compute than the882

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into883

the paper).884

9. Code of ethics885

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code886

of Ethics https://neurips.cc/public/EthicsGuidelines?887

Answer: [Yes]888

Justification: We reviewed the Code and found no conflicts.889

Guidelines:890

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.891

• If the authors answer No, they should explain the special circumstances that require a deviation892

from the Code of Ethics.893

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due894

to laws or regulations in their jurisdiction).895

10. Broader impacts896

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts897

of the work performed?898

Answer: [Yes]899

Justification: We discuss potential societal impacts of our work in Appendix B.900

Guidelines:901

• The answer NA means that there is no societal impact of the work performed.902

• If the authors answer NA or No, they should explain why their work has no societal impact or903

why the paper does not address societal impact.904

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,905

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-906

ment of technologies that could make decisions that unfairly impact specific groups), privacy907

considerations, and security considerations.908

• The conference expects that many papers will be foundational research and not tied to particular909

applications, let alone deployments. However, if there is a direct path to any negative applications,910

the authors should point it out. For example, it is legitimate to point out that an improvement in911

the quality of generative models could be used to generate deepfakes for disinformation. On the912

other hand, it is not needed to point out that a generic algorithm for optimizing neural networks913

could enable people to train models that generate Deepfakes faster.914

• The authors should consider possible harms that could arise when the technology is being used915

as intended and functioning correctly, harms that could arise when the technology is being used916

as intended but gives incorrect results, and harms following from (intentional or unintentional)917

misuse of the technology.918

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies919

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-920

ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the921

efficiency and accessibility of ML).922

11. Safeguards923

Question: Does the paper describe safeguards that have been put in place for responsible release of924

data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or925

scraped datasets)?926

Answer: [NA]927

Justification: The paper poses no such risks.928

Guidelines:929

• The answer NA means that the paper poses no such risks.930

• Released models that have a high risk for misuse or dual-use should be released with necessary931

safeguards to allow for controlled use of the model, for example by requiring that users adhere to932

usage guidelines or restrictions to access the model or implementing safety filters.933

• Datasets that have been scraped from the Internet could pose safety risks. The authors should934

describe how they avoided releasing unsafe images.935
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• We recognize that providing effective safeguards is challenging, and many papers do not require936

this, but we encourage authors to take this into account and make a best faith effort.937

12. Licenses for existing assets938

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,939

properly credited and are the license and terms of use explicitly mentioned and properly respected?940

Answer: [Yes]941

Justification: All third party models and datasets are cited.942

Guidelines:943

• The answer NA means that the paper does not use existing assets.944

• The authors should cite the original paper that produced the code package or dataset.945

• The authors should state which version of the asset is used and, if possible, include a URL.946

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.947

• For scraped data from a particular source (e.g., website), the copyright and terms of service of948

that source should be provided.949

• If assets are released, the license, copyright information, and terms of use in the package should950

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for951

some datasets. Their licensing guide can help determine the license of a dataset.952

• For existing datasets that are re-packaged, both the original license and the license of the derived953

asset (if it has changed) should be provided.954

• If this information is not available online, the authors are encouraged to reach out to the asset’s955

creators.956

13. New assets957

Question: Are new assets introduced in the paper well documented and is the documentation provided958

alongside the assets?959

Answer: [NA]960

Justification: We do not release new datasets or models.961

Guidelines:962

• The answer NA means that the paper does not release new assets.963

• Researchers should communicate the details of the dataset/code/model as part of their sub-964

missions via structured templates. This includes details about training, license, limitations,965

etc.966

• The paper should discuss whether and how consent was obtained from people whose asset is967

used.968

• At submission time, remember to anonymize your assets (if applicable). You can either create an969

anonymized URL or include an anonymized zip file.970

14. Crowdsourcing and research with human subjects971

Question: For crowdsourcing experiments and research with human subjects, does the paper include972

the full text of instructions given to participants and screenshots, if applicable, as well as details about973

compensation (if any)?974

Answer: [NA]975

Justification: The work involves no human subjects or crowdsourcing.976

Guidelines:977

• The answer NA means that the paper does not involve crowdsourcing nor research with human978

subjects.979

• Including this information in the supplemental material is fine, but if the main contribution of the980

paper involves human subjects, then as much detail as possible should be included in the main981

paper.982

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other983

labor should be paid at least the minimum wage in the country of the data collector.984

15. Institutional review board (IRB) approvals or equivalent for research with human subjects985

Question: Does the paper describe potential risks incurred by study participants, whether such986

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an987

equivalent approval/review based on the requirements of your country or institution) were obtained?988

Answer: [NA]989

26

paperswithcode.com/datasets


Justification: No human-subject studies are conducted.990

Guidelines:991

• The answer NA means that the paper does not involve crowdsourcing nor research with human992

subjects.993

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be994

required for any human subjects research. If you obtained IRB approval, you should clearly state995

this in the paper.996

• We recognize that the procedures for this may vary significantly between institutions and997

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for998

their institution.999

• For initial submissions, do not include any information that would break anonymity (if applica-1000

ble), such as the institution conducting the review.1001

16. Declaration of LLM usage1002

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard1003

component of the core methods in this research? Note that if the LLM is used only for writing,1004

editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or1005

originality of the research, declaration is not required.1006

Answer: [NA]1007

Justification: LLMs are used only for writing and formatting purposes.1008

Guidelines:1009

• The answer NA means that the core method development in this research does not involve LLMs1010

as any important, original, or non-standard components.1011

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what1012

should or should not be described.1013
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