
Under review as submission to TMLR

Provably Efficient Off-Policy Adversarial Imitation Learning
with Convergence Guarantees

Anonymous authors
Paper under double-blind review

Abstract

Adversarial Imitation Learning (AIL) faces challenges with sample inefficiency because of its
reliance on sufficient on-policy data to evaluate the performance of the current policy during
reward function updates. In this work, we study the convergence properties and sample
complexity of off-policy AIL algorithms. We show that, even in the absence of importance
sampling correction, reusing samples generated by the o(

√
K) most recent policies, where K

is the number of iterations of policy updates and reward updates, does not undermine the
convergence guarantees of this class of algorithms. Furthermore, our results indicate that the
distribution shift error induced by off-policy updates is dominated by the benefits of having
more data available. This result provides theoretical support for the sample efficiency of
off-policy AIL algorithms that has been observed in practice.

1 Introduction

In Imitation Learning (IL) (Osa et al., 2018), agents do not have access to reward feedback. Instead, they
rely on a set of trajectories generated by an expert’s policy and the primary objective is to train a policy
that achieves performance comparable to that policy. Adversarial Imitation Learning (AIL) (Ho & Ermon,
2016; Fu et al., 2018) has emerged as a popular approach for IL. AIL frames the IL problem as a repeated
two-player game. In each iteration, an adversary updates the reward function to widen the gap between
expert and agent performance, while the agent updates its policy to narrow this gap.

In order to perform reward updates at every iteration, the standard AIL objective requires samples generated
from the agent’s current policy (i.e., on-policy data) in order to evaluate the policy’s expected cumulative
rewards. The use of on-policy data for reward updates has been critical for establishing convergence guar-
antees of AIL algorithms, but represents a main limitation of these approaches. Specifically, on-policy AIL
algorithms require a significant number of new interactions between the agent and the environment at ev-
ery update, precluding the use of these algorithms in settings where interactions with the environment are
expensive or limited.

To relax this on-policy requirement, off-policy methods have been proposed to enhance the sample efficiency
of AIL algorithms (Kostrikov et al., 2018; Sasaki et al., 2018). These methods reuse samples from previous
policies (i.e., off-policy data) during reward updates, which improves efficiency but also introduces a dis-
tribution shift error. As a result, the use of off-policy data alters the standard objective used for reward
updates in on-policy AIL. Due to this change in the objective for reward updates, the theoretical properties
of off-policy AIL algorithms are not well understood.

In the off-policy AIL setting, the main challenge is the data distribution shift induced by off-policy data.
Instead of applying off-policy correction techniques such as importance sampling or variable transformations
(Kostrikov et al., 2019), we are interested in answering the following question: can we guarantee the conver-
gence of off-policy AIL by controlling the distribution shift error introduced by off-policy data? In this work,
we show this is possible by reusing samples generated by the o(

√
K) most recent policies when computing

reward updates, where K represents the total number of updates. Using off-policy data in this way, we com-
bine off-policy projected gradient ascent reward updates with model-based mirror descent policy updates.
By doing so, we make the following main contributions:

1

Under review as submission to TMLR

1. We provide convergence guarantees for an off-policy AIL algorithm that does not require off-policy
correction techniques.

2. We provide theoretical support for the sample efficiency of our off-policy AIL algorithm. Our results
shed light on how the size of the state space, action space, and horizon length can affect the choice
of data during reward updates.

3. In addition to our theoretical analysis, we demonstrate the practical performance of our algorithm
through experiments on both discrete space MiniGrid tasks (Chevalier-Boisvert et al., 2023) and
continuous space OpenAI Gym tasks (Brockman et al., 2016).

2 Related Work

Numerous studies have considered the theoretical properties of AIL, focusing mainly on the on-policy setting.
Specifically, Cai et al. (2019) first showed the global convergence of AIL in the special linear quadratic
regulator setting. Chen et al. (2019) studied the convergence of AIL to a stationary point, as opposed to
global convergence, within a general Markov Decision Process framework. Guan et al. (2021) analyzed the
global convergence of AIL when paired with different policy update algorithms. Xu et al. (2020) and Zhang
et al. (2020) studied the global convergence of AIL with neural networks in the tabular and continuous case,
respectively. Liu et al. (2022b) proposed AIL algorithms with global convergence guarantees with linear
function approximations. Shani et al. (2022) proposed a solution via two mirror descent-based no-regret
algorithms. Xu et al. (2023) connected reward-free exploration and AIL and achieved the minimax optimal
expert sample complexity and interaction complexity. Note that all of these works consider on-policy AIL
methods. Compared to these works, our research focuses on providing convergence guarantees for off-policy
AIL, where off-policy data are used for reward updates.

Another line of research has focused on designing off-policy AIL algorithms, and existing works have demon-
strated the strong practical performance of off-policy AIL. Kostrikov et al. (2018) suggested an algorithm
that enhances sample efficiency by directly using off-policy data. Giammarino et al. (2023) and Liu et al.
(2022a) leveraged off-policy AIL as in Kostrikov et al. (2018) for the problem of imitation from expert videos.
Sasaki et al. (2018) developed a method based on supervised classification of expert and agent transitions.
Despite the practical performance of these algorithms, none of them provided theoretical convergence guar-
antees. The use of off-policy data modifies the on-policy AIL objective for reward updates, thereby forfeiting
the strong theoretical guarantees of on-policy AIL methods.

The alteration of the AIL objective in the off-policy setting can be addressed by introducing Importance
Sampling (IS) corrections. However, note that IS induces high variance (Liu et al., 2018) during the policy
evaluation step, which results in the need for more interactions with the environment in order to accurately
evaluate the policy. Beyond importance sampling, Kostrikov et al. (2019) introduced an off-policy algorithm
for AIL by providing a new representation of the divergence objective that avoids the use of any explicit
on-policy expectations. It yields a completely off-policy objective which is the same as the original AIL
objective, but this new objective is obtained by means of variable transformations (Nachum et al., 2019) and
becomes more difficult to optimize in practice. Similar techniques were used by Hoshino et al. (2022) and Zhu
et al. (2020) to formalize off-policy algorithms in learning from demonstrations and learning from observations
settings, respectively. Different from these methods, our work focuses on establishing convergence guarantees
for off-policy AIL without requiring off-policy correction techniques.

Beyond the scope of AIL, our work lies in the broader domain of imitation learning, which includes a wide
range of other learning paradigms including behavioral cloning (BC) (Bain & Sammut, 1995; Ross et al.,
2011; Daftry et al., 2016) and its variants with different forms of regularization to mitigate compounding
errors (Seo et al., 2023); offline RL-based methods (Rashidinejad et al., 2021); preference-based imitation
learning and direct occupancy-matching methods (Ma et al., 2022). Importantly, our contribution is or-
thogonal to these paradigms: rather than proposing a new imitation learning algorithm to compete with
existing frameworks, our work aims to bridge the gap between theory and practice in AIL by establishing
the convergence guarantees and sample complexity advantages of off-policy AIL algorithms.

2

Under review as submission to TMLR

3 Preliminaries

Unless indicated otherwise, we denote the set {a1, a2, . . . , aN } by {an}N
n=1 and {1, 2, . . . , N} by [N]. ∆(X)

denotes the space of probability distributions over a set X . Õ(·) hides logarithmic terms and constants. We
write P(·) for probability, E[·] for expectation, and Eπ[·] for the expectation over the trajectories induced
by π. Finally, we write the Total Variation (TV) distance between two distributions as DTV(·||·) and the
Kullback-Leibler (KL) divergence between two distributions as DKL(·||·).

Reinforcement learning. In this work, we consider undiscounted finite-horizon Markov Decision Pro-
cesses (MDPs) defined as the tuple {S,A, H, {Ph}H

h=1, ν1, {rh}H
h=1}, where S is the state space, A the action

space, H is the episode horizon, Ph(sh+1 | sh, ah) ∈ ∆(S) is the state-transition distribution at step h, ν1 the
initial state distribution, and rh(sh, ah) ∈ [0, 1] is the bounded reward function at step h. To simplify expo-
sition and avoid unnecessary technicalities, we assume S and A are finite with respective cardinalities S and
A, although our results can be easily extended to linear MDPs (cf. Appendix). A policy π = {πh}H

h=1 is a
mapping from states to a probability distribution over actions π : S ×[H] → ∆(A), with πh(ah | sh) the prob-
ability of choosing action ah in state sh at step h. We consider an episode as the trajectory {(sh, ah, rh)}H

h=1,
where s1 ∼ ν1, ah ∼ πh(· | sh), and sh+1 ∼ Ph(· | sh, ah).

Given a policy π, the state value function V π : S × [H] → [0, H] and the state-action value func-
tion (i.e., Q function) Qπ : S × A × [H] → [0, H] represent the expected cumulative rewards ob-
tained by following the policy π from a given state and state-action pair, respectively, where we write
V π

h (s) = Eπ

[∑H
t=h rh(st, at)|sh = s

]
, Qπ

h(s, a) = Eπ

[∑H
t=h rh(st, at)|sh = s, ah = a

]
.

We define the performance of a policy π under the reward function r as J(π, r) = Es1∼ν1 [V π
1 (s1)]. Moreover,

note that Qπ
h(s, a) = rh(s, a) +

∑
s′∈S Ph(s′ | s, a)V π

h+1(s′) and V π
h (s) =

∑
a∈A π(a | s)Qπ

h(s, a), where
V π

H+1(s) = 0. Finally, we denote with νπ
h (s) = P(sh = s|ν1, π, P) the state visitation distribution induced by

the policy π at step h and with dπ
h(s, a) = νπ

h (s)πh(a|s) the state-action visitation distribution at step h.

Adversarial imitation learning. In AIL, we assume the agent has access to a set of NE trajectories
generated by the expert’s policy. The objective of AIL is to learn a policy with performance comparable to
the expert within a reward function space. Formally, AIL considers the minimax problem

min
π∈Π

max
µ∈R

L(π, µ) = J(πE , rµ) − J(π, rµ), (1)

where πE represents the expert’s policy, Π is a space of feasible policies for the agent, and µ = {µh}H
h=1 is a

parameterization of the reward function rµ in a reward function space R. Note that we consider a tabular
parameterization of the reward function, i.e., rµ = µ ∈ RS×A. See the Appendix for a generalization of our
results to a linear reward parameterization.

In this work, we consider the regret of an AIL algorithm as defined in Shani et al. (2022), which measures the
difference in performance between the expert and agent throughout the learning process for the worst-case
choice of the reward function in R.

Definition 3.1 (AIL Regret). The regret of an AIL algorithm over K updates is given by

RegretAIL = sup
µ∈R

K∑
k=1

L(πk, µ),

where πk is the policy of the agent at update k ∈ [K].

Shani et al. (2022) showed that the regret of an AIL algorithm can be partitioned into two independent
subproblems: policy updates and reward updates. This is formally stated in the following result.

3

Under review as submission to TMLR

Algorithm 1 Standard AIL Scheme
Input: NE expert trajectories
Initialize policy π0 and reward µ0.
for k = 1 to K do

Collect B trajectories by following πk−1.
Reward Update
Update µk by maximizing L(πk−1, µ) over µ.
Policy Update
Update πk by maximizing J(π, µk) over π.

end for

Lemma 3.2 (Lemma 2 in Shani et al. 2022). The regret of an AIL algorithm over K updates can be bounded
by

RegretAIL ≤ sup
π∈Π

K∑
k=1

J(π, µk) − J(πk, µk)︸ ︷︷ ︸
Regret of Policy Updates

+ sup
µ∈R

K∑
k=1

L(πk, µ) − L(πk, µk)︸ ︷︷ ︸
Regret of Reward Updates

. (2)

Lemma 3.2 motivates the iterative nature of the AIL framework. At iteration k, we first update the reward
function by maximizing L(πk−1, µ) over µ. To that end, notice that we need to estimate J(πE , µ) and
J(πk−1, µ) (cf. equation 1). J(πE , µ) can be approximated based on the set of expert trajectories, while
evaluating J(πk−1, µ) requires new interactions with the environment by following πk−1. After updating
the reward function to µk, we update the policy by maximizing J(π, µk) over π (cf. equation 1). This is
equivalent to solving a standard RL problem. We summarize this standard scheme for AIL algorithms in
Algorithm 1.

Remark. To simplify the exposition, we assume the number of expert trajectories is infinite. Access to a
finite number of expert trajectories would induce an additional statistical error, but has no impact on the
focus of this work.

4 Off-Policy Adversarial Imitation Learning

Based on Lemma 3.2, in order to show the convergence of AIL algorithms, we need to design algorithms
that achieve sublinear regret in both subproblems: reward updates and policy updates. The policy update
problem is a standard RL problem where the reward function is available. In order to ensure sample efficiency
for the RL problem, we will apply a model-based method used in previous works (Shani et al., 2022; Liu
et al., 2022b). Unlike policy updates, it is not clear how to reuse past data when performing reward updates
in a way that still guarantees global convergence of the AIL algorithm. The main goal of reward updates in
AIL is to distinguish between expert and agent policies by maximizing the loss

L(πk−1, µ) = J(πE , µ) − J(πk−1, µ),

where πk−1 is the current policy. However, when we leverage off-policy data from the last N policies in the
reward update, we end up maximizing a different objective given by

J(πE , µ) − 1
N

N∑
n=1

J(πk−n, µ).

Therefore, we have introduced distribution shift error into the objective of our reward updates, which we
must control in order to provide convergence guarantees.

The off-policy setting requires a careful balance between policy and reward updates. Small policy updates
are needed to successfully control the distribution shift error in the off-policy reward update subproblem, but

4

Under review as submission to TMLR

these updates must be large enough to guarantee sublinear regret in the policy update subproblem as well.
By carefully selecting the size of policy updates and the amount of past data to use, we can enable sample
reuse during reward updates while retaining global convergence guarantees. Based on this observation,
we propose an off-policy AIL algorithm with convergence guarantees by combining (i) a KL divergence
regularized model-based policy update and (ii) an off-policy projected gradient ascent reward update.

For the succinct presentation of the main idea, we leave the proofs of the main theorems and lemmas in this
section to the Appendix.

4.1 Convergent Off-Policy AIL

Policy updates. Our policy updates leverage a model-based mirror descent algorithm that has been
adopted in previous works (Shani et al., 2022; Liu et al., 2022b). The algorithm consists of two steps. We
first estimate the state-transition function {Ph}H

h=1 by empirical state-transition encounters P̂h(s′ | s, a) =
nh(s,a,s′)

nh(s,a) , where nh(s, a) and nh(s, a, s′) count the number of visitations to state-action pair (s, a) and state-
action-state pair (s, a, s′), respectively, at step h. If nh(s, a) is zero, we assume that the transition function is
uniform at (s, a). With the estimated state-transition function, we can evaluate the Q functions by recursion
from h = H to h = 1 as

Q̂π
h(s, a) = min{µh(s, a) + bh(s, a) +

∑
s′∈S

P̂h(s′ | s, a)V̂ π
h+1(s′), H − h+ 1},

V̂ π
h (s) =

∑
a∈A

Q̂π
h(s, a)πh(a|s),

where V̂H+1(s) = 0 and bh is an optimistic UCB-bonus to encourage exploration (refer to Cai et al. 2020
for more details). Second, we update the policy by maximizing J(π, µ) using the KL divergence regularized
mirror descent algorithm

πk = arg max
π∈Π

{⟨∇πJ(πk−1, µk), π − πk−1⟩ + J(πk−1, µk) − σ−1D(π, πk−1)}, (3)

where σ is the step size and D(π, πk−1) := E
s∼dπk−1 [DKL(π∥πk−1)[s]] is the expected KL divergence between

π and πk−1. It can be shown that equation 3 has the closed-form solution

πk
h(·|s) ∝ πk−1

h (·|s) · exp{σ · Q̂πk−1

h (s, ·)}. (4)

Shani et al. (2022) showed that this algorithm achieves sublinear regret for the policy update subproblem,
as described in the following result.
Lemma 4.1 (Lemma 4 in Shani et al. 2022). Let σ =

√
2 logA/(H2K). With probability at least 1 − δ, the

regret of the policy update problem is bounded by

Regretπ = sup
π∈Π

K∑
k=1

J(π, µk) − J(πk, µk) ≤ Õ(
√
H4S2AK).

Note that the high-probability logarithm term in the above lemma is hidden in the notation Õ and similarly
for the subsequent lemmas. Lemma 4.1 shows that the policy update in equation 3 is aggressive enough to
achieve sublinear policy regret. In the next part, we show how to achieve sublinear reward regret while using
off-policy data by controlling the distribution shift error introduced by the policy update in equation 3.

If we step outside the AIL framework, the policy updates is simply an adversarial MDP problem in the
episodic setting with unknown transitions and full information (i.e., the rewards of all state-action pairs
are known at each episode). There are a bunch of other algorithms can achieve sub-linear regret in this
setting, including Follow-the-Regularized-Leader (FTRL) (Jin et al., 2021), Follow-the-Perturbed-Leader
(FPL) (Wang & Dong, 2020), and policy gradient methods (He et al., 2022). However, in the off-policy AIL

5

Under review as submission to TMLR

setting where we will utilize past trajectories in each reward update, policy updates must not only achieve sub-
linear regret but also satisfy a stability requirement—namely, that the updated policy remains close to the one
in the last step, which we will elaborate on in the following part. This condition is important to avoid excessive
distribution shift. Among the available algorithms, the one we adopt—based on optimism and mirror
descent—achieves the current best-known upper bound on policy update regret while also guaranteeing a
bound on the deviation between consecutive policies, as established in Theorem 4.3.

Reward updates. We update the reward parameters µ by maximizing L(π, µ) using projected gradient
ascent. The on-policy version takes the form

µk
h = Projµ∈R

{
µk−1

h + η∇µh
L(πk−1, µk−1)

}
,

where η is the step size. By definition, the objective function L(π, µ) and the state-action visitation distri-
bution have the relationship: L(π, µ) =

∑H
h=1⟨dπE

h − dπ
h, µh⟩, ∇µh

L(π, µ) = dπE

h − dπ
h.

As previously mentioned, the reward update process in the on-policy setting is not sample efficient, as
it requires a significant number of new interactions between the agent and the environment to evaluate
L(πk−1, µk−1) at every iteration. Leveraging off-policy data is a practical way to make the reward update
process more efficient.

In order to achieve efficiency while guaranteeing convergence at the same time, we propose an off-policy
algorithm that considers data from only the N(k) most recent policies at round k. Compared to on-policy
AIL which considers data sampled from dπk−1

h , our off-policy approach samples data from the distribution
dk−1,mix

h =
∑N

n=1 βnd
πk−n

h , where {βn}N
n=1 is a distribution which parameterizes the sample weights of

the N policies. In principle, {βn}N
n=1 can be any distribution and it recovers the on-policy setting when

{βn}N
n=1 = {1, 0, . . . , 0}. Throughout this work, we assume {βn}N

n=1 is a uniform distribution and we leave
the problem of finding the optimal distribution to future works. The off-policy reward update algorithm
takes the form

µk
h = Projµ∈R

{
µk−1

h + η∇µh
L(πk−1,mix, µk−1)

}
(5)

where L(πk−1,mix, µ) = J(πE , µ) −
∑N

n=1
J(πk−n,µ)
N .

Notice that the off-policy reward update performs a gradient step on the objective L(πk−1,mix, µ), compared
to the on-policy reward update which considers the objective L(πk−1, µ). Therefore, we must consider the
distribution shift error introduced by altering the reward update objective. Achiam et al. (2017) proved that
in infinite-horizon discounted MDPs, the difference between two state visitation distributions can be bounded
by the total variation distance between the corresponding policies: ||νπ − νπ′ ||1 ≤ 2γ

1−γEs∼dπ [DTV(π||π′)[s]],
where γ is the discount factor. In our work, we extend this result to finite-horizon undiscounted MDPs.
Lemma 4.2. In finite-horizon undiscounted MDPs, the divergence between state-action visitation distribu-
tions is bounded by the total variation distance of the corresponding policies according to

||dπ
h − dπ′

h ||1 ≤ 2
h∑

i=1
Es∼νπ

i
[DTV(πi||π′

i)[s]], ∀h ∈ [H].

By Lemma 4.2, in order to bound the off-policy data distribution shift during reward updates, the policy
update algorithm should limit the total variation distance between consecutive policies. In the following
result, we show that the policy update in equation 3 is conservative enough to accomplish this goal.
Theorem 4.3. The total variation distance between two consecutive policies induced by implementing the
policy update algorithm in equation 3 is bounded by

DTV(πk
h||πk−1

h)[s] ≤ O(AHσ), ∀s ∈ S, k ∈ [K], h ∈ [H].

When σ =
√

2 logA/(H2K), the bound becomes O(
√

2A2 logA/K).

Based on Lemma 4.2 and Theorem 4.3, we can show that the reward update in equation 5 achieves sublinear
regret for the reward update problem, despite altering the objective function.

6

Under review as submission to TMLR

Theorem 4.4. Let η = 1/
√
K and σ =

√
2 logA/(H2K). Then, with probability at least 1 − δ, the regret

of the reward update problem is bounded by

Regretµ = sup
µ∈R

K∑
k=1

L(πk, µ) − L(πk, µk)

≤ Õ
(√

H2SAK︸ ︷︷ ︸
regret of reward updates

+
√
H4A2(

∑
k(N(k) − 1))2

K︸ ︷︷ ︸
error induced by off-policy updates

+

√
H3SAK2

B
∑

k N(k)︸ ︷︷ ︸
estimation error

)
,

where B is the number of new trajectories collected with the current policy between updates. Specifically, if
N is fixed, we have

Regretµ ≤ Õ
(√

H2SAK︸ ︷︷ ︸
regret of reward updates

+
√
H4A2(N − 1)2K︸ ︷︷ ︸

error induced by off-policy updates

+
√
H3SAK/(BN)︸ ︷︷ ︸
estimation error

)
.

Main result. Based on the regret bound for the policy update problem in Lemma 4.1 and the regret
bound for the reward update problem in Theorem 4.4, we are now ready to state our main theoretical result
for the off-policy AIL algorithm.
Theorem 4.5. In the off-policy AIL algorithm based on the policy update in equation 3 and the reward
update in equation 5, let σ =

√
2 logA/(H2K) and η = 1/

√
K. Then, with probability at least 1 − δ, it holds

that

RegretAIL ≤ Õ
(√

H4S2AK︸ ︷︷ ︸
regret of policy updates

+
√
H2SAK︸ ︷︷ ︸

regret of reward updates

+
√
H4A2(N − 1)2K︸ ︷︷ ︸

error induced by off-policy updates

+
√
H3SAK/(BN)︸ ︷︷ ︸
estimation error

)
.

Proof. It can be derived by plugging Lemma 4.1 and Theorem 4.4 into the regret of policy updates and
reward updates, respectively, in Lemma 3.2.

Based on Theorem 4.5, we can directly derive the following two propositions.
Proposition 4.6. In the case where N is fixed, the regret bound in Theorem 4.4 is optimized when we update
reward parameters using data from the N∗ = Õ(S

HAB)1/3 most recent policies.
Proposition 4.7. The regret bound in Theorem 4.4 is sublinear with respect to K when we update reward
parameters using data from the N(k) = o(

√
K),∀k ∈ [K] most recent policies, including the case where N is

a fixed number.

On-policy AIL (i.e., AIL using on-policy reward updates) is a special case in our analysis where N = 1.
Proposition 4.6 shows that there is an optimal scaling for the number of recent policies to consider during
the reward updates based on the worst-case regret. In the cases where S is dominant, the off-policy AIL
algorithm is expected to have better performance by reusing data from prior policies. In the cases where H
and A are dominant, it is better to only consider data from the current policy during reward updates.

4.2 Sample Efficient Off-Policy AIL

In this section, we illustrate why our off-policy AIL algorithm can be more sample efficient than the on-policy
AIL algorithm.

The set of feasible state-action visitation distributions is defined as D = {d = {dh}H
h=1 : d ≥

0,
∑

a∈A d1(s, a) = ν1(s),
∑

a∈A dh(s, a) =
∑

s′∈S,a∈A P (s|s′, a)dh−1(s′, a), ∀s ∈ S, h = 2, . . . , H}. For
any policy π ∈ Π, we can find a distribution d∗ ∈ D such that d∗ = dπ and vice versa.

7

Under review as submission to TMLR

Theorem 4.8. The set of feasible state-action visitation distributions D is convex, and there is a one-to-one
correspondence between Π and D.

In particular, Theorem 4.8 demonstrates that we can interpret our use of off-policy data as samples from a
single policy.
Corollary 4.9. If {dn}N

n=1 is a set of state-action visitation distributions of N policies, define the mixture
distribution as dmix =

∑N
n=1 βnd

n, where {βn}N
n=1 is a distribution of weights over these policies. Then, there

exists a single policy π∗ such that sampling data from dmix is equivalent to sampling from the state-action
visitation distribution dπ∗ of π∗.

Proof. By the convexity of D, the mixture distribution dmix ∈ D. By the one-to-one correspondence between
D and Π, there exists a policy π∗ ∈ Π such that dπ∗ = dmix.

Corollary 4.9 tells us that during the off-policy reward updates, we can interpret our data as being generated
from a single policy. Suppose we collect the same amount of new data between updates. Then, the off-policy
algorithm will have N times as much data compared to the on-policy algorithm to evaluate that single
policy. Therefore, the off-policy algorithm can achieve better estimation error. Alternatively, to achieve a
given estimation error, the off-policy algorithm has to collect less data at every iteration compared to the
on-policy algorithm, which allows for more frequent updates.

In most cases, especially real world tasks, the size of the state space S dominates other parameters such as
the horizon length H and size of the action space A. In these settings, the off-policy error is dominated by
the estimation error. Denote the number of trajectories collected by following the current policy Bon and
Boff in on-policy and off-policy algorithms, respectively. To achieve a similar regret, the on-policy algorithm
needs to collect N times as many trajectories as the off-policy algorithm (i.e., Bon ≈ N · Boff). Usually, a
complete trajectory consists of thousands of interactions between the agent and the environment. Therefore,
the off-policy AIL algorithm can gain significant sample efficiency.

5 Experiments

In addition to our theoretical analysis, we also implement our off-policy AIL algorithm with different N in
both discrete space MiniGrid environments (Chevalier-Boisvert et al., 2023) and continuous space OpenAI
Gym MuJoCo benchmarks (Brockman et al., 2016). We compare the performance of the off-policy AIL
algorithm to the on-policy version (i.e., N = 1). The on-policy algorithm considers the same policy updates
as the off-policy algorithm, but only uses on-policy data for reward updates. Note that we do not compare
our algorithm with state-of-the-art off-policy AIL algorithms for two reasons. First, the algorithm introduced
in our work is a simplified version of popular off-policy AIL algorithms applied in practice, which allows for
rigorous theoretical analysis. Second, the goal of our work is to provide theoretical support for the strong
performance of these popular off-policy AIL algorithms, not to achieve state-of-the-art performance.

5.1 MiniGrid Environments

We begin by analyzing the behavior of the off-policy AIL algorithm in a discrete space MiniGrid environment
named EmptyRoom. Within the EmptyRoom environment, the agent undertakes a navigation task with
the primary objective of reaching a designated destination while minimizing the number of steps taken.
Specifically, the environment is a n × n grid world with a state space S = {(i, j)}n

i,j=1, an action space
A = {stay, up, down, left, right}, and a horizon H = 3n. The agent starts from (1, 1) and the destination is
(n, n). The agent receives a reward of 1 when in the position (n, n), otherwise receives a reward of −0.1.

In Figure 1, we present the experimental results of the on-policy and off-policy algorithms in this task.
We compare across different values of N , and we consider three rooms with different sizes (n = 3, 5, 9).
Recall that N is the number of most recent policies the algorithm considers when updating rewards. The
experimental results show that the off-policy AIL algorithms (N > 1) rapidly converge to policies that
align closely with the expert’s performance, and demonstrate improved sample efficiency compared to the

8

Under review as submission to TMLR

0 2 4 6 8 10
Environment Steps (thousands)

0

1

2

3

4

5

Re
wa

rd
 p

er
 e

pi
so

de

N=1
N=4
N=32
N=128
expert

(a) EmptyRoom-3×3

0 2 4 6 8 10
Environment Steps (thousands)

0

1

2

3

4

5

6

7

Re
wa

rd
 p

er
 e

pi
so

de

N=1
N=4
N=32
N=128
expert

(b) EmptyRoom-5×5

0 2 4 6 8 10
Environment Steps (thousands)

0

2

4

6

8

10

Re
wa

rd
 p

er
 e

pi
so

de

N=1
N=4
N=32
N=128
expert

(c) EmptyRoom-9×9

Figure 1: Experimental results for our off-policy AIL algorithm with different N in three MiniGrid Empty-
Room tasks with room sizes equal to 3 × 3, 5 × 5, and 9 × 9, respectively, from left to right. Training curves
represent total reward per episode as a function of environment interactions. We evaluate the learned policy
using average performance over 5 episodes. N denotes the number of most recent policies we consider during
reward updates, where N = 1 represents the on-policy algorithm. The expert’s demonstration consists of 4
trajectories which are hand-crafted. We run each experiment for 5 different seeds and the shading represents
the standard deviation. For more implementation details, please refer to Section C.1 in the Appendix.

0 20 40 60 80 100
Environment Steps (thousands)

0

1000

2000

3000

4000

Re
wa

rd
 p

er
 e

pi
so

de

N=1
N=4
N=16
N=256
N=2048
expert

(a) HalfCheetah-v2

0 20 40 60 80 100
Environment Steps (thousands)

0

500

1000

1500

2000

2500

3000

3500

Re
wa

rd
 p

er
 e

pi
so

de

N=1
N=4
N=16
N=256
N=2048
expert

(b) Hopper-v2

0 20 40 60 80 100
Environment Steps (thousands)

0

1000

2000

3000

4000

5000

6000

7000

Re
wa

rd
 p

er
 e

pi
so

de

N=1
N=4
N=16
N=256
N=2048
expert

(c) Walker2d-v2

Figure 2: Experimental results for our off-policy AIL algorithm with different N in three continuous space
MuJoCo locomotion environments: HalfCheetah-v2, Hopper-v2, and Walker2d-v2. Training curves represent
total reward per episode as a function of environment interactions. We evaluate the learned policy using
average performance over 10 episodes. N denotes the number of most recent policies we consider during
reward updates, where N = 1 represents the on-policy algorithm. The expert’s demonstration consists of 10
trajectories which are trained by Soft Actor-Critic (Haarnoja et al., 2018). We run each experiment for 10
different seeds and the shading represents the standard error. For more implementation details, please refer
to Section C.2 in the Appendix.

on-policy algorithm (N = 1). To match the expert’s performance, the off-policy AIL algorithm with N = 32
only requires approximately 1,000 interactions between the agent and the environment in each task. The
on-policy AIL algorithm, on the other hand, requires the entire training horizon of 10,000 interactions to
converge in the 3 × 3 room, and requires additional training to converge to the expert’s performance in the
5 × 5 and 9 × 9 rooms.

Among the off-policy AIL algorithms (N > 1), we notice that the speed of convergence suffers as the size of
the room increases for small values of N (i.e., N = 4). On the other hand, we see little benefit from increasing
the value of N beyond N = 32, which achieves strong performance in all room sizes. This observation is
consistent with our theory, which tells us that there is an optimal value of N that grows as the size of the
state space becomes larger.

9

Under review as submission to TMLR

5.2 MuJoCo Benchmarks

Additionally, we tested our algorithms in three continuous space locomotion tasks simulated in MuJoCo:
HalfCheetah-v2, Hopper-v2, and Walker2d-v2. To deploy our algorithm in tasks with continuous spaces,
some modifications are necessary. During policy updates, we cannot update the policy by the closed-form
update rule in equation 4 which is implemented on each state. Instead, we take 5 gradient ascent steps
to approximate the policy update in equation 3. Note that we consider a deep RL implementation using
neural network parameterizations, so our theoretical results do not apply to this setting. Nevertheless, we
are interested in analyzing whether our results provide support for the performance trends observed in a
deep RL setting.

In Figure 2, we present the experimental results of the on-policy and off-policy algorithms in each continuous
control task. First, comparing the on-policy algorithm (N = 1) and the off-policy algorithm (N > 1), we find
that the off-policy algorithm always performs better than the on-policy algorithm for all values of N > 1.
In every environment, the best performance is achieved by one of the off-policy AIL algorithms. Second,
comparing the off-policy algorithms with different N , we can achieve benefits even for small values of N , and
there is no significant benefit from increasing N to very large values. Finally, the experimental results show
that the optimal value of N varies across environments, and there is not a very clear relationship between
the environments and the optimal N . This may be due to the use of neural networks applied during practical
training, which is not captured by our theory.

6 Conclusion

We studied the convergence and sample complexity of off-policy adversarial imitation learning algorithms.
First, we established convergence guarantees for off-policy AIL algorithms. Furthermore, based on the re-
gret bound we derived, we provided theoretical evidence for the sample efficiency of our off-policy algorithm.
Specifically, we showed that in scenarios where the size of the state space considerably outweighs other spec-
ifications, the distribution shift error induced by off-policy updates is dominated by the benefits of having
more data available. This result provides theoretical support for the benefits of off-policy AIL algorithms ob-
served in practice. We further demonstrated the practical performance of our off-policy algorithm in discrete
space MiniGrid environments and continuous space MuJoCo benchmarks. Our experimental results indicate
that the off-policy algorithm often outperforms its on-policy counterpart, while requiring substantially fewer
samples.

There are several avenues for future work. First, based on our current theoretical framework, we can only
prove convergence guarantees when N = o(

√
K). However, practically, when N = K, the algorithm remains

effective. We believe that a sharper analysis is needed in these cases. Further, when reusing off-policy data,
we simply assume a uniform distribution to construct the mixture distribution from the past policies. We
conjecture that a carefully designed sampling distribution may improve the results.

References
Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In Interna-

tional Conference on Machine Learning, pp. 22–31. PMLR, 2017.

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural complexity and
representation learning of low rank mdps. Advances in Neural Information Processing Systems, 33:20095–
20107, 2020.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine intelligence 15, pp.
103–129, 1995.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. OpenAI Gym, 2016.

Qi Cai, Mingyi Hong, Yongxin Chen, and Zhaoran Wang. On the global convergence of imitation learning:
A case for linear quadratic regulator. arXiv preprint arXiv:1901.03674, 2019.

10

Under review as submission to TMLR

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimization.
In International Conference on Machine Learning, pp. 1283–1294. PMLR, 2020.

Minshuo Chen, Yizhou Wang, Tianyi Liu, Zhuoran Yang, Xingguo Li, Zhaoran Wang, and Tuo Zhao. On
computation and generalization of generative adversarial imitation learning. In International Conference
on Learning Representations, 2019.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem Lahlou,
Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular & customizable
reinforcement learning environments for goal-oriented tasks. arXiv preprint arXiv:2306.13831, 2023.

Shreyansh Daftry, J Andrew Bagnell, and Martial Hebert. Learning transferable policies for monocular
reactive mav control. In International Symposium on Experimental Robotics, pp. 3–11. Springer, 2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse reinforcement
learning. In International Conference on Learning Representations, 2018.

Vittorio Giammarino, James Queeney, and Ioannis Ch Paschalidis. Adversarial imitation learning from
visual observations using latent information. arXiv preprint arXiv:2309.17371, 2023.

Ziwei Guan, Tengyu Xu, and Yingbin Liang. When will generative adversarial imitation learning algorithms
attain global convergence. In International Conference on Artificial Intelligence and Statistics, pp. 1117–
1125. PMLR, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning, pp. 1861–1870. PMLR, 2018.

Jiafan He, Dongruo Zhou, and Quanquan Gu. Near-optimal policy optimization algorithms for learning
adversarial linear mixture mdps. In International Conference on Artificial Intelligence and Statistics, pp.
4259–4280. PMLR, 2022.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in Neural Information
Processing Systems, 29, 2016.

Hana Hoshino, Kei Ota, Asako Kanezaki, and Rio Yokota. OPIRL: Sample efficient off-policy inverse
reinforcement learning via distribution matching. In 2022 International Conference on Robotics and Au-
tomation (ICRA), pp. 448–454. IEEE, 2022.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement learning with
linear function approximation. In Conference on Learning Theory, pp. 2137–2143. PMLR, 2020.

Tiancheng Jin, Longbo Huang, and Haipeng Luo. The best of both worlds: stochastic and adversarial
episodic mdps with unknown transition. Advances in Neural Information Processing Systems, 34:20491–
20502, 2021.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tompson.
Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial imitation learn-
ing. In International Conference on Learning Representations, 2018.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution matching.
In International Conference on Learning Representations, 2019.

Minghuan Liu, Tairan He, Weinan Zhang, YAN Shuicheng, and Zhongwen Xu. Visual imitation learning
with patch rewards. In International Conference on Learning Representations, 2022a.

Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the curse of horizon: Infinite-horizon
off-policy estimation. Advances in Neural Information Processing Systems, 31, 2018.

11

Under review as submission to TMLR

Zhihan Liu, Yufeng Zhang, Zuyue Fu, Zhuoran Yang, and Zhaoran Wang. Learning from demonstration:
Provably efficient adversarial policy imitation with linear function approximation. In International Con-
ference on Machine Learning, pp. 14094–14138. PMLR, 2022b.

Yecheng Ma, Andrew Shen, Dinesh Jayaraman, and Osbert Bastani. Versatile offline imitation from obser-
vations and examples via regularized state-occupancy matching. In International Conference on Machine
Learning, pp. 14639–14663. PMLR, 2022.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. DualDICE: Behavior-agnostic estimation of discounted
stationary distribution corrections. Advances in Neural Information Processing Systems, 32, 2019.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al. An
algorithmic perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):1–179, 2018.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline reinforcement
learning and imitation learning: A tale of pessimism. Advances in Neural Information Processing Systems,
34:11702–11716, 2021.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured pre-
diction to no-regret online learning. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings, 2011.

Fumihiro Sasaki, Tetsuya Yohira, and Atsuo Kawaguchi. Sample efficient imitation learning for continuous
control. In International Conference on Learning Representations, 2018.

Seokin Seo, HyeongJoo Hwang, Hongseok Yang, and Kee-Eung Kim. Regularized behavior cloning for
blocking the leakage of past action information. Advances in Neural Information Processing Systems, 36:
2128–2153, 2023.

Lior Shani, Tom Zahavy, and Shie Mannor. Online apprenticeship learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 8240–8248, 2022.

Umar Syed, Michael Bowling, and Robert E Schapire. Apprenticeship learning using linear programming.
In International Conference on Machine learning, pp. 1032–1039. PMLR, 2008.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent policy opti-
mization. In International Conference on Learning Representations, 2021.

Yuanhao Wang and Kefan Dong. Refined analysis of fpl for adversarial markov decision processes. arXiv
preprint arXiv:2008.09251, 2020.

Tian Xu, Ziniu Li, and Yang Yu. Error bounds of imitating policies and environments. Advances in Neural
Information Processing Systems, 33:15737–15749, 2020.

Tian Xu, Ziniu Li, Yang Yu, and Zhi-Quan Luo. Provably efficient adversarial imitation learning with
unknown transitions. In Uncertainty in Artificial Intelligence, pp. 2367–2378. PMLR, 2023.

Yufeng Zhang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Generative adversarial imitation learning with
neural network parameterization: Global optimality and convergence rate. In International Conference
on Machine Learning, pp. 11044–11054. PMLR, 2020.

Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. Off-policy imitation learning from observations.
Advances in Neural Information Processing Systems, 33:12402–12413, 2020.

12

Under review as submission to TMLR

A Proofs of Theorems and Lemmas in Section 4

A.1 Proof of Lemma 4.2

Proof. Different from d(s, a), we use ν(s) to denote the state occupancy distribution. By the definition of
the state occupancy distribution, we have

||νπ
h − νπ′

h ||1 = ||Pπh−1ν
π
h−1 − Pπ′

h−1
νπ′

h−1||1

= ||Pπh−1ν
π
h−1 − Pπ′

h−1
νπ

h−1 + Pπ′
h−1

νπ
h−1 − Pπ′

h−1
νπ′

h−1||1

≤ ||(Pπh−1 − Pπ′
h−1

)νπ
h−1||1 + ||Pπ′

h−1
(νπ

h−1 − νπ′

h−1)||1, (6)

where Pπ is the transpose of the state transition matrix induced by policy π (i.e., Pπ(i, j) is the transition
probability from state j to state i). Following the proof of Lemma 3 in Achiam et al. (2017) for infinite
discounted MDPs, we have

||(Pπh−1 − Pπ′
h−1

)νπ
h−1||1 =

∑
s′

∣∣∣∣∣∑
s

(Pπh−1 − Pπ′
h−1

)(s′|s)νπ
h−1(s)

∣∣∣∣∣
≤
∑
s′,s

∣∣∣(Pπh−1 − Pπ′
h−1

)(s′|s)
∣∣∣ νπ

h−1(s)

=
∑
s′,s

∣∣∣∣∣∑
a

Ph−1(s′|s, a)(πh−1(a|s) − π′
h−1(a|s))

∣∣∣∣∣ νπ
h−1(s)

≤
∑

s,a,s′

Ph−1(s′|s, a)
∣∣πh−1(a|s) − π′

h−1(a|s)
∣∣ νπ

h−1(s)

=
∑
s,a

∣∣πh−1(a|s) − π′
h−1(a|s)

∣∣ νπ
h−1(s)

= 2Es∼νπ
h−1

[DTV(πh−1||π′
h−1)[s]]. (7)

Next, notice that

||Pπ′
h−1

(νπ
h−1 − νπ′

h−1)||1 ≤ ||νπ
h−1 − νπ′

h−1||1. (8)

By applying equation 7 and equation 8 to equation 6, we have

||νπ
h − νπ′

h ||1 ≤ 2Es∼νπ
h−1

[DTV(πh−1||π′
h−1)[s]] + ||νπ

h−1 − νπ′

h−1||1
≤ 2Es∼νπ

h−1
[DTV(πh−1||π′

h−1)[s]]

+ 2Es∼νπ
h−2

[DTV(πh−2||π′
h−2)[s]] + ||νπ

h−2 − νπ′

h−2||1
...

≤ 2
h−1∑
i=1

Es∼νπ
i

[DTV(πi||π′
i)[s]]. (9)

Next, we can bound the discrepancy of state-action occupancy distributions by the discrepancy of state
occupancy distributions as follows:

||dπ
h − dπ′

h ||1 =
∑
s,a

∣∣∣dπ
h(s, a) − dπ′

h (s, a)
∣∣∣

=
∑
s,a

∣∣∣νπ
h (s)πh(a|s) − νπ

h (s)π′
h(a|s) + νπ

h (s)π′
h(a|s) − νπ′

h (s)π′
h(a|s)

∣∣∣
≤
∑
s,a

νπ
h (s) |πh(a|s) − π′

h(a|s)| +
∑

s

∣∣∣νπ
h (s) − νπ′

h (s)
∣∣∣

= 2Es∼νπ
h

[DTV(πh||π′
h)[s]] + ||νπ

h − νπ′

h ||1. (10)

13

Under review as submission to TMLR

By applying equation 9 to equation 10, we have

||dπ
h − dπ′

h ||1 ≤ 2
h∑

i=1
Es∼dπ

i
[DTV(πi||π′

i)[s]].

A.2 Proof of Theorem 4.3

Proof. Let Th(s) =
∑

a π
k−1
h (a|s) · exp{σ · Q̂πk−1

h (s, a)}. Based on the policy update in equation 4, we have

πk
h(a|s)

πk−1
h (a|s)

= eσ·Q̂πk−1
h (s,a)

Th(s) , ∀s ∈ S.

By taking the logarithm on both sides, we see that

log(πk
h(a|s)) − log(πk−1

h (a|s)) = σ · Q̂πk−1

h (s, a) − log(Th(s)), ∀s ∈ S.

The mean value theorem tells us that for 0 < p < q < 1, there exists y ∈ [p, q] such that

log p− log q
p− q

= 1
y
.

By applying the above result, we have

πk
h(a|s) − πk−1

h (a|s)
y

= σ · Q̂πk−1

h (s, a) − log(Th(s)), ∀s ∈ S.

Note that y ∈ (0, 1), which implies∣∣πk
h(a|s) − πk−1

h (a|s)
∣∣ ≤

∣∣∣σ · Q̂πk−1

h (s, a) − log(Th(s))
∣∣∣ .

Due to the boundedness of rewards, we have 0 ≤ Qπk−1

h (s, a) ≤ H and 1 ≤ Th(s) ≤ exp{σH}. Together with
the above inequality, we have∑

a

|πk
h(a|s) − πk−1

h (a|s)| ≤ σ
∑

a

|Qπk−1

h (s, a)| +
∑

a

|log Th(s)| ≤ 2AσH.

Hence, we have DTV(πk
h||πk−1

h)[s] = 1
2
∑

a |πk
h(a|s) − πk−1

h (a|s)| ≤ O(AHσ). When σ =
√

2 logA/(H2K),
DTV(πk

h||πk−1
h)[s] ≤ O(

√
2A2 logA/K).

A.3 Proof of Theorem 4.4

Proof. This proof builds upon the proof from Liu et al. (2022b), which considered on-policy reward updates.
We start from an empirical version of the reward update in equation 5 given by

µk+1
h = Projµ∈R

{
µk

h + η∇̂µL(πk,mix, µk)
}
,

where we use ∇̂ to indicate the empirical gradient. Based on the property of projection, we have

(µh − µk+1
h)T (µk+1

h − µk
h − η∇̂µL(πk,mix, µk)) ≥ 0. (11)

By rearranging equation 11, we have

η(µh − µk+1
h)T ∇̂µh

L(πk,mix, µk) ≤ (µk+1
h − µk

h)T (µh − µk+1
h)

= 1
2(||µk

h − µh||22 − ||µk+1
h − µh||22 − ||µk+1

h − µk
h||22). (12)

14

Under review as submission to TMLR

Given a policy π, note that L(π, µ) is linear with respect to µ where µ = {µh}H
h=1. Therefore, we have

L(πk, µ) − L(πk, µk) =
H∑

h=1
(µh − µk

h)T ∇µh
L(πk, µk). (13)

Next, by adding equation 13 to both sides of equation 12 and rearranging, we have

L(πk, µ) − L(πk, µk) ≤
H∑

h=1

1
2η (||µk

h − µh||22 − ||µk+1
h − µh||22 − ||µk+1

h − µk
h||22)

+
H∑

h=1
(µk+1

h − µk
h)T ∇̂µh

L(πk,mix, µk)

+
H∑

h=1
(µk

h − µh)T (∇µh
L(πk,mix, µk) − ∇µh

L(πk, µk))

+
H∑

h=1
(µk

h − µh)T (∇̂µh
L(πk,mix, µk) − ∇µh

L(πk,mix, µk)).

Using this inequality, we can bound the regret of reward updates by

Regretµ = sup
µ∈R

K∑
k=1

L(πk, µ) − L(πk, µk)

≤ sup
µ∈R

K∑
k=1

H∑
h=1

1
2η (||µk

h − µh||22 − ||µk+1
h − µh||22 − ||µk+1

h − µk
h||22) (14)

+
K∑

k=1

H∑
h=1

(µk+1
h − µk

h)T ∇̂µh
L(πk,mix, µk) (15)

+ sup
µ∈R

K∑
k=1

H∑
h=1

(µk
h − µh)T (∇µh

L(πk,mix, µk) − ∇µh
L(πk, µk)) (16)

+ sup
µ∈R

K∑
k=1

H∑
h=1

(µk
h − µh)T (∇̂µh

L(πk,mix, µk) − ∇µh
L(πk,mix, µk)). (17)

Next, we bound each of these terms individually. We can bound equation 14 by

sup
µ∈R

K∑
k=1

H∑
h=1

1
2η (||µk

h − µh||22 − ||µk+1
h − µh||22 − ||µk+1

h − µk
h||22)

≤ 1
2η sup

µ∈R

H∑
h=1

(||µ1
h − µh||22 − ||µK+1

h − µh||22) ≤ HSA

2η . (18)

The last inequality holds because µh(s, a) ∈ [0, 1],∀s ∈ S, a ∈ A, h ∈ [H].

We can bound equation 15 by

K∑
k=1

H∑
h=1

(µk+1
h − µk

h)T ∇̂µh
L(πk,mix, µk) ≤

K∑
k=1

H∑
h=1

||µk+1
h − µk

h||2 · ||∇̂µh
L(πk,mix, µk)||2

≤ η

K∑
k=1

H∑
h=1

||∇̂µh
L(πk,mix, µk)||22

≤ 4ηHK. (19)

15

Under review as submission to TMLR

The first inequality holds by Cauchy-Schwarz inequality. The second inequality holds due to ||µk+1
h −µk

h||2 ≤
||η∇̂µh

L(πmix, µk)||2 based on equation 5 and the property of projection. The last inequality holds because
||∇̂µh

L(πk,mix, µk)||2 = ||d̂πE

h − d̂πk,mix

h ||2 ≤ 2.

In order to bound equation 16, we first apply Hölder’s inequality to see that

sup
µ∈R

K∑
k=1

H∑
h=1

(µk
h − µh)T (∇µh

L(πk,mix, µk) − ∇µh
L(πk, µk))

≤ sup
µ∈R

K∑
k=1

H∑
h=1

||µk
h − µh||∞ · ||∇µh

L(πk,mix, µk) − ∇µh
L(πk, µk))||1. (20)

By definition, we have

∇µh
L(πk,mix, µk) − ∇µh

L(πk, µk) = ∇µh
J(πk, µk) − ∇µh

J(πk,mix, µk)

= dπk

h −
N(k)∑
n=1

βnd
πk+1−n

h . (21)

We assume the sampling weights of each policy are the same (i.e., β1 = · · · = βN(k) = 1
N(k)). Then,

dπk

h −
N(k)∑
n=1

βnd
πk+1−n

h =
N(k)∑
n=1

βn(dπk

h − dπk+1−n

h)

= 1
N(k)

N(k)∑
n=1

(dπk

h − dπk+1−n

h)

= 1
N(k)

N(k)−1∑
n=1

(N(k) − n) · (dπk+1−n

h − dπk−n

h). (22)

Based on Lemma 4.2 and Theorem 4.3, we have that

||dπk+1−n

h − dπk−n

h ||1 ≤ 2
h∑

i=1
E

s∼dπk−n

i

[DTV(πk+1−n
i ||πk−n

i)[s]] ≤ Õ

(
Ah√
K

)
. (23)

By applying equation 22 and equation 23 to equation 21, we have

||∇µh
L(πk,mix, µk) − ∇µh

L(πk, µk))||1 ≤ 1
N(k)

N(k)−1∑
n=1

(N(k) − n)||dπk+1−n

h − dπk−n

h ||1

≤ Õ

(
Ah(N(k) − 1)√

K

)
. (24)

Then, we apply equation 24 to equation 20 and use the fact that µh(s, a) ∈ [0, 1] to show

sup
µ∈R

K∑
k=1

H∑
h=1

(µk
h − µh)T (∇µh

L(πk,mix, µk) − ∇µh
L(πk, µk))

≤ sup
µ∈R

K∑
k=1

H∑
h=1

||µk
h − µh||∞ · ||∇µh

L(πk,mix, µk) − ∇µh
L(πk, µk))||1

≤ Õ

(√
H4A2(

∑
k(N(k) − 1))2

K

)
. (25)

In order to bound equation 17, note that πk,mix can be regarded as a single policy based on Corollary 4.9.
Therefore, we can bound equation 17 in the same way as in Liu et al. (2022b) (Lemma H.8).

16

Under review as submission to TMLR

Lemma A.1 (Lemma H.8 in Liu et al. 2022b for tabular MDPs). With probability at least 1 − δ, it holds
that

sup
µ∈R

K∑
k=1

H∑
h=1

(µk
h − µh)T (∇̂µh

L(πk,mix, µk) − ∇µh
L(πk,mix, µk)) ≤ Õ(

√
H3SAK),

where ∇̂µh
L(πk,mix, µk) is estimated with one sample.

By applying this result and using high-probability Azuma-Hoeffding inequality, with probability at least
1 − δ we have that

sup
µ∈R

K∑
k=1

H∑
h=1

(µk
h − µh)T (∇̂µh

L(πk,mix, µk) − ∇µh
L(πk,mix, µk))

= sup
µ∈R

K∑
k=1

H∑
h=1

(µk
h − µh)T

(
dπk,mix

h − d̂πk,mix

h

)
≤ Õ

(√
H3SAK2

B
∑

k N(k)

)
, (26)

where BN(k) is number of samples used to estimate ∇̂µh
L(πk,mix, µk).

Recall that we assume the number of expert trajectories is infinite, so we do not need to consider the
estimation error related to the expert’s policy. This assumption does not affect our theoretical results as it
is only related to the number of available trajectories of the expert policy, instead of on-policy or off-policy
data from behavior policies.

By combining the results from equation 18, equation 19, equation 25, and equation 26 and setting η =
√

SA
K ,

with probability at least 1 − δ we have

sup
µ∈R

K∑
k=1

L(πk, µ) − L(πk, µk)

≤ Õ

(
HSA

η
+ ηHK +

√
H4A2(

∑
k(N(k) − 1))2

K
+

√
H3SAK2

B
∑

k N(k)

)

= Õ

(
√
H2SAK +

√
H4A2(

∑
k(N(k) − 1))2

K
+

√
H3SAK2

B
∑

k N(k)

)
.

Specifically, if N is fixed, then with probability at least 1 − δ we have

sup
µ∈R

K∑
k=1

L(πk, µ) − L(πk, µk) ≤ Õ

(
HSA

η
+ ηHK +

√
H4(N − 1)2A2K +

√
H3SAK

BN

)

= Õ

(
√
H2SAK +

√
H4(N − 1)2A2K +

√
H3SAK

BN

)
.

A.4 Proof of Theorem 4.8

Proof. First, the convexity of D can be easily verified because all constraints are linear. Second, without
loss of generality, we can assume d(s) > 0, ∀s ∈ S. Otherwise, if there exists s ∈ S such that d(s) = 0, we

17

Under review as submission to TMLR

can take arbitrary actions at this state and it is enough to consider the state space S \ {s}. Based on this
assumption, we define

πh(a|s) ≜ dh(s, a)/
∑
a′

dh(s, a′), ∀s ∈ S.

It can be verified that policy π = {πh}H
h=1 and state-action visitation distribution d = {dh}H

h=1 has a one-to-
one correspondence. The proof is extended from Syed et al. (2008), where the setting was infinite discounted
MDPs. First, given a policy π, it is trivial to show that its occupancy distribution dπ = [d1, . . . , dH] is in the
set D. Next we will show, given a feasible distribution d ∈ D, it can be verified that πh(a|s) defined above
is the unique policy that has the same occupancy distribution (we have assumed d(s) > 0, ∀s ∈ S, h ∈ [H]).
First, by the definition dπ

1 (s, a) = (
∑

a′ d1(s, a′))π1(a|s), π1(a|s) is uniquely defined by

π1(a|s) = dπ
1 (s, a)∑

a′ dπ
1 (s, a′) .

For h = 2, . . . , H, we have
dπ

h(s, a) = πh(a|s)
∑
s′,a′

dπ
h−1(s′, a′)P (s|s′, a′),

so it follows that
πh(a|s) = dπ

h(s, a)∑
s′,a′ dπ

h−1(s′, a′)P (s|s′, a′) .

Finally, note that
∑

s′,a′ dπ
h−1(s′, a′)P (s|s′, a′) =

∑
a d

π
h(s, a). Therefore, we have

πh(a|s) = dπ
h(s, a)∑

a′ dπ
h(s, a′) .

B Extension to linear MDPs

In this section, we extend our results to linear MDPs. Our analysis builds upon the framework in Liu et al.
(2022b), which considered on-policy reward updates in linear MDPs.
Definition B.1 (Linear MDPs). We define linear MDPs as in Liu et al. (2022b); Jin et al. (2020); Agarwal
et al. (2020). A MDP is linear if its transition function and reward function are linear based on known
feature spaces, i.e., there exists a feature map ψ : S × A × S → Rd and θh ∈ Rd such that

Ph(s′|s, a) = ψ(s, a, s′)T θh, ∀(s, a, s′) ∈ S × A × S,

and there exists a feature map ϕ : S × A → Rd and µh ∈ Rd such that

rh(s, a) = ϕ(s, a)Tµh, ∀(s, a) ∈ S × A.

Assumption B.2. We assume that the state space S and action space A are measurable sets with finite
measures S and A, respectively.
Assumption B.3. We assume that ||θh||2 ≤

√
d and there exists an absolute constant R > 0 such that

R−2 · sup
s′∈S

|ψ(s, a, s′)T y|2 ≤
∫

s′∈S
|ψ(s, a, s′)T y|2ds′ ≤ d,

for any (s, a) ∈ S × A and y ∈ Rd with ||y||2 ≤ 1.
Assumption B.4. We assume that ||µh||2 ≤

√
d and ||ϕ(s, a)||2 ≤ 1, ∀(s, a) ∈ S × A which ensures that

|rµ
h(s, a)| ≤

√
d.

18

Under review as submission to TMLR

Lemma B.5 (Lemma 4.1 in linear MDPs). Let σ =
√

2 log A

H2
√

dK
. With probability at least 1 − δ, the regret of

policy updates in linear MDPs is bounded by

Regretπ ≤ Õ(
√
H4Kd3).

Proof. Refer to Appendix H in Liu et al. (2022b).

Lemma B.6 (Lemma 4.2 in linear MDPs). In finite-horizon undiscounted MDPs, the divergence between
state-action visitation distributions is bounded by the total variation distance of the corresponding policies
according to

||dπ
h − dπ′

h ||1 =
∫

s,a

∣∣∣dπ
h − dπ′

h

∣∣∣ dsda ≤ 2
h∑

i=1
Es∼νπ

i
[DTV(πi||π′

i)[s]].

Proof. It can be proved by substituting
∑

s,a with
∫

s,a∈S×A and regarding P (s′|s, a) as a probability density
function in the proof of Lemma 4.2.

Theorem B.7 (Theorem 4.3 in linear MDPs). The total variation distance between two consecutive policies
induced by implementing the policy update algorithm in equation 3 is bounded by

DTV(πk
h||πk−1

h)[s] ≤ O(AHσ
√
d), ∀s ∈ S, k ∈ [K], h ∈ [H].

When σ =
√

2 log A

H2
√

dK
, the bound becomes Õ(

√
A2

√
d

K).

Proof. Let Th(s) =
∫

a∈A π
k−1
h (a|s) · exp{σ · Q̂πk−1

h (s, a)}da. Based on the policy update in equation 4, we
have

πk
h(a|s)

πk−1
h (a|s)

= eσ·Q̂πk−1
h (s,a)

Th(s) , ∀s ∈ S.

Then, as in the proof of Theorem 4.3, we have∣∣πk
h(a|s) − πk−1

h (a|s)
∣∣ ≤

∣∣∣σ · Q̂πk−1

h (s, a) − log(Th(s))
∣∣∣ .

Due to the boundedness of rewards, we have 0 ≤ Qπk−1

h (s, a) ≤ H
√
d and 1 ≤ Th(s) ≤ exp{σH

√
d}. Together

with the above inequality, we have∫
a∈A

|πk
h(a|s) − πk−1

h (a|s)|da ≤ σ

∫
a∈A

|Qπk−1

h (s, a)|da+
∫

a∈A
|log Th(s)| da ≤ 2AσH

√
d.

Hence, we have DTV(πk
h||πk−1

h)[s] = 1
2
∫

a∈A |πk
h(a|s) − πk−1

h (a|s)|da ≤ O(AHσ
√
d). When σ =

√
2 log A

H2
√

dK
,

DTV(πk
h||πk−1

h)[s] ≤ Õ(
√

A2
√

d
K).

Theorem B.8 (Theorem 4.4 in linear MDPs). Let η =
√

d
K and σ =

√
2 log A

H2
√

dK
. Then, with probability at

least 1 − δ, the regret of the reward update problem is bounded by

Regretµ = sup
µ∈R

K∑
k=1

L(πk, µ) − L(πk, µk)

≤ Õ
(√

H2dK︸ ︷︷ ︸
regret of reward updates

+
√
H4A2(

∑
k N(k) − 1)2d3/2

K︸ ︷︷ ︸
error induced by off-policy updates

+

√
H3d2K2

B
∑

k N(k)︸ ︷︷ ︸
estimation error

)
,

19

Under review as submission to TMLR

where B is the number of new trajectories collected with the current policy between updates. Specifically,
when N is fixed, we have

Regretµ ≤ Õ
(√

H2dK︸ ︷︷ ︸
regret of reward updates

+
√
H4A2(N − 1)2Kd3/2︸ ︷︷ ︸

error induced by off-policy updates

+
√
H3d2K

BN︸ ︷︷ ︸
estimation error

)
.

Proof. In linear MDPs, we can bound the regret of reward updates in the same way as the tabular setting.
As in the proof of Theorem 4.4, we have

Regretµ = sup
µ∈R

K∑
k=1

L(πk, µ) − L(πk, µk)

≤ sup
µ∈R

K∑
k=1

H∑
h=1

1
2η (||µk

h − µh||22 − ||µk+1
h − µh||22 − ||µk+1

h − µk
h||22) (27)

+
K∑

k=1

H∑
h=1

(µk+1
h − µk

h)T ∇̂µh
L(πk,mix, µk) (28)

+ sup
µ∈R

K∑
k=1

H∑
h=1

(µk
h − µh)T (∇µh

L(πk,mix, µk) − ∇µh
L(πk, µk)) (29)

+ sup
µ∈R

K∑
k=1

H∑
h=1

(µk
h − µh)T (∇̂µh

L(πk,mix, µk) − ∇µh
L(πk,mix, µk)). (30)

Next, we bound each of these terms individually. We can bound equation 27 by

sup
µ∈R

K∑
k=1

H∑
h=1

1
2η (||µk

h − µh||22 − ||µk+1
h − µh||22 − ||µk+1

h − µk
h||22) ≤ sup

µ∈R

1
2η

H∑
h=1

||µ1
h − µ||22 ≤ 2

η
Hd,

where the last inequality holds due to the assumption ||µh||2 ≤
√
d.

We can bound equation 28 by

K∑
k=1

H∑
h=1

(µk+1
h − µk

h)T ∇̂µh
L(πk,mix, µk) ≤

K∑
k=1

H∑
h=1

η||∇̂µh
L(πk,mix, µk)||22 ≤ 4ηHK,

where the first inequality was shown in the proof of Theorem 4.4 and the second inequality holds because
||∇̂µh

L(πk,mix, µk)||2 ≤ 2||ϕ(·, ·)||2 ≤ 2.

In order to bound equation 29, note that

J(π, µ) =
H∑

h=1

∫
s,a

dπ
h(s, a)ϕ(s, a)Tµhdsda.

By definition, we have

∇µh
L(πk,mix, µk) − ∇µh

L(πk, µk) =
∫

s,a

dπk

h (s, a) − 1
N(k)

N(k)∑
n=1

dπk+1−n

h (s, a)

ϕ(s, a)dsda.

20

Under review as submission to TMLR

Based on Theorem 4.3 and Lemma 4.2 in linear MDPs, we have

sup
µ∈R

K∑
k=1

H∑
h=1

(µk
h − µh)T (∇µh

L(πk,mix, µk) − ∇µh
L(πk, µk))

≤ sup
µ∈R

K∑
k=1

H∑
h=1

sup
s,a

|ϕ(s, a)T (µk
h − µh)| · || 1

N(k)

N(k)∑
n=1

(dπk

h − dπk+1−n

h)||1

≤ sup
µ∈R

K∑
k=1

H∑
h=1

2
√
d|| 1
N(k)

N(k)∑
n=1

(dπk

h − dπk+1−n

h)||1

≤ Õ(
√
H4A2(

∑
k N(k) − 1)2d3/2

K
),

where the last inequality follows from

|| 1
N(k)

N(k)∑
n=1

(dπk

h − d
πk+1−n

h)||1 ≤ 1
N(k)

N(k)−1∑
n=1

(N(k) − n) · ||dπk+1−n

h − dπk−n

h ||1

≤ Õ

h(N(k) − 1)

√
A2

√
d

K

 .

Same as the tabular case, in order to bound equation 30, note that πk,mix can be regarded as a single policy
based on Corollary 4.9. Therefore, we can bound equation 30 in the same way as in Liu et al. (2022b)
(Lemma H.8) with high-probability Azuma-Hoeffding inequality. By applying this result, with probability
at least 1 − δ we have that

sup
µ∈R

K∑
k=1

H∑
h=1

(µk
h − µh)T (∇̂µh

L(πk,mix, µk) − ∇µh
L(πk,mix, µk))

= sup
µ∈R

K∑
k=1

H∑
h=1

(µk
h − µh)T

∫
s,a

(
dπk,mix

h (s, a) − d̂πk,mix

h (s, a)
)
ϕ(s, a)dsda

≤ Õ

(√
H3d2K2

B
∑

k N(k)

)
.

By combining the upper bounds of equation 27, equation 28, equation 29, and equation 30 and setting
η =

√
d
K , with probability at least 1 − δ the regret of reward updates in linear MDPs is bounded by

Regretµ = sup
µ∈R

K∑
k=1

L(πk, µ) − L(πk, µk)

≤ Õ
(√

H2dK︸ ︷︷ ︸
regret of reward updates

+
√
H4A2(

∑
k N(k) − 1)2d3/2

K︸ ︷︷ ︸
error induced by off-policy updates

+

√
H3d2K2

B
∑

k N(K)︸ ︷︷ ︸
estimation error

)
.

Specifically, when N is fixed, we have

Regretµ ≤ Õ
(√

H2dK︸ ︷︷ ︸
regret of reward updates

+
√
H4A2(N − 1)2Kd3/2︸ ︷︷ ︸

error induced by off-policy updates

+
√
H3d2K

BN︸ ︷︷ ︸
estimation error

)
.

21

Under review as submission to TMLR

C Implementation Details

C.1 MiniGrid Environments

For MiniGrid EmptyRoom tasks, we exactly follow the algorithm introduced in the main paper which con-
sists of policy updates given by equation 4 and reward updates given by equation 5. The only difference
is that we do not learn the transition function for policy updates. Instead, we assume the transition func-
tion is known when we estimate Q-values, since it only impacts the regret of policy updates which is not
the focus of this work. We make a small modification to the MiniGrid action set by changing it from
{stay, go forward, turn left, turn right} to {stay, up, down, left, right}.

We consider the learning rates σ = 10
√

2 log(4)
H2K and η = 5√

K
for policy updates and reward updates, respec-

tively. We train each algorithm for 10,000 environment interactions. We set the horizon H of an episode to
3n, where n×n is the size of the room. We maintain a replay buffer with size of 128, and we sample 32 data
points from the replay buffer when we conduct reward updates. The experiments were run with two A5000
GPUs (24G memory) and it took approximately 5 minutes for each environment and each seed.

C.2 MuJoCo Benchmarks

For continuous space MuJoCo locomotion tasks, we need to make some modifications to our algorithm.
Specifically, for policy updates, we use off-policy mirror descent policy optimization (MDPO) algorithm
introduced by Tomar et al. (2021). With this modification and by taking multiple gradient steps (which we
set as 5 per iteration), we achieve a deep variant of the policy update in equation 3. We parameterize the
actor and critic with neural networks, using an MLP architecture with 2 hidden layers and 256 hidden units.
We use Adam optimizer with learning rate 10−3, 10−5 for actor and critic, respectively. The regularization
coefficient we use is 0.1.

For reward updates, we use the discriminator introduced in Ho & Ermon (2016) with the modification that
the data comes from multiple past policies. Although this is a different loss compared to the loss we use for
theoretical analysis, the only difference is an additional regularization which can be regarded as a technique
for practical performance. The learning rate of the discriminator is 10−3. We train each algorithm for
100,000 environment interactions. We maintain a replay buffer with size of 2,048, and we sample 256 data
points from the replay buffer when we conduct reward updates. The experiments were run with two A5000
GPUs (24G memory) and it took approximately 5 hours for each environment and each seed.

22

	Introduction
	Related Work
	Preliminaries
	Off-Policy Adversarial Imitation Learning
	Convergent Off-Policy AIL
	Sample Efficient Off-Policy AIL

	Experiments
	MiniGrid Environments
	MuJoCo Benchmarks

	Conclusion
	Proofs of Theorems and Lemmas in Section 4
	Proof of Lemma 4.2
	Proof of Theorem 4.3
	Proof of Theorem 4.4
	Proof of Theorem 4.8

	Extension to linear MDPs
	Implementation Details
	MiniGrid Environments
	MuJoCo Benchmarks

