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ABSTRACT

Alignment is a critical step in large language model (LLM) post-training. It typ-
ically requires human annotations to align the model’s output to human prefer-
ences, which is prohibitively expensive. This paper proposes a novel approach
to reduce the alignment cost. Specifically, we consider multiple levels of align-
ment with different qualities and response-generating costs, which we refer to as
multi-fidelity alignment. We develop a new approach to incorporating the varying
levels of response quality to train a language model, aiming to reduce the cost
of response collection for alignment while maintaining the performance of the
language model. We provide theoretical insights and empirical results to support
the effectiveness of the proposed multi-fidelity alignment approach. Lastly, we
conduct experiments to corroborate the effectiveness of the proposed approach by
comparing its performance with the vanilla alignment methods.

1 INTRODUCTION

Large language models (LLMs) (Ouyang et al., 2022) have illustrated their power in various tasks,
such as text generation (Dathathri et al., 2019), question answering (Su et al., 2019), and image
captioning (Devlin et al., 2015). However, to harness its power, one often needs to align these mod-
els to human preference so that the generated content meetshuman’s expectation. More specially,
the alignment either asks the human to demonstrate the task, e.g., write out the answer of a given
question for a language model, or to evaluate the outputs of generative models, e.g., rank multiple
answers according to human preference. Although crucial in LLMs, alignment is a very expen-
sive task due to the requirement of extensive human participation, and the cost of alignment is a
significant challenge in training LLMs (OpenAI, 2023).

Recent progress in alignment shows that weaker supervision or alignment can make a “strong”
model (with a large number of model parameters) perform better than the “weak” one that provides
the supervision (Burns et al., 2023), a.k.a, “weak-to-strong”. Specifically, Burns et al. (2023) cor-
roborates that the output model’s performance of using GPT-2’s response to align a model with the
infrastructure of GPT-4 is similar to GPT-3.5 (exceeding GPT-2). This observation implies that the
alignment from a low level of expertise can help train a strong generative model.

With this “weak-to-strong” observation in mind, this paper proposes a novel approach to reducing
the alignment costs. Specifically, we consider multiple levels of alignment with different quali-
ties and response-generating costs, which we refer to as multi-fidelity alignment. For example, a
high-fidelity alignment can refer to collecting responses or preferences from human experts, while
a low-fidelity alignment may correspond to collecting responses or preferences from a language
model weaker than human experts. With these alignments of varying quality levels, we propose a
new approach to incorporating them to train a language model efficiently. We aim to reduce the
cost of response collection for alignment while maintaining the performance of the language model.
We note that this cost improvement is from the perspective of response collection, not the computa-
tional cost of training the language model, which was the focus of some previous works, like direct
preference optimization (DPO) (Rafailov et al., 2024).

This paper is organized as follows,
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• In Section 2, we propose a mathematical formulation of the win rate (WINRATE) used in
the preference-based training, e.g., alignment training of LLMs and provide a theoretical
analysis of the win rate and its empirical estimation.

• In Section 3, we devise a novel multi-fidelity alignment algorithm to reduce the cost of
response collection for alignment of large language models.

• In Section 4, we provide a theoretical analysis for the cost complexity upper bound of the
multi-fidelity alignment algorithm.

• In Section 5, we conduct experiments to corroborate the effectiveness of the proposed ap-
proach by comparing its performance with the vanilla alignment methods.

1.1 RELATED WORK

Alignment To align the powerful generative models to human preference, various alignment meth-
ods have been proposed (Ouyang et al., 2022; Rafailov et al., 2024; Chen et al., 2024; Hong et al.,
2024). Reinforcement learning with human feedback (RLHF) (Ouyang et al., 2022) is one of the
most popular method to align a language model. This method consists of three steps: (1) use col-
lected response to fine-tune the language model, (2) use the supervised fine-tuning (SFT) model to
generate responses, ask human experts to label the preference of these responses, and then uses the
preference labels to train a reward model, and (3) use the estimated reward model to align the LLM
via proximal policy optimization (PPO). In the second step, one alternative is to ask another ad-
vanced large language model to label the preference, which is known as reinforcement learning with
artificial intelligence feedback (RLAIF) (Bai et al., 2022; Lee et al., 2023). However, both the RLHF
and RLAIF rely on an intermediate reward model, and the PPO training is computational expensive.
Motivated to remove the intermediate reward model, Rafailov et al. (2024) proposes a direct policy
optimization (DPO) method to align the language model to human performance without the need of
an intermediate reward model. DPO is a more efficient method to align the language model and can
be optimized via simple supervised learning methods instead of the PPO in reinforcement learning.
Following the spirit of DPO, many very recent new alignment methods have been proposed, such
as self-play fine-tuning (SPIN) (Chen et al., 2024) and monolithic odds ratio preference optimiza-
tion (ORPO) (Hong et al., 2024). While these reward-model free methods are more efficient in the
perspective of computational cost, they still require a large number of human responses to align the
language model, which is also expensive. This paper aims to further reduce the cost of the response
collection in alignment.

Multi-Fidelity Multi-fidelity optimization is a general optimization framework that aims to opti-
mize an expensive objective function by using multiple levels of fidelity approximations (Bonfiglio
et al., 2018; Zheng et al., 2013; Forrester et al., 2007; Huang et al., 2006). Later on, the multi-
fidelity approach is extended to the literature of AutoML, e.g., HyperBand (Li et al., 2017) and
BOHB (Falkner et al., 2018). Meanwhile, the multi-fidelity approach is also studied in the sequen-
tial decision making literature, e.g., in multi-armed bandits (Kandasamy et al., 2016) and Bayesian
optimization (Kandasamy et al., 2017; 2019). Very recently, the multi-fidelity best arm identification
(MF-BAI) problem is studied by Poiani et al. (2022; 2024); Wang et al. (2023). This paper is the
first to study the multi-fidelity approach in the context of alignment of large language models.

2 MODEL FORMULATION

2.1 BASIC MODEL

Denote θ ∈ RN as the parameters in a large language model (LLM) f : X → Y , where N is
often a dramatically large integer, e.g., N ⩾ 1011 in GPT-4 (OpenAI, 2023), X is the set of input
tokens (i.e., prompts/questions), and Y is the set of output tokens (i.e., answers). Specifically, denote
f(x;θ) as the output of the given generative model with parameters θ and input token x, and we
use f(·;θ) to represent the LLM model f with parameters θ. Given M ∈ N+ fidelities that one can
query responses for alignment, we denote {g(1), g(2), . . . , g(M)} as the LLMs with different levels
of expertise (qualities), where g(m) is able to generate output with quality in level m. We denote the
cost of querying the fidelity m model once as λ(m)

cost .
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2.2 WINRATE METRIC

The alignment task is often conducted via training from input preference pairs. The preference pair
consists of winning and losing responses, depending on the response qualities. To formally describe
the response qualities, we introduce a metric WINRATE to evaluate the performance of two LLMs.
It represents the performance distance between two LLMs f1 and f2 under preference comparison
function F , formally defined as follows,

WINRATE(f1, f2, F ) :=

Ex∼X ,f1,f2EF [1{F (f1(x), f2(x)) = Win}+ 0.5 · 1{F (f1(x), f2(x)) = Tie}], (1)

where F is the comparison function that outputs “Win” (resp., “Tie” / “Lose”) if the response from
the first model is better than (respectively, close to / worse than) that of the second one,1 1{·} denotes
an indicator function, the outer expectation is taken over the randomness of the input token x and the
LLMs f1, f2, and the inner expectation is taken over the randomness of the comparison function F .
Without loss of generality, we label the M fidelity models such that for any two fidelities m > m′,
WINRATE(g(m), g(m

′)) > 50%, denoted as g(m) ≻ g(m
′).

To empirically estimate the WINRATE metric, one can collect a set D(f1, f2, F, n) of n ∈ N+

response pairs of the two LLMs. Denote the tuple (y1, y2, x, F ) as one element of the dataset D,
where y1 and y2 are the outputs of f1 and f2 given the input prompt x, respectively, and F is
the comparison function used to compare the two responses y1, y2. Formally, WINRATE can be
estimated by calculating the win frequency as follows,

WINFREQ(D) :=
∑

(y1,y2,x,F )∈D (1{F = Win}+ 0.5 · 1{F = Tie})
|D|

,

and WINRATE(f1, f2) = limn→∞ WINFREQ(D(f1, f2, F, n)).
Given the definitions of WINRATE and WINFREQ, the following lemma shows how accurate the
empirical WINRATE (frequency) can estimate the idealistic WINRATE. All formal proofs of the
paper are deferred to the appendix.
Lemma 1 (From WINFREQ to WINRATE). Assume D(f1, f2, F, n) is a set of n samples generated
by comparing LLMs f1 and f2 with fidelity M via uniform randomly selected input tokens from X .
Then, with probability at least 1− δ for a confidence parameter δ ∈ (0, 1), we have

|WINFREQ(D(f1, f2, F, n))−WINRATE(f1, f2, F )| ⩽
√

1

n
log

2

δ
.

Next, Lemma 2 presents the smoothness of the WINRATE metric with respect to the parameters
of the LLMs. It shows that the parameter difference between two LLMs is upper bounded by the
difference in the WINRATE metric of the two LLMs.
Lemma 2 (Smoothness of WINRATE). Utilize gradient ascent to maximize the function
WINRATE(f(·,θ), g(m)) beginning with an initial parameter θ0, and conclude at θ1. Assuming
WINRATE(f(·,θ), g(m)) is locally concave with respect to a local maximizer θ2, we have, for some
constant parameter α > η/ϵ,

∥θ0 − θ1∥ ⩽ α|WINRATE(f(·;θ0), g(m))−WINRATE(f(·;θ1), g(m))|.

Lastly, we introduce the following assumption to illustrate that the relationship of WINRATE when
comparing every two of three LLMs.
Assumption 3. For any two fidelities m > m′ and any parameter θ, there exists a constant β > 0
such that |WINRATE(f(·,θ), g(m))−WINRATE(f(·,θ), g(m′))| ⩽ β WINRATE(g(m), g(m

′)).

Assumption 3 is an analogy of the triangle inequality (though with a scaling factor β) for the
WINRATE metric. Because there should exist a evaluation function W : f 7→ score ∈ R for
any LLM, the WINRATE of one LLM f1 against another f2 can be calculated as the difference
between the evaluation scores of the two LLMs, i.e., f1(W ) − f2(W ). This underline evaluation
function W implies that the WINRATE metric is separable and thus fulfills the triangle inequality.

1In practice, one can either ask human experts or another advanced LLM model to compare the outputs of
two models. The experiments of this paper use GPT-4 as the comparison function F .
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2.3 MULTI-FIDELITY ALIGNMENT PROBLEM AND OBJECTIVE

In this paper, we study a multi-fidelity alignment problem, formally described in Procedure 1. It pro-
ceeds in rounds, where in each round, it selects a fidelity mt and a batch size nt to query responses
from the fidelity mt model as well as the trained LLM f(θt). Then, based on these responses, it
constructs a dataset Dt and aligns the LLM f(θt) by updating its parameter θt.

Procedure 1 Multi-Fidelity Alignment

1: for each decision round t = 1, 2, . . . do
2: Pick a fidelity mt and a batch size nt to query responses
3: Query nt responses from the fidelity mt model as well as the trained LLM f(·;θt)
4: Construct the dataset Dt from the responses
5: Align the LLM f(θt) via updating its parameter θt based on the dataset Dt

6: end for

The objective is to devise an algorithmA such that it can efficiently align the LLM f(·;θ) to achieve
a high WINRATE with the highest fidelity model g(M) while minimizing the total cost of querying
responses from the fidelity models and the LLM. Formally, the objective is to cost-efficiently find
parameters θ such that WINRATE(f(·;θ), g(M)) ⩾ γ for some given parameter γ > 0 with a
probability of at least 1− δ while minimizing the total cost E

[∑
t ntλ

(mt)
cost

]
=: Λ.

3 ALGORITHM

This section presents a multi-fidelity alignment algorithm (Algorithm 2). Given a set of M fidelities
to query responses with different costs, the algorithm aims to train a large language model (LLM)
with small costs.

We consider a step-by-step alignment process, where the algorithm starts with the lowest fidelity and
gradually increases the fidelity until the stopping criterion is met. The stopping criterion consists
of two parts (inverse of Line 2): either the WINRATE between the trained LLM f(·;θt) and the
fidelity expert g(m) exceeds a threshold γ or the LLM parameters θt converge. Especially, we use
WINFREQ(f, g) to empirical estimate the WINRATE between two models/experts f and g (Line 2).
After the algorithm finishes the training at the last fidelity M , it outputs the trained LLM and its
parameters f(·;θt).

At each fidelity m, the algorithm maintains a dataset D(m), updated in a batch manner. For each
batch, the algorithm, by randomly picking B ∈ N+ prompts from a given set X , collects B response
pairs from both the trained LLM f(·;θt) and fidelity expert g(m) (Lines 5–8), where the subroutine
Generate(x; f) means to generate one response for prompt x from a LLM or expert f . Then,
the algorithm concatenates these new responses pairs to the dataset D(m) (Line 9). Lastly, with
this extended dataset D(m), the algorithm updates the LLM parameters θt using directed preference
optimization (DPO) (Rafailov et al., 2024) (Line 11).

4 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of the multi-fidelity alignment algorithm (Algo-
rithm 2). In order to analysis the total cost of the algorithm, we first make an assumption on the
convergence rate of the DPO training process (used in Line 11). Then, we provide a lemma to up-
per bound the total cost of the algorithm. Finally, we provide a theorem to upper bound the cost
complexity of the algorithm.

Assumption 4 (Linear convergence rate). n = Θ
(
log ∥θ0−θ(n)∥

1−γ

)
iterations are sufficient to

achieve WINRATE(f(·,θ(n)), g(m)) ⩾ γ (for any γ ⩽ limn→∞ WINRATE(f(·,θ(n)), g(m))),
where θ0 is the initial parameter at the beginning of training at fidelity m, and θ(n) is the pa-
rameter after n iterations.
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Algorithm 2 Multi-Fidelity Alignment

Input: confidence parameter δ, error parameter ϵ, WINRATE stopping threshold γ ∈ (0, 1), and
prompt set X , training base LLM f(·;θ), multi-fidelity LLM/human experts g(m) for m =
1, 2, . . . ,M , and batch size B ∈ N+

Initialize: fidelity index m ← 1, time t ← 1, LLM parameter θ1, and dataset D(m′) ← ∅ for all
fidelities m′ = 1, . . . ,M

1: for each fidelity m = 1, 2, . . . ,M do
2: while WINFREQ(f(·;θt), g(m)) < γ and ∥θt − θt−1∥ > ϵ do
3: t← t+ 1 ▷ Update parameter index
4: for i = 1, . . . , B do ▷ Collect new responses
5: Randomly pick a prompt xi from dataset X
6: y1,i ← Generate(xi; f(·;θt)) ▷ Response from trained LLM
7: y2,i ← Generate(xi; g

(m)) ▷ Response from expert
8: Fi ← Compare(y1,i, y2,i;xi, F )

9: D(m) ← D(m) ∪ {y1,i, y2,i, xi, Fi}
10: end for
11: θt ← DPO Update(f,θt−1,D(m)) ▷ DPO Training
12: end while
13: end for
Output: trained LLM and its parameters f(·;θt)

The linear convergence rate in Assumption 4 is a common assumption in the optimization literature,
and it is also validated validated in deep learning theory literature (Allen-Zhu et al., 2019) for deep
neural network (DNN) and convolutional neural network (CNN) training.

From the pseudo-code of Algorithm 2, we can see that the cost of the algorithm is mainly from the
response collection at each fidelity. The cost of generating a response from the fidelity expert g(m)

is denoted as λ(m)
cost . The size of the dataset constructed at fidelity m is denoted as |D(m)|. The total

cost of the algorithm is the sum of the costs at each fidelity, that is,
∑M

m=1 λ
(m)
cost |D(m)|. By upper

bounding the size of the dataset |D(m)| at each fidelity, we propose an upper bound for the total cost
of the algorithm in Theorem 5.
Theorem 5. Assuming the triangle inequality property of WINRATE (Assumption 3), and the linear
convergence rate (Assumption 4), the cost complexity of Algorithm 2 is upper bounded as follows,
with a probability of at least 1− δ

∑
m∈M|D(m)|,

ΛMF ⩽ O

(
M∑

m=1

λ
(m)
cost

(
log

2α · rad + αβ WINRATE(g(m), g(m−1))

1− γ − rad
+B

))
, (2)

where g(0) := f(·;θ0) is the LLM f with the initial parameter θ0, the parameters δ ∈ (0, 1) and
rad > 0 depend on the WINFREQ calculation in Line 2 of Algorithm 2, and parameters α, β, γ are
defined in Lemma 2 and Assumptions 3 and 4, respectively.

The confidence level δ and the confidence radius rad depends on the number of evaluation samples
used in the WINFREQ calculation in Line 2 of Algorithm 2, representing the variance in estimating
the actual WINRATE. The larger the number of samples, the smaller the δ and the rad as quantified
in Lemma 1. The δ and the rad are used to ensure the probability of the WINFREQ calculation in
Line 2 of Algorithm 2 is at least 1 − δ

∑
m∈M|D(m)|. The additive MB terms in (2) is the cost of

generating a response from the LLM f(·;θt) at each fidelity, where B is the batch size used in the
response collection at each fidelity.

One vanilla alignment approach is the high-fidelity (HF) alignment, where one only uses the re-
sponses collected from the highest fidelity expert g(M) to train the LLM f . With the same stopping
condition as in Algorithm 2, the cost complexity of the high-fidelity alignment algorithm is upper
bounded as follows,

ΛHF = O

(
λ
(M)
cost

(
log

2α · rad + αβ WINRATE(g(M), g(0))

1− γ − rad
+B

))
. (3)
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Table 1: WINRATE of our LLM and fidelities

Baseline Model Candidate Model Win rate
Vicuna Llama 0.785
Llama Mistral 0.519875
Mistral Qwen 0.695

The most favorable scenario for the multi-fidelity alignment algorithm is when the cost of the highest
fidelity expert is much larger than the cost of the lower fidelity experts, i.e., λ(M)

cost ≫ λ
(m)
cost for all

m < M . For example, one extreme case is that the fidelity experts g(m) with m < M other than the
highest fidelity are all free to collect responses from (i.e., λ(m)

cost = 0 for m < M ), e.g., they are all
language models that are already available. Then, the cost complexity of the multi-fidelity alignment
algorithm is reduced to ΛMF = O

(
λ
(M)
cost

(
log 2α·rad+αβ WINRATE(g(M),g(M−1))

1−γ−rad +B
))

. As long as the

WINRATE(g(M), g(M−1)) < WINRATE(g(M), g(0)), the multi-fidelity alignment algorithm would
be more cost-effective than the high-fidelity alignment algorithm. In practice, the cost of the highest
fidelity expert is usually much larger than the cost of the lower fidelity experts, which is close to
the extreme example above, and hence, the multi-fidelity alignment algorithm is more cost-effective
than the high-fidelity alignment algorithm.

5 EXPERIMENTS

This section empirically evaluates the effectiveness of multi-fidelity alignment to obtain a better
LLM under a given budget. First, we employ 3 fidelities with increased performance to train our
LLM step by step, and compare it with directly using DPO to train our LLM. We choose the best
model derived from two methods and evaluate the model’s performance on the test dataset. Our
results show that if we allocate part of the budget to lower fidelity responses, we can derive an LLM
with better performance, i.e., better use of the budget. Before presenting these results, we describe
the experiment setup.

5.1 SETUP

Datasets. In this study, we adopt rm-static2, a split of Anthropic’s Helpful Harmless dataset, as
our dataset. In our experiment, we shuffle the dataset and reserve 200 samples for validation and
500 samples for testing.

Hyper-parameter setting. During policy training, we set maximum length to 256, adopt top-
p sampling with p =0.9 and temperature set to 0.1. When testing response generation, we set
maximum length to 256, p =0.95 and restrict to top-k=50 in top-p sampling, and temperature to
0.1. For DPO training, we set its learning rate to 5e-6, using cosine learning rate schedule and leave
10 percent of steps for warm up. For the cost setting of different fidelities, we set it to 1:4:16 for
each response they generate. For upgrade criterion, we use the win rate metric: if our LLM’s win
rate against fidelity exceeds 0.3, we proceed to the next fidelity. For the final fidelity, training is
halted when the win rate declines compared to the previous iteration. This criterion is chosen for
two reasons. First, it minimizes unnecessary costs associated with not utilizing the newly trained
LLM. Second, since the LLM’s response is automatically designated as the rejected response in
DPO training, a lower win rate in the current LLM supports better performance in the subsequent
training process. For batch size, we conducted training using batch sizes B of 512 and 1024, with
each experiment repeated twice.

Evaluation metrics. We employ our win rate metric to assess model performance. First, we collect
the responses of two models to a variety of prompts, designating one model as the baseline, typically
a fidelity, and the other as the candidate model, usually derived from training. We then utilize GPT-
4o to evaluate the responses in a pairwise manner, calculating the total number of instances where
the candidate model outperforms the baseline. The win rate of the candidate model, denoted as

2https://huggingface.co/datasets/Dahoas/rm-static
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Table 2: WINRATE (calculated in Line 2 of Algorithm 2) and fidelity shift trajectory in multi-fidelity
alignment with rm-static dataset with batch size B = 1024 samples per iteration in two traces

Alignment Trace One Alignment Trace Two
Fidelity Candidate model WINRATE Candidate model WINRATE

g(1): Llama

Vicuna 0.215 Vicuna 0.238
step1,iter1 0.225 step1,iter1 0.241
step1,iter2 0.354 step1,iter2 0.289

- - step1,iter3 0.309

g(2): Mistral
step1,iter2 0.318 step1,iter3 0.284

- - step2,iter1 0.386
vanilla (m = 2) 0.269 vanilla (m = 2) 0.256

g(3): Qwen

step1,iter2 0.163 step2,iter1 0.229
step3,iter1 0.204 step3,iter1 0.210
step3,iter2 0.233 - -
step3,iter3 0.213 - -

vanilla (m = 3) 0.191 vanilla (m = 3) 0.166

WINRATE, is determined by dividing the number of wins by the total number of response pairs. A
higher win rate indicates superior performance. During training, WINRATE is calculated using a
validation dataset, and after identifying the optimal models through our algorithm and DPO, the test
dataset is used to compute the final WINRATE.

Fidelity setting. We selected Llama3-8B-Instruct, Mistral-7B-Instruct-v0.2, and Qwen2-7B-
Instruct as fidelities due to the noticeable performance gap observed on the dataset (as shown in
Table 1). To simpilify our descritpions, we refer to these models as Llama, Mistral, and Qwen, re-
spectively. Additionally, we selected Vicuna-7b-v1.5 as our LLM for training, denoted as Vicuna.
We define step m,iter n as the LLM derived from the nth iteration using the mth fidelity. Specifi-
cally, we denote vanilla(m = 2) as the best LLM derived using Mistral under the same budget as in
step1 and step2, and vanilla(m = 3) as the best LLM derived using Qwen under the same budget as
in the whole step training.

5.2 MAIN RESULTS

We present the training trajectories in Table 2 and 3, as well as the testing performance in Table
4. We observed that the experiment results accord with our expectations. In step 1 and step 2, we
switch to the next fidelity when our LLM’s WINRATE exceeds 0.3 and note our models outperform
vanilla (m = 2) in both validation and test datasets. In step 3, training is halted when the LLM’s
WINRATE begins to decline, and the LLM with the highest WINRATE against Qwen is selected as
our best LLM. Our results indicate that our LLMs outperform vanilla (m = 3) in both validation
and test datasets with a batch size of B = 1024, and our LLMs surpass vanilla (m = 3) in the
validation dataset with a batch size of B = 512. We will analyze why our LLM is slightly inferior
to vanilla(m = 3) in test dataset next.

Discussion. In Table 4, we observe that the performance is constrained when the sample size is
limited to 512 per iteration. Based on this, we conclude the following suggestions for applying our
method. First, GPT evaluation and prompts have variances. When the increment of performance
is small, GPT may mislead us to move to the next fidelity or stop training. Second, it’s difficult to
align the LLM’s distribution to fidelity’s distribution when using small amount of samples. The dis-
tribution may end up in an inferior position which leads to the drop of performance. Combining the
first two points, we give two suggestions to get a satisfactory result. First, we can train on a larger
batch size to get greater improvement and give our LLM enough time to align its distribution with
fidelities. Second, we can enlarge our validation dataset for more accurate results. Third, automati-
cally labeling our LLM’s response as rejected response may not be effective when LLM’s WINRATE
arise. As the performance of the student model improves, it may generate responses that surpass the
current fidelity, potentially leading to incorrect preference labels for the DPO training. The more
incorrect labeling, the more likely the performance will decrease. To mitigate this limitation, we
test different quality of rejected responses for DPO training and find that rejected responses with
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Table 3: WINRATE (calculated in Line 2 of Algorithm 2) and fidelity shift trajectory in multi-fidelity
alignment with rm-static dataset with batch size B = 512 samples per iteration in two traces

Alignment Trace One Alignment Trace Two
Fidelity Candidate model WINRATE Candidate model WINRATE

g(1): Llama

Vicuna 0.215 Vicuna 0.250
step1,iter1 0.230 step1,iter1 0.211
step1,iter2 0.299 step1,iter 2 0.226
step1,iter3 0.31 step1,iter 3 0.303

g(2): Mistral
step1,iter3 0.275 step1,iter3 0.269
step2,iter1 0.365 step2,iter1 0.349

vanilla (m = 2) 0.308 vanilla (m = 2) 0.239

g(3): Qwen

step2,iter1 0.186 step2,iter1 0.201
step3,iter1 0.175 step3,iter1 0.209

- - step3,iter2 0.159
vanilla (m = 3) 0.166 vanilla (m = 3) 0.205

Table 4: WINRATE with vanilla as baseline model in test dataset

vanilla(m = 2) vanilla(m = 3)
Sample size Candidate model WINRATE Candidate model WINRATE

1024 step1,iter2 0.577 step3,iter2 0.513
1024-2 step2,iter1 0.634 step2,iter1 0.551

512 step2,iter1 0.546 step2,iter1 0.490
512-2 step2,iter1 0.590 step3,iter1 0.494

relatively poor quality can lead to better performance. Therefore, when we widen the gap between
the response pairs, we can obtain greater improvement.

6 CONCLUSION

This paper proposed a multi-fidelity alignment algorithm that incorporates responses with varying
levels of qualities (fidelities). Theoretically, by formulating a new WINRATE metric for the pref-
erence alignment task, the paper rigorously studied the required total cost of the new alignment
algorithm, providing insights for practice. Empirically, this paper reports experiments with three
fidelities (represented by three LLMs) and validates the superiority of the multi-fidelity algorithm
over the standard alignment method in the literature.
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A DEFERRED PROOFS

Proof of Lemma 1. The proof is based on the Hoeffding’s inequality. Let Xi =
1{F (f1(xi), f2(xi)) = Win or Tie} for i ∈ {1, 2, . . . , n} where xi is the i-th input token, where
Xi can be regarded as a Bernoulli random variable with mean WINRATE(f1, f2, F ). Then,
WINFREQ(D(f1, f2, F, n)) = 1

n

∑n
i=1 Xi. By Hoeffding’s inequality, we have

P (|WINFREQ(D(f1, f2, F, n))−WINRATE(f1, f2, F )| ⩾ ϵ) ⩽ 2 exp
(
−nϵ2

)
.

The proof is complete.

New Proof of Lemma 1 for Separable Assumption. The proof is based on the Hoeffding’s inequality.
Notice

WINFREQ(D(f1, f2, F, n)) =
1

n

n∑
i=1

(WF (f1(xi))−WF (f2(xi)))

WINRATE(f1, f2, F ) = Ex∼XEY1∼f1(x),Y2∼f2(x)(WF (Y1)−WF (Y2)),

where xi is the i-th input token, and WF (Y1) − WF (Y2) can be regarded as a [−1, 1]-bounded
random variable with mean Ex∼XEY1∼f1(x),Y2∼f2(x)WF (Y1)−WF (Y2). By Hoeffding’s inequality,
we have

P (|WINFREQ(D(f1, f2, F, n))−WINRATE(f1, f2, F )| ⩾ ϵ) ⩽ 2 exp
(
−nϵ2/4

)
.

The proof is complete.

Proof of Lemma 2. Denote the parameter sequence of the gradient ascent as θ0 = θ
(1)
0 → θ

(1)
1 =

θ
(2)
0 → θ

(2)
1 = θ

(3)
0 → · · · → θ

(k′)
1 = θ1 = θ

(k′+1)
0 → . . ., where θ

(k)
0 is the initial parameter of

the k-th iteration, and we denote θ
(k′)
1 = θ1 as the parameter after (k′)th iteration.

Notice that for each iteration k before stopping, we have

∥θ(k)
0 − θ

(k)
1 ∥

|WINRATE(f(·;θ(k)
0 ), g(m))−WINRATE(f(·;θ(k)

1 ), g(m))|
⩽

η

ϵ
,

where the last inequality is due to the stop condition WINFREQ(Dt−1)−WINFREQ(Dt−2) ⩽ ϵ in
Line 2 of Algorithm 2 is not triggered, and the definition of the learning rate η.

Therefore, picking any α(m) > η
ϵ , for any iteration of the gradient ascent, we have

∥θ(k)
0 − θ

(k)
1 ∥ ⩽ α(m)|WINRATE(f(·;θ(k)

0 ), g(m))−WINRATE(f(·;θ(k)
1 ), g(m))|.

Summing up the above inequality for iterations from k = 1 to k′, we have

∥θ0 − θ1∥ ⩽
k′∑

k=1

∥θ(k)
0 − θ

(k)
1 ∥ ⩽ α(m)|WINRATE(f(·;θ0), g(m))−WINRATE(f(·;θ1), g(m))|.

Proof of Theorem 5. The proof is straightforward by applying Lemma ?? and the above analysis.
With the double increasing rate, we know that

∑p(m)

p=1 B(p) ⩽ 2n(m) where n(m) is the number of
queries at fidelity m that is enough to achieve WINFREQ(D(f(θt), g(m))) ⩾ γ. Therefore, in the
following proof, we assume WINFREQ(D(f(θ̂(m)), g(m))) = γ, where θ̂(m) is the final parameters
of training at fidelity m. Next, we bound the number of queries n(m) by the convergence rate
function r and the distance between the two fidelities.
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Denote θ̂(m−1) as the final fidelity at fidelity m− 1 that fulfills the while-loop’s stopping condition
WINFREQ(f(·; θ̂(m−1)), g(m−1))) ⩾ γ. Then, we bound the number of queries n(m) in fidelity m.
The training at fidelity m stops when WINFREQ(f(·;θt), g(m)) ⩾ γ, that is, θt = θ̂(m). We have

∥θ̂(m) − θ̂(m−1)∥
(a)

⩽ α|WINRATE(f(·; θ̂(m)), g(m))−WINRATE(f(·; θ̂(m−1)), g(m))|
⩽ α|WINRATE(f(·; θ̂(m)), g(m))−WINRATE(f(·; θ̂(m−1)), g(m−1))|
+ α|WINRATE(f(·; θ̂(m−1)), g(m−1))−WINRATE(f(·; θ̂(m−1)), g(m))|

with probability
(b)

⩽ α|γ + rad− γ + rad|+ αβ WINRATE(g(m), g(m−1))

= 2α · rad + αβ WINRATE(g(m), g(m−1)),

where inequality (a) is due to Lemma 2, and inequality (b) is due to Lemma 1 and Assumption 3
holds with a probability of at least 1− δ

∑
m∈M|D(m)|.

With Assumption 4, we have

D(m) ⩽ B + n(m) = O

(
log

∥θ̂(m) − θ̂(m−1)∥
1−WINRATE(f(θ̂(m), g(m)))

+B

)

= O

(
log

2α · rad + αβ WINRATE(g(m), g(m−1))

1− γ − rad
+B

)
,

where the last equality is from the above derivation.
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