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ABSTRACT

The rising focus on employing multi-agent reinforcement learning (MARL) in
coalitional bargaining games (CBG) has exposed a need for robust theoretical
principles linking the two. To address this, we explore the relationship between
CBG and MARL within the context of stochastic games, and show that under some
assumptions, CBG are a subclass of sequential stochastic games. Out work is a
step forward in the reproducibility and generalization of MARL results to CBG.

1 INTRODUCTION AND RELATED LITERATURE

Coalition formation is a strategy in which self-interested agents work together to achieve greater
rewards than what they could attain alone. A coalitional bargaining game (CBG) is a type of
cooperative game that captures the process of negotiation among players in a coalition. By following
a bargaining protocol, players seek to form stable agreements on the coalition teammates and
distribution of payoffs. The number of negotiation rounds makes the coalitional bargaining process
lengthy and potentially inefficient, thus, prior work introduced multi-agent reinforcement learning
(MARL) to speed up the bargaining rounds of a CBG by creating negotiating agents (Bachrach
et al., 2020; Chen et al., 2022; Hughes et al., 2020; Taywade, 2021; Chalkiadakis et al., 2011; Mak
et al., 2021). In principle, MARL is a computational framework used to approximate the solution of
stochastic games (Shapley, 1953; Littman, 1994)1 and while the application of MARL to CBG has
been abundant, there is no literature providing theoretical grounding for the connection between CBG
and stochastic games. This is not an easy task since the fundamental components of the stochastic
game’s tuple (i.e., the state’s transition dynamics and the rewards), are not explicitly defined for a
CBG. In traditional game theoretic works such as Rubinstein (1982); Morgenstern (1973); Okada
(1996) CBG are defined simply as extensive form games of perfect information. This is, agents are
assumed to be fully rational and can predict the future with certainty. As such, there is no apparent
formal connection between CBG and stochastic games allowing a principled use of MARL. Therefore,
the application of MARL to CBG is hampered by the absence of a theoretical framework linking
stochastic games and CBG; resulting in limited reproducibility and generalization of the results
(aspects crucial for AI research Hutson (2018); Haibe-Kains et al. (2020)). The aim of this paper is to
answer: given that MARL provides an empirical framework for stochastic games, which theoretical
principles make it suitable for CBG? Which extra assumptions are needed for the relationship to
hold?

Contributions. First, we introduce a novel characterization of CBG as extensive-form games that
can be defined via a tuple representation. Second, we outline the assumptions under which CBG can
be modelled as turn-based stochastic games. Third, we connect MARL to CBG in a principled way.

1For a connection between stochastic games and MARL refer to Appendix A.1.3.
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2 CBG, STOCHASTIC GAMES AND MARL - A GOLDEN BRAID

We aim for a theoretical framework justifying the application of MARL to CBG in a principled
way. Since the connection between MARL and CBG is not immediate, we prove that under certain
conditions, CBS can be modelled as stochastic games, as shown on Figure 1.

Figure 1: GBG can be modelled as sequential stochastic games under the assumption of stochastic
transition dynamics and stochastic rewards..

In Definition 1 we propose a novel characterization of CBG as games that admit a tuple representation.
The rationale is to extend this initial CBG definition to obtain first turn-based stochastic games
(TBSG) and ultimately stochastic games as a superset of CBG.

Definition 1 (Coalitional bargaining game) Consists of a tuple (N,T,A, δ) where N is the set of
agents with |N | = n the number of agents, T is the maximum length of the game (can be infinite),
A = {Ap ∪ Ar} is the set composed of available actions in a bargaining round (Ap coalition
proposals and Ar responses) and δ is the discount factor accounting for the value of time. The set of
all bargaining games is denoted by B. The solution is given by the function f : B → 2n that maps
the set of proposals to the set of stable coalitions.

The characterization of a CBG in Definition 1 follows the setting traditionally used by the game theory
community (such as Rubinstein (1982); Okada (1996)) which involves no stochastic components or
uncertainty. In this context, applying MARL to an already solved game 2 would seem unproductive
and unprincipled as there is no environment (stochastic transition dynamics and rewards) involved.
To progress towards the setting of stochastic games the following assumptions are needed: let
St = {Sp ∪ Sr} denote the states of a CBG following an alternating-offers protocol, alternating
between proposal states Sp and responses states Sr then: Assumption 1 For every t ≤ T , there exist
a probability density function (pdf), τ : St → D(St), where D(St) denotes the set of probability
distributions over the state space St. Assumption 2 The state transition pdf is unknown and
Markovian. Assumption 3 For every t ≤ T , there exist a stochastic reward function ϕ(S,A) :
SXA → Rn. To link CBG with TBSG, we extend the CBG tuple in Definition 1 and define a new
supra-game including stochastic components.

Definition 2 (Turn-based stochastic game Shapley (1953)) Is defined by the tuple
(N,T,A, δ,S, R, τ) where N = {np, nr}, (np ∩ nr) = ∅ is the set of agents taking turns
to propose np and respond np at each t. The solution of a TBSG is a policy set composed of the
optimal policies π∗ = (π∗

1 , . . . π
∗
n) such that each agent maximizes its reward conditional on the

other agent’s policy: ∀i : π∗
i ∈ argmaxπ′

i
E
[
Ri|π′

i, π
′
−i

]
where π′

−i = π∗\πi and π∗ is a Nash
Equilibrium.

Since TBSG are a subset of sequential stochastic games, we conclude that we have formalized the
relationship shown in Figure 1. We have outlined the formalism that allows us to do the mapping
between CBG and MARL.

CONCLUSIONS While MARL has been used in the context of CBG, the connection between both is
not straightforward. For the first time, we have provided the theoretical underpinnings for a principled
use of MARL in CBG by lifting the elements of perfect information games and substituting them for
a stochastic transition dynamics and an environment. Some open questions for future research are on
the study of the convergence of MARL methods in TBSG.

2A solved game is a game whose outcome (win, lose or draw) can be correctly predicted from any position,
assuming that both players play perfectly.
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A APPENDIX

This section provides further definitions and contextual information relevant to the content of the
paper.

A.1 PRELIMINARIES ON MARL AND STOCHASTIC GAMES

A.1.1 LEARNING IN COALITIONAL BARGAINING GAMES

The scope of this paper is to shed light on the theoretical fundamentals supporting the he current use
of MARL in CBG in a principled way. As stated in Section 1, MARL is an already adopted method
for solving CBG and the literature is vast see Chalkiadakis et al. (2011) however, as shown on Section
2 without specifying a certain number of underlying assumptions, CBG are simply combinatorial
optimization games that have been solved. In summary, our aim is not to propose the use of MARL
on CBG as it is already used de facto, but the ultimate motivation behind this paper is to contribute to
the theory of learning in CBG games.

Computational complexity of CBG and the use of MARL. In the general case of combinatorial
optimization games, the application of learning methods such as MARL is not straightforward
and deserves to be justified. In particular, since most canonical games are already solved, the
value added by learning methods is usually sidelined Fudenberg & Tirole (1991). The formalism
behind using MARL to approximate the solution of CBG games has been developed on Section 2
where we outlined the stochastic elements of TBSG as a superset of CBG, substantiating the use
of MARL. An additional element of justification for the use of approximation methods in CBG is
the computational complexity of finding a solution in CBG. In particular, as any partition function
games, the computational complexity of CBG is 2N . However, without the stochastic components
considered, this complexity has already been successfully tackled by works like Rahwan et al. (2009)
among others.

A.1.2 STOCHASTIC GAMES

A stochastic game (Shapley, 1953) generalises Markov Decision Processes to involve multiple agents,
which is why they are the mathematical framework for MARL 3. Stochastic games are defined
as a tuple <N,S,A, T,R, γ> where: N denotes the set of n agents, S denotes the set of states,
A = Ai . . . An denotes the set of joint actions, where Ai is player i′s set of actions. T : S ×A → S
denotes the transition dynamics, R : S ×A×N 7→ R denotes the reward function and γ denotes the
discount factor. The goal is to learn a stationary though possibly stochastic policy, π : S 7→ A, that
maps states to a probability distribution over its actions. We want to find such a policy that maximizes
the agent’s discounted future reward.

3MARL is a useful computational framework for stochastic games when the transition dynamics are unknown.
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A.1.3 CONNECTION BETWEEN MARL AND STOCHASTIC GAMES

Multi-Agent Reinforcement Learning (MARL) tackles the challenge of learning optimal behaviour
by engaging in trial and error interactions within a dynamic multi-agent environment, where the
environment dynamics and reward function is unknown. To model the multi-agent environment
interaction, MARL adopts the game theoretic model of stochastic games, which are essentially
n-agent Markov Decision Processes. In MARL, we are interested in learning a stationary stochastic
policy that maps the game’s states to a probability distribution over the agent’s actions. The goal is to
find a policy that maximizes the agent’s discounted future reward. The connection between MARL
and stochastic games is further discussed in Littman (1994); Bowling & Veloso (2000)

The image below depicts the relationship between the different categories of stochastic games and
CBG.

Figure 2: Relationship between stochastic games, sequential stochastic games and coalitional bar-
gaining games - extended.

A.2 PRELIMINARIES ON COALITION BARGAINING GAMES

A.2.1 THE COALITION STRUCTURE GENERATION PROBLEM

Definition 3 A coalitional game with transferable utilities is defined by the tuple (N, v) where N
is the set of agents and v(C), is a characteristic function v : 2C 7→ R that returns the value that a
subset C ⊆ N of agents can obtain acting as a coalition.

Given a coalitional game (N, v), the Coalition Structure Generation (CSG) problem focuses on
generating a coalition structure (as a partitioning on the set of agents N ) with desirable properties,
e.g., those that yield a maximum value.

Definition 4 Given a coalitional game (N, v), a coalition structure C = {C1, . . . , Cm}, is a par-
tition of N , with m ≤ n. That is, for arbitrary distinct 1 ≤ k, l ≤ m, we have that Ck ⊂ N ,
Ck ∩ Sl = ∅, (k ̸= l), and ∪m

k=1Ck = N .

As stated in Section A.1.1 finding the optimal coalition structure is of exponential com-
plexity in the number of agents. For example, consider the set of agents N =

5
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{A,B,C}, the enumeration of possible coalition structures (i.e. set of coalitions) is:
{{A}, {B}, {C}}, {{A,B}, {C}}, {{A}, {B,C}}, {{A,C}, {B}, {A,B,C}}.

In what follows, we present the most common bargaining protocols used to solve the coalition
structure generation problem.

A.2.2 NON-COOPERATIVE BARGAINING THEORY OF COALITION GENERATION

The non-cooperative game approach to the problem of cooperation was initiated in the seminal
works of Nash (1950; 1953), who presented equilibrium results for a finite-horizon two-person
bargaining game known as the Nash Program. The approach aims to explain cooperation as the
result of individual players’ payoff maximization in an equilibrium of a non-cooperative bargaining
game that models pre-play negotiations. Nash stated the seminal results that cooperation should be
strategically stable. The approach re-examines a widely held view in economics, called the efficiency
principle, that a Pareto-efficient allocation of resources can be attained through voluntary bargaining
by rational agents if there is neither private information nor bargaining costs. After Nash, the theory
centered its attention into extending the result to infinite-horizon bargaining. The work of Rubinstein
(1982) introduces the alternating offers model as an equilibrium bargaining protocol for two-person
infinite-horizon bargaining. The expansion of this model to n-person bargaining came later with the
work of several authors, one example is the protocol proposed by Okada (1996), which presents a
sequential bargaining game in which players propose coalitions and feasible payoff allocations until
an agreement is reached. Under this protocol, an agreement can be reached in one bargaining round
if the proposer is chosen randomly.

Example of an n-person alternating offers bargaining protocol.

As an example of a sequential bargaining protocol, we describe the one proposed by Okada (1996).
This is the most common protocol implemented in the MARL literature by works such as (Bachrach
et al., 2020; Chen et al., 2022; Hughes et al., 2020; Taywade, 2021; Mak et al., 2021) (see Chalkiadakis
et al. (2011) for a literature review). In the original formulation by Okada, agents bargain over the
members of a coalition and simultaneously over the payoff allocation of the coalition surplus. Our aim
is not to propose the application of MARL to this particular protocol but just to use it for illustration
purposes of an example of a CBG. Without loss of generality, we will only consider the bargaining
over coalition members. While Okada considered this CBG as a perfect-information extensive-form
game, we will extend it to a TBSG with full observability.

Following Definition 2, the negotiating process of a CBG involves alternating between proposing
states Sp and responding states Sr on which agents take proposing actions Ap and responding actions
Ar respectively. The goal is to find a coalition structure C as in Definition 4. The dynamics of the
stochastic game are as follows, let nt ≤ N be the set of ”active” players who do not belong to any
coalitions on round t, then {Ct} ⊂ C is the set of possible coalitions that nt players can form, and
let C ⊂ {Ct} be one of these possible coalitions. Each episode starts on a proposing state Sp and as
such, two things happen: the environment selects a proposer i ∈ nt, according to a certain probability
distribution θ(nt), the proposer then takes an action Ap choosing a coalition proposal of C (where
i ∈ C). The game transitions into a responding state Sr in which all nominated agents such that
nt ⊂ C, take a responding action Ar. If all responders accept the coalition proposal C, then it is
binding, the environment assigns rewards according to v(C) and another round of bargaining starts
with nt+1 = Ct\C. If any of the responders reject the proposal, the reward for each responding agent
is zero, the episode terminates and another bargaining round starts. The negotiation process ends
when every player in N joins some coalition (i.e. a stable coalition structure is formed).

The Figure 3 depicts an example of the stages in a coalitional bargaining game. To simplify, we
consider a game with only two agents N = {i, j} with policies: πi, πj respectively. In the beginning
of an episode, the game enters into a proposing state Sp, where the environment selects an agent
acting as the proposer, say i, who following πi selects an action Ap. Assume the action taken is to
propose the coalition {i, j}. On the next state Sr, the responding agent j follows πj and selects an
action Ar. Assume the action is to respond ”accept” the proposed coalition and the game terminates.
If the selected action were to ”reject”, then a new bargaining round would start, where a new proposer
is selected and a new proposal is made (following the proposer’s policy).
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Figure 3: Example of a CBG for N = {i, j}. An agent is selected at random and makes a coalition
proposal following its policy. The other agent in the coalition replies to accept following their own
policy. Since all agents have been allocated, the game terminates. Otherwise, the game would
continue to a next bargaining round (i.e., a new proposing state).

A.3 IMPLEMENTATION EXAMPLES

A.3.1 LEARNING TO FORM COALITIONS

Following Definition 3, a coalitional game is defined by a tuple (N, v). Consider a game where
N = 2 and v is as follows:

v({C}) =


v(i) = 4.5

v(j) = 4.5

v(i, j) = 16

(1)

The reward function states that each agent receives its singleton reward whenever a singleton is
formed; while if agents form a coalition, the proceedings v(i, j) are distributed in equal split as
follows:

R({C}) =


R(i) = 4.5, if v(i)
R(j) = 4.5, if v(j)
R(i, j) = 8 ∀i, j, if v(i, j)

(2)

Our game setting diverges from that of game theory where agents are assumed to be rational and have
full information on the characteristic function of the game. However; in the stochastic game setting,
the reward is given by the environment and agents face uncertainty on the game’s transition dynamics
and the rewards (agents do know know the reward structure in Equation 2, but it is discovered through
exploration). We assume full communication among agents. The game proceeds as follows: on each
proposing round, an agent is selected at random to be the proposer, its action space is as follows: the
agent can choose to remain on its singleton or can propose to form a coalition with the other agent.
Following a coalition proposal, the agent in the coalition acts as a responder and can choose to either
accept or reject the coalition proposal.

Expected results. The characteristic function in Equation 1 defines a superadditive game in which,
agents gain more through cooperation than acting alone. Thus, it is expected that the grand coalition
v(i, j) will form. We expect that in the learned policy, agents learn to propose a coalition to the other
agent and the agent learns to accept the coalition proposal.
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MARL results. Figure 4 shows the mean rewards for each agent trained under 5 different random
seeds. Each curve, namely ”Policy 0” and ”Policy 1” show convergence over a reward corresponding
to R(i, j) in Equation 2, where i = 0 and j = 1. In other words, through bargaining, agents find the
most rewarding strategy, without having any information on the preferences or reservation price of
other agents.
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Figure 4: Mean reward obtained by each agent after training their own policies. Agent 0 follows
policy 0 and agent 1 follows policy 1. Both agents converge into a reward of cooperation.

A.3.2 LEARNING TO FORM SINGLETONS

Next, we show a case where agents learn to form singletons. The characteristic function of the game
is as follows:

v({C}) =


v(i) = 3

v(j) = 11

v(i, j) = 16

(3)

The reward function states that each agent receives its singleton reward whenever a singleton is
formed; while if agents form a coalition, the proceedings v(i, j) are distributed in equal split as
follows:

R({C}) =


R(i) = 3, if v(i)
R(j) = 11, if v(j)
R(i, j) = 8 ∀i, j, if v(i, j)

(4)

Expected results. In the characteristic function in Equation 3, even if the game is superadditive,
given that rewards are split equally, this makes coalition a non-rational action for agent 1. As such,
the expected result is that agents learn that cooperation is not the optimal policy.
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MARL results. Figure 5 shows the mean rewards for each agent trained under 5 different random
seeds. Each curve, namely ”Policy 0” and ”Policy 1” show convergence over a reward corresponding
to R(i), R(j) in Equation 4.
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Figure 5: Mean reward obtained by each agent after training their own policies. Agent 0 follows
policy 0 and agent 1 follows policy 1. Both agents converge into singleton strategies since cooperation
is not beneficial for agent 1.

A.3.3 LEARNING TO COOPERATE THROUGH BARGAINING OVER REWARDS

The game in Section A.3.2 with the characteristic function in Equation 3 is superadditive, which
means that the core is non-empty. However, agents choose to form singletons since the coalition
rewards are distributed on the basis of equal split. In this section we show that if agents are free
to bargain over the coalition rewards, two emergent behaviours arise: first agents choose to form
coalitions over singletons, which is the expected behavior for a superadditive game. Second, the
reward is distributed according to the Shapley value.

Expected results. If the grand coalition v(i, j) were to form, the Shapley value for each agent is as
follows:

R({C}) =
{
R(i) = 4

R(j) = 12
(5)

Since the game is superadditive, the core is non-empty and thus, we expect agents to cooperate and
distribute the proceedings of v(i, j) according to Equation 5.

MARL results. Figure 5 shows the mean rewards for each agent trained under 5 different random
seeds. Each curve, namely ”Policy 0” and ”Policy 1” show convergence over a reward corresponding
to R(i), R(j) in Equation 5.
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Figure 6: Mean reward obtained by each agent after training their own policies. Agent 0 follows
policy 0 and agent 1 follows policy 1. Both agents converge into cooperation strategies and settle for
their Shapley value as an emergent behavior.

A.4 PSEUDOCODE

We present the pseudocode for the application of MARL to a stochastic CBG.

Result: Learn to form coalitions
for each episode do

while unallocated agents exist do
Select a proposing agent i at random from unallocated agents;
Agent i proposes a coalition C following its policy;
for each agent j in proposed coalition C do

Agent j decides to accept or reject following its policy;
if Agent j accepts then

Agent j joins the coalition C;
else

Reject the proposal and break;
end

end
if All agents in proposed coalition C accept then

Update Q value for all agents in coalition C;
end

end
end

Algorithm 1: Multi-agent reinforcement learning for coalitional bargaining games
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