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Abstract

Contrastive learning has emerged as a powerful unsupervised learning technique for extracting
meaningful representations from unlabeled data by pulling similar data points closer in the
representation space and pushing dissimilar ones apart. However, its vulnerability to adver-
sarial attacks remains a critical challenge. To address this, adversarial contrastive learning

— incorporating adversarial training into contrastive loss — has emerged as a promising
approach to achieving robust representations that can withstand various adversarial attacks.
While empirical evidence highlights its effectiveness, a comprehensive theoretical framework
has been lacking. In this paper, we fill this gap by introducing generalization bounds for
adversarial contrastive learning, offering key theoretical insights. Leveraging the Lipschitz
continuity of loss functions, we derive generalization bounds that scale logarithmically with
the number of negative samples, K, and apply to both linear and non-linear representations,
including those obtained from deep neural networks (DNNs). Our theoretical results are
supported by experiments on real-world datasets.

1 Introduction

Learning meaningful representations from unlabeled data plays a crucial role in enhancing the performance
of machine learning models. Representation learning has shown great success in fields such as computer
vision (Chen et al., 2020b; He et al., 2020; Caron et al., 2020) and natural language processing (Brown
et al., 2020; Gao et al., 2021; Radford et al., 2021). Among various representation learning techniques,
self-supervised contrastive learning (CL), popularized by the SimCLR framework (Chen et al., 2020b),
stands out. The core idea behind contrastive learning is to bring similar pairs (x, x+) closer together in
the embedding space while pushing apart negative samples from x, (denoted as (x, x−

1 , · · · , x−
K)). These

learned representations can then be leveraged for downstream tasks, such as a classification task, whether
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supervised or unsupervised (Chen et al., 2020b; He et al., 2020; Khosla et al., 2020). Notably, extensive
research in contrastive learning has revealed that a sufficient number of negative samples is essential for
achieving high-quality representations (Chen et al., 2020b; Khosla et al., 2020; Henaff, 2020; Tian et al.,
2020).
Despite significant progress in representation learning, these representations remain susceptible to adversarial
examples (Szegedy et al., 2013; Biggio et al., 2013), which are subtly perturbed samples carefully crafted
to manipulate a model’s predictions. Specifically, adversarial attacks aim to maximize the model’s loss by
slightly perturbing input samples. To mitigate this vulnerability, researchers have proposed adversarial
training (Chen et al., 2020a; Tramer & Boneh, 2019). This technique employs a min-max optimization
approach, where the model simultaneously minimizes its loss while facing maximally perturbed examples.
By doing so, adversarial training enhances the robustness of the learned representations against adversarial
attacks. Adversarial contrastive learning (ACL) emerges from applying adversarial training to contrastive
learning. In this paradigm, adversarial training enhances the robustness of representations learned from
unlabeled data during unsupervised training. Empirical evidence supports the effectiveness of ACL in
improving the quality of these robust representations (Kim et al., 2020; Ho & Nvasconcelos, 2020; Jiang et al.,
2020). Despite its empirical success, the theoretical foundations of ACL remain somewhat limited.
Recent work by Zou & Liu (2023) leverages Rademacher complexity to show the connection between
unsupervised contrastive learning and the downstream classification task and claimed that the average
adversarial risk of downstream tasks can be upper bounded by the adversarial unsupervised risk of the
upstream task. Specifically, they derive a surrogate upper bound for the adversarial risk by analyzing the
average supervised risk. In the case of a single negative sample, they bound the adversarial supervised risk
using the surrogate unsupervised risk. For multiple negative samples, they introduce an average adversarial
supervised risk, which is similarly bounded by the surrogate unsupervised risk. This results in a bound that
scales as O(K), where K represents the number of negative samples, leading to a linear dependence on K.
However, their approach does not fully exploit the coupling between negative samples, resulting in suboptimal
bounds. As a result, their approach is not well-suited for scenarios involving a large number of negative
samples, which is essential for achieving optimal generalization performance (Chen et al., 2020b; Tian et al.,
2020; Henaff, 2020; Khosla et al., 2020). In contrast, our work extends this analysis to the general case with
a large number of negative samples, aiming to improve the dependency on the sample size and provide more
effective bounds.
In this paper, we present the following contributions:

• We apply the ℓ∞-Lipschitz property of loss functions to derive generalization error bounds for ACL.
These bounds incorporate the covering number of feature classes and show improved dependency on
the number of negative examples, resulting in tighter bounds compared to existing literature by Zou
& Liu (2023).

• Our general results are applied to two specific scenarios of unsupervised representation learning:
learning linear features and learning non-linear features via DNNs. In both cases, the bounds show a
logarithmic dependence on the number of negative samples.

The remainder of the paper is organized as follows: Section 2 reviews related work and state-of-the-art
approaches. In Section 3, we define the problem and set up our framework. Our main theorem on the
generalization error bound for ACL is presented in Section 4. Section 5 applies this result to both linear
and nonlinear feature representations, demonstrating the corresponding generalization bounds. Empirical
evaluations are provided in Section 6. All proofs for the lemmas and theorems can be found in Section 7 and
the appendix. Finally, Section 8 concludes the paper.

2 Related work

Contrastive Learning Our work is primarily related to the theoretical analysis of contrastive learning by
Arora et al. (2019) and Lei et al. (2023). Arora et al. (2019) provided generalization bounds for contrastive
learning by analyzing the Rademacher complexity of the representation function class and examining the
performance of linear classifiers trained on the learned representations. They showed that the classification
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error of a mean classifier is bounded by the unsupervised errors of learned representation functions, indicating
that downstream tasks such as classification tasks benefit from representations with low unsupervised errors.
However, their generalization bounds scale linearly with K, the number of negative samples, which becomes
impractical when K is large, as is often the case in CL. Motivated by this, Lei et al. (2023) improved the
dependence on the number of negative samples. For ℓ2 Lipschitz loss, their bound is independent of K, and
for ℓ∞ Lipschitz loss, they achieved a reduction by a factor of K. Ji et al. (2023) introduced a theoretical
framework for contrastive learning under the linear representation setting, providing a detailed analysis of the
feature learning performance in the spiked covariance model. Their work theoretically justified why contrastive
learning can remove more noise compared to autoencoders and GANs by constructing contrastive samples
via augmentations. In a PAC-Bayesian setting, Nozawa et al. (2020) derived PAC-Bayesian generalization
bounds on the posterior distribution of representation functions. Another key challenge in CL is the random
selection of negative samples, which can result in some negatives sharing the same label as the anchor point.
This introduces bias into the CL loss function and can potentially reduce performance in practice. Chuang
et al. (2020) addressed this by deriving an approximation for the unbiased contrastive loss and establishing
generalization bounds for downstream tasks.

Adversarial Robustness Since Szegedy et al. (2013) first revealed the vulnerability of neural networks to
small input perturbations (Jiang et al., 2020; Kim et al., 2020), numerous studies have focused on establishing
generalization bounds for adversarial learning, primarily in the supervised setting. Montasser et al. (2019)
explored the PAC learnability of adversarial robust learning, and Xu & Liu (2022) extended these findings
to the multi-class classification problem. Additionally, several works have used Rademacher complexity to
analyze adversarial learning under ℓp-norm additive perturbation attacks (Yin et al., 2019; Awasthi et al.,
2020; Khim & Loh, 2018; Xiao et al., 2022; Mustafa et al., 2022). Yin et al. (2019) derived Rademacher
complexity-based bounds for linear models and single-layer neural networks using a surrogate loss, while
Awasthi et al. (2020) introduced bound based on the direct loss for linear models and two-layer neural
networks. Expanding on this approach, Mustafa et al. (2022) developed bounds for a broader range of attacks,
directly applied to the loss function, and showed that their results grow at a rate of O(log C), where C is the
number of label classes. In contrast, Khim & Loh (2018) proposed a tree-transform method to propagate
adversarial noise through the network, leading to a bound that scales exponentially with the number of
classes, O(C).

Adversarial Contrastive Learning Recent studies have increasingly applied adversarial training to
contrastive learning loss to improve model robustness (Kim et al., 2020; Ho & Nvasconcelos, 2020; Jiang
et al., 2020). However, the theoretical foundations of ACL remain underexplored. Zou & Liu (2023) leveraged
Rademacher complexity to show that the average adversarial risk in downstream tasks can be bounded by
the adversarial unsupervised risk of the upstream task. Specifically, they derived a surrogate upper bound for
the adversarial risk by analyzing the average supervised risk. For the case of a single negative sample, they
provided bounds on the adversarial supervised risk using the surrogate unsupervised risk and extended their
approach to multiple negative samples by introducing an average adversarial supervised risk, also bounded by
the unsupervised risk. However, their bound scales linearly as O(K) with the number of negative samples
K. A concurrent work studied adversarial contrastive learning by using structural result on infinity-norm
covering numbers (Wen et al.).

3 Problem Formulation

3.1 Contrastive Representation Learning

In the contrastive learning setting, we aim to learn representations by contrasting similar and dissimilar
data points. Let X be an input space (e.g., a set of input images). Given an anchor sample x, we use a
positive sample x+, which is drawn from a distribution of similar data Dsim, and multiple negative samples
x−

1 , x−
2 , · · · , x−

K , which are drawn from a negative distribution Dneg. The goal is to learn a representation
where the anchor and positive pair are pulled closer together, while the anchor and negative samples are
pushed apart in the feature space. In this setup, a single positive sample is paired with multiple negative
samples, creating an inherent asymmetry that is standard in both theoretical (Arora et al., 2019; Lei et al.,
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2023) and empirical contrastive learning (Chen et al., 2020b; Khosla et al., 2020). This approach simplifies
implementation and analysis while reducing computational complexity. Adding more positive samples does
not always yield proportional performance improvements and can increase the risk of overfitting by reducing
contrast between similar and dissimilar examples. Conversely, multiple negative samples are essential for
enhancing feature representations, as they offer diverse examples for the model to distinguish from the
positive pair. We follow the framework of Arora et al. (2019) to define the distribution of Dsim and Dneg. The
distributions Dsim and Dneg are generally characterized through a set of latent classes C and an associated
probability distribution ρ over these classes. For each latent class c ∈ C, let Dc be the conditional distribution
of the inputs given the latent class c. Dsim and Dneg are defined as:

Dsim(x, x+) = Ec∼ρ[Dc(x)Dc(x+)],

Dneg(x−) = Ec∼ρ[Dc(x−)].
That is, Dsim(x, x+) measures the probability of drawing x and x+ from the same class c ∼ ρ, which means
that x and x+ are conditionally dependent, given c, while Dneg(x−) measures the probability of drawing x−

that is independent of x and x+, coming from other latent classes. The objective of CL is to select a feature
map f : X → Rd from a class of representation functions F = {f : ∥f(·)∥1 ≤ R}, for some R > 0, where ∥ · ∥1
denotes the ℓ1-norm, and d ∈ N represents the dimensionality of the feature space. This is achieved using the
training set

S = {(x1, x+
1 , x−

11, · · · , x−
1K), (x2, x+

2 , x−
21, · · · , x−

2K), · · · , (xn, x+
n , x−

n1, · · · , x−
nK)},

where (xj , x+
j ) ∼ Dsim and (x−

j1, · · · , x−
jK) ∼ DK

neg, with j ∈ [n] := {1, · · · , n} and K indicating the
number of negative samples. However, the specific distributions Dsim and Dneg are abstracted out once
we are dealing with a fixed dataset S. The quality of the representation f is evaluated using the loss
ℓ
(
{f(x)T (f(x+) − f(x−

k )}K
k=1
)
, where ℓ : RK → [0, B] is some loss function and f(x)T is the transpose of

f(x). The population and empirical risks are then defined as follows.
Definition 3.1 (Upstream unsupervised risk). The population unsupervised risk is defined as:

Lun(f) = E[ℓ({f(x)T (f(x+) − f(x−
k ))}K

k=1)],

and the empirical unsupervised risk on S is defined as:

L̂un(f) = 1
n

n∑
i=1

ℓ({f(xi)T (f(x+
i ) − f(x−

ik))}K
k=1)].

To find the representations f in an unsupervised manner, we employ an unsupervised loss function ℓ : RK 7→ R+
which can be chosen to be a hinge loss. Given a vector u, the hinge loss is defined as:

ℓ(u) = max{0, 1 + max
i∈[K]

{−ui}}.

3.2 Adversarial Contrastive Representation Learning

In this paper, we examine adversarial settings where an attacker employs a noise function A : X × B → X ,
with B being a noise set, to subtly introduce noise δ ∈ B to an input x ∈ X in order to maximize the loss.
For example, in the Lp-additive attack, A(x, δ) = x + δ and B is the ℓp-ball {δ : ∥δ∥p ≤ β}. The attacker’s
objective is to select δ∗ ∈ B that maximizes the loss:

δ∗ = arg max
δ∈B

ℓ({f(A(x, δ))T (f(x+) − f(x−
k ))}k

k=1).

The adversarial and empirical risks are subsequently defined as follows.
Definition 3.2. (Unsupervised adversarial contrastive risk). The population unsupervised adversarial
contrastive risk is defined as:

Ladv
un (f) = E[max

δ∈B
ℓ({f(A(x, δ))T (f(x+) − f(x−

k ))}K
k=1)]
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and the empirical unsupervised adversarial contrastive risk is defined as:

L̂adv
un (f) = 1

n

n∑
i=1

max
δ∈B

ℓ({f(A(xi, δ))T (f(x+
i ) − f(x−

ik))}K
k=1)].

In our definition of adversarial contrastive risk, the adversary is restricted to perturbing only the anchor
sample x, while the positive sample x+ and negative samples x− remain clean. This is consistent with
standard practices in both theoretical (Zou & Liu, 2023) and practical applications of ACL (Kim et al., 2020;
Ho & Nvasconcelos, 2020; Jiang et al., 2020), where adversarial perturbations are typically applied to the
anchor sample alone. This setup allows us to evaluate the robustness of the learned representation without
disrupting the fundamental contrastive structure between positive and negative samples.

Our goal is to derive a generalization bound for ACL, that is a bound on Ladv
un (f) − L̂adv

un (f).

4 Generalization Error Bounds

In this section, we establish a generalization bound for ACL. Our technique relies on the concept of covering
numbers of the adversarial contrastive loss class. Covering numbers measure the complexity of a function
class F by counting the minimum number of “balls” needed to cover all functions in F , where each ball
represents a region of approximation with a specified level of accuracy.
Definition 4.1 (Covering number). Let F := {(f(x1), · · · , f(xn))} be a real-valued function class, that
maps X → Rd defined over a vector space V, and let S := {x1, · · · , xn} ⊂ X n be a dataset. For any ϵ > 0,
the ℓp-norm covering number, denoted as Np(ϵ, F , S), is defined as the size of the smallest set of vectors
v1, · · · , vm that covers F . Specifically, it satisfies:

sup
f∈F

min
j∈[m]

( 1
n

∑
i∈[n]

|f(xi) − vi
j |p
) 1

p ≤ ϵ,

where v1, · · · , vm forms the (ϵ, ℓp)-cover of F with respect to S. Moreover, when the ℓp-norm is taken as the
ℓ∞-norm, we denote the covering number as N∞(ϵ, F , S). Finally, the worst-case covering number is defined
as Np(ϵ, F , n) = maxS∈X n Np(ϵ, F , S), where the maximum is taken over all possible datasets S ⊂ X n of
size n.

To analyze the complexity of a function class involving a nonlinear loss function (e.g., hinge loss), we use
Lipschitz continuity to simplify the analysis by reducing the complexity to that of a function class without
the loss function ℓ. We consider a general Lipschitz continuity w.r.t. a ℓp-norm, defined as follows:
Definition 4.2 (Lipschitz continuity). A function ℓ : RC → R+ is said to be λ-Lipschitz continuous with
respect to the ℓp-norm (p ≥ 1) if for any v, v′ ∈ RC , the following inequality holds:

|ℓ(v) − ℓ(v′)| ≤ λ∥v − v′∥p.

In other words, a Lipschitz continuous function exhibits only a small change in its output when its inputs
slightly change.

We now proceed to derive the generalization bounds for ACL. The function class of interest is defined as
follows:

Gadv =
{

(x, x+, x−
1 , . . . , x−

K) 7→ max
δ∈B

ℓ({f(A(x, δ)T (f(x+) − f(x−
k ))}K

k=1) : f ∈ F
}

.

We use covering numbers to measure the complexity of our function class Gadv by quantifying how well it can
be approximated using simpler functions. This approximation helps establish generalization bounds, as a
smaller covering number indicates a less complex function class, leading to tighter bounds on the adversarial
contrastive loss.
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The structure of the analysis is as follows: 1) The Lemma 4.1 simplifies the adversarial contrastive learning
function class (Gadv) by leveraging the Lipschitz continuity of the loss function (λ2) and maxδ∈B to reduce
its complexity to that of an intermediate class, H. 2) Building on this, the Lemma 4.2 further reduces H
to an even simpler function class, F̃ . 3) This final simplified function class, F̃ , forms the basis of our main
Theorem 4.1, which depicts that the generalization error of ACL is governed by the covering number of this
reduced function class.

The main challenge for the analysis of the ACL function class is due to the maxδ∈B operator. The maxδ∈B
operator adds complexity by requiring optimization over all perturbations, making the function class hard to
analyze. To address this, our main strategy is to leverage the properties of ℓ∞-covering numbers to control
the complexity of the ACL function class. This approach allows us to effectively handle the high-dimensional
function class and alleviate the challenges posed by the maximization operator (Mustafa et al., 2022).
Removing this operator simplifies the class, enabling tractable analysis and the derivation of generalization
bounds.

The following lemma shows a bound on the covering number of Gadv in terms of the covering number of
an extended function class that does not contain the maxδ∈B-operator and the loss function ℓ on f . The
extended function class is defined as:

H =
{

(x, x+, x−, δ̃) 7→ f(A(x, δ̃))T (f(x+) − f(x−)) : f ∈ F
}

.

That is, the functions in H are explicitly parameterized by the adversarial noise δ. Consequently, the data
set is extended to:

SH =
{

(xi, x+
i , x−

ik, δ̃) : i ∈ [n], k ∈ [K], δ̃ ∈ CB( ϵ

2λ1
)
}

,

where CB( ϵ
2λ1

) is an ( ϵ
2λ1

, ℓ∞)-cover of B, for some ϵ, λ1 > 0. Specifically, for any δ ∈ B, there exists
δ̃ ∈ CB( ϵ

2λ1
) such that ∥δ − δ̃∥∞ ≤ ϵ

2λ1
. We now introduce our first lemma, which establishes a relationship

between the covering number of Gadv on S and that of H on SH.
Lemma 4.1. Let δ 7→ ℓ({f(A(x, δ))T (f(x+) − f(x−

k ))}K
k=1) be λ1-Lipschitz and ℓ be λ2-Lipschitz with

respect to the ℓ∞-norm, for all (x, x+, x−
1 , . . . , x−

K) ∈ X K+2 and f ∈ F . Then, we have:

N∞(ϵ, Gadv, S) ≤ N∞

( ϵ

2λ2
, H, SH

)
.

The lemma shows that we can upper-bound the ℓ∞-covering number of the ACL function class by that of
the class H with the extended training set SH. Notably, the class H does not include the maxδ∈B operator,
significantly simplifying the analysis. Furthermore, it shifts the dependence on the number of negative
samples from the dimensionality of the function class’s output to the size of the training set. For most classes,
the dependence of the covering numbers on the size of the training set is only logarithmic (Zhang, 2002).
Consequently, our bound will lead to a generalization bound that only has a logarithmic dependence on the
number of negative samples K. The proof of Lemma 4.1 begins by eliminating the maxδ∈B-operator, an
approach based on Mustafa et al. (2022). Details of the proof are provided in the appendix.
Remark. The Lipschitz condition on the function δ 7→ ℓ({f(A(x, δ))T (f(x+) − f(x−

k ))}K
k=1) is crucial because

it is a mild yet standard assumption that most adversarial attacks in the literature satisfy (Engstrom et al.,
2019; Awasthi et al., 2021; Madry et al., 2017). This condition ensures that the loss function behaves smoothly
and predictably, which is essential for the success of gradient-based adversarial attacks. Additionally, this
Lipschitzness allows us to bound the covering number of the adversarial class Gadv.
Remark. The size of the extended training set SH grows linearly with the size of the cover CB( ϵ

2λ1
). While

the size of CB( ϵ
2λ1

) can grow exponentially with the dimensionality of the perturbation set B, it’s important
to note that the dependence of the generalization performance is typically of the order O(log1/2(|SH|)), as
shown in prior work (Bartlett et al., 2017; Zhang, 2002; Mustafa et al., 2021). Thus, the generalization
bounds will exhibit a square-root dependency on the dimensionality of B, leading to manageable bounds even
in the presence of large perturbation sets.

While Lemma 4.1 provides an upper bound on the ACL class Gadv in terms of the non-adversarial class H,
the class H is not directly the representation function class F . This makes it challenging to utilize existing
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covering number results for typical models (e.g., linear models (Zhang, 2002) or DNNs (Ledent et al., 2021b)).
The following lemma establishes a relationship between the covering numbers of H and those of F .
Lemma 4.2. Assume the previous conditions hold and that ∥f(x)∥1 ≤ R, for all x ∈ X . We define the
function class F̃ as follows:

F̃ =
{

(x, j) 7→ fj(x) : f ∈ F , x ∈ X , j ∈ [d]
}

over the training set SF̃ :

SF̃ = {(A(xi, δ̃), j) : i ∈ [n], j ∈ [d], δ̃ ∈ CB( ϵ

2λ1
)}∪{(x−

ik, j) : i ∈ [n], k ∈ [K], j ∈ [d]}∪{(x+
i , j) : i ∈ [n], j ∈ [d]}.

Then, we have:
N∞

( ϵ

2λ2
, H, SH

)
≤ N∞

( ϵ

8Rλ2
, F̃ , SF̃

)
.

The proof of this lemma is provided in the appendix. The lemma upper-bounds the covering number of H by
the covering number of the class F̃ . Notably, F̃ is a class of scalar-valued functions of the same form as the
representation function class F . This simplifies the analysis by (1) reducing the form of the functions in H
to that of the representation class, and (2) simplifying the analysis from vector-valued functions to scalar
functions of the same form. Note that the number of dimensions contributes only through the size of the
dataset SF̃ , and for many typical function classes, this contribution is only logarithmic. This achieves the
best known rate for vector-valued functions (Lei et al., 2019). Combining Lemmas 4.2 and 4.1 with Dudley’s
entropy integral (Boucheron et al., 2003; Bartlett et al., 2017; Ledent et al., 2021a; Srebro et al., 2010) gives
our main result.
Theorem 4.1. Let δ ∈ (0, 1), and F = {f : ∥f(·)∥1 ≤ R}, for some R > 0, where ∥ · ∥1 denotes the ℓ1-norm,
and d ∈ N represents the dimensionality of the feature space and F̃ =

{
(x, j) 7→ fj(x) : f ∈ F , x ∈ X , j ∈ [d]

}
.

With probability at least 1 − δ over the randomness of the training data S with size n, we have for all f ∈ F :

Ladv
un (f) ≤ L̂adv

un (f) +
3B
√

log( 2
δ )

√
2n

+ inf
a>0

(
8a + 24√

n

∫ B

a

log
1
2 N∞

( ϵ

8Rλ2
, F̃ , SF̃

)
dϵ
)

.

The theorem demonstrates that we can control the generalization error of ACL by controlling the covering
number of the class F̃ . The covering numbers of many classes F̃ (e.g., linear models (Zhang, 2002),
MLPs (Bartlett et al., 2017), CNNs (Ledent et al., 2021b), and structured learning models (Mustafa et al.,
2021)) can be directly applied here to derive generalization bounds for ACL across a large family of models.

5 Applications

To learn the representations f in an unsupervised setting, we employ an unsupervised loss function ℓ : RK 7→
R+, which can be selected as the hinge loss. For simplicity, we assume the loss function is bounded by B for
any f ∈ F . Specifically, this means:

ℓ({f(A(x, δ))T (f(x+) − f(x−
k ))}K

k=1) ≤ B, ∀f ∈ F .

This assumption is valid because we can impose constraints on the norms of the model’s weights and inputs,
ensuring the loss function remains bounded.
In this section, we instantiate our bound (Theorem 4.1) for two models: linear and DNN-based features.
Throughout the section, we consider feature extractors of the form x 7→ Uv(x), where U ∈ Rd×d′ is a
transformation matrix, and v : X 7→ Rd′ is a map from the original data x ∈ X to some intermediate
embedding space in Rd′ . We consider the linear feature extractor in Section 5.1, while in Section 5.2, we
explore features from a DNN.

5.1 Linear Features

First, we focus on the linear features. That is, we assume that v is the identity map.
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We consider the ℓ∞-attack, in which the attacker uses an additive noise function A(x, δ) = x + δ, for x ∈ X
and δ ∈ B, where the noise set, B, is the ℓ∞-ball

B =
{

δ : ∥δ∥∞ ≤ β
}

⊂ RD.

We begin by showing that the function δ 7→ ℓ((Uv(x + δ))T (Uv(x+) − Uv(x−
k ))K

k=1) is indeed Lips-
chitz. The following lemma establishes and quantifies the upper bound on the Lipschitz constant of
δ 7→ ℓ((U(x + δ))T (U(x+) − U(x−

k ))K

k=1).

Lemma 5.1. Consider the function gU (x, δ) = ℓ((U(x + δ))T (U(x+) − U(x−
k ))K

k=1) and assume ∥U∥∞,2 ≤ Λ1.
Then, for any x, the function δ 7→ gU (x, δ) is ∥ · ∥∞-Lipschitz with the Lipschitzness constant 2Λ2

1∥x∥2.

Now that we have the Lipschitzness of δ on the loss function ℓ, we can bound the covering number of our
linear scalar-valued feature class in the following lemma.
Lemma 5.2. Let F̃ be the linear feature class and SF̃ be a given dataset in Lemma 4.2 with ∥x∥2 ≤ Ψ, for
all x ∈ X , and ∥U∥2,2 ≤ Λ, then for all ϵ > 0, we have

log N∞

( ϵ

8Rλ2
, F̃ , SF̃

)
≤ CR2λ2

2Λ2(Ψ +
√

Dβ)2Llog

ϵ2 ,

where C is an absolute constant, m = |CB( ϵ
2λ1

)|, Ψ′ = Ψ +
√

Dβ and

Llog := log
(

2
⌈

8Rλ2ΛΨ′

ϵ
+ 2
⌉

(nmd + ndK + nd)
(

12βΛ2
1∥x∥2Ψ
ϵ

)D

+ 1
)

.

If we plug Lemma 5.2 back into the Theorem 4.1, we get the following corollary.
Corollary 5.1. Assuming the above assumptions, for all f ∈ F , with probability at least 1 − δ over the
training data, we have

Ladv
un (f) ≤ L̂adv

un (f) + 8
n

+ 3B

√
log(2/δ)

2n
+

√
CRλ2ΛΨ′L̃log√

n
,

where C is a constant, Ψ′ = Ψ +
√

Dβ, m = |CB( ϵ
2λ1

)|, N = nmd + ndK + nd and

L̃log := log
1
2

(
4 ⌈4Rλ2ΛΨ′n + 1⌉ N

(
12βΛ2

1∥x∥2Ψn
)D

+ 1
)

(log(n) + log(B)).

Remark. Our bound has a dependency on the square root of the input dimension,
√

D, in the term Ψ′. This
arises due to the mismatch between the ℓ2-norm of the input and the ℓ∞-norm in the ball β, as encapsulated
by the inequality ∥δ∥2 ≤

√
D∥δ∥∞. Additionally, the bound has a logarithmic dependence on the negative

samples, K. The logarithmic dependency shows the appealing behavior of ACL for learning with a large
number of negative examples.

5.2 Nonlinear Features

Now, we consider the covering numbers for learning the nonlinear features by DNNs. We say an activation
function σ : R 7→ R is positive-homogeneous if σ(ax) = aσ(x) for a > 0, and is contracting if |σ(x) − σ(x′)| ≤
|x − x′|. The ReLU activation function σ(x) = max{x, 0} is both positive-homogeneous and contractive. Now
assume the DNN feature map is defined as (removing matrix U for now),

V = {x 7→ v(x) = σ(VLσ(VL−1 · · · σ(V1x))) : ∀l ∈ [L]}.

Each layer l ∈ [L] has the width of wl, where w0 = D (the input dimension) and wL = d (the number of
feature dimension).

8
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Let V ∈ V be the weight of the network. Suppose that V is such that, for all V ∈ V, ∥Vl∥2 ≤ al and ∥Vl∥σ ≤ sl

for all l ∈ [L − 1]. Further, suppose that, for all V ∈ V, ∥VL∥2 ≤ aL, ∥VL∥2,∞ ≤ sL and ∥V1∥1,∞ ≤ s′
1.

We now consider the ℓ∞-additive perturbation applied to the DNN. As with the linear case, we first establish
the Lipschitzness of the function δ 7→ ℓ((Uv(x + δ))T (Uv(x+) − Uv(x−

k ))K

k=1) w.r.t. ∥ · ∥∞-norm. The
following lemma establishes the Lipschitz continuity of the loss as a function of δ.
Lemma 5.3. Consider the function gUV (x, δ) = ℓ((Uv(x + δ))T (Uv(x+) − Uv(x−))K

k=1) and assume
∥U∥∞,2 ≤ Λ1 and v(·) is the neural network. Then, for any x ∈ X and V ∈ V, the function δ 7→ gUV v(x, δ)
is ∥ · ∥∞-Lipschitz with constant 2Λ2

1s′
1
√

w1∥x∥2
∏L

l=1 sl

∏L
l=2 sl.

Now, we can get the upper bound of the covering number of the neural network scalar-valued feature class
w.r.t. ∥.∥∞-norm.
Lemma 5.4. Let F̃ be the DNN (nonlinear) feature class on the extended dataset SF̃ , defined as before.
Let B := {δ : ∥δ∥∞ ≤ β}. Assume the previous assumptions on the weights of DNN, and ∥x∥2 ≤ Ψ. Then,
for SF̃ and ϵ > 0, we have

log N∞

( ϵ

8Rλ2
, F̃ , SF̃

)
≤ CL2R2λ2

2Ψ′2

ϵ2

L∏
l=1

s2
l

(
L∑

l=1

a2
l

s2
l

)
Llog,

where

Llog := log
((

C1Ψ′ΓR2λ2/ϵ + C2w̄

)
(nmd + ndK + nd)

(12βΛ2
1s′

1
√

w1∥x∥2
∏L

l=1 sl

∏L
l=2 sl

ϵ

)D

+ 1
)

,

Ψ′ = (Ψ +
√

Dβ), Γ = maxl∈[L](
∏L

i=1 si)alwl/sl, w̄ = maxl∈[L] wl, m = |CB( ϵ
2λ1

)|, and C, C1, C2 are universal
constants.

Plugging Lemma 5.4 into Theorem 4.1, we get the following corollary.
Corollary 5.2. Under the previous assumptions, for all f ∈ F , with probability at least 1 − δ over the
training data, we have

Ladv
un (f) ≤ L̂adv

un (f) + 8
n

+ 3
√

log(2/δ)
2n

+ CLRλ2Ψ′
√

n

L∏
l=1

sl

√√√√( L∑
l=1

a2
l

s2
l

)
L̃log,

where C is an absolute constant, Ψ′ = Ψ +
√

Dβ, m = |CB( ϵ
2λ1

)|, N = nmd+ndK+nd and

L̃log =log
1
2

((
C1Ψ′Γn+C2w̄

)
N
(

12βΛ2
1s′

1
√

w1∥x∥2

L∏
l=1

sl

L∏
l=2

sln
)D

+1
)

(log(n) + log(B)).

Remark. Similar to the results for the linear case, our analysis reveals a dependency on the square root of the
input dimension. This issue can be resolved if we assume the ℓ2 attack, where B = {δ : ∥δ∥2 ≤ β}. As in the
linear case, our results maintain a logarithmic dependence on the negative samples, K.

6 Experiments

We evaluate our theoretical results to two widely used benchmark datasets from the image domain: CIFAR-10
and CIFAR-100 (Krizhevsky, 2009). CIFAR-10 and CIFAR-100 consist of 50,000 training images and 10,000
testing images, organized into 10 and 100 classes, respectively.

Experimental Setup For linear features, we use a one-layer neural network, while for nonlinear features,
we implement a four-layer neural network with ReLU activation. Both models are trained using the Adam
optimizer, with a learning rate of 1e − 3. We perform adversarial training on the following objective function:

arg max
δ∈B

ℓ({f(A(x, δ))T (f(x+) − f(x−
k ))}k

k=1).

9
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To generate adversarial perturbations, we employ the ℓ∞ PGD algorithm (Madry, 2017) with a step size of
ϵ/255, where ϵ represents the maximum allowable perturbation. Afterward, a PGD attack is performed to
evaluate the generalization error. The generalization error is calculated as the difference between the training
accuracy and testing accuracy, a standard method commonly used in the literature Yin et al. (2019). We calcu-
late the generalization error for different values of ϵ = {2/255, 4/255, 8/255, 16/255, 32/255, 64/255, 128/255},
with varying negative samples, K = {63, 127, 511, 1023}.

6.1 Results

We analyze how the generalization error varies with respect to different parameters by examining the effect of
step size (ϵ) and the number of negative samples (K). The results are presented in Figure 1 for CIFAR-10
and CIFAR-100. As expected, the generalization error increases as the number of negative samples (K) grows.
While this behavior is consistent with our theoretical bounds, it contrasts with findings in prior work showing
that increasing K can enhance downstream classification performance (Wang et al., 2022; Bao et al., 2022;
Awasthi et al., 2022). This apparent discrepancy arises from the different objectives in these two types of
analyses. The generalization error increases with K because the function class becomes more complex, as the
loss function must handle a greater number of comparisons. Furthermore, a larger K can make the model
more prone to overfitting to the negative examples, thereby amplifying the generalization gap—particularly
if the loss function becomes overly sensitive to the contrast between positive and negative pairs. These
two phenomena are not inherently contradictory but rather highlight the distinction between task-specific
performance and the broader ability of the learned representations to generalize across diverse tasks.

Figure 1: Generalization error with varying numbers of negative samples. On the left, the features are learned
using a linear model, and on the right, the features are learned using a nonlinear model (4-layer neural
network). As the number of negative samples (K) increases, the generalization error rises.
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7 Proofs

7.1 Proofs of Results in Section 5.1

In this subsection, we present the omitted proofs of section 5.1 when the features are linear. Our approach
relies on ℓ∞-covering numbers for the feature classes. First, we show that the loss function is ℓ∞-Lipschtiz
with respect to the noise parameter δ. Next, we derive a bound on the size of the set CB(ϵ/2λ1). Finally, we
establish a bound on the ℓ∞-covering number of the feature class F̃ on the extended data set SF̃ .

Initially, we prove the bounds of ℓ∞-additive attacks applied to linear models as stated in Lemma 5.1. Our
first step is to derive the ∥ · ∥∞-Lipschitz constant of the function δ 7→ ℓ({(U(x + δ))T (U(x+) − U(x−

k ))}K
k=1).

The following is the proof of Lemma 5.1.

Proof of Lemma 5.1. The proof is a direct derivation. For all x ∈ X , ∥U∥∞,2 ≤ Λ1, δ, δ′ ∈ B, we have:

|ℓ({(U(x + δ))T (U(x+) − U(x−
k ))}K

k=1) − ℓ({(U(x + δ′))T (U(x+) − U(x−
k ))}K

k=1)|
≤ |ℓ((U(x + δ))T (U(x+) − U(x−))) − ℓ((U(x + δ′))T (U(x+) − U(x−)))|
≤ |(U(x + δ))T (U(x+) − U(x−)) − (U(x + δ′))T (U(x+) − U(x−))|
≤ ∥U(x + δ) − U(x + δ′)∥2∥U(x+) − U(x−)∥2 ≤ Λ1∥(x + δ) − (x + δ′)∥∞∥U(x+) − U(x−)∥2

≤ Λ1∥δ − δ′∥(∥U(x+)∥2 + ∥U(x−)∥2) ≤ Λ1∥δ − δ′∥∞2Λ1∥x∥∞ ≤ 2Λ2
1∥x∥2∥δ − δ′∥∞.

The second inequality is derived from the fact that hinge loss ℓ is ℓ∞-Lipschitz with constant 1. The fifth
inequality uses the triangle inequality ∥U(x+)−U(x−)∥2 ≤ ∥U(x+)∥2 +∥U(x−)∥2. The last inequality follows
from ∥x∥∞ ≤ ∥x∥2, for all x ∈ RD.

In this paper, we need upper bounds on covering numbers of bounded balls in RD. We start by reviewing a
result that provides an upper bound on the size of the set CB(ϵ) defined w.r.t. a general norm ∥ · ∥.
Lemma 7.1 (Long & Sedghi 2019). Let d be a positive integer, ∥ · ∥ be a norm, ρ be the metric induced by
it, and κ, ϵ > 0. A ball of radius κ in Rd w.r.t. ρ can be covered by ( 3κ

ϵ )d balls of radius ϵ.

We now review the upper bounds on the ℓ∞-covering numbers of linear models.
Lemma 7.2 (Zhang 2002). Let L be a class of linear functions on a set of size n. That is, L = {⟨w, x⟩ , x, w ∈
RN }. If ∥x∥q ≤ b and ∥w∥p ≤ a, where 2 ≤ q < ∞ and 1/p + 1/q = 1, then for any ϵ > 0, we have

log N∞(ϵ, L, n) ≤ 36(q − 1)a2b2

ϵ2 log[2⌈4ab/ϵ + 2⌉n + 1],

where N∞(ϵ, L, n) is the worst-case covering number of the class L on a dataset of size n.

In the following, we present the proof of Lemma 5.2.

Proof of Lemma 5.2. First, we consider the ℓ∞-norm on the set B. According to Lemma 5.1, the function
δ 7→ ℓ({(U(x + δ))T (U(x+) − U(x−

k ))}K
k=1) is ∥ · ∥∞-Lipschitz with a constant of 2Λ2

1∥x∥2. Next, consider the
set CB(ϵ/4Λ2

1∥x∥2). By applying Lemma 7.1, and noting that ∥δ∥∞ ≤ β, we have for all δ ∈ B:

∣∣CB(ϵ/4Λ2
1∥x∥2)

∣∣ ≤
(

12Λ2
1∥x∥2β

ϵ

)D

.

Thus, the size of our dataset is:

|SF̃ | = n

(
12Λ2

1∥x∥2β

ϵ

)D

d + ndK + nd.

For x̃ ∈ SF̃ , where x̃ = (x, δ̃), we have: ∥x̃∥2 ≤ ∥x∥2 + ∥δ̃∥2 ≤ Ψ +
√

D∥δ∥∞ = Ψ′. Therefore, the result
follows from Lemma 7.2.
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Below, we provide the proof for Corollary 5.1.

Proof of Corollary 5.1. The proof follows directly from Theorem 4.1 by setting α to 1
n . Therefore, consider

the following integral

∫ B

a

√
log N∞

( ϵ

8Rλ2
, F̃ , SF̃

)
dϵ ≤

∫ B

1
n

√
CR2λ2

2Λ2(Ψ +
√

Dβ)2Llog

ϵ2 dϵ ≤
√

CRλ2ΛΨ′ L̃log

log(n)

∫ B

1
n

1
ϵ

dϵ

≤
√

CRλ2ΛΨ′ L̃log

log(n) [log(ϵ)]B1
n

≤
√

CRλ2ΛΨ′ L̃log

log(n) (log(B) + log(n)).

The first inequality follows from the monotonicity property of integrals. The second inequality derives from
the observation that replacing ϵ by 1

n in L̃log can only increase its value. Substituting this into Theorem 4.1
yields the desired result.

7.2 Proofs of Results in Section 5.2

In this subsection, we provide the omitted proofs from section 5.2 for the case when the features are non-linear.
As in the linear case, we begin by showing that the loss function is ℓ∞-Lipschitz with respect to the noise
parameter δ. We then establish a bound on the set CB(ϵ/2λ1) and apply the ℓ∞-covering number results of
the non-linear feature class F̃ on the extended dataset SF̃ .

First, we prove the bounds of the ℓ∞-additive attacks applied to non-linear models as stated in Lemma 5.3. The
first step is to derive the ℓ∞-Lipschitz constant of the function δ 7→ ℓ({(Uv(x + δ))T (Uv(x+) − Uv(x−

k ))}K
k=1).

The following is the proof of Lemma 5.3.

Proof of Lemma 5.3. The proof is a direct derivation. For all x, x+, x−
k ∈ X , ∥U∥∞,2 ≤ Λ1, δ, δ′ ∈ B, we

have:

|ℓ({(Uv(x + δ))T (Uv(x+) − Uv(x−
k ))}K

k=1) − ℓ({(Uv(x + δ′))T (Uv(x+) − Uv(x−
k ))}K

k=1)|
≤ |ℓ((Uv(x + δ))T (Uv(x+) − Uv(x−))) − ℓ((Uv(x + δ′))T (Uv(x+) − Uv(x−)))|
≤ |(Uv(x + δ))T (Uv(x+) − Uv(x−)) − (Uv(x + δ′))T (Uv(x+) − Uv(x−))|
≤ |(Uv(x + δ) − Uv(x + δ′))T (Uv(x+) − Uv(x−))|
≤ ∥U(v(x + δ) − v(x + δ′))∥2∥U(v(x+) − v(x−))∥2

≤ Λ1∥v(x + δ) − v(x + δ′)∥∞∥U(v(x+) − v(x−))∥2,

where we have used the 1-Lipschitz property of the loss function ℓ. Since ∥U∥∞,2 ≤ Λ1, we further get

|ℓ({(Uv(x + δ))T (Uv(x+) − Uv(x−
k ))}K

k=1) − ℓ({(Uv(x + δ′))T (Uv(x+) − Uv(x−
k ))}K

k=1)|

≤ Λ1

L∏
l=2

sl∥V 1(x + δ − x − δ′)∥∞∥U(v(x+) − v(x−))∥2 ≤ Λ1

L∏
l=2

sls
′
1∥δ − δ′∥2∥U(v(x+) − v(x−))∥2

≤ Λ1s′
1

L∏
l=2

sl
√

w1∥δ − δ′∥∞∥U(v(x+) − v(x−))∥2 ≤ Λ1s′
1

L∏
l=2

sl
√

w1∥δ − δ′∥∞Λ1∥v(x+) − v(x−)∥∞

≤ Λ1s′
1

L∏
l=2

sl
√

w1∥δ − δ′∥∞Λ1

L∏
l=1

sl∥x+ − x−∥∞ ≤ Λ1s′
1

L∏
l=2

sl
√

w1∥δ − δ′∥∞Λ12
L∏

l=1
sl∥x∥2

≤ 2Λ2
1s′

1
√

w1∥x∥2

L∏
l=1

sl

L∏
l=2

sl∥δ − δ′∥∞,

where we have used the 1-Lipschitz property of the non-linearity and induction over the layers. The eight
inequality results from converting the ∥.∥2-norm to ∥.∥∞-norm. Finally, the eleventh inequality is based on
the fact that ∥x+ − x−∥∞ ≤ 2∥x∥2, for all x ∈ RD.
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We now review the upper bounds on the ℓ∞-covering numbers of norm-bounded neural networks (non-linear)
function classes.
Lemma 7.3 (Ledent et al. 2021b). Let V be the class of neural networks, that is, V = {x 7→ v(x)}, where
V = (V 1, . . . , V L) are a set of weights the DNN v(·) and σ is defined as above. Suppose that ∥V l∥2,1 ≤ al

and ∥V l∥σ ≤ sl for all l ∈ [L − 1], ∥V L∥2 ≤ aL, ∥V L∥2,∞ ≤ sL, ∥x∥2 ≤ b, and wl is the width of the l’th
layer. Then given a data set S with n elements and ϵ > 0, we have

log N∞(ϵ, V, S) ≤ CL2b2

ϵ2

L∏
l=1

s2
l

(
L∑

l=1

a2
l

s2
l

)
log (( C1bΓ/ϵ + C2w̄ )n + 1) ,

where Γ = maxl∈[L](
∏L

i=1 si)alml/sl, w̄ = maxl∈[L] wl, and C, C1, C2 are universal constants.

In the following, we present the proof of Lemma 5.4.

Proof of Lemma 5.4. First, consider the ℓ∞-norm on the set B. By Lemma 5.3, we have the function
δ 7→ ℓ({(Uv(x+δ))T (Uv(x+)−Uv(x−

k ))}K
k=1) is ∥·∥∞-Lipschitz with constant 2Λ2

1s′
1
√

w1∥x∥2
∏L

l=1 sl

∏L
l=2 sl.

Consider the set CB(ϵ/4Λ2
1s′

1
√

w1∥x∥2
∏L

l=1 sl

∏L
l=2 sl). By Lemma 7.1, and that ∥δ∥∞ ≤ β, we have for all

δ ∈ B: ∣∣∣∣∣CB(ϵ/4Λ2
1s′

1
√

w1∥x∥2

L∏
l=1

sl

L∏
l=2

sl)
∣∣∣∣∣ ≤

(
12Λ2

1s′
1
√

w1∥x∥2
∏L

l=1 sl

∏L
l=2 slβ

ϵ

)D

.

Thus, the size of our dataset is

|SF̃ | = n

(
12Λ2

1s′
1
√

w1∥x∥2
∏L

l=1 sl

∏L
l=2 slβ

ϵ

)D

d + ndK + nd.

For x̃ ∈ SF̃ , where x̃ = (x, δ̃), we have

∥x̃∥2 ≤ ∥x∥2 + ∥δ̃∥2 ≤ Ψ +
√

D∥δ∥∞ = Ψ′.

Therefore, the result follows from Lemma 7.3.

In the following, we present the proof of Corollary 5.2.

Proof of Corollary 5.2. The proof is similar to the proof of Corollary 5.1. It is a direct application of Theorem
4.1 by setting α to 1

n .

8 Conclusion

We conducted a generalization analysis of ACL, showing that the generalization error is bounded by the
covering number of the feature class. Our results leverage the Lipschitz continuity and boundedness of the
hinge loss as our unsupervised loss function, given the constraints on the model’s weights and inputs. We
applied this bound on both linear and non-linear features, subject to ℓ∞-additive attacks. Unlike previous
work, such as Zou & Liu (2023), our bounds are directly applied to the adversarial contrastive loss, avoiding
the use of surrogate losses. Moreover, our bounds scale logarithmically with the number of negative samples
K, with a complexity of O(log K). Although these are algorithm-independent bounds, they could be extended
to algorithm-dependent bounds to understand how the optimization process affects the generalization error.
In this paper, we have applied only ℓ∞-additive attacks; nonetheless, other types of adversarial attacks can
also be tested, especially non-additive attacks.
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A Appendix

In this section, we provide the missing proofs of section 4.

A.1 Proofs of Lemma 4.1 and Lemma 4.2

To discretize the function space, we assume δ 7→ ℓ({f(A(x, ·))T (f(x+) − f(x−
k ))}K

k=1) is λ1-Lipschitz for all
x ∈ X and f ∈ F . Let CB( ϵ

2λ1
) be an ( ϵ

2λ1
, ℓ∞)-cover of B. Assume the discretized class of loss function is

G̃adv, defined as below:

G̃adv =
{

(x, x+, x−
1 , . . . , x−

K , δ) → ℓ({f(A(x, δ))T (f(x+) − f(x−
k ))}K

k=1) : f ∈ F
}

with an extended training set S̃:

S̃ =
{

(xi, x+
i , x−

i1, . . . , x−
iK , δ̃) : i ∈ [n], δ̃ ∈ CB

(
ϵ/(2λ1)

)}
.

Now, we review a lemma from Mustafa et al. (2022) to relate the ℓ∞-covering number of class Gadv to the
covering number of the discretized version G̃adv.
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Lemma A.1 (Mustafa et al. 2022). Let G̃adv be defined as above. Then, the following holds:

N∞(ϵ, Gadv, S) ≤ N∞(ϵ/2, G̃adv, S̃).

This lemma simplifies the complexity of our function class by discretizing the loss function according to δ.

Now, we can prove Lemma 4.1:

Proof of Lemma 4.1. According to Lemma A.1, it suffices to show that

N∞(ϵ/2, G̃adv, S̃) ≤ N∞(ϵ/(2λ2), H, SH).

The observation here is that we can construct a cover for the function class G̃adv on the training set S̃ from
the elements of the cover of the function class H. Additionally, from the Definition 4.1, we know that the
covering number of a set is the cardinality of the smallest cover for a set.
For any f , define hf as

hf (x, x+, x−, δ̃) = f(A(x, δ̃))T (f(x+) − f(x−)).
Let CB(ϵ/(2λ1)) = {δ1, . . . , δm}. The projection of H onto the set SH is

HSH :=


 hf (x1, x+

1 , x−
11, δ1) . . . hf (x1, x+

1 , x−
11, δm)

... . . . ...
hf (xn, x+

n , x−
nK , δ1) . . . hf (xn, x+

n , x−
nK , δm)

 : f ∈ F

 ⊂ RnK×m.

Let

CH :=


 c11

i′ (δ1) . . . c11
i′ (δm)

... . . . ...
cnK

i′ (δ1) . . . cnK
i′ (δm)

 : i′ = 1, . . . , M

 ⊂ RnK×m

be an (ϵ/(2λ2), ℓ∞)-cover of HSH . This means, for all f ∈ F , there exists an r ∈ [M ] such that

max
i∈[n]

max
k∈[K]

max
δ∈CB( ϵ

2λ1
)

∣∣hf (xi, x+
i , x−

ik, δ) − cik
r (δ)

∣∣ ≤ ϵ

2λ2
.

Now we show the following set is an (ϵ/2, ℓ∞)-cover of G̃adv w.r.t. S̃:

CG̃adv
:=


ℓ({c1k

i′ (δ1)}K
k=1) . . . ℓ({c1k

i′ (δm)}K
k=1)

... . . . ...
ℓ({cnk

i′ (δ1)}K
k=1) . . . ℓ({cnk

i′ (δm)}K
k=1)

 : i′ = 1, . . . , M

 ⊂ Rn×m.

Indeed, for any f ∈ F , we know

max
i∈[n]

max
δ∈CB( ϵ

2λ1
)

∣∣ℓ({f(A(xi, δ)T (f(x+
i ) − f(x−

i,k)))}K
k=1
)

− ℓ({cik
r (δ)}K

k=1)
∣∣

= max
i∈[n]

max
δ∈CB( ϵ

2λ1
)

∣∣ℓ({hf (xi, x+
i , x−

ik, δ)}K
k=1) − ℓ({cik

r (δ)}K
k=1)

∣∣
≤ λ2 max

i∈[n]
max

δ∈CB( ϵ
2λ1

)

∣∣∣∣max
k∈[K]

ℓ(hf (xi, x+
i , x−

ik, δ)) − max
k∈[K]

ℓ(cik
r (δ))

∣∣∣∣
≤ λ2 max

i∈[n]
max

δ∈CB( ϵ
2λ1

)
max
k∈[K]

∣∣ℓ(hf (xi, x+
i , x−

ik, δ)) − ℓ(cik
r (δ))

∣∣
≤ λ2 max

i∈[n]
max

δ∈CB( ϵ
2λ1

)
max
k∈[K]

∣∣hf (xi, x+
i , x−

ik, δ) − cik
r (δ)

∣∣ ≤ λ2
ϵ

2λ2
= ϵ

2 .

The first inequality derives from the fact that ℓ is Lipschitz with constant λ2 with respect to the ℓ∞-norm.
The second inequality comes from | maxx f(x) − maxx g(x)| ≤ maxx |f(x) − g(x)| and the third inequality
follows from the λ2-Lipschitzness of the loss function ℓ. Since the cardinality of CH and CG̃adv

are the same,
we have N∞( ϵ

2 , G̃adv, S̃) ≤ N∞( ϵ
2λ2

, H, SH).
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Now, we are going to prove Lemma 4.2.

Proof of Lemma 4.2. Our goal is to control the ℓ∞-covering number of the function class H using the covering
number of the representation function class F . We will prove the lemma in two parts.
First, we claim to show:

N∞

( ϵ

2λ2
, H, SH

)
≤ N∞

( ϵ

8Rλ2
, F , SF

)
,

where we introduce SF as follows:

SF = {x̃j : j ∈ [nm+nK +n]} = {A(xi, δ̃) : i ∈ [n], δ̃ ∈ CB(ϵ/(2λ1))}∪{x−
ik : i ∈ [n], k ∈ [K]}∪{x+

i : i ∈ [n]}

and m = |CB(ϵ/2λ1)|. Consider the following class of functions defined on SF

FSF :=
{(

f(x̃1), . . . , f(x̃nm+nK+n)
)

: f ∈ F
}

⊂ Rnm+nK+n,

which can be expanded as:

{(f(A(x1, δ1)), . . . , f(A(xn, δm)), f(x+
1 ), . . . , f(x+

n ), f(x−
11), . . . , f(x−

1K), f(x−
n1), . . . , f(x−

nK))}.

Suppose the function class FSF has a proper (ϵ/(8Rλ2), ℓ∞)-cover as below

CF :=
{

(c̃1
i′(δ̃1), . . . , c̃n

i′(δ̃m), c̃1+
i′ , . . . , c̃n+

i′ , c̃11−
i′ , . . . , c̃nK−

i′ ) : i′ ∈ [M ]
}

⊂ Rnm+nK+n.

Then for all f ∈ F , there exists an r ∈ [M ] such that:

max
i∈[n]

max
a∈[m]

∣∣f(A(xi, δa)) − c̃i
r(δ̃a)

∣∣ ≤ ϵ

8Rλ2
,

max
i∈[n]

∣∣f(x+
i ) − c̃i+

r

∣∣ ≤ ϵ

8Rλ2
,

max
i∈[n]

max
k∈[K]

∣∣f(x−
ik) − c̃ik−

r

∣∣ ≤ ϵ

8Rλ2
.

Now, for the following function class

HSH :=
{

(f(A(x1, δ1))T (f(x+
1 ) − f(x−

11)), . . . , f(A(xn, δm))T (f(x+
n ) − f(x−

nK)))
}

⊂ RnKm

projected onto the dataset SF , we construct a cover as follows

CH :=
{

(c1
i′(δ̃1), . . . , cnK

i′ (δ̃m)) : i′ ∈ [M ]
}

⊂ RnKm,
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where cik
i′ (δ̃a) = c̃i

i′(δ̃a)T (c̃i+
i′ − c̃ik−

i′ ). We then have

max
i∈[n]

max
k∈[K]

max
a∈[m]

∣∣f(A(xi, δ̃a))T (f(x+
i ) − f(x−

ik)) − cik
r (δ̃a)

∣∣
= max

i∈[n]
max
k∈[K]

max
a∈[m]

∣∣f(A(xi, δ̃a))T (f(x+
i ) − f(x−

ik)) − c̃iT
r (δ̃a)(c̃i+

r − c̃ik−
r )

∣∣
= max

i∈[n]
max
k∈[K]

max
a∈[m]

∣∣f(A(xi, δ̃a))T (f(x+
i ) − f(x−

ik)) − f(A(xi, δ̃a))T (c̃i+
r − c̃ik−

r )

+f(A(xi, δ̃a))T (c̃i+
r − c̃ik−

r ) − c̃iT
r (δ̃a)(c̃i+

r − c̃i−
r )
∣∣

≤ max
i∈[n]

max
k∈[K]

max
a∈[m]

( ∣∣f(A(xi, δ̃a))T (f(x+
i ) − f(x−

ik)) − f(A(xi, δ̃a))T (c̃i+
r − c̃ik−

r )
∣∣

+
∣∣f(A(xi, δ̃a))T (c̃i+

r − c̃ik−
r ) − c̃iT

r (δ̃a)(c̃i+
r − c̃ik−

r )
∣∣ )

≤ max
i∈[n]

max
k∈[K]

max
a∈[m]

∣∣f(A(xi, δ̃a))T (f(x+
i ) − c̃i+

r − f(x−
ik) + c̃ik−

r )
∣∣

+ max
i∈[n]

max
k∈[K]

max
a∈[m]

∣∣(c̃i+
r − c̃ik−

r )T (f(A(xi, δ̃a)) − c̃i
r(δ̃a))

∣∣
≤max

i∈[n]
max
a∈[m]

∥f(A(xi, δ̃a))∥1max
i∈[n]

max
k∈[K]

∥f(x+
i )−c̃i+

r −f(x−
ik)+c̃ik−

r ∥∞

+max
i∈[n]

max
k∈[K]

∥c̃i+
r −c̃ik−

r ∥1 max
i∈[n]

max
a∈[m]

∥f(A(xi, δ̃a))−c̃i
r(δ̃a)∥∞

≤ 2R
ϵ

8Rλ2
+ 2R

ϵ

8Rλ2
= 4R

ϵ

8Rλ2
= ϵ

2λ2
.

In the second equality, we added and subtracted f(A(xi, δ̃a))T (c̃i+
r − c̃ik−

r ) and used the subadditivity
property of absolute values in the first inequality (i.e. |x + y| ≤ |x| + |y|). Here, the third inequality uses the
property that

∣∣xT y
∣∣ ≤ ∥x∥1∥y∥∞ and the fact that ∥f(A(xi, δ̃a))∥1 ≤ R. Since the cardinality of CF and CH

are the same, we have: N∞( ϵ
2λ2

, H, SH) ≤ N∞( ϵ
8Rλ2

, F , SF ).

For the second part of the proof, we need to show

N∞

( ϵ

8Rλ2
, F , SF

)
≤ N∞

( ϵ

8Rλ2
, F̃ , SF̃

)
.

We introduce SF̃ :

SF̃ = {(x̃, l) : l ∈ [ndm + ndK + nd]}

=
{

(A(xi, δ̃), j) : i ∈ [n], j ∈ [d], δ̃ ∈ CB( ϵ

2λ1
)} ∪ {(x−

ik, j) : i ∈ [n], k ∈ [K], j ∈ [d]} ∪ {(x+
i , j) : i ∈ [n], j ∈ [d]

}
.

Assume
F̃ = {(x, j) 7→ fj(x) : f ∈ F , x ∈ X , j ∈ [d]}

over SF̃ has a (ϵ/(8Rλ2), ℓ∞)-cover defined as below:

CF̃ :=
{

(c̃11
i′ (δ̃1), . . . , c̃nd

i′ (δ̃m), c̃11+
i′ , . . . , c̃nd+

i′ , c̃111−
i′ , . . . , c̃nKd−

i′ ) : i′ ∈ [M ]
}

⊂ Rndm+ndK+nd.

This means the projection of F̃ on the extended dataset SF̃ is:

F̃SF̃
= {(f1(A(x1, δ̃1)), . . . , fd(A(xn, δ̃m)), f1(x+

1 ), . . . , fd(x+
n ), f1(x−

11), . . . , fd(x−
nK))} ⊂ Rndm+ndK+nd.

Then for all f ∈ F̃ , there exists an r ∈ [M ], such that:

max
i∈[n]

max
a∈[m]

max
j∈[d]

∣∣fj(A(xi, δa)) − c̃ij
r (δ̃a)

∣∣ ≤ ϵ

8Rλ2
,

max
i∈[n]

max
j∈[d]

∣∣fj(x+
i ) − c̃ij+

r

∣∣ ≤ ϵ

8Rλ2
,

max
i∈[n]

max
k∈[K]

max
j∈[d]

∣∣fj(x−
ik) − c̃ikj−

r

∣∣ ≤ ϵ

8Rλ2
.
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Now, for the function class

FSF := {(f(A(x1, δ1)), . . . , f(A(xn, δm)), f(x+
1 ), . . . , f(x+

n ), f(x−
11), . . . , f(x−

1K), f(x−
n1), . . . , f(x−

nK))},

we construct a cover as follows

CF :=
{

(c1
i′(δ̃1), . . . , cn

i′(δ̃1), c1+
i′ , . . . , cn+

i′ , c11−
i′ , . . . , cnK−

i′ ) : i′ ∈ [M ]
}

⊂ Rnm+nK+n,

where ci
i′(δ̃a) = (c̃i1

i′ (δ̃a), . . . , c̃id
i′ (δ̃a))T , ci+

i′ = (c̃i1+
i′ , . . . , c̃id+

i′ )T , and cik−
i′ = (c̃ik1−

i′ , . . . , c̃ikd−
i′ )T .

Therefore, we have

max
i∈[n]

max
a∈[m]

∥f(A(xi, δ̃a)) − ci
r(δ̃a)∥∞ = max

i∈[n]
max
a∈[m]

∣∣∣∣max
j∈[d]

fj(A(xi, δ̃a)) − max
j∈[d]

c̃ij
r (δ̃a)

∣∣∣∣
≤ max

i∈[n]
max
a∈[m]

max
j∈[d]

∣∣fj(A(xi, δ̃a)) − c̃ij
r

∣∣ ≤ ϵ

8Rλ2
,

max
i∈[n]

∥f(x+
i ) − ci+

r ∥∞ = max
i∈[n]

∣∣∣∣max
j∈[d]

fj(x+
i ) − max

j∈[d]
c̃ij+

r

∣∣∣∣ ≤ max
i∈[n]

max
j∈[d]

∣∣fj(x+
i ) − c̃ij

r

∣∣ ≤ ϵ

8Rλ2

and

max
i∈[n]

max
k∈[K]

∥f(x−
ik) − cik−

r ∥∞ = max
i∈[n]

max
k∈[K]

∣∣∣∣max
j∈[d]

fj(x−
ik) − max

j∈[d]
c̃ikj

r

∣∣∣∣
≤ max

i∈[n]
max
k∈[K]

max
j∈[d]

∣∣fj(x−
ik) − c̃ikj

r

∣∣ ≤ ϵ

8Rλ2
.

The second inequality comes from | maxx f(x) − maxx g(x)| ≤ maxx |f(x) − g(x)| and the cardinality of CF̃
and CF are the same. It then follows that CF is an (ϵ/(8Rλ2), ℓ∞)-cover to F . Thus, we have

N∞

( ϵ

8Rλ2
, F , SF

)
≤ N∞

( ϵ

8Rλ2
, F̃ , SF̃

)
.

The proof is completed.

A.2 Proof of Theorem 4.1

To prove Theorem 4.1, we define the Rademacher complexity and review the theorem A.1 from Mohri et al.
(2018), which controls generalization of learning algorithms by Rademacher complexity of function classes.
Definition A.1 (Rademacher complexity). Given a class of real-valued functions F and dataset S = {zi}m

i=1
drawn from the distribution D over a space Z, the empirical Rademacher complexity of F w.r.t. S is
defined as RS = Eϵ[supf∈F

1
m Σi∈[m]ϵif(zi)], where each ϵi is an independent Rademacher variable, uniformly

distributed over {+1, −1}m. The worse-case Rademacher complexity is then RZ,m = supS⊂Z:|S|=m[RS(F)].
Theorem A.1 (Mohri et al. 2018). Let S = {zi}m

i=1 be i.i.d. random sample from a distribution D defined
over Z. Further let F ⊂ [0, 1]Z be a loss class. Then for all δ ∈ (0, 1), we have with probability at least 1 − δ
over the draw of the sample S, for all f ∈ F that

R(f) ≤ R̂(f) + 2RS(F) + 3
√

log(2/δ)
2n

.

Our approach relies, however, on another complexity measure, namely ℓ∞-covering numbers. The following
classical result of Dudley’s entropy integral (Boucheron et al., 2003; Bartlett et al., 2017; Ledent et al., 2021a;
Srebro et al., 2010) gives a relationship between the Rademacher complexity and ℓ∞-covering number. We
apply the version by Srebro et al. (2010).
Theorem A.2 (Srebro et al. 2010). Let F be a class of functions mapping from a space Z and taking values
in [0, b], and assume that 0 ∈ F . Let S be a finite sample of size m and Ê[f(z)2] := 1

m

∑m
i=1 f(zi)2. Then

R(F) ≤ inf
α>0

4α + 12√
n

∫ supf∈F

√
Ê[f(z)2]

α

√
log N2(ϵ, F , S)dϵ

 .
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We are now ready to present the proof of Theorem 4.1.

Proof of Theorem 4.1. The proof is a direct application of Theorems A.2 and A.1. With probability at least
1 − δ, for all f ∈ F and δ ∈ (0, 1), we have,

Ladv
un (f) ≤ L̂adv

un (f) + 2RS(Gadv) + 3B

√
log(2/δ)

2n

≤ L̂adv
un (f) + inf

α>0

(
8α + 24√

n

∫ B

α

√
log N∞(ϵ, Gadv, S)dϵ

)
+ 3B

√
log(2/δ)

2n

≤ L̂adv
un (f) + inf

α>0

(
8α + 24√

n

∫ B

α

√
log N∞( ϵ

8Rλ2
, F̃ , SF̃ )dϵ

)
+ 3B

√
log(2/δ)

2n
.

The first and the second inequality follow from Theorem A.1 and Theorem A.2, respectively. The final
inequality is derived from Lemmas 4.1 and 4.2.
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