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Abstract

The challenge of producing accurate statistics while respecting the privacy of the individuals
in a sample is an important area of research. We study minimax lower bounds for classes of
differentially private estimators. In particular, we show how to characterize the power of a
statistical test under differential privacy in a plug-and-play fashion by solving an appropriate
transport problem. With specific coupling constructions, this observation allows us to derive
Le Cam-type and Fano-type inequalities not only for regular definitions of differential privacy
but also for those based on Renyi divergence. We then proceed to illustrate our results on
three simple, fully worked out examples. In particular, we show that the problem class has a
huge importance on the provable degradation of utility due to privacy. In certain scenarios,
we show that maintaining privacy results in a noticeable reduction in performance only
when the level of privacy protection is very high. Conversely, for other problems, even a
modest level of privacy protection can lead to a significant decrease in performance. Finally,
we demonstrate that the DP-SGLD algorithm, a private convex solver, can be employed for
maximum likelihood estimation with a high degree of confidence, as it provides near-optimal
results with respect to both the size of the sample and the level of privacy protection. This
algorithm is applicable to a broad range of parametric estimation procedures, including
exponential families.

1 Introduction
The ever-increasing data collection on individuals and their sometimes hazardous use has led to numerous
threats to privacy and serious concerns have emerged (Narayanan & Shmatikov, 2006; Backstrom et al.,
2007; Fredrikson et al., 2015; Dinur & Nissim, 2003; Homer et al., 2008; Loukides et al., 2010; Narayanan
& Shmatikov, 2008; Sweeney, 2000; Wagner & Eckhoff, 2018; Sweeney, 2002). Differential privacy (Dwork
et al., 2014) offers a future-proof solution to this problem by ensuring that individuals are protected from the
result of an estimation procedure. It enables the inference of global statistics on a dataset while bounding
each sample’s influence and ensuring that the presence or absence of an individual in the dataset cannot be
deduced from the result. In the last decade, research results have multiplied and nowadays, it is possible to
build complex data pipelines under privacy constraints (Dwork et al., 2006; Kairouz et al., 2015; Dong et al.,
2019; 2020; Abadi et al., 2016). Notably, differential privacy is now used in production by the US Census
Bureau (Abowd, 2018), Google (Erlingsson et al., 2014), Apple (Thakurta et al., 2017) and Microsoft (Ding
et al., 2017) among others. Differential privacy constrains the class of usable stochastic functions defined
on a dataset and as a result it degrades the utility of an estimation. To quantify the loss due to privacy,
many utility bounds are often used (McSherry & Talwar, 2007; McSherry, 2009). When the target of the
estimation is not the pointwise evaluation of a function on a given dataset but rather a hidden quantity
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defined “at the scale of the population”, i.e., of the underlying data distribution, statistical problems arise
and an important topic is to quantify the utility of private estimators (Dwork & Lei, 2009; Wasserman &
Zhou, 2010; Hall et al., 2011; Smith, 2011; Chaudhuri et al., 2011; Rubinstein et al., 2009; Lalanne et al.,
2022; Ryffel et al., 2022; Karwa & Vadhan, 2017; Du et al., 2020; Biswas et al., 2020; Diakonikolas et al.,
2015; Bun et al., 2019; Bun & Steinke, 2019; Ben-Eliezer et al., 2022).

Part of the privacy literature focuses on lower bounds (Asi & Duchi, 2020a;b; Farhadi et al., 2022; Tao et al.,
2022), i.e. bounds for which we know we "cannot" do better under certain hypotheses. Most of them are
problem-specific and are to be understood as a worst case among all instances of a given problem. Some
others, such as the ones based on the theory of inverse sensitivity (Asi & Duchi, 2020a;b), only consider
a "local" worst case and thus give tighter results. In contrast, in statistics, it is possible to measure the
probabilities of occurrence of each instance of a problem. It is then natural to consider lower bounds that
are probabilistic in nature (i.e. with a certain probability or in expectation). In particular, the classical
minimax theory looks at the best uniform risk of convergence of the estimators in order to estimate a
quantity defined at the scale of a population and has a vast literature on lower bounds (Assouad, 1983;
Ibragimov & Has’ Minskii, 2013; Bickel & Ritov, 1988; Giraud, 2021; Devroye, 1987; Verdú et al., 1994;
Thomas & Joy, 2006; Scarlett & Cevher, 2019; Rigollet & Hütter, 2015; Tsybakov, 2003; Györfi et al., 2002).
Under privacy conditions, some work is still to be done on the minimax risk, both on lower bounds and on
some matching upper bounds. Our work sits in this line of research.

At the time of writing, to the best of our knowledge, two series of work have already met some success
in this task. The first one is due to Duchi et al. (2013a;b) and looks at so-called local privacy (Bebensee,
2019; Yang et al., 2020; Cormode et al., 2018) which is a stronger definition of privacy than the ones that
will be investigated in this article. To put it simply, it requires that each piece of data is anonymized
before collection, whereas global privacy only requires the aggregation to be private. It paved the way for a
consequent line of work on estimation under local privacy or more generally under communication constraints
(Acharya et al., 2021c;b;d;a; Barnes et al., 2020a;b; 2019). The second one is due to Acharya et al. (2021e;
2018). It adapts Le Cam’s, Fano’s and Assouard’s methods to differential privacy. Their work will be our
main point of comparison, since we believe that our work nicely complements theirs by providing a somewhat
plug-and-play framework, notably allowing to establish results for other types of privacy.

Indeed, the present work extends classical techniques like Le Cam and Fano for proving minimax lower bounds
to the setting where the estimator must additionally be differentially private. While this was previously done
by Acharya et al. (2021e; 2018) in the specific context of (ϵ, δ)-differential privacy, our contribution improves
upon that work by getting quantitative bounds that are both tighter (e.g. by large constants in the exponent)
and somewhat plug-and-play in that they apply to a variety of differential privacy variants, and notably to the
setting of zero-concentrated differential privacy (zCDP), bridging the theoretical gap with very recent work
in that field (Kamath et al., 2022). As applications, we extend known rates for estimating the parameter
of a Bernoulli distribution and for estimating the mean of a high-dimensional spherical Gaussian to the
zCDP setting. We also show that for the problem of estimating the support of a uniform distribution over
an unknown interval inside [0,1], the minimax risk is uniformly degraded by the privacy constraint. This
constrasts with Bernoulli and Gaussian mean estimation, and is perhaps somewhat surprising, as one usually
expects bounds for which there are parameter regimes under which the non-private minimax risk dominates.

Lastly, we show a private minimax lower bound for maximum likelihood estimation, when the log likelihood
is concave and smooth in the parameter being estimated and satisfies some additional non-degeneracy as-
sumptions, and show that private SGLD qualitatively matches this lower bound in terms of sample size and
privacy parameter dependence.

1.1 The Minimax Risk and Private Estimators
We start by defining the minimax risk. Given n ∈ N∗ and a feature space X , X n may be viewed as a set
of datasets containing n elements from X . We consider a family of probability distributions (Pθ)θ∈Θ on X n

where Θ is equipped with a semi-metric1 dΘ : Θ2 → R+. Often, for all θ ∈ Θ, Pθ = p⊗n
θ where (pθ)θ∈Θ is a

family of probability distributions on X . This corresponds to the classical statistical setup where we observe
1i.e. that is positive, symmetric, that satisfies the triangular inequality and dΘ(θ, θ) = 0, ∀θ ∈ Θ

2



Published in Transactions on Machine Learning Research (04/2023)

n i.i.d. random variables. The general setup allows capturing phenomena that are not i.i.d., for instance
Markov processes. Given an estimator θ̂ : X n → Θ one might look at its uniform risk of estimation over Θ
for a loss function Φ : [0, +∞) → [0, +∞) that is non-decreasing and such that Φ(0) = 0 which is

sup
θ∈Θ

∫
X n

Φ(dΘ(θ̂(X), θ))dPθ(X) .

The best achievable uniform risk defines what is called the minimax risk

Mn

(
(Pθ)θ∈Θ , dΘ, Φ

)
:= inf

θ̂
sup
θ∈Θ

∫
X n

Φ(dΘ(θ̂(X), θ))dPθ(X) . (1)

Here, the infimum over θ̂ is taken among all possible measurable functions of the samples.

When an estimator θ̂ = θ̂ (X) is to be made public or is to be shared with some untrustworthy agents
and when the records of X are sensitive (on a privacy standpoint), the disclosure of θ̂ may reveal a lot of
information about the records of X. Against this background, differential privacy (Dwork et al., 2006) offers
strong privacy guarantees. Given a (randomized) mechanism M, dom (M) refers to its domain (i.e. the set of
admissible inputs) and codom (M) refers to its codomain (i.e. the set of admissible outputs). A differentially
private mechanism M : X n → codom (M) ensures that limited information can be inferred on the records
of X ∈ X n from the sole observation of the output M(X). Given ϵ ∈ R+∗ and δ ∈ [0, 1), a randomized
mechanism M : X n → codom (M) is (ϵ, δ)-differentially private (or (ϵ, δ)-DP) if for all X, Y ∈ X n and all
measurable S ⊆ codom (M) we have

dham (X, Y) ≤ 1 =⇒ PM (M(X) ∈ S) ≤ eϵPM (M(Y) ∈ S) + δ .

Note that dham (·, ·) denotes the Hamming distance on X n. There is however no consensus yet on the
"correct" definition of privacy and a few other useful definitions have emerged. For instance, more recent
definitions of privacy are due to the need to sharply count the privacy of a composition of many Gaussian
mechanisms. At first it was done implicitly via the so-called moment accountant method (Abadi et al., 2016)
before being formalized under the name of Renyi differential privacy (Mironov, 2017). Nowadays, it seems
that all these notions tend to converge towards the definition of zero concentrated differential privacy (Dwork
& Rothblum, 2016; Bun & Steinke, 2016). This is the one that we will investigate in this article in addition
to the (ϵ, δ)-differential privacy, but the results and the proofs can easily be adapted to other definitions
that are based on Renyi divergences. Given ρ ∈ (0, +∞), a randomized mechanism M : X n → codom (M)
is ρ-zero concentrated differentially private (ρ-zCDP) if for all X, Y ∈ X n,

dham (X, Y) ≤ 1 =⇒ Dα (M(X)∥M(Y)) ≤ ρα, ∀1 < α < +∞ .

The Renyi divergence of level α, Dα ( ·∥ ·), is properly defined in Appendix A. There exist links between (ϵ, δ)-
DP and ρ-zCDP. For instance, Bun & Steinke (2016, Proposition 3) states that if a mechanism is ρ-zCDP,
it is (ϵ, δ)-DP for a collection of (ϵ, δ)’s that depend on ρ. In particular, finding minimax lower bounds for
ρ-zCDP mechanisms can be done by taking the supremum of lower bounds on (ϵ, δ)-DP mechanisms. But
as we will see later, we can do better directly. Conversely, if a mechanism is (ϵ, 0)-DP, it is also ϵ2/2-zCDP
(see Bun & Steinke (2016, Proposition 4)).

In order to factorize the results, we will use the abstract formulation that a randomized mechanism M :
X n → Θ satisfies a certain condition C rather than fixing the class in which it belongs. We define the private
minimax risk as the best achievable uniform risk with mechanisms that satisfy the privacy condition C (using
the set convention, C can alternatively refer to the set of estimators that satisfy this condition)

Mn

(
C, (Pθ)θ∈Θ , dΘ, Φ

)
:= inf

M∈C
sup
θ∈Θ

∫
X n

EPM
(Φ(dΘ(M(X), θ))) dPθ(X) . (2)

Because of their similarities, we use Mn to refer to both the non-private minimax risk and its private
counterpart. With four arguments, Mn should be understood as the private minimax risk and when equipped
with three arguments it is simply the regular minimax risk.
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1.2 Introducing example
As a warmup we discuss here the simplest possible example on which we can present the questions that this
article addresses and the flavor of the developed approaches. Let p1 < p2 be two parameters in (0, 1) and let
U1, . . . , Un, n be independent and identically distributed uniform random variables on [0, 1]. The random
variables Zi := (X(1)

i , X
(2)
i ) ∈ R2, 1 ≤ i ≤ n, defined by

(X(1)
i , X

(2)
i ) = (1[0,p1)(Ui),1[0,p2)(Ui))

are independent and identically distributed with marginal distributions Bernoulli B(p1) and B(p2). In the
sequel we note X(j) = (X(j)

1 , . . . , X
(j)
n ), j = 1, 2, U = (U1, . . . , Un), S1 := [0, (p1 + p2)/2). and S2 :=

[(p1 + p2)/2, 1]. Given any (ϵ, 0)-DP mechanism M : [0, 1]n → [0, 1] (where ϵ > 0) to estimate the Bernoulli
parameter, the risk satisfies

sup
p∈[0,1]

EX∼B(p)⊗n

(
(M(X) − p)2)

≥
(
EX∼B(p1)⊗n

(
(M(X) − p1)2)+ EX∼B(p2)⊗n

(
(M(X) − p2)2)) /2

Coupling=
(

EU,M

(
(M(X(1)) − p1)2

)
+ EU,M

(
(M(X(2)) − p2)2

))
/2

Conditioning= EU

(
EM

(
(M(X(1)) − p1)2

)
+ EM

(
(M(X(2)) − p2)2

))
/2

≥
(

p2−p1
2
)2

EU

(
PM

(
M(X(1)) ∈ S2

)
+ PM

(
M(X(2)) ∈ S1

))
/2.

(3)

This is where the DP property yields a lower bound on the second factor as

EU

(
e−ϵdham(X(1),X(2))PM

(
M(X(2)) ∈ S2

)
+ PM

(
M(X(2)) ∈ S1

))
dham(·,·)≥0

≥ EU

(
e−ϵdham(X(1),X(2))

(
PM

(
M(X(2)) ∈ S2

)
+ PM

(
M(X(2)) ∈ S1

)))
= EU

(
e−ϵdham(X(1),X(2))

) Jensen
≥ e−nϵ|p2−p1| ,

(4)

which overall yields the lower bound (p2−p1)2

8 e−nϵ|p2−p1|. A good lower bound on the minimax risk is then
provided by optimizing over p1 and p2. For instance, when n ≥ 2

ϵ , p1 = 1
2 and p2 = 1

2 + 1
nϵ leads to

sup
p∈[0,1]

EX∼B(p)⊗n

(
(M(X) − p)2) ≥ 1

8
1

(nϵ)2 .

The idea behind the first inequality in (3) is classical in the minimax literature and is recalled in Section 1.3
using the notion of packing. The coupling construction can be generalized and tailored to other settings and
has a critical impact on the deduced lower bounds, as we present in Section 3. The minoration involving
differential privacy is a special case of the techniques that we formalize under the notion of admissible
similarity functions in Section 2, which are adapted to various types of privacy constraints. Practical
implications of such generalizations are described in Section 1.4.

1.3 From Minimax Lower Bounds to Hypothesis Testing
A classical technique (see Duchi et al. (2013a)) for finding lower bounds on Mn

(
(Pθ)θ∈Θ , dΘ, Φ

)
is to replace

the parameter set Θ by a much “simpler” set Θ′ ⊆ Θ and to use the trivial lower bound

Mn

(
(Pθ)θ∈Θ , dΘ, Φ

)
≥ inf

θ̂
sup
θ∈Θ′

∫
X n

Φ(dΘ(θ̂(X), θ))dPθ(X) .

Usually Θ′ is chosen as an Ω-packing of Θ, for some real number Ω > 0: it is a countable family Θ′ := {θi, i ∈
N∗} (θi)i∈N∗

(and most of the time, including in this article, it is taken to be finite) such that: a) θi ∈ Θ for
all i; b) i ̸= j =⇒ dΘ(θi, θj) ≥ 2Ω; and c) there is a well-defined function ΨΘ′ satisfying

ΨΘ′(θ) ∈ arg min
i≥1

dΘ(θi, θ)
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for each θ ∈ Θ. Under such hypotheses, any estimator θ̂ satisfies (Duchi et al., 2013a)

sup
θ∈Θ′

∫
X n

Φ(dΘ(θ̂(X), θ))dPθ(X) ≥ Φ(Ω) sup
i∈{1,...,#(Θ′)}

PX∼Pθi

(
ΨΘ′

(
θ̂(X)

)
̸= i
)

. (5)

The mapping Ψ̂ := ΨΘ′ ◦ θ̂ : X n → {1, . . . , # (Θ′)} may be viewed as a test function (that selects the model
number) and thus

Mn((Pθ)θ∈Θ ,dΘ, Φ) ≥ Φ(Ω) inf
Ψ:X n→{1,...,#(Θ′)}

sup
i∈{1,...,#(Θ′)}

PX∼Pθi
(Ψ (X) ̸= i) . (6)

Finding minimax lower bounds is thus done by finding a suitable Ω-packing of the parameter space and then
by providing lower bounds on

inf
Ψ:X n→{1,...,#(Θ′)}

sup
i∈{1,...,#(Θ′)}

PX∼Pθi
(Ψ (X) ̸= i) . (7)

Two power powerful tools to find such lower bounds come from information theory: Le Cam’s lemma (see
Fact 1) can be used when Θ′ only contains two elements, while Fano’s lemma (see Fact 2) is applicable when
Θ′ contains N ≥ 2 elements.

Fact 1 (Neyman-Pearson & Le Cam’s lemma (Rigollet & Hütter, 2015, Lemma 5.3)). Let P1,
P2 be two probability distributions on a measure space E, then

inf
Ψ:E→{1,2}

max
i∈{1,2}

PX∼Pi (Ψ (X) ̸= i) ≥ 1
2 inf

Ψ:E→{1,2}

2∑
i=1

PX∼Pi
(Ψ (X) ̸= i)

= 1
2 (1 − TV (P1, P2)) .

(8)

The Total Variation (TV) is rigorously defined in Appendix A.

Fact 2 (Fano’s lemma (Giraud, 2021, Theorem 3.1)). Let (Pi)i∈{1,...,N} be a family of probability distributions
on a measure space E. For any probability distribution Q on E such that Pi ≪ Q for all i, and for any test
function Ψ : X n → {1, . . . , N},

max
i∈{1,...,N}

PX∼Pi
(Ψ (X) ̸= i) ≥ 1

N

N∑
i=1

PX∼Pi
(Ψ (X) ̸= i)

≥ 1 −
1 + 1

N

∑N
i=1 KL (Pi∥ Q)
ln(N) .

(9)

The KL divergence and the absolute continuity (≪) are rigorously defined in Appendix A. Often Q is set to
1
N

∑N
i=1 Pi.

With the same reasoning used (Duchi et al., 2013a) to establish (5), with Θ′ = (θi)i∈{1,...,#(Θ′)} an Ω-packing
of Θ, we can lower-bound the private minimax risk:

Mn(C, (Pθ)θ∈Θ , dΘ, Φ)
≥ Φ(Ω) inf

M∈C
inf

Ψ:codom(M)→{1,...,#(Θ′)}
sup

i∈{1,...,#(Θ′)}
PX∼Pθi

,M (Ψ (M(X)) ̸= i) . (10)

Consequently, finding private minimax lower bounds is done analogously to the non-private setting by finding
an appropriate Ω-packing and a lower bound on

inf
Ψ:codom(M)→{1,...,#(Θ′)}

sup
i∈{1,...,#(Θ′)}

PX∼Pθi
,M (Ψ (M(X)) ̸= i) (11)

that is independent on the mechanism M but only depends on the privacy condition C.
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1.4 Contributions
The main contribution of this work, presented in Section 2, is to propose a generic framework for the
derivation of lower bounds on the minimax risk under various privacy conditions. Here and in the sequel,
the symbols o(·), O(·), Θ(·) and Ω(·) are used without ambiguity as classical comparison operators for
sequences, as recalled in Appendix A. Technically, the techniques of Le Cam and Fano are extended to
the private context, reducing the distributional test problem (11) to a Kantorovich problem (Santambrogio,
2015; Peyré et al., 2019) of the form

sup
Q∈Π(P1,...,PN )

∫
(X n)N

sC (X1, . . . , XN ) dQ (X1, . . . , XN ) . (12)

Here, Π (P1, . . . , PN ) is the set of couplings between the considered distributions and sC is an admissible
similarity function depending on the nature of the constraint C and the number of hypotheses (Theorem 6
and Theorem 7). For instance, regarding (ϵ, δ)-differential privacy, similarity functions are obtained by
comparing datasets to a common anchor. This result is summarized in Theorem 5.

Unlike the prior work of Acharya et al. (2021e), the proposed framework allows us to consider joint couplings
across all instances rather than just pairwise couplings. Additionally, the level of generality of our proofs
leaves room for subsequent work to build upon this framework.

The general idea behind the proofs is as follows. In classical Fano’s, one considers the decoding error
probability: on average over a family of instances, what is the probability that the estimator, given samples
from a given instance, fails to identify that the samples came from that instance. In place of Fano’s inequality,
the present work lower bounds this by noting that, given datasets X1, ..., XN coming from each instance, as
well as an "anchor" dataset Λ (or alternatively an anchor distribution), differential privacy implies that the
probability that the estimator decides Xi comes from instance i cannot differ by much from the probability
it decides Λ comes from instance i, provided Λ and Xi are similar. The decoding error probability can thus
be lower bounded in terms of the maximum distance between Λ and any of X1, ..., XN , averaged over the
randomness of X1, ..., XN , where there is freedom in choosing how to couple this randomness.

Section 3 includes various coupling constructions yielding quantitative lower bounds for the Kantorovich
formulation (12). These constructions only depend on the number of hypotheses N , the sample size n, the
privacy parameters ϵ, δ, ρ, and information theoretic quantities such as the pairwise total variations or KL
divergences between the distributions.

Those results will be presented in Section 2 and in Section 3. We showcase now useful consequences, starting
with the case N = 2: similarly to Acharya et al. (2021e), we extend Le Cam’s lemma to the (ϵ, δ)-differentially
private setting:

Theorem 1 (Le Cam for (ϵ, δ)-DP). If a randomized mechanism M satisfies (ϵ, δ)-DP, then for any test
function Ψ : codom (M) → {1, 2} and any probability distributions P1 and P2 on X n we have

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1
2 max

{
1 − TV (P1, P2) ,

1 −
(
1 − e−nϵ + 2ne−ϵδ

)
TV (P1, P2)

}
.

Furthermore, when P1 = p⊗n
1 and P2 = p⊗n

2 are product distributions,

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i)

≥ 1
2
((

1 −
(
1 − e−ϵ

)
TV (p1, p2)

)n − 2ne−ϵδTV (p1, p2)
)

.

The proof can be found in Appendix C. The classical lower bound of Le Cam (8) allows for a tunable testing
difficulty depending on TV (P1, P2). However, in the regime ϵ, δ = o(1/n), the private lower bound is Ω(1):
it becomes arbitrarily hard to distinguish between any pair of distributions.
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For i.i.d. observations (Pi = p⊗n
i ), it follows by convexity that for any (ϵ, δ)-DP mechanism M and test

function Ψ : codom (M) → {1, 2}

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1
2

(
e−ϵnTV(p1,p2) − 2e−ϵδnTV (p1, p2)

)
.

This is to be compared to the state of the art lower bound of Acharya et al. (2021e, Theorem 1):

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1
2

(
0.9e−10ϵnTV(p1,p2) − 10δnTV (p1, p2)

)
.

Theorem 1 gives tighter results with better constants, notably thanks to a different proof technique avoiding
some convexity and concentration inequalities, but also because Acharya et al. (2021e) did not optimize the
constants. Indeed, qualitative results and rates of convergence do usually not depend on them.

We also prove an equivalent for so-called ρ-zero concentrated differential privacy (or in short ρ-zCDP), which
is, to the best of our knowledge, the first successful attempt at doing so.

Theorem 2 (Le Cam for ρ-zCDP). If a randomized mechanism M satisfies ρ-zCDP, then for any test
function Ψ : codom (M) → {1, . . . , N} and any probability distributions P1 and P2 on X n,

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1
2 max

{
1 − TV (P1, P2) ,

1 − n
√

ρ/2TV (P1, P2)
}

.

Furthermore, when P1 = p⊗n
1 and P2 = p⊗n

2 are product distributions,

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1
2

(
1 − n

√
ρ/2TV (p1, p2)

)
.

The proof of this result can be found in Appendix C. As above, any two distributions can no longer be
distinguished in the regime ρ ≪ 1/n2. For more than two hypotheses and (ϵ, δ)-DP, we also get a private
version of Fano’s lemma.

Theorem 3 (Multiple Distributional Tests for (ϵ, δ)-DP). If a randomized mechanism M satisfies (ϵ, δ)-DP,
then for any test function Ψ : codom (M) → {1, . . . , N}, any family of probability distributions (Pi)i∈{1,...,N}
on X n and any Q such that Pi ≪ Q for all i,

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i) ≥ max
{

1 −
1 + 1

N

∑N
i=1 KL (Pi∥ Q)
ln(N) ,

1
2 − 1 − e−nϵ + 2ne−ϵδ

2N2

∑
i,j

2TV (Pi, Pj)
1 + TV (Pi, Pj) ,

1δ=0 ×

1 −
1 + nϵ

N2

∑
i,j

2TV(Pi,Pj)
1+TV(Pi,Pj)

ln(N)

 .

Furthermore,when P1 = p⊗n
1 , . . . , PN = p⊗n

N are product distributions,

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i) ≥ max

 1
2N2

∑
i,j

((
1 − (1 − e−ϵ) 2TV (pi, pj)

1 + TV (pi, pj)

)n

−2ne−ϵδ
2TV (pi, pj)

1 + TV (pi, pj)

)
,

1δ=0 ×

1 −
1 + nϵ

N2

∑
i,j

2TV(pi,pj)
1+TV(pi,pj)

ln(N)

 .
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The proof is given in Appendix C. When dealing with product distributions, the quantity

D := n

N2

∑
i,j

2TV (pi, pj)
1 + TV (pi, pj)

can roughly be seen as an averaged hamming distance between pairs of marginals. An implication of Theo-
rem 3 is then that

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i) ≥ 1δ=0 ×
(

1 − 1 + ϵD

ln(N)

)
.

As the bound of Acharya et al. (2021e, Theorem 2)

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i) ≥ 1δ=0 × 0.9 × min
{

1,
N

e10ϵD

}
, (13)

the lower bound is Ω(1) in the regime D = o(ln(N)/ϵ). In particular, both inequalities are expected to
yield similar qualitative results for a broad range of applications. However, the quantitative consequences
of Theorem 3 can again be orders of magnitude better. Another improvement of our result is that, contrary to
previous work, our bound allows to handle asymmetric hypotheses. Indeed, prior work is based on a uniform
upper-bound on the family (TV (pi, pj))i,j whereas our work uses only their mean value. As an illustration,
if a statistician was to discriminate between a set of N distributions with for instance N − 1 distributions
close to each other in total variation distance and one outlier far from all the others, the results of Acharya
et al. (2021e) only tell that the problem will be at least as hard as discriminating distributions that are far
from one another (which is easy). In contrast, our Theorem 3 shows that the true testing difficulty lies in
discriminating the distributions that are similar (the outlier vanishes), thus resulting in lower bounds that
are less over-optimistic.

Similarly, we obtain results for multiple hypotheses under ρ-zCDP.

Theorem 4 (Multiple Distributional Tests for ρ-zCDP). If a randomized mechanism M satisfies ρ-zCDP,
then for any test function Ψ : codom (M) → {1, . . . , N}, any family of probability distributions (Pi)i∈{1,...,N}
on X n and any Q such that Pi ≪ Q for all i,

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i) ≥ max
{

1 −
1 + 1

N

∑N
i=1 KL (Pi∥ Q)
ln(N) ,

1 −
1 + n2ρ

N2

∑
i,j

2TV(Pi,Pj)
1+TV(Pi,Pj)

ln(N)

 .

Furthermore, when P1 = p⊗n
1 , . . . , PN = p⊗n

N are product distributions,

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i) ≥ 1 −
1 + n2ρ

N2

∑
i,j

1
n

2TV(pi,pj)
1+TV(pi,pj) +

(
2TV(pi,pj)

1+TV(pi,pj)

)2

ln(N) .

The proof is to be found in Appendix C. This result recovers a recently published result in Kamath et al.
(2022), with the advantage again of better handling asymetrical hypotheses (i.e. with possible outliers).
Another interesting observation is that our framework unifies the proofs of lower bounds under a general
technique based on multiple marginals coupling and similarity functions.

A more detailed discussion about the different privacy regimes is less direct compared to Le Cam’s method
and is postponed to Appendix D, where we discuss three specific examples, recovering known facts and
uncovering novel results.

Bernoulli model. We first recover that the classical minimax rate Θ(1/n) for the squared error on the
estimation of the parameter of a Bernoulli distribution becomes Θ

(
max

{
1
n , 1

(nϵ)2

})
under ϵ-differential

privacy. Furthermore, we exhibit a new rate in the case of ρ-zero concentrated differential privacy :
Θ
(

max
{

1
n , 1

n2ρ

})
.
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Gaussian Model. We allow each piece of data to have dimensionality d (the dimension of X ). We
again recover that the minimax risk Θ

(
σ2d

n

)
(see Rigollet & Hütter (2015, Corollary 5.13)) becomes

Ω
(

max
{

σ2d
n , σ2d2

(nϵ)2

})
under ϵ-DP, and we prove that it becomes Ω

(
max

{
σ2d

n , σ2d
n2ρ

})
under ρ-zCDP.

Uniform model. This example allows us to exhibit a new behavior under privacy. Indeed, we show that
the usual minimax risk Θ

( 1
n2

)
becomes Ω

(
max( 1

n2 , 1
(nϵ)2 )

)
under ϵ-DP and

Ω
(

max( 1
n2 , 1

n2ρ )
)

under ρ-zCDP, proving a systematic degradation of utility due to privacy that in particular
does not depend on a disjunction on the rates at which the privacy-tuning parameters decrease.

Finally, in Section 4, we study the private parametric estimation of distributions that are log-concave with
respect to the parameter. In particular, under some mild hypotheses, we exhibit some lower bounds on the
minimax risk of estimation. We then show, based on existing upper bounds, that under mild hypotheses,
Differentially Private Stochastic Gradient Langevin Dynamics (DP-SGLD, see Ryffel et al. (2022)), a private
optimization solver, is near-minimax optimal when used to perform private maximum likelihood estimation
in this class of distributions. Here "near-minimax optimal" means that the ratio between the risk of private
estimation and the private minimax risk is upper-bounded by a quantity that only depends on the regularity
of the log-likelihood, such as the eigenvalues of its Hessian. In particular, it is independent of the sample
size n or of the constants that tune the privacy.

2 From Testing to a Transport Problem

This section presents our main theorem, which states that finding lower bounds on (11) can be done by
solving a transport problem (Santambrogio, 2015; Peyré et al., 2019). In some sense, this view is close to
the coupling of Acharya et al. (2021e) which considers couplings between pairs of marginals and controls
the variations of the hamming distance compared to its expected value with Markov’s inequality. However,
the high level view that our result permits allows to obtain numerically sharper results because it allows to
skip approximations such as those involving Jensen or Markov inequalities and more importantly, it allows
handling divergence-based definitions of privacy which do not fit in the framework of Acharya et al. (2021e).
Furthermore, a key difference is that the theory of Acharya et al. (2021e) only requires to build couplings
between pairs of marginals, whereas our theory requires building couplings between all the marginals at the
same time. This is both a drawback because it requires to use more complex coupling constructions, and an
advantage because it allows to give results that are easier to use when there are more than two hypotheses.

Our analysis is based on the notion of similarity functions.

Definition 1. Given a condition C, we say that a similarity function sC : (X n)N → R is admissible for C if for
any mechanism M : X n → codom (M) that satisfies C, for any test function Ψ : codom (M) → {1, . . . , N},
and for any X1, . . . , XN ∈ X n, the following inequality holds:

1
N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ sC (X1, . . . , XN ) .

Theorem 5. If a randomized mechanism M : X n → codom (M) satisfies the privacy condition C, for any
N ≥ 2, if sC : (X n)N → R is an admissible similarity function for C, for any distributions P1, . . . , PN over
X n we have

inf
Ψ:codom(M)→{1,...,N}

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M (X)) ̸= i)

≥ sup
Q∈Π(P1,...,PN )

∫
(X n)N

sC (X1, . . . , XN ) dQ (X1, . . . , XN ) .
(14)
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Proof. Given a test function Ψ : codom (M) → {1, . . . , N} and a coupling Q ∈ Π (P1, . . . , PN ),

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1
N

N∑
i=1

PX∼Pi,M (Ψ (M (X)) ̸= i)

=
∫

(X n)N

1
N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i) dQ (X1, . . . , XN )

≥
∫

(X n)N

sC (X1, . . . , XN ) dQ (X1, . . . , XN ) .

In particular, under (ϵ, δ)-DP, similarity functions are built using a technique that we call anchoring which
will be introduced in Appendix B.1, where the proof of the following theorem is given.

Theorem 6 (Admissible similarity functions for (ϵ, δ)-DP). When C is (ϵ, δ)-differential privacy, the follow-
ing approaches yield admissible similarity functions.

• Global anchoring. Consider any anchor function Λ : (X n)N → X n, and define the admissible
similarity function as

sC (X1, . . . , XN ) := N − 1
N

e−ϵ maxi(dham(Xi,Λ(X1,...,XN )))

− e−ϵδ max
i

(dham (Xi, Λ (X1, . . . , XN ))) .

• Projection anchoring. In particular, for any j ∈ {1, . . . , N}, consider the projection anchor
Λj (X1, . . . , XN ) := Xj, and define the corresponding admissible similarity function

sC (X1, . . . , XN ) := N − 1
N

e−ϵ maxi(dham(Xi,Xj)) − e−ϵδ max
i

(dham (Xi, Xj))

• (ϵ, δ)-DP Le Cam matching. When N = 2, there is a global anchor function yielding the admis-
sible similarity function

sC (X1, X2) := 1
2e−ϵ⌈dham(X1,X2)/2⌉ − e−ϵδ ⌈dham (X1, X2) /2⌉ .

• Pairwise anchoring. An admissible similarity function is

sC (X1, . . . , XN ) := 1
2N2

N∑
i=1

N∑
j=1

e−ϵ⌈dham(Xi,Xj)/2⌉ − 2e−ϵδ ⌈dham (Xi, Xj) /2⌉ .

• (ϵ, 0)-DP Fano matching. When δ = 0, an admissible similarity function is

sC (X1, . . . , XN ) := 1 −
1 + ϵ

N2

∑N
i=1
∑N

j=1 dham (Xi, Xj)
ln(N) .

When working under ρ-zCDP, admissible similarity functions are built using classical information theoretic
inequalities directly. It can be seen as a form of anchoring on the distributions rather than on the observed
random variables (i.e. all the distributions are compared to a common distribution directly that is not
necessarily a pushforward by M). The following result is proved in Appendix B.2.

Theorem 7 (Admissible similarity functions for ρ-zCDP). When C is the ρ-zero concentrated-differential
privacy, the two following quantities are admissible similarity functions:

10
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• ρ-zCDP Fano matching

sC (X1, . . . , XN ) := 1 −
1 + ρ

N2

∑N
i=1
∑N

j=1 dham (Xi, Xj)2

ln(N) .

• ρ-zCDP Le Cam matching When N = 2

sC (X1, X2) := 1
2

(
1 −

√
ρ/2dham (X1, X2)

)
.

Note that similarity functions can also be easily built for the more general notion of (ξ, ρ) - concentrated
differential privacy by swapping the group privacy property for its correct variant (see Bun & Steinke (2016)).
We do not include the results about (ξ, ρ)-concentrated differential in this article because our objective is
more to illustrate the versatility of our framework rather than to build a complete catalogue.

3 Lower Bound via Couplings
The transport problem (12) can be studied either theoretically (Santambrogio, 2015) or numerically (Peyré
et al., 2019) in order to give the best lower bounds that our technique permits. However, identifying an
optimal coupling is out of the scope of this article. We here provide coupling constructions that are sufficient
to exhibit useful lower bounds.

Most of the similarity functions expressed in Theorem 5 yield lower bounds that are based on or further
lower-bounded by expressions involving the quantities

E(X1,...,XN )∼Q (g (dham (Xi, Xj)))

for a coupling Q ∈ Π(P1, . . . , PN ) where g is a fixed non-increasing function. Hence, finding reasonably good
lower bounds can be achieved by finding a coupling that minimizes the expected pairwise Hamming distance
between the marginals.

As a proxy, we first aim at maximizing the probabilities of pairwise equalities between all the marginals
simultaneously. We then control the Hamming distance by observing that when Xi = Xj , dham (Xi, Xj) = 0
and otherwise, dham (Xi, Xj) ≤ n. It is known (Lindvall, 2002) that if Q ∈ Π(P1, . . . , PN ), the disagreement
probabilities (i.e. the probability that two marginal random variables are not equal) between the marginals
satisfy

∀i, j, TV (Pi, Pj) ≤ P(X1,...,XN )∼Q (Xi ̸= Xj) . (15)
A natural question is whether this lower bound is achievable by a coupling simultaneously for all pairs of
marginals. When there are only two marginals (i.e. N = 2), a classical construction (see Lindvall (2002))
answers this question positively:

Fact 3 (Maximal coupling). Let P1 and P2 be two probability distributions on X n that share the same σ-
algebra. There exists a coupling π∞(P1, P2) ∈ Π(P1, P2) (which is a distribution on (X n)2), called a maximal
coupling, such that

P(X1,X2)∼π∞(P1,P2)(X1 ̸= X2) = TV (P1, P2) ,

∀S measurable , P(X1,X2)∼π∞(P1,P2)(X1 ∈ S) = P1(X1 ∈ S) ,

∀S measurable , P(X1,X2)∼π∞(P1,P2)(X2 ∈ S) = P2(X2 ∈ S) .

This construction unfortunately does not generically scale to more than two marginals, even though on
simple examples, couplings can be built that still match the lower bound (15) for any pair of marginals.

Example 1 (Bernoulli optimal coupling). Given Pi = B(pi), 1 ≤ i ≤ N a family of Bernoulli distributions
and U ∼ U([0, 1]) a uniformly distributed variable on [0, 1], the random vector (X1, . . . , XN ) defined by
Xi := 1[0,pi)(U) is distributed according to a coupling Q ∈ Π(P1, . . . , PN ), and for every i, j

P(Xi ̸= Xj) = |pi − pj | = TV (B(pi), B(pj)) .

11
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There are however examples for which it is provably impossible to build couplings that match the lower
bound (15) for any pair of marginals.

Example 2 (A counterexample). Let X1 ∼ U({−1, 0}), X2 ∼ U({0, 1}) and X3 ∼ U({1, −1}), and let P be
a coupling between X1, X2 and X3. We have that,

1X1 ̸=X2 + 1X2 ̸=X3 + 1X3 ̸=X1 ≥ 2

and as a consequence on P,
P(X1 ̸= X2)+P(X2 ̸= X3) + P(X3 ̸= X1) ≥ 2

> TV (X1, X2) + TV (X2, X3) + TV (X3, X1) ,

which proves that at least one of the disagreement probabilities is strictly bigger than the corresponding total
variation.

Recent constructions based on Poisson point processes allow in general, for any number of marginals N , to
match the lower bound (15) up to a factor 2.

Fact 4 (Near optimal coupling of multiple distributions (Angel & Spinka, 2019)). Let P1, . . . , PN be N
distributions on the same measurable set. There exists a coupling Q ∈ Π (P1, . . . , PN ) such that

∀i, j ∈ {1, . . . , N} , P(X1,...,XN )∼Q (Xi ̸= Xj) ≤ 2TV (Pi, Pj)
1 + TV (Pi, Pj) .

In the rest of this article, the notation π∞(P1, . . . , PN ) refers to a coupling that satisfies this condition. When
there are only two distributions, it refers to the construction of Fact 3. This factor 2 is not a problem for
minimax theory, since it is a common practice to overlook the constants by looking at rates of convergence.
However, for some more precise applications, working on more specific couplings may improve our results.
With either coupling constructions, the lower bounds of Theorem 5 can be controlled with the following
straighforward lemma:

Lemma 1. Let P1, . . . , PN be N distributions on X n and Q ∈ Π(P1, . . . , PN ). Consider 1 ≤ i, j ≤ N and
denote ∆i,j := P(X1,...,XN )∼Q (Xi ̸= Xj). We have

E(X1,...,XN )∼Q (dham (Xi, Xj)) ≤ n∆i,j

E(X1,...,XN )∼Q

(
dham (Xi, Xj)2

)
≤ n2∆i,j

E(X1,...,XN )∼Q

(
e−ϵdham(Xi,Xj)

)
≥ 1 − (1 − e−nϵ)∆i,j .

Note that ∆i,j directly depends on the coupling construction, but that with any of the ones presented above,
we always have ∀i, j, ∆i,j ≤ 2TV (Pi, Pj).

When the distributions that we are trying to couple are product distributions (i.e. P1 = p⊗n
1 , . . . ,

PN = p⊗n
N ), we can notice that any coupling q ∈ Π (p1, . . . , pN ) induces a coupling q⊗n ∈ Π (P1, . . . , PN ).

Under this coupling, the Hamming distances between the pairs of marginals follow binomial distributions.
For the rest of this article, we define the product (near) optimal coupling

π⊗(p⊗n
1 , . . . , p⊗n

N ) := π∞(p1, . . . , pN )⊗n .

Straightforward computations yield the following lemma.

Lemma 2. Let P1 = p⊗n
1 , . . . , PN = p⊗n

N be N product distributions on X n and q ∈ Π(p1, . . . ,
pN ). Consider any 1 ≤ i, j ≤ N and denote2 δi,j := P(X1,...,XN )∼q (Xi ̸= Xj). We have:

E(X1,...,XN )∼q⊗n (dham (Xi, Xj)) = nδi,j

E(X1,...,XN )∼q⊗n

(
dham (Xi, Xj)2

)
= n2δ2

i,j + nδi,j(1 − δi,j) ≤ n2δ2
i,j + nδi,j

E(X1,...,XN )∼q⊗n

(
e−ϵdham(Xi,Xj)

)
=
(
1 − (1 − e−ϵ)δi,j

)n ≥ e−nϵδi,j .

2not to be confused with the Kronecker symbol.
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Note that δi,j directly depends on the coupling construction, but that with any of the ones presented above
(applied to p1, . . . , pN ), we always have ∀i, j, δi,j ≤ 2TV (pi, pj).

Putting the pieces together. Each of the coupling constructions presented above has its own merits
and can be used to establish the quantitative lower-bounds establishing Theorem 1, Theorem 2, Theorem 3
and Theorem 4 (see details in Appendix C) as well as the fully worked-out examples given at the end of the
introduction (see details in Appendix D, including a discussion on different regimes where privacy induces
an estimation overhead).

Discussion: beyond the i.i.d. structure? Note that the techniques presented in this article can
be used in non i.i.d. setups as well, by emulating the structure of the probability space in the coupling
construction. For instance, consider an m × m stochastic matrix K, the kernel of a Markov chain kernel K
on m states {1, . . . , m}. The column i represents the vector P (.|i) that gives the conditional probabilities
of ending in the different states, knowing that the current state is i. We assume that initial distribution
of the chain is uniform on the states. The objective is to build a differentially private test of K based on
the observation (Xt)1≤t≤n+1, Xt ∈ {1, . . . , m} of a trajectory of length n + 1. Let us illustrate this with

m = 2: consider the two kernels K =
(

k1,1 k1,2
k2,1 k2,2

)
and L =

(
l1,1 l1,2
l2,1 l2,2

)
, and their associated Markov

chains MK and ML. We build a Markov kernel Q on the set of pairs of states of MK and ML, such
that for any xK state of MK and any xL state of ML, Q((., .)|(xK , xL)) is a coupling between K(.|xK)
and L(.|xL). Let us take Q((1, 1)|(xK , xL)) = min(k1,xK

, l1,xL
), Q((2, 2)|(xK , xL)) = min(k2,xK

, l2,xL
),

Q((1, 2)|(xK , xL)) = k1,xK
− l1,xL

if k1,xK
> l1,xL

or 0 otherwise, and Q((2, 1)|(xK , xL)) = l1,xL
− k1,xK

if
l1,xK

> k1,xL
or 0 otherwise. We consider MQ, the Markov chain that starts with the uniform distribution on

the pairs of states of MK and ML, and has transition kernel Q. We observe that the probability distribution
over pairs of sequences of length n+1 generated by MQ is a coupling between the corresponding distributions
over single sequences associated to M1 and M2. Furthermore, in general, the structure of the probability
space is Markovian and is not a product one (meaning that the generated trajectories are not i.i.d.).

By integrating Le Cam matching similarity function (Theorem 6 and Theorem 7) against this distribution
on the pairs of trajectories, we obtain the fowling lower-bounds : Any ϵ-DP test that tries to discriminate
MK from ML must have a type 1 or a type 2 error at least equal to 1

2 (1 − (1 − e−ϵ)α)n, where α =
max{|k1,1 − l1,1|, |k1,1 − l1,2|, |k2,1 − l1,1|, |k2,1 − l2,1|}. Similarly, any ρ-zCDP test that tries to discriminate
ML from ML must have a type 1 or a type 2 error at least equal to 1

2 (1 − nα
√

ρ/2).

When there are more than two Markov chains to test (say N), a similar coupling can be built by building
a Markov chain on the N -tuples of states of the different Markov chains. The technicality is that one has
to use Fact 4 instead of Fact 3 for coupling the transition probabilities. When there are more than two
states, the construction is the same. The expressions of the total variations between the pairs of transition
probabilities can however be more difficult.

4 Near Optimal Private Maximum Likelihood
In the different models presented in Appendix D and for many other parametric models, the statistician
typically would like to consider the maximum likelihood estimator. Given X1, . . . , Xn i.i.d. random variables
of distribution pθ∗ , the maximum likelihood estimator has value

θ̂ML ∈ arg max
θ∈Θ

{
l(θ) := 1

n

n∑
i=1

f(Xi, θ)
}

, (16)

where f is the log-likelihood. The parametric model with respect to a reference measure µ is thus

∀X,
dpθ

dµ
(X) := ef(X,θ), θ ∈ Θ ,

where dpθ

dµ is the Radon-Nikodym density of pθ with respect to µ and Θ is often a closed, convex subset of
Rd with nonempty interior. This setup covers, in particular, exponential families (Van der Vaart, 2000) with
f(X, θ) = θT T (X) − ln(Z(θ)) associated with some statistic T and normalization factor Z(θ). This section
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first presents a lower bound on the minimax risk for the private estimation in such parametric models and
then studies the optimality properties of the Differentially Private Stochastic Gradient Langevin Dynamics
(DP-SGLD) of Ryffel et al. (2022) for this specific task based on the existing upper bounds for this private
convex optimizer.

4.1 On the regularity of f and the estimation complexity
First, we may assume that the parametric model is not degenerate in the sense that f satisfies

∀θ ∈ Θ,

∫
∇θf(X, θ)dpθ(X) = 0 . (17)

This hypothesis is for instance satisfied in the Gaussian model presented previously. Indeed, in this case
∀X, ∇θf(θ + X, θ) + ∇θf(θ − X, θ) = 0 and ∀X, dpθ

dµ (θ + X) = dpθ

dµ (θ − X). This hypothesis is more generally
satisfied in the broader model of the exponential families (see Boucheron et al. (2019, Théorème 4.10)).
Under such hypothesis, we have the following lemma which will allow to leverage Proposition 1:

Lemma 3. If (Pθ)θ∈Θ satisfies the property (17) and if f is concave and β-smooth in its second argument,
then

∀θ1, θ2 ∈ Θ, KL (pθ1∥ pθ2) ≤ β

2 ∥θ2 − θ1∥2 .

Note that the family (Pθ)θ∈Θ directly depends on f . In particular, for the Gaussian Model, β = 1
σ2 , we

recover the classical upper bound on the KL divergence between multivariate normal distributions, which is
is fact in this case, an equality.

Proof. Because of concavity in the second argument of f and the fact that it is β-smooth, we have the
following result:

∀θ1, θ2 ∈ Θ, ∀x, f(x, θ1)+∇θf(x, θ1)T (θ2 − θ1) ≤ f(x, θ2) + β

2 ∥θ1 − θ2∥2 .

As a consequence,

KL (pθ1∥ pθ2) =
∫

ln
(

dpθ1

dPθ2

)
dpθ1 =

∫
(f(X, θ1) − f(X, θ2)) dpθ1(X)

≤
∫ (

−∇θf(X, θ1)T (θ2 − θ1) + β

2 ∥θ1 − θ2∥2
)

dpθ1(X)

(17)=
∫

β

2 ∥θ1 − θ2∥2dpθ1(X) = β

2 ∥θ1 − θ2∥2 .

We may apply Proposition 1 with γ = β/2 and we obtain that

Mn

(
ρ-zCDP, (p⊗n

θ )θ∈Θ, ∥ · − · ∥, (·)2) = Ω
(

max
{

d

n2βρ
,

d

nβ

})
(18)

Under the hypotheses of Proposition 1: d is big enough, ρ is small enough and the interior of the parameter
space is big enough. In particular, this gives us a lower bound to compare any private estimator to.

4.2 Private maximum likelihood
In general, θ̂ML has no closed form formula. Even when it has some, the closed form formula usually does
not respect differential privacy.

The problem (16) is typically addressed via numerical optimization: instead of considering its explicit max-
imum, a provably converging sequence is constructed. This requires some assumptions on the log-likelihood
f . A convenient combination of hypotheses is that f is λ-strongly concave, β-smooth and L-Lipschitz in its
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second argument: then, the stochastic gradient ascend algorithm converges rapidly to θ̂ML (Beck, 2017). Ex-
ponential families typically obey those requirements with β := supθ∈Θ λmax (Cθ) and, λ := infθ∈Θ λmin (Cθ)
where Cθ := CovX∼Pθ

(T (X)) and λmin(C) (resp. λmax(C)) denotes the smallest (resp. largest) eigenvalue
of a matrix C (see Boucheron et al. (2019, Théorème 4.10)).

The issue of privacy can be addressed directly in the optimization procedure. DP-SGD (Abadi et al., 2016)
is an adaptation of the Stochastic Gradient Descent method where the gradient is first clipped and then
noised. The privacy guarantees are based on the moment accountant method or on the composition of
Renyi differential privacy (Mironov, 2017). The results are obtained under very general hypotheses on the
objective function, but are based on a pessimistic scenario where an adversary may observe every gradient
in the optimizer. Recent work based on Langevin diffusion (Chourasia et al., 2021; Ryffel et al., 2022) has
adapted the Gradient Descent algorithm and the Stochastic Gradient Descent algorithm in order to have
privacy guarantees with tighter utility bounds at the price of stronger hypotheses on the objective function
which is required to have a compact domain and to be strongly convex.

Building on DP-SGLD by Ryffel et al. (2022), we consider its adaptation for maximum likelihood DP-SGML
(Algorithm 1). For a batch B ⊆ {1, . . . , n}, the batch log-likelihood is defined as

lB(θ) := 1
# (B)

∑
i∈B

f(Xi, θ) .

For a closed convex set Θ, ΠΘ refers to the projection onto Θ.

Data: X1, . . . , Xn, f , step sizes (ηk)k≥0, batch size m, noise variance σ2, initial parameter θ0, stopping
time K.

for k = 0, . . . , K − 1 do
Sample batch Bk from X1, . . . , Xn with replacement of size m ;
Compute ∇lBk

(θk) = 1
#(Bk)

∑
i∈Bk

∇θf(Xi, θk) ;
Update parameter θk+1 = ΠΘ

(
θk + ηk∇lBk

(θk) +
√

2ηkN (0, σ2Id)
)
.

end
return θK

Algorithm 1: DP-SGML: Differentially Private Stochastic Gradient Maximum Likelihood

A choice of the parameters (ηk)k≥0, σ2, θ0 and K is suggested by the privacy-utility theorem Fact 5 which
is a direct corollary of Ryffel et al. (2022).

Fact 5 (Utility and Privacy of Algorithm 1, Fixed Step Size). Assume that f is λ-strongly concave, β-smooth
and L-Lipschitz in its second argument on Θ. Consider any ρ > 0, an integer n ≥ 1, a batch size m and set

σ2 := 4L2

ρλn2 , K := 2β

λ
ln
(

ρn2

d

)
, ξ2 := EB

(
∥∇lB(θML)∥2)

Given a collection X of n arbitrary samples, consider M(X) = θK obtained using DP-SGML with θ0 ∼
ΠΘ

(
N (0, 2σ2

λ Id)
)

and constant step size η = 1
2β . This mechanism satisfies ρ-zCDP. Moreover, if X is such

that the solution θML of (16) is in the interior of Θ, then

E
(
∥θML − θK∥2) = O

(
βdL2

ρλ3n2

)
+ ξ2

2λ2

where the expectation is with respect to initialization, random batch sampling, and noise addition in the
parameter update step.

Indeed, the direct application of (Ryffel et al., 2022, Theorem 4.1) gives the privacy guarantee, and that

E (l(θML) − l(θK)) = O

(
βdL2

ρλ2n2

)
+ ξ2

4λ
.
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Furthermore, by λ-strong concavity of l,

l(θML) − l(θK) ≥ ∇l(θML)(θK − θML) + λ

2 ∥θL − θML∥2

and since θML is in the interior of Θ, ∇l(θML) = 0 which concludes the proof. The term ξ2 :=
EB
(
∥∇lB(θML)∥2) is due to the stochastic noise of the batch sampling. Indeed, even though ∇l(θML) = 0,

this is not necessarily the case when working on batches. This term depends on the batch size m and can
be made arbitrarily small by choosing m large enough.

4.3 About minimax optimality
The quadratic risk of any (private or not) solver M can be decomposed (by the triangle inequality and since
(a + b)2 ≤ 2a2 + 2b2, ∀a, b ≥ 0) as:

E
(
∥θ∗ − M(X)∥2) ≤ 2

(
E
(

∥θ∗ − θML∥2
)

+ E
(

∥θML − M(X)∥2
))

(19)

where the expectation is over the draw of X and, in the case of a private solver, on the intrinsic randomness
of M.

The first term in the right hand side of (19) only depends on the properties of the “ideal” maximum likelihood
estimator in this parametric model. Under mild assumptions, it is asymptotically normal – for example, in
exponential families (see Van der Vaart (2000, Theorem 4.6)): we have

√
n (θ∗ − θML)⇝ N

(
0, C−1

θ∗

)
,

where ⇝ refers to the convergence in distribution, and

E
(

∥θ∗ − θML∥2
)

= O

(
d

nλ

)
. (20)

The second term in (19) depends on the solver, which here can be controlled with Fact 5. As a consequence,
the ratio between the error of estimation and the minimax risk which is lower-bounded in (18) can be
bounded as follows:

E
(

∥θ∗ − M(X)∥2
)

Mn

(
ρ-zCDP, (p⊗n

θ )θ∈Θ, ∥ · − · ∥, (·)2
)

(19)&(18)= O

E
(

∥θ∗ − θML∥2
)

+ E
(

∥θML − M(X)∥2
)

max
{

d
n2βρ , d

nβ

}


= O

(
nβ

d
E
(

∥θ∗ − θML∥2
)

+ n2βρ

d
E
(

∥θML − M(X)∥2
))

.

In particular, for the fixed step-size (see Fact 5), when θML is in the interior of Θ and when the variance term
due to the clipped gradient is negligible (i.e., when be batch size is big enough to have ξ2

4λ = O
(

βdL2

ρλ2n2

)
), the

second term is O
(

β2L2

λ3

)
.

All in all, the ratio between the risk of DP-SGML for maximum likelihood in exponential faminies when the
maximum likelihood estimator is in the interior of the search set is

E
(

∥θ∗ − M(X)∥2
)

Mn

(
ρ-zCDP, (p⊗n

θ )θ∈Θ, ∥ · − · ∥, (·)2
) = O

(
β

λ
+ β2L2

λ3

)
.

DP-SGML optimally captures the variation in the sample size n, in the privacy parameter ρ, and to some
extent, in the dimensionality d (to some extent because even if d vanishes in the expressions, L, β and λ may
vary with d). This proves what we call the near-minimax optimality of DP-SG(L)D for performing inference
via maximum likelihood in a broad class of parametric models.
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A Notation
In this article, the term Fact will be reserved for results that are directly borrowed from the literature. In
contrast, Lemma, Proposition, Theorem and Corollary will be used as soon as the result requires some work
from the existing literature. N is the set of natural numbers starting at 0. # (S) ∈ N ∪ {+∞} refers to the
cardinality of a set S. Bold letters will be used for vectors, and their non-bold counterparts with i ∈ N \ {0}
as subscript will refer to their i-th entry. For instance, X = (X1, . . . , Xn). Considering any set X and
n ∈ N \ {0}, dham (., .) : X n × X n → N is the Hamming distance defined as

dham ((X1, . . . Xn), (Y1, . . . Yn)) :=
n∑

i=1
1Xi ̸=Yi

.

The notation Π (P1, . . . , Pn) is used to refer to the set of distributions that have P1, . . . , Pn as their marginals.
Any such distribution is called a coupling between/of P1, . . . , Pn. For two distributions P1, P2, the notation
P1 ≪ P2 means that P1 is absolutely continuous with respect to P2, i.e. that for any S measurable,

P2(S) = 0 =⇒ P1(S) = 0 .

For two probability distributions P and Q on the same space, the total variation between P and Q is

TV (P, Q) := sup
S measurable

P(S) − Q(S) .

Note that it is a symmetric function of P and Q. For two probability distributions P and Q on the same
space with P that is absolutely continuous with respect to Q, the KL divergence between P and Q is

KL (P∥ Q) :=
∫

ln
(

dP
dQ

)
dP .

It is always positive but may be infinite. Furthermore, whenever we have access to a σ-finite measure µ
such that Q is absolutely continuous with respect to µ (for instance µ = P + Q), if we note πP and πQ the
Radon-Nikodym densities of P and Q respectively with respect to µ, then

KL (P∥ Q) =
∫

ln
(

πP

πQ

)
πPdµ .

For two probability distributions P and Q on the same space with P that is absolutely continuous with
respect to Q, and α ∈ [1, +∞), the Rényi divergence of level α between P and Q is Dα (P∥ Q) := KL (P∥ Q)
if α = 1 or

Dα (P∥ Q) := 1
α − 1 ln

∫ (
dP
dQ

)α−1
dQ

when α > 1. Furthermore, whenever we have access to a σ-finite measure µ such that Q is absolutely
continuous with respect to µ (for instance µ = P + Q), if we note πP and πQ the Radon-Nikodym densities
of P and Q respectively with respect to µ,

Dα (P∥ Q) = 1
α − 1 ln

∫ (
πP

πQ

)α−1
πQdµ

when α > 1. For brevity of notations, when applied to random variables, information theoretic quantities
such as TV (., .) , KL ( .∥ .) , . . . are to be understood as applied to the probability distributions of these random
variables. For two series (an)n∈N ∈ RN and (bn)n∈N ∈ RN, we use the following notations for asymptotic
comparisons:

• an = o(bn) or equivalently an ≪ bn when there exists (cn)n∈N ∈ RN
+,∗ such that cn −→

n→+∞
0 and

∃n0 ∈ N,∀n ≥ n0, an = cnbn .
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• an = Ω(bn) when there exist M > 0 and (cn)n∈N ∈ [M, +∞)N such that

∃n0 ∈ N,∀n ≥ n0, an = cnbn .

• an = Θ(bn) when an = Ω(bn) and bn = Ω(an).

These notations may be used in addition to other notations of the problem when there is no ambiguity, for
instance when Θ also refers to the parameter space later. All the different parameters are considered as
series of n, the sample size. For x ∈ (0, +∞), ⌈x⌉ := infy∈N∩[x,+∞) y. For a differentiable f : E → R where
E a Euclidean space, ∇f(x) refers to its gradient at the point x. When sub-scripted by a subset of variables,
∇θf(x) refers to the gradient at the point x of f restricted to the variables in θ. We say that a function is
L-smooth if it is differentiable and if its gradient in L-Lipschitz. A function f : Θ → R where Θ is convex is
said to be λ-strongly convex if

∀x, y ∈ Θ, f(y) ≥ f(x) + ∇f(x)T (y − x) + λ

2 ∥y − x∥2 .

Furthermore, a function is said to be λ-strongly concave if its opposite is λ-strongly convex.

B Similarity functions

B.1 The case of (ϵ, δ)-differential privacy

(ϵ, δ)-differential privacy allows to compare conditional distributions for datasets depending on their Ham-
ming distance. In particular, characterizing the pushforward of a distribution by a private mechanism in
not an easy task. We overtake that difficulty with a technique that we call anchoring. Informally, an anchor
is a function that, given multiple datasets, decides a common dataset to exploit so called group privacy of
(ϵ, δ)-DP mechanisms and to give numerically tractable results.

Fact 6 ((ϵ, δ)-DP Group Privacy). Given ϵ ∈ R+∗ and δ ∈ [0, 1), if a randomized mechanism M : X n →
codom (M) is (ϵ, δ)-differentially private, then, for all X, Y ∈ X n and all measurable S ⊆ codom (M), we
have

PM (M(X) ∈ S) ≤ eϵdham(X,Y)PM (M(Y) ∈ S) + δdham (X, Y) eϵ(dham(X,Y)−1) .

B.1.1 Global Anchoring
The first type of anchor is a global anchor, where all the marginal datasets are compared to the same one.

Lemma 4 (Global Anchoring). Consider an (ϵ, δ)-DP mechanism M , a test function
Ψ : codom (M) → {1, . . . , N}, and datasets X1, . . . , XN ∈ X n. For any anchor function Λ : (X n)N → X n,
we have

1
N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ N − 1
N

e−ϵ maxi dham(Xi,Λ) − e−ϵδ max
i

dham (Xi, Λ)

where Λ is a shorthand for Λ (X1, . . . , XN ).

Proof. By the group privacy property (see Fact 6), we have for each i ∈ {1, . . . , N}

PM (Ψ (M (Xi)) ̸= i) ≥ e−ϵdham(Xi,Λ)PM (Ψ (M (Λ)) ̸= i) − e−ϵδdham (Xi, Λ) .
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As a result,

1
N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i)

≥ 1
N

(
N∑

i=1
e−ϵdham(Xi,Λ)PM (Ψ (M (Λ)) ̸= i) − e−ϵδdham (Xi, Λ)

)

≥ 1
N

(
e−ϵ maxi dham(Xi,Λ)

N∑
i=1

PM (Ψ (M (Λ)) ̸= i)

−Ne−ϵδ max
i

dham (Xi, Λ)
)

= N − 1
N

e−ϵ maxi dham(Xi,Λ) − e−ϵδ max
i

dham (Xi, Λ) ,

where we used
∑N

i=1 PM (Ψ (M (Λ)) ̸= i) =
∑N

i=1(1 − PM (Ψ (M (Λ)) = i)) = N − 1 to get the last equality.

Remark 1 ((ϵ, δ)-DP Le Cam Matching). When we have to find an anchor between only two datasets, we
can design it optimally. Considering any X1, X2 ∈ X n, by definition these datasets disagree on exactly
dham (X1, X2) entries. The projection anchor Λ = Λj, j ∈ {1, 2} consists in anchoring both X1 and X2 to
Xj. Consequently, we have max {dham (X1, Λ) , dham (X2, Λ)} = dham (X1, X2). If instead we allocate in the
anchor Λ half of the disagreeing components to X1 and the other half to X2, we get an anchor that satisfies

max {dham (X1, Λ) , dham (X2, Λ)} = ⌈dham (X1, X2) /2⌉ .

Furthermore, one can check that no anchor can achieve a better bound. With this new anchor, the direct
application of Lemma 4 yields

1
2
(
PM (Ψ (M (X1)) ̸= 1) + PM (Ψ (M (X2)) ̸= 2)

)
≥ 1

2e−ϵ⌈dham(X1,X2)/2⌉ − e−ϵδ ⌈dham (X1, X2) /2⌉ .

(21)

B.1.2 Pairwise Anchoring
The fact that one needs to control the maximum of the hamming distances between a single anchor and
the marginals might be prohibitive. We give here a symmetrized version that only requires to control the
hamming distances between the pairs of marginals.

Lemma 5 (Pairwise Anchoring). Under the assumptions of Lemma 4 we have

1
N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i)

≥ 1
2N2

N∑
i=1

N∑
j=1

(
e−ϵ⌈dham(Xi,Xj)/2⌉ − 2e−ϵδ ⌈dham (Xi, Xj) /2⌉

)
.

Proof. First we observe that

1
N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i)

= 1
2N2

N∑
i=1

N∑
j=1

(PM (Ψ (M (Xi)) ̸= i) + PM (Ψ (M (Xj)) ̸= j)) .
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We then consider the two-point anchor defined in Remark 1 and get using (21) that for every 1 ≤ i, j ≤ N ,

PM (Ψ (M (Xi)) ̸= i) + PM (Ψ (M (Xj)) ̸= j)
≥ e−ϵ⌈dham(Xi,Xj)/2⌉ − 2e−ϵδ ⌈dham (Xi, Xj) /2⌉ .

B.1.3 The special case of (ϵ, 0)-DP
The following lemma yields a bound on the KL divergence between the output distributions of an (ϵ, 0)-DP
mechanism applied to different datasets.

Lemma 6. If a randomized mechanism M : X n → codom (M) is (ϵ, 0)-DP, then

∀X, Y ∈ X n,
dPM(X)

dPM(Y)
≤ edham(X,Y)ϵ, PM(X) − almost surely

where dPM(X)
dPM(Y)

is the Radon-Nikodym density of the distribution of the output of the mechanism with input
X, with respect to the distribution of the output of the mechanism with input Y. As a consequence,

∀X, Y ∈ X n, KL (M(X)∥M(Y)) ≤ ϵdham (X, Y) .

Proof. By the group privacy property (see Fact 6), it is clear that the measurable sets of null measure for
PM(X) are exactly the measurable sets of null measure for PM(Y). In particular, PM(X) ≪ PM(Y) and hence
p := dPM(X)

dPM(Y)
exists. By group privacy property again for each measurable set S ⊆ codom (M) we have

PM(Y)(S) ≥ e−ϵdham(X,Y)PM(X)(S)

= e−ϵdham(X,Y)
∫

S

pdPM(Y)

≥ e−ϵdham(X,Y)
(

inf
S

p
)

PM(Y)(S) .

So, for each measurable set S,

PM(Y)(S) > 0 =⇒ inf
S

p ≤ edham(X,Y)ϵ .

Furthermore, p is measurable for the Borel σ-algebra of R. In particular, for any n ∈ N∗,
p−1 ([edham(X,Y)ϵ + 1

n , +∞)
)

is measurable. As a consequence,

∀n ∈ N∗, PM(Y)

(
p−1

([
edham(X,Y)ϵ + 1

n , +∞
)))

= 0

and then

PM(Y)

(
p−1

((
edham(X,Y)ϵ, +∞

)))
= PM(Y)

(
p−1

(
∪n∈N∗

[
edham(X,Y)ϵ + 1

n , +∞
)))

= PM(Y)

(
∪n∈N∗p−1

([
edham(X,Y)ϵ + 1

n , +∞
)))

≤
∑

n∈N∗

PM(Y)

(
p−1

([
edham(X,Y)ϵ + 1

n , +∞
)))

= 0

which proves that dPM(X)
dPM(Y)

≤ edham(X,Y)ϵ, PM(Y)-almost surely, which is also the case PM(X)-almost surely,
thanks to the first remark of the proof. The result about the KL divergence is a direct consequence of this
inequality.
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In particular, this result allows us to apply Fano’s lemma in order to obtain a similarity function that is
based on anchoring the conditional distributions rather than the marginals. I.e., given, X1, . . . , XN ∈ X n,
PM(X1), . . . , PM(XN ) are anchored to 1

N

∑N
j=1 PM(Xj).

Lemma 7 ((ϵ, 0)-DP Fano Matching). Let X1, . . . , XN ∈ X n and Ψ : codom (M) →
{1, . . . , N},

1
N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1 −
1 + ϵ

N2

∑N
i=1
∑N

j=1 dham (Xi, Xj)
ln(N) .

Proof. By Fano’s lemma (see Fact 2),

1
N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1 −
1 + 1

N

∑N
i=1 KL

(
PM(Xi)

∥∥ 1
N

∑N
j=1 PM(Xj)

)
ln(N) .

By convexity of the KL divergence with respect to its second argument (see Van Erven & Harremos (2014,
Theorem 12)), it follows that

1
N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1 −
1 + 1

N2

∑N
i=1
∑N

j=1 KL
(

PM(Xi)
∥∥PM(Xj)

)
ln(N) . (22)

An application of Lemma 6 concludes the proof.

B.2 The case of ρ-zero concentrated differential privacy
For ρ-zero concentrated differential privacy, the fact that the definition uses information theoretic quantities
makes things easier than with the traditional definition of privacy. In particular, the anchoring technique
happens implicitly on the distributions rather than on the marginals (similarly as with the (ϵ, 0)-DP case).
Again, the notion of group privacy is central in our proofs.

Fact 7 (ρ-zCDP Group Privacy (Bun & Steinke, 2016, Proposition 27)). Let ρ ∈ R+∗, if a randomized
mechanism M : X n → codom (M) is ρ-zero concentrated differentially private, then, for any X, Y ∈ X n and
for any α ∈ (1, ∞),

Dα (M(X)∥M(Y)) ≤ ρdham (X, Y)2
α .

Lemma 8 (ρ-zCDP Le Cam Matching). Consider a ρ-zCDP mechanism M, a test function Ψ :
codom (M) → {1, 2}, and two datasets X1, X2 ∈ X n. We have

1
2

2∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1
2

(
1 −

√
ρ/2dham (X1, X2)

)
.

Proof. By the Neyman-Pearson lemma (see Fact 1),

1
2

2∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1
2 (1 − TV (M(X1),M(X2))) .

By Pinsker’s lemma (see Tsybakov (2003, Lemma 2.5)), TV (P, Q) ≤
√

KL (P∥ Q) /2, and hence

1
2

2∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1
2

(
1 −

√
KL (M(X1)∥M(X2)) /2

)
= 1

2

(
1 −

√
D1 (M(X1)∥M(X2)) /2

)
.
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Since the Renyi divergence between a given pair of distributions Dα ( .∥ .) is non-decreasing in α (see Van Er-
ven & Harremos (2014, Theorem 3)), we obtain for any α ∈ (1, +∞), s

1
2

2∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1
2

(
1 −

√
Dα (M(X1)∥M(X2)) /2

)
.

Eventually, we obtain using group privacy (see Fact 7) that

1
2

2∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1
2

(
1 −

√
ρα/2dham (X1, X2)

)
.

The supremum of the right hand side over α ∈ (1, +∞) yields the result.

We also obtain a zero concentrated DP version of the Fano matching method that we introduced previously
for (ϵ, 0)-DP.

Lemma 9 (ρ-zCDP Fano Matching). Consider a ρ-zCDP mechanism M, a test function Ψ := codom (M) →
{1, . . . , N}, and datasets X1, . . . , XN ∈ X n. We have

1
N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1 −
1 + ρ

N2

∑N
i=1
∑N

j=1 dham (Xi, Xj)2

ln(N) .

Proof. By the inequality (22) established in the proof of Lemma 7, and using again the fact that Dα ( .∥ .) is
non-decreasing in α (see Van Erven & Harremos (2014, Theorem 3)), as well as the group privacy property
(see Fact 7), we obtain that for any α ∈ (1, +∞),

1
N

N∑
i=1

PM (Ψ (M (Xi)) ̸= i) ≥ 1 −
1 + 1

N2

∑N
i=1
∑N

j=1 KL
(

PM(Xi)
∥∥PM(Xj)

)
ln(N)

≥ 1 −
1 + 1

N2

∑N
i=1
∑N

j=1 Dα

(
PM(Xi)

∥∥PM(Xj)
)

ln(N) .

≥ 1 −
1 + ρα

N2

∑N
i=1
∑N

j=1 dham (Xi, Xj)2

ln(N) .

The supremum of the right-hand side over α ∈ (1, +∞) yields the result.

C Quantitative lower bounds
In this subsection, we finally put the pieces together in order to obtain quantitative lower bounds on (11).
This subsection serves as a joint proof for Theorem 1, Theorem 2, Theorem 3 and Theorem 4.

Immediate results on the private minimax risk. A usual estimator (i.e. a measurable function of the
samples) θ̂ may be viewed as randomized and almost surely constant to θ̂ (i.e. ∀X,M(X) := θ̂(X) almost
surely). As a result, it is clear that the private minimax risk is always bigger than the non-private one.
For distributional tests, the result is not so obvious, and we give the following general purpose lemma that
ensures that Fano’s and Le Cam’s regular inequalities still hold.

Lemma 10. Let (Pi)i∈{1,...,N} be a family of probability distributions on X n and let M : X n → codom (M)
be a randomized mechanism,

inf
Ψ:codom(M)→{1,...,N}

N∑
i=1

PX∼Pi,M (Ψ (M(X)) ̸= i) ≥ inf
Ψ:X N →{1,...,N}

N∑
i=1

PX∼Pi
(Ψ (X) ̸= i) .

In particular, the inequalities in Le Cam’s lemma (see Fact 1) or Fano’s lemma (see Fact 2) still hold when
the test function Ψ is fed with an input M(X) ∈ codom (M) instead of an input X ∈ X n.
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Proof. Let Ψ : codom (M) → {1, . . . , N} be a test function. Then,
N∑

i=1
PX∼Pi,M (Ψ (M(X)) ̸= i) =

N∑
i=1

∫
PX∼Pi (Ψ (M(X)) ̸= i) dPM

=
∫ N∑

i=1
PX∼Pi ((Ψ ◦ M) (X) ̸= i) dPM

≥
∫

inf
Ψ′:X N →{1,...,N}

N∑
i=1

PX∼Pi (Ψ′ (X) ̸= i) dPM

= inf
Ψ′:X N →{1,...,N}

N∑
i=1

PX∼Pi (Ψ′ (X) ̸= i) .

Taking the infimum over Ψ : codom (M) → {1, . . . , N} concludes the proof.

The case of two hypotheses (N = 2). At first, we look at the implications of couplings between pairs
of distributions. Given P1 and P2 distributions on X n, a direct implication of Lemma 10 and of Le Cam’s
lemma (see Fact 1) is that independently on the privacy condition C imposed on M,

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1
2 (1 − TV (P1, P2)) .

This is the first ingredient in the proof of Theorem 1 and Theorem 2 that we now detail.
Proof of Theorem 1: When M is (ϵ, δ)-DP, the generic bound of Theorem 5 applied with the Le Cam
matching technique described in Theorem 6 and the coupling π∞(P1, P2) leads to

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1
2E(X1,X2)∼π∞(P1,P2)

(
e−ϵdham(X1,X2)

)
− e−ϵδE(X1,X2)∼π∞(P1,P2) (dham (X1, X2))

Lemma 1
≥ 1

2
(
1 − (1 − e−nϵ)∆1,2

)
− e−ϵδn∆1,2

= 1
2
(
1 −

(
1 − e−nϵ + 2ne−ϵδ

)
TV (P1, P2)

)
.

where in the second line we denote ∆1,2 := P(X1,X2)∼π∞(P1,P2) (X1 ̸= X2) and in the last line we use that
∆1,2 = TV (P1, P2) with the chosen coupling. Similarly, in the case of product distributions, with the same
matching but π⊗(p⊗n

1 , p⊗n
2 ) we obtain as a consequence of Lemma 2

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i)

≥ 1
2
((

1 −
(
1 − e−ϵ

)
TV (p1, p2)

)n − 2ne−ϵδTV (p1, p2)
)

.

Proof of Theorem 2: When M is ρ-DP, the generic bound of Theorem 5 applied with the Le Cam
matching technique described in Theorem 7 and the coupling π∞(P1, P2) leads to

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1
2

(
1 −

√
ρ/2E(X1,X2)∼π∞(P1,P2) (dham (X1, X2))

)
Lemma 1

≥ 1
2

(
1 −

√
ρ/2δn∆1,2

)
= 1

2

(
1 − n

√
ρ/2TV (P1, P2)

)
.

where in the second line we denote ∆1,2 := P(X1,X2)∼π∞(P1,P2) (X1 ̸= X2) and in the last line we use that
∆1,2 = TV (P1, P2) with the chosen coupling. Similarly, in the case of product distributions, with the same
matching but π⊗(p⊗n

1 , p⊗n
2 ) we obtain as a consequence of Lemma 2

max
i∈{1,2}

PX∼Pi,M (Ψ (M (X)) ̸= i) ≥ 1
2

(
1 − n

√
ρ/2TV (p1, p2)

)
.
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The case of arbitrary many hypotheses (N ≥ 2). Given P1, . . . , PN distributions on X n, a direct
implication of Lemma 10 and of Fano’s lemma (see Fact 2) is that independently on the privacy condition C
imposed on M, for any Q such that Pi ≪ Q for all i,

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i) ≥ 1 −
1 + 1

N

∑N
i=1 KL (Pi∥ Q)
ln(N) .

Again, this serves as the first ingredient of the proof of Theorem 3 and Theorem 4 that we now detail.

Proof of Theorem 3: When M is (ϵ, δ)-DP, the generic bound of Theorem 5 applied with the pairwise
anchoring technique described in Theorem 6 and the coupling π∞(P1, . . . , PN ) leads to (since ⌈n/2⌉ ≤ n for
each integer n ≥ 0)

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i)

≥ 1
2N2 E(X1,...,XN )∼π∞(P1,...,PN )

( N∑
i=1

N∑
j=1

e−ϵdham(Xi,Xj)

− 2e−ϵδdham (Xi, Xj)
)

Lemma 1
≥ 1

2N2

( N∑
i=1

N∑
j=1

(
1 −

(
1 − e−nϵ

)
∆i,j

)
− 2e−ϵδn∆i,j

)
≥ 1

2 − 1 − e−nϵ + 2ne−ϵδ

2N2

∑
i,j

2TV (Pi, Pj)
1 + TV (Pi, Pj)

where in the second line we denote ∆i,j := P(X1,...,XN )∼π∞(P1,...,PN ) (Xi ̸= Xj) and in the last line we use
that ∆i,j ≤ 2TV(Pi,Pj)

1+TV(Pi,Pj) with the chosen coupling. Similarly, in the case of product distributions, with the
same matching but the product coupling π⊗(p⊗n

1 , . . . , p⊗n
N ) we obtain as a consequence of Lemma 2

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i)

≥ 1
2N2

∑
i,j

((
1 − (1 − e−ϵ) 2TV (pi, pj)

1 + TV (pi, pj)

)n

−2ne−ϵδ
2TV (pi, pj)

1 + TV (pi, pj)

)
.

When δ = 0, the generic bound of Theorem 5 applied with the Fano matching technique described in
Theorem 6 and the coupling π∞(P1, . . . , PN ) leads to

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i)

≥ 1 −
1 + ϵ

N2

∑N
i=1
∑N

j=1 E(X1,...,XN )∼π∞(P1,...,PN ) (dham (Xi, Xj))
ln N

Lemma 1
≥ 1 −

1 + ϵ
N2

∑N
i=1
∑N

j=1 n∆i,j

ln N

≥ 1 −
1 + nϵ

N2

∑N
i=1
∑N

j=1
2TV(Pi,Pj)

1+TV(Pi,Pj)

ln N

where in the second line we denote ∆i,j := P(X1,...,XN )∼π∞(P1,...,PN ) (Xi ̸= Xj) and in the last line we use
that ∆i,j ≤ 2TV(Pi,Pj)

1+TV(Pi,Pj) with the chosen coupling. Similarly, in the case of product distributions, with the
same matching but the coupling π⊗(p⊗n

1 , . . . , p⊗n
N ) we obtain as a consequence of Lemma 2

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i) ≥ 1 −
1 + nϵ

N2

∑N
i=1
∑N

j=1
2TV(pi,pj)

1+TV(pi,pj)

ln N
.
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Proof of Theorem 4: When M is ρ-zCDP, the generic bound of Theorem 5 applied with the Fano
matching technique described in Theorem 7 and the coupling π∞(P1, . . . , PN ) leads to

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i)

≥ 1 −
1 + ρ

N2

∑N
i=1
∑N

j=1 E(X1,...,XN )∼π∞(P1,...,PN )

(
dham (Xi, Xj)2

)
ln N

Lemma 1
≥ 1 −

1 + ρ
N2

∑N
i=1
∑N

j=1 n2∆i,j

ln N

≥ 1 −
1 + n2ρ

N2

∑N
i=1
∑N

j=1
2TV(Pi,Pj)

1+TV(Pi,Pj)

ln N

where in the second line we denote ∆i,j := P(X1,...,XN )∼π∞(P1,...,PN ) (Xi ̸= Xj) and in the last line we use
that ∆i,j ≤ 2TV(Pi,Pj)

1+TV(Pi,Pj) with the chosen coupling. Similarly, in the case of product distributions, with the
same matching but with the product coupling π⊗(p⊗n

1 , . . . , p⊗n
N ) we obtain,

max
i∈{1,...,N}

PX∼Pi,M (Ψ (M(X)) ̸= i)

≥ 1 −
1 + ρ

N2

∑N
i=1
∑N

j=1 E(X1,...,XN )∼π⊗(p⊗n
1 ,...,p⊗n

N
)

(
dham (Xi, Xj)2

)
ln N

Lemma 2
≥ 1 −

1 + ρ
N2

∑N
i=1
∑N

j=1
(
n2δ2

i,j + nδi,j

)
ln N

≥ 1 −
1 + n2ρ

N2

∑N
i=1
∑N

j=1

((
2TV(pi,pj)

1+TV(pi,pj)

)2
+ 1

n
2TV(pi,pj)

1+TV(pi,pj)

)
ln N

where in the second line we denote δi,j := P(X1,...,XN )∼π∞(p1,...,pN ) (Xi ̸= Xj) and in the last line we use
that δi,j ≤ 2TV(pi,pj)

1+TV(pi,pj) with the chosen coupling.

D Examples of applications
This section presents three examples of applications of our lower bounds: The Bernoulli Model, the Gaussian
Model and the Uniform Model.

In the first two applications, we show that the rate at which the privacy parameters vary has an importance.
Namely, we show in both models that if the privacy parameters are too small, the private minimax risk
becomes predominant compared to the non-private one, or to put it simply, we show that under strong
privacy constraints, the performance of estimation has to be degraded.

Furthermore, we also show for the first model that above this threshold, the minimax risk is not degraded
by privacy, essentially meaning that we then have privacy "for free".

In contrast, in the last example we prove that the minimax risk is systematically degraded by privacy as
soon as we consider estimation procedures with increasing privacy requirements in the sense that the privacy
parameters decrease as the sample size increases.

D.1 Bernoulli Model
The first application is the estimation of the proportion of a population that satisfies a certain property. It
is a prime example of the application of Le Cam’s lemma Fact 1 and its private counterparts Theorem 1 and
Theorem 2. When we consider the parametric Bernoulli model

(B(θ))θ∈Θ , Θ = (0, 1) ,
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a classical and simple estimator for estimating the true parameter θ∗ from i.i.d. samples X1, . . . , Xn drawn
according to B (θ∗) is via the empirical average

θ̂ := 1
n

n∑
i=1

Xi .

The quadratic risk of this estimator is

E
(

(θ∗ − θ̂)2
)

= θ∗(1 − θ∗)
n

≤ 1/4
n

.

In order to find lower bounds on the minimax risk (with or without privacy constraints), let us investigate
an Ω = α

4 -packing3 with θ1 := 1+α
2 and θ2 := 1

2 .

Regular Minimax Risk. By the master bound (6), Le Cam’s lemma (Fact 1) and Pinsker’s inequality
(see Tsybakov (2003, Lemma 2.5)),

Mn

((
B(θ)⊗n

)
θ∈Θ , | · − · |, (·)2

)
≥ (α/4)2 · 1

2
(
1 − TV

(
B(θ1)⊗n, B(θ2)⊗n

))
≥ α2

32

(
1 −

√
KL (B(θ1)⊗n∥ B(θ2)⊗n) /2

)
= α2

32

(
1 −

√
nKL (B(θ1)∥ B(θ2)) /2

)
.

where we used the tensorization property of the KL divergence (see Van Erven & Harremos (2014, Theorem
28)). We can observe that when α ∈ [0, 1/2],

KL (B(θ1)∥ B(θ2)) ≤ α2 .

Indeed, let us note g(x) = 1+x
2 ln (1 + x) + 1−x

2 ln (1 − x) − x2. We have that dg(x)
dx (x) = ln(1+x)+ln(1−x)

2 − 2x
and since g(0) = 0 and x 7→ ln(1 + x) is 2-Lipschitz on [−1/2, 1/2], we have that g(x) ≤ x, ∀[−1/2, 1/2].
In particular, when α ∈ [0, 1/2],

KL (B(θ1)∥ B(θ2)) =
(

θ1 ln
(

θ1

θ2

)
+ (1 − θ1) ln

(
1 − θ1

1 − θ2

))
=
(

1 + α

2 ln (1 + α) + 1 − α

2 ln (1 − α)
)

≤ α2 .

So, with α = 1√
n

, as soon as n ≥ 4, we obtain that

Mn

((
B(θ)⊗n

)
θ∈Θ , |. − .|, (.)2

)
≥ α2

32

(
1 −

√
nα2/2

)
= 1/160

n
= Ω

(
1
n

)
,

which concludes that the non-private minimax rate is lower bounded by a quantity of the order of 1
n and

in particular, that the empirical mean estimator θ̂ is minimax optimal in term of rates of convergence.
Furthermore, any private minimax rate also has to be of the order of at least 1

n .

Minimax Risk with ϵ-Differential Privacy. By the private master lower bound (10) and the product
form of Le Cam’s lemma for (ϵ, 0)-DP (see Theorem 1) combined with the last inequality in Lemma 2 we
obtain

Mn

(
ϵ-DP,

(
B(θ)⊗n

)
θ∈Θ , | · − · |, (·)2

)
≥ (α/4)2 · 1

2e−nϵTV(B(θ1),B(θ2))

≥ α2

32 e−nϵ
√

KL( B(θ1)∥B(θ2))/2

= α2

32 e−
√

(nϵ)2α2/2

3With d(·, ·) = | · − · |, see Section 1.3: an Ω-packing must satisfy d(θi, θj) ≥ 2Ω, i ̸= j.
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where we used again Pinsker’s inequality.

So, with α = 1
nϵ , when nϵ ≥ 2, we obtain that

Mn

(
ϵ-DP,

(
B(θ)⊗n

)
θ∈Θ , | · − · |, (·)2

)
≥ 1/32

(nϵ)2 e−
√

1/2 ≥ 1/80
(nϵ)2 = Ω

(
1

(nϵ)2

)
.

ρ-zero Concentrated Differential Privacy. Similarly, by the product form of Le Cam’s lemma for
ρ-zCDP (see Theorem 2), we get with α = 1

n
√

ρ when n
√

ρ ≥ 2,

Mn

(
ρ-zCDP,

(
B(θ)⊗n

)
θ∈Θ , | · − · |, (·)2

)
≥ α2

32

(
1 − n

√
ρ/2TV (B(θ1), B(θ2))

)
≥ α2

32

(
1 − n

√
ρKL (B(θ1)∥ B(θ2)) /4

)
= α2

32

(
1 −

√
n2ρα2/4

)
= 1/64

n2ρ

= Ω
(

1
n2ρ

)
.

Matching Upper Bounds. Consider the Laplace mechanism M(X) := 1
n

∑n
i=1 Xi + 1

nϵ Lap(1). It is an
(ϵ, 0)-DP estimator X (Dwork et al., 2014) and its quadratic risk is O

(
1
n + 1

(nϵ)2

)
. Likewise, the Gaussian

mechanism M(X) = 1
n

∑n
i=1 Xi + 2

n
√

ρ N (0, 1) is ρ-zCDP (Bun & Steinke, 2016) and its one is O
(

1
n + 1

n2ρ

)
.

Combined with the lower bounds established so far and with Lemma 10, this allows to conclude that in fact

Mn

(
ϵ-DP,

(
B(θ)⊗n

)
θ∈Θ , | · − · |, (·)2

)
= Θ

(
max

{
1
n

,
1

(nϵ)2

})
,

and that this optimal rate is achieved with the Laplace mechanism, while

Mn

(
ρ-zCDP,

(
B(θ)⊗n

)
θ∈Θ , | · − · |, (·)2

)
= Θ

(
max

{
1
n

,
1

n2ρ

})
,

which is an optimal rate achieved by the Gaussian mechanism.

The Cost of Privacy. An interesting observation for both definitions of privacy is that there exist regimes
(ϵ ≪ 1/

√
n or ρ ≪ 1/n) for which the minimax rate of convergence is degraded compared to the non private

one. In other words, privacy has an unavoidable cost on utility, no matter the mechanism used. Conversely,
the order of magnitude of the minimax risk is not degraded otherwise.

D.2 Gaussian Model
The second application is the estimation of the unknown mean θ∗ ∈ Rd of multivariate normally distributed
data with fixed covariance matrix σ2Id. When we consider the parametric model

(
N (θ, σ2Id)

)
θ∈Θ , Θ = Rd ,

a classical and simple estimator for estimating the mean θ∗ from i.i.d. samples X1, . . . , Xn is the empirical
average θ̂ := 1

n

∑n
i=1 Xi . The quadratic risk of this estimator is

E
(

∥θ∗ − θ̂∥2
)

= σ2d

n
. (23)

If we were to apply Le Cam’s lemma Fact 1 or its private counterparts Theorem 1 and Theorem 2, the
parameter that tunes the dimensionality d would not be captured by the resulting minimax lower bounds
which would thus be overly optimistic. This example forces us to use Fano’s lemma Fact 2 or its private
counterparts Theorem 3 or Theorem 4 in order to have a chance to capture this phenomenon.

The total variation that appears in Fano’s inequality is controlled via Pinsker’s inequality in terms of a
Kullback-Leibler divergence, which in the case of isotropic Gaussians is known to be proportional to the
squared Euclidean distance.

∀θ1, θ2 ∈ Θ, KL
(

N (θ1, σ2Id)
∥∥N (θ2, σ2Id)

)
= ∥θ2 − θ1∥2

2σ2 . (24)
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This enables the use of packing results for the Euclidean norm, and minimax bounds valid in the more
general case where the KL divergence is controlled by the Euclidean norm between parameters.

Packing Choice. In high dimension, the packing is chosen with an exponential number of hypotheses. A
good way to obtain well-spread points is to use Varshamov–Gilbert’s theorem

Fact 8 (Varshamov–Gilbert’s theorem (Rigollet & Hütter, 2015, Lemma 5.12)). For any ζ ∈
(
0, 1

2
)

and for
every dimension d ≥ 1 there exist N ≥ e

ζ2d
2 and w1, . . . , wN ∈ {0, 1}d such that,

i ̸= j =⇒ dham (wi, wj) ≥
(

1
2 − ζ

)
d .

Minimax Lower Bounds. We obtain the following minimax lower bounds that we factorized in a single
result:

Proposition 1. Let (pθ)θ∈Θ be a family of probability distributions on the same measurable space and Θ be
a subset of Rd with d ≥ 66 that contains a ball of radius r0 for the euclidean distance. Assume that γ > 0 is
such that

∀θ1, θ2 ∈ Θ, KL (pθ1∥ pθ2) ≤ γ∥θ2 − θ1∥2. (25)

Then we have the following results on the minimax rates:

Mn

((
p⊗n

θ

)
θ∈Θ , ∥ · − · ∥, (·)2

)
≥

min
(

r0√
d
, 1

64√
nγ

)2
d

32 = Ω
(

d

nγ

)
,

Mn

(
ϵ-DP,

(
p⊗n

θ

)
θ∈Θ , ∥ · − · ∥, (·)2

)
≥

max
(

min
(

r0√
d
, 1

64√
nγ

)
, min

(
r0√

d
,

√
d

642
√

2nϵ
√

γ

))2
d

32

= Ω
(

max
{

d

nγ
,

d2

(nϵ)2γ

})
,

Mn

(
ρ-zCDP,

(
p⊗n

θ

)
θ∈Θ , ∥ · − · ∥, (·)2

)
≥

max
(

min
(

r0√
d
, 1

64√
nγ

)
, min

(
r0√

d
, 1

6422
√

2n
√

ργ

))2
d

32 = Ω
(

max
{

d

nγ
,

d

n2ργ

})
,

when ρ < 1. Note that all the asymptotic expressions are taken when r0 > C
√

d for a positive constant C
i.e. when the parameter space is not "too small".

Note that the constraint d ≥ 66 can be relaxed to smaller constants by changing the ζ in the application of
Varshamov–Gilbert’s theorem at the cost of changing the constants in the minimax lower bounds. Likewise,
the constraint ρ < 1 can be replaced by ρ < M for any positive constant M at the cost again of worse
constants. Since we aim to use this result in high dimension and with high privacy, those hypotheses are
natural in order to simplify the expressions. Before giving the proof, we discuss some practical consequences.

The Cost of Privacy. For Gaussians, by (23) and Proposition 1 with γ = 1
2σ2 (cf (24)) the non-private

minimax risk is
Mn

((
N (θ, σ2Id)

)
θ∈Θ , ∥ · − · ∥, (·)2

)
= Θ

(
σ2d

n

)
,

hence Proposition 1 shows that there is a degradation of the private minimax rate over the non-private
minimax rate in the regime ϵ ≪

√
d
n when working under ϵ-DP. Note that this shift in regime depends on

the dimensionality. For ρ-zCDP, the minimax rate of convergence is degraded as soon as ρ ≪ 1
n . Compared

to ϵ-DP, the rate at which we observe a degradation does not depend on the dimension d. We study an
upper bound in Section 4.
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Proof of Proposition 1. Without loss of generality, let us suppose that 0 is the center of the ball of radius r0
(without loss of generality because we are going to work on a neighborhood of 0 but it can be translated to
any point). Varshamov–Gilbert’s theorem (Fact 8) with ζ = 1

4 allows us to consider N and w1, . . . , wN and
to define a packing of the form θ1 := αw1, . . . , θN := αwN such that

i ̸= j =⇒ α2d

4 ≤ ∥θi − θj∥2 ≤ α2d .

This yields an Ω = α
√

d/4-packing with respect to the Euclidean metric. Since 0 is in the interior of Θ, all
the θi’s are in Θ provided that α is small enough. By the (non-private) master lower bound (6) and Fano’s
lemma (Fact 2),

Mn

((
p⊗n

θ

)
θ∈Θ , ∥ · − · ∥, (·)2

)
≥ (α

√
d/4)2 ·

1 −
1 + 1

N

∑
i KL

(
p⊗n

θi

∥∥ 1
N

∑
j p⊗n

θj

)
ln N


Jensen’s inequality

≥ (α
√

d/4)2 ·

1 −
1 + 1

N2

∑
i,j KL

(
p⊗n

θi

∥∥p⊗n
θj

)
ln N


= (α

√
d/4)2 ·

(
1 −

1 + 1
N2

∑
i,j nKL

(
pθi

∥ pθj

)
ln N

)
(25)
≥ α2d

16

(
1 −

1 + 1
N2

∑
i,j nγ∥θi − θj∥2

ln N

)

≥ α2d

16

(
1 − 1 + nγα2d

d/32

)
,

where in the last line we used that N ≥ ed/32 and ∥θi − θj∥2 ≤ α2d. With α := min
(

r0√
d
, 1

64√
nγ

)
when

d ≥ 66 leads to

Mn

((
p⊗n

θ

)
θ∈Θ , ∥ · − · ∥, (·)2

)
≥

min
(

r0√
d
, 1

64√
nγ

)2
d

32 = Ω
(

d

nγ

)
.

For ϵ-DP and ρ-zCDP, the first term in the max expressed in Proposition 1 is a direct consequence of the
above bound and of Lemma 10 so we now concentrate on the other term. By the private master lower
bound (10) and Fano’s lemma for product distributions and (ϵ, 0)-DP (see Theorem 3), arguments as above
show that

Mn

(
ϵ-DP,

(
p⊗n

θ

)
θ∈Θ , ∥ · − · ∥, (·)2

)
≥ α2d

16

(
1 −

1 + 2nϵ
N2

∑
i,j TV

(
pθi

, pθj

)
ln N

)

≥ α2d

16

1 −
1 + 2nϵ

N2

∑
i,j

√
KL
(

pθi
∥ pθj

)
/2

ln N


≥ α2d

16

(
1 −

1 + 2nϵ
N2

∑
i,j

√
γ/2∥θi − θj∥

ln N

)

≥ α2d

16

(
1 −

1 + 2nϵα
√

γ/2
√

d

d/32

)
.
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Again, setting α := min
(

r0√
d
,

√
d

642
√

2nϵ
√

γ

)
when d ≥ 66 allows to conclude that

Mn

(
ϵ-DP,

(
p⊗n

θ

)
θ∈Θ , ∥ · − · ∥, (·)2

)
≥

min
(

r0√
d
,

√
d

642
√

2nϵ
√

γ

)2
d

32

= Ω
(

d2

(nϵ)2γ

)
.

Similarly, by Fano’s lemma for product distributions and ρ-zCDP (see Theorem 4),

Mn

(
ρ-zCDP,

(
p⊗n

θ

)
θ∈Θ , ∥ · − · ∥, (·)2

)
≥ α2d

16

(
1 −

1 + 4n2ρ
N2

∑
i,j

1
2n TV

(
pθi

, pθj

)
+ TV

(
pθi

, pθj

)2

ln N

)

≥ α2d

16

1 −
1 + 4n2ρ

N2

∑
i,j

1
2n

√
KL
(

pθi∥ pθj

)
/2 + KL

(
pθi∥ pθj

)
/2

ln N


≥ α2d

16

(
1 −

1 + 4n2ρ
N2

∑
i,j

1
2n

√
γ/2∥θi − θj∥ + γ∥θi − θj∥2/2

ln N

)

≥ α2d

16

(
1 −

1 +
(
2
√

2nρα
√

γd + 2n2ργα2d
)

d/32

)
,

and setting α := min
(

r0√
d
, 1

6422
√

2n
√

ργ

)
when d ≥ 66 concludes that (because ρ ≤ 1)

Mn

(
ρ-zCDP,

(
p⊗n

θ

)
θ∈Θ , ∥ · − · ∥, (·)2

)
≥

min
(

r0√
d
, 1

6422
√

2n
√

ργ

)2
d

32

= Ω
(

d

n2ργ

)
.

D.3 Support of Uniform Distributions
For the last example, we chose to investigate a statistical problem that has a non-private minimax rate faster
than 1

n . We consider the parametric model

(pθ := U([0, θ]))θ∈Θ , Θ = (0, 1] .

To exploit Le Cam’s lemma we will need to control the total variation between two distributions. In this
model, it can be done explicitly. The total variation between p⊗n

θ1
and p⊗n

θ2
can be computed as

TV
(
p⊗n

θ1
, p⊗n

θ2

)
= 1 −

∫
[0,1]n

min
(

πp⊗n
θ1

, πp⊗n
θ2

)
= 1 −

(
min (θ1, θ2)
max (θ1, θ2)

)n

.

Non-Private Minimax Risk. By the (non-private) master lower bound (6) and Le Cam’s lemma (Fact 1),
applied to the 1

2n -packing θ1 = 1 − 1
n and θ2 = 1, we have

Mn

((
U([0, θ])⊗n

)
θ∈Θ , | · − · |, (·)2

)
≥ e−1

8n2 = Ω
(

1
n2

)
.

where we used that 1 − TV
(
p⊗n

θ1
, p⊗n

θ2

)
=
(
1 − 1

n

)n ≥ e−1. Furthermore, as we now show, the estimator
max X achieves this rate of convergence when X1, . . . , Xn ∼ U([0, θ∗]) are independent. Indeed, for any
t ∈ [0, θ∗],

P (max X < t) = Πn
i=1P (Xi < t) =

(
t

θ∗

)n

.
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Hence, max X has a density πmax X with respect to the Lebesgue measure where

∀t ∈ R, πmax X(t) = 1[0,θ∗](t)
ntn−1

θ∗n ,

so that
E(max X) =

∫ θ∗

0
t

(
ntn−1

θ∗n

)
dt = n

n + 1θ∗ ,

V(max X) =
∫ θ∗

0
t2
(

ntn−1

θ∗n

)
dt − [E(max X)]2 = θ∗2

(
n

n + 2 − n2

(n + 1)2

)
.

By the bias-variance tradeoff, the quadratic risk of max X is thus O
(

θ∗2

n2

)
. In particular, this proves that the

non-private minimax rate of convergence is Θ
( 1

n2

)
and that max X achieves this minimax rate of convergence.

Minimax Risk with ϵ-Differential Privacy. By the private master lower bound (10) and the product
form of Le Cam’s private lemma for ϵ-DP on product distributions (see Theorem 1 with δ = 0) with the

1
2nϵ -packing θ1 = 1 − 1

nϵ and θ2 = 1 we have when nϵ > 1

Mn

(
ϵ-DP,

(
U([0, θ])⊗n

)
θ∈Θ , | · − · |, (·)2

)
≥ e−1

8(nϵ)2 = Ω
(

1
(nϵ)2

)
,

In particular, the rate is degraded compared to the non-private one as soon as ϵ is decreasing.

Minimax Risk with ρ-zero Concentrated Differential Privacy. Similarly, using the product form
of Le Cam’s private lemma for ρ-zCDP on product distributions (see Theorem 2) and the 1

2n
√

ρ -packing
θ1 = 1 − 1

n
√

ρ and θ2 = 1 gives that when n
√

ρ > 1,

Mn

(
ρ-zCDP,

(
U([0, θ])⊗n

)
θ∈Θ , | · − · |, (·)2

)
≥

1 − 1√
2

8n2ρ
= Ω

(
1

n2ρ

)
.

In particular, the rate is degraded compared to the non-private one as soon as ρ is decreasing.

This example shows that when the stochastic noise due to sampling shrinks too fast (here max X has
quadratic risk O(1/n2)), then the noise due to privacy becomes predominant. In particular, we do not
observe a distinction on the rate at which ϵ or ρ tends to 0 in order the conclude to a degradation of the
minimax risk. It is systematically degraded.
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