
Under review as a conference paper at ICLR 2024

INJECTING A STRUCTURAL INDUCTIVE BIAS INTO A
SEQ2SEQ MODEL BY SIMULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Strong inductive biases enable learning from little data and help generalization
outside of the training distribution. Popular neural architectures such as Trans-
formers lack strong structural inductive biases for seq2seq NLP tasks on their
own. Consequently, they struggle with systematic generalization beyond the train-
ing distribution, e.g. with extrapolating to longer inputs, even when pre-trained on
large amounts of text. We show how a structural inductive bias can be injected
into a seq2seq model by pre-training it to simulate structural transformations on
synthetic data. Specifically, we inject an inductive bias towards Finite State Trans-
ducers (FSTs) into a Transformer by pre-training it to simulate FSTs given their
descriptions. Our experiments show that our method imparts the desired inductive
bias, resulting in improved systematic generalization and better few-shot learning
for FST-like tasks.

1 INTRODUCTION

Inductive biases, i.e. the preferences and the abstract knowledge a model brings to the task, enable a
model to learn from small amounts of data and generalize systematically outside of the training dis-
tribution. While seq2seq models perform very well on in-distribution data on many NLP tasks, they
usually lack structural inductive biases and consequently struggle with systematic generalization.
Previous work has shown that this includes generalization to unseen combinations of known sub-
strings (Lake & Baroni, 2018; Keysers et al., 2020), extrapolation to longer inputs (Hupkes et al.,
2020) and deeper recursion (Kim & Linzen, 2020).

Integrating structural inductive biases into seq2seq models is challenging. One popular approach is
to develop specialized architectures (Zheng & Lapata, 2021; Kim, 2021; Lindemann et al., 2023),
which makes it difficult to precisely control and adjust the nature of the inductive bias as the archi-
tecture would need to be changed and models re-trained. Recently, some works instead have tried to
inject inductive biases into seq2seq models by means of pre-training on a well-chosen synthetic task
(Krishna et al., 2021; Wu et al., 2021; 2022) or meta-learning on a distribution of synthetic tasks
(McCoy et al., 2020; McCoy & Griffiths, 2023) using MAML (Finn et al., 2017). Here, the induc-
tive bias can be controlled by the choice of the synthetic task. However, meta-learning with MAML
scales poorly because it requires expensive second-order derivatives and standard pre-training can
be less effective (McCoy & Griffiths, 2023).

In this work, we present a computationally inexpensive way of injecting a structural inductive bias
into a Transformer. We focus specifically on introducing an inductive bias that is helpful for tasks
that traditionally have been approached with Finite State Transducers (FSTs). We choose FSTs
because they are formally well understood, are easy to generate automatically, and are one of the
simplest computational devices that are useful in NLP applications. While we focus on FSTs, the
methodology is fairly general and our approach also provides a starting point for incorporating more
general structural biases, provided by more expressive formalisms such as Pushdown Transducers.

Our approach (SIP, for Simulation-Induced Prior) is simple (see Fig. 1): given a representation of
an FST and an input string, a Transformer is pre-trained to predict what the output of the FST is on
the given input. We assume that FSTs are not specified for fine-tuning on downstream tasks, so we
replace the FST with tunable embeddings and fine-tune the model solely on input/output examples.
We show that SIP improves accuracy on systematic generalization and few-shot learning for ‘FST-
like’ downstream tasks, demonstrating that the desired inductive bias has been imparted. SIP not
only improves systematic generalization on FST tasks similar to those seen during pre-training but

1

Under review as a conference paper at ICLR 2024

a:b

d:d

a:c a d a a

b d c c

a:b

d:d

a:c a d a a

b d c c

a:b

d:d

a:c

Transformer

a d a a

b d c c

FSTs Tunable Embeddings

Pre-train Fine-tune

Initialize

Grapheme-to-phoneme conversion

 ⵉ ⵍ ⵙ

i l ə s

Text editing

...

Figure 1: Left: Pre-training a Transformer to simulate automatically generated FSTs. Right: fine-
tuning the Transformer and the prefix where the FST used to be on a downstream task by using only
input/output pairs. Tunable parameters are represented in orange.

also on ones that are structurally more complex. The same pre-trained model achieves strong results
on few-shot learning on text editing (e.g. Jane Doe → J. Doe) and grapheme-to-phoneme conversion,
which traditionally have been approached with FSTs. Our contributions are:

• a simple, adjustable and efficient method to inject a structural inductive bias for FST-like
tasks into a Transformer.

• better systematic generalization on tasks beyond the pre-training distribution.

• strong results when transferring to natural FST-like data, as demonstrated on low-resource
grapheme-to-morpheme conversion.

2 RELATED WORK

Systematic generalization. Systematic generalization refers to the ability of a model to generalize
(or extrapolate) beyond its training distribution in a systematic way that aligns with how humans
generalize. Systematic generalization has been shown to be difficult for standard seq2seq models
in contexts such as semantic parsing (Finegan-Dollak et al., 2018), machine translation (Li et al.,
2021) and algorithmic reasoning (Deletang et al., 2023), in particular to unseen combinations of
sub-strings, longer inputs as well as deeper recursion (Keysers et al., 2020; Kim & Linzen, 2020).

A range of approaches have been developed to tackle this, with many works focusing on specialized
architectures (Guo et al., 2020; Zheng & Lapata, 2021; Kim, 2021; Lindemann et al., 2023). Furrer
et al. (2020) find that the specialized architectures they consider do not transfer well to tasks beyond
the context in which they were designed. This highlights the importance of being able to adjust
inductive biases more easily than re-designing the architecture of a model. Large-scale pretraining
on natural language has been widely successful in NLP (e.g. for few-shot learning) and has also been
shown to help with systematic generalization (Furrer et al., 2020). However, challenges remain even
for LLMs such as GPT-3 and PALM (Qiu et al., 2022; Dziri et al., 2023). The methodology we
present in this work can be used to create additional material for LLM pre-training. Here we focus
on smaller models and leave this to future work.

Pre-training with synthetic tasks. Pre-training a model on a synthetic task to introduce specific
inductive biases has been explored by several recent works. Krishna et al. (2021) identify use-
ful ‘skills’ for news summarization and develop a pre-training task accordingly. LIME (Wu et al.,
2021) targets mathematical reasoning and is pre-trained on symbolic string manipulation that resem-
bles deductive, abductive and inductive reasoning. Wu et al. (2022) investigate a range of simple
synthetic tasks for pre-training and show that some perform remarkably well across a range of down-
stream tasks. Papadimitriou & Jurafsky (2023) consider several synthetic languages to investigate
which helps most as pre-training data for language modelling on English. In contrast to these works,

2

Under review as a conference paper at ICLR 2024

our approach targets simulating a computational device and maintains a closer connection to the pre-
training setting because of the tunable prefix.

A challenge for using individually hand-crafted tasks is to cover a sufficient space of phenomena
that are relevant to downstream tasks. Instead of training on a single task only, McCoy et al. (2020);
McCoy & Griffiths (2023) meta-learn on a distribution of tasks using MAML (Finn et al., 2017).
They show that this can be helpful for low-resource language modelling on simple English utterances
(McCoy & Griffiths, 2023). Our approach also uses a distribution of tasks but it scales better than
MAML-based methods because MAML requires computing and storing second-order derivatives.
For example, the Transformer we train has a magnitude more parameters than the LSTM of McCoy
& Griffiths (2023) and can be pre-trained on a smaller GPU (A100 vs RTX 2080 TI). In addition,
as the complexity of each individual task grows, MAML requires more examples per task. We
circumvent this by using a compact and unambiguous description of each task instead.

Simulating execution. The idea of using a neural network to predict the outcome of the execution of
a computational device or code has come up in several contexts over the last few years. Early work
by Zaremba & Sutskever (2014) investigates it as a challenging benchmark for LSTM-based seq2seq
models. Recent works have explored simulating (aspects) of code execution for various down-stream
applications, such as program synthesis (Austin et al., 2021), debugging and code analysis (Bieber
et al., 2022) as well as reverse engineering (Pei et al., 2021). Closer to our setup, Finlayson et al.
(2022) train a Transformer to interpret regular expressions: given a regular expression and a string,
the task is to decide if the string is in the regular language. There are two crucial differences between
their work and ours: (i) they investigate the empirical capabilities of Transformers to simulate regular
expressions while we use simulation to introduce structural inductive biases for downstream tasks,
and (ii) they consider binary outputs whereas we consider sequential outputs.

3 FINITE STATE TRANSDUCERS

We briefly review Finite State Transducers (FSTs) which we use in our experiments. FSTs are
closely related to Finite State Automata (FSAs). While an FSA describes a set of strings, an FST
describes a relation between strings, i.e. a set of pairs (x, y), where x is an input y is an output.

FSTs can be visualized as labelled directed graphs (see Fig. 2), where the nodes are called states
and the edges are called transitions. Consider the path q0 a : b−−→ q1

a : b−−→ q1
b : b−−→ q2 in Fig. 2b.

This path is called an accepting path because it starts in an initial state (indicated by an arrow ‘from
nowhere’ pointing to the state), and it ends in a final state (indicated by double circles). An accepting
path shows what an input can be mapped to. In this case, the path shows that the FST transduces the
input aab into the output bbb. We can read off which input an accepting path associates an output
to by concatenating all the strings along the path occurring before ‘:’. The output can be determined
by concatenating the strings after ‘:’. Hence, each transition

σ : ρ−−→ can be thought of as ‘replacing’ σ
by ρ. Inserting and deleting can be achieved by means of the empty string, written as ϵ. For example,
Fig. 2a ‘replaces’ every second a by an empty string, effectively deleting them.

In general, an input can be paired with arbitrarily many different outputs. We call an FST f func-
tional if every input x is paired with at most one output y, and use the notation f(x) to refer to y.
All FSTs we consider here are functional. We also use set notation on FSTs, e.g. if f1 and f2 are
FSTs expressing relations R1 and R2, we refer to the FST expressing R1 ∪R2 as f1 ∪ f2.

In this work, we focus mainly on deterministic FSTs, which are a less expressive sub-class of the
functional FSTs that are particularly easy to generate automatically. We will use deterministic and
non-deterministic FSTs to investigate generalization across different sub-classes of FSTs. An FST
is called deterministic if (i) it has a unique initial state, (ii) for all states q and input symbols σ there
is at most one transition q

σ : ρ−−→ q′ and (iii) σ ̸= ϵ. Intuitively, this means that in any state, for
an input symbol σ there is at most one possible next state and one possible output, and hence for
any input string there is at most one path that is compatible with it. Because of this, we can always
determine a prefix of the output string by looking only at a prefix of the input string and ignoring the
rest. For example, consider the input prefix aa. In the deterministic FST in Fig. 2a, we know that
the output has to start with a because there is only one path that is compatible with aa. In contrast,
in the non-deterministic FST in Fig. 2b, there are two paths that are compatible with aa that have
different outputs. In that case, we can only determine the output once we look at the last symbol of

3

Under review as a conference paper at ICLR 2024

q0

b:b

q1a:a
a:ε

b:b

(a) A deterministic FST.

q0

q1
a:b

q3

a:c

a:b

q2
b:b

a:c

q4c:c

(b) A non-deterministic but functional FST.

Figure 2: Examples of functional FSTs. The FST in (a) deletes every other a. The FST in (b)
replaces any a in the input string by a b if the last input symbol is a b. Conversely, if the last symbol
is a c, any a is replaced by a c. The output can only be determined after the last input symbol.

the input string. In short, while non-deterministic FSTs can take context to the right into account,
deterministic FSTs cannot.

4 SIMULATION-INDUCED PRIOR

Our approach follows the pre-training and fine-tuning paradigm. We first pre-train on synthetic FST
tasks by giving the model a representation of an FST as a prefix and an input string (see Fig. 1). The
training objective is to predict the output of the FST on the input string and thereby simulate the
behaviour of the FST in the model. Our research hypothesis is that training a model to robustly sim-
ulate a broad range of FSTs incentivizes finding reusable mechanisms for FST-like behaviour. When
fine-tuning the model using a tunable prefix instead of an encoding of an FST, these mechanisms
should be easy to leverage and provide a structural inductive bias for FST-like tasks.

4.1 PRE-TRAINING

During pre-training, the model is given a representation of an FST and a string in its domain and has
to predict the output of that FST on the given input string. The input to the Transformer is a sequence
of vectors from Rd, which consist of a prefix that represents the FST f and a suffix comprised of the
embeddings of the input string (see Fig. 1):

h1,h2, . . . ,hk︸ ︷︷ ︸
FST encoding

,x1,x2 . . . ,xn︸ ︷︷ ︸
Input to FST

Each h encodes one transition p
σ : ρ−−→ q of f as a vector:

h =W [EMBEDState(p); EMBEDState(q); EMBEDSymbol(σ); EMBEDSymbol(ρ); EMBEDFinal(e)]

where [;] represents vector concatenation, e indicates if q is a final state, and W is linear layer that
ensures that h ∈ Rd. All embeddings are simple look-up tables based on the id of the state or
symbol.1 The initial state of the FST is always assigned the id 0. Positional embeddings are used as
usual. The model is trained to maximize the log probability of the output y = f(x) of the FST f .

4.2 FINE-TUNING

After pre-training, we can apply our model to a downstream task and fine-tune it. We assume we do
not have access to an FST for the downstream task, and therefore we replace the FST encoding with
a sequence of tunable embeddings. These embeddings are initialized to the average of the encoding
of multiple FSTs from the pre-training phase. The most straightforward way to fine-tune is to only
modify the embeddings in the prefix because we are looking for an FST-like representation of the
task. This is similar to prompt tuning (Lester et al., 2021). However, this does not work well on
tasks outside the pre-training distribution. Therefore, we fine-tune the entire model, including the
prefix, and use a higher learning rate for the prefix than for the rest of the model (see Appendix F).

1This encoding approach neglects that permuting the state numbers has no effect on the function that the
FST represents. We leave this to future work, e.g. using graph neural networks.

4

Under review as a conference paper at ICLR 2024

4.3 CONSTRUCTING PRE-TRAINING DATA

To create our pre-training data, we sample 40,000 deterministic FSTs. For every FST, we sample 5
input/output pairs with input lengths up to 35. In total, this leads to 200,000 pairs for training along
with their FSTs. To describe the sampling procedure in more detail, we use an overall vocabulary V
consisting of the printable ASCII tokens and the Unicode block for IPA symbols (used for transcrib-
ing speech). Seq2seq tasks in the wild usually do not use the whole space of this vocabulary, so for
each task T we first uniformly sample the vocabulary size |VT | between 5 and 25 and then uniformly
select a subset VT ⊆ V . Then, we uniformly sample the number of states |QT | between 2 and 4,
and the number of final states between 1 and |QT |. For every state q and every symbol σ ∈ VT we
introduce at most one outgoing transition to a state q′, chosen uniformly at random. This ensures
that the FST is deterministic. We then sample the output for the transition: either a symbol ρ ∈ VT
or ϵ. Finally, we minimize the number of states of the FST using OpenFST (Allauzen et al., 2007),
and exclude those without cycles, as they express finite relations. See Appendix A for details.

In practical applications of FSTs, in particular for text editing, one often wants to keep certain parts
of the input unchanged. This can be achieved with a set of transitions of the form q

σ :σ−−−→ q′ for all
σ ∈ VT . Since it is very unlikely to sample such a set of transitions, we use a special symbol that
acts as a shorthand for this, which we also use when encoding the FST for pre-training.

5 METHODOLOGY FOR MEASURING INDUCTIVE BIAS

Inductive biases are the preferences and the abstract knowledge that a learner brings to the task
before having seen any data. The inductive bias of a learner helps it fill in the ‘gaps’ that are not
covered by the training data. In order to evaluate inductive bias, we specifically design training data
to contain gaps and probe the behaviour of the learner on these gaps. In this paper, we use two
different setups that ensure we evaluate on gaps: learning from a small amount of data (few-shot
learning) and systematic generalization outside of the training distribution.

We consider a model to have an inductive bias specifically towards FSTs if its behaviour on the gaps
in the training data resembles the most plausible FST according to Occam’s razor. We consider the
FST the most plausible that (i) explains the training data and (ii) all else being equal, is as simple as
possible, i.e. has the smallest number of states. 2

We now describe two methods for constructing data for a given (minimal)3 FST such that the training
and test distributions are different, and that reward a model for inferring the simplest FST.

Iteration generalization. A simple form of out-of-distribution generalization is to generalize from
short examples to longer examples. In particular, given an FST f , we test the ability to generalize
from visiting a state only a few times (iteration count up to 3) to seeing it more often (iteration count
at least 4). A model with an inductive bias for FSTs should be able to obtain high accuracy in this
setting. This is because f is the simplest FST that explains the data. Any FST that behaves the same
as f on the training data but differs on longer inputs has to have additional states or transitions that
were unused on the training data.

Unseen combinations of transitions. LSTMs and Transformers struggle to generalize to unseen
combinations of known elements (Keysers et al., 2020).

For example, consider the FST f in Fig. 3, which deletes leading zeros from a num-
ber. Suppose that a model is trained on examples such as 0012, 2201, 1012 but
no training example contains the combination of leading zeros followed by a 2 (the
combination of the two red adjacent transitions). A model with an inductive bias to-
wards FSTs should nevertheless generalize to this unseen combination and correctly han-
dle examples such as 0021 because f is the simplest FST that explains the data.

2The preference for simple FSTs is crucial for this to be meaningful. Consider approximating a function f

mapping between strings of bounded length with a model f̂ . Suppose we only required that f̂ (i) fit the training
data and (ii) correspond to some FST. The requirement (ii) is trivially true for any f̂ , giving any model an
inductive bias towards FSTs under this notion. This is because any function between strings of bounded length
is defined for finitely many elements, and hence can be represented by an FST.

3an FST such that there is no equivalent FST with fewer states

5

Under review as a conference paper at ICLR 2024

0:ε

1:1
2:2

0:0, 1:1, 2:2

ε:ε

ε:ε

1:1
2:2

0:0, 1:1, 2:2

0:0, 1:1, 2:2

1:1

0:ε

Figure 3: Constructing training data for evaluating un-
seen combinations of transitions. Based on the given
FST f , we construct an FST ftrain that withholds the
combination of the two red transitions.

In order to withhold a combination of tran-
sitions ⟨ta, tb⟩, we construct a new FST
ftrain as follows: We create two copies
fa, fb of the original FST f . In fa, we re-
move the transition tb; in fb, we remove
the transition ta. Then ftrain = fa ∪ fb,
which can be constructed by introducing
a new initial state with ϵ-transitions into
the respective initial states of fa and fb
(right side of Fig. 3). This ensures that any
accepting path goes through fa or fb but
cannot alternate between the two. Hence,
ta or tb can be used – but not both in the
same string. Note that ftrain still describes
a partial function (rather than a relation)
because any accepting path in fa and any
accepting path in fb is also an accepting path in f . As a result, whenever fa and fb are both defined,
they agree on the result fa(x) = fb(x) = f(x). We test exclusively for how a model handles unseen
combinations of transitions by generating examples from f for which ftrain is not defined. We refer
to Appendix C for further details.

To make the generalization setup more challenging, these steps can be applied to multiple pairs of
adjacent transitions at the same time, i.e. to withhold ⟨t1a, t1b⟩, . . . , ⟨tka, tkb ⟩: We create the copy fa
and remove the transitions t1b , . . . , t

k
b from fa and analogously remove t1a, . . . , t

k
a from fb.

6 EVALUATING SIP’S INDUCTIVE BIAS

In order to understand the effects of our pre-training procedure, we first explore systematic gen-
eralization on synthetic FST tasks which allows us to precisely control the similarity between the
pre-training and the downstream task.

6.1 SETUP AND BASELINES

In order to make a fair comparison, all models we experiment with in the main paper share the same
architecture and are initialized from the same checkpoint before any additional pre-training, namely
ByT5-small (Xue et al., 2022). This is a Transformer with 300M parameters across 12 encoder layers
and 4 decoder layers with a hidden dimensionality of 1472. It was pre-trained on the multilingual
C4 corpus. ByT5 uses raw bytes as tokens, which enables full Unicode support and is a natural unit
to consider for FST-like tasks such as text editing and grapheme-to-phoneme conversion. We report
additional results with a T5-Base model in Appendix E, where we observe similar trends.

SIP-d4. This is a model using the method we propose in this work. We pre-train on the data
generated in Section 4.3 (deterministic FSTs, with up to 4 states) for 20 epochs. This model achieves
an average accuracy of 98% on predicting the output of an unseen FST from the training distribution.
For fine-tuning, we use a prefix of length 50 for all experiments in this paper. As an ablation, we
also fine-tune the model without the prefix of learnable embeddings (-prefix).

Naive pre-training. For this baseline, we use the same pre-training data as for SIP-d4 but we omit
the explicit description of the FST and only train on input/output pairs.

Set. Wu et al. (2022) investigate the effectiveness of 18 simple synthetic pre-training tasks for a
range of downstream tasks, and found Set to perform best on average. The task is to deduplicate
characters such that every type occurs only once, e.g. the input daabacd becomes dabc. This
baseline is well-suited for our setup because the task can be represented by a deterministic FST,
albeit a very large one with 2n states for a vocabulary of size n.

Task embeddings (TE). Instead of using an encoding of an FST, this baseline uses 50 randomly
initialized embeddings specific to each task (i.e. FST) in the prefix. These embeddings are learned
jointly with the model. Several works have used a single token or embedding to encode a domain
or task in multi-domain and multi-task learning (Tsvetkov et al., 2016; Stymne et al., 2018; Zhang
et al., 2022). Using a shorter tunable prefix resulted in considerably worse performance in our setup.

6

Under review as a conference paper at ICLR 2024

Table 1: Evaluating systematic generalization on
FST tasks with 4 states. We report averages over 5
tasks. ED is edit distance. Due to an outlier task on
UC, we additionally report the median after ‘/’.

Iteration UC
Acc↑ ED↓ Acc↑ ED↓

ByT5 37.8 5.87 47.4/57.5 1.49/0.93
Naive 42.6 4.41 44.9/43.2 1.52/1.35
Set 44.4 4.58 43.6/42.0 1.47/1.31
TE 61.3 2.49 57.3/63.1 1.13/0.74
SIP-d4 94.8 0.12 73.1/93.3 0.61/0.13
-prefix 84.9 0.62 61.1/76.3 0.99/0.50

Table 2: Evaluation on non-deterministic
FSTs. We report averages over 5 tasks.

Iteration UC
Acc↑ ED↓ Acc↑ ED↓

ByT5 83.4 0.52 83.1 0.40
Naive 83.1 0.49 84.2 0.37
Set 82.3 0.52 83.7 0.37
TE 84.2 0.49 82.7 0.42
SIP-d4 87.8 0.32 90.0 0.24
SIP-d4+ 88.2 0.30 90.5 0.22
SIP-nd7 89.5 0.27 91.2 0.18

6.2 SYSTEMATIC GENERALIZATION WITHIN THE PRE-TRAINING DISTRIBUTION

First, we want to establish to what degree the pre-training has conferred any inductive bias on the
distribution it was pre-trained on. In particular, we test for systematic generalization to unseen
combinations (UC) and higher iteration counts.

Setup. For each generalization setup, we generate 5 FSTs with 4 states using the same procedure
as for the pre-training, ensuring they have not been seen in the pre-training. To evaluate UC, we
withhold the combination of up to 20 pairs of transitions and generate 5000 training examples with
lengths 3 to 15 and corresponding test data as described in Section 5. To evaluate iteration gener-
alization, we generate training examples with a maximum iteration count of 3 and test on longer
examples of length up to 30 with an iteration count of at least 4. Since the out-of-distribution perfor-
mance of two checkpoints of the same model can vary significantly, we report averages on the test
set of the last 10 epochs.

Results. The results can be found in Table 1. On average, SIP-d4 achieves close to perfect accuracy
(with one outlier on UC, skewing the mean). TE also shows a clear improvement over the other
baselines but SIP-d4 outperforms TE by a large margin. This suggests that SIP-d4 and TE, to a
lesser extent, indeed have acquired a stronger inductive bias for FSTs than the other methods. Using
SIP-d4 without the tunable prefix leads to a substantial drop in accuracy, highlighting its importance.
We analyze the representations learned by SIP-d4 in the tunable prefix in Appendix G.

6.3 MORE COMPLEX FSTS

Does the inductive bias introduced by SIP extend beyond the pre-training distribution to more com-
plex FST tasks? To investigate this, we use the same sampling methodology but generate FSTs with
more states. SIP-d4 was pre-trained on FSTs with up to 4 states, and we evaluate on FST tasks with
5, 7 and 10 states. Again, we evaluate by measuring out-of-distribution performance for iteration
generalization and unseen combinations.

In Fig. 4 we show how the individual models deviate from the accuracy of ByT5 as a function of
the number of states in the test FST. We report the absolute accuracies in Table 5 in the appendix.
The trends for the two generalization setups are very similar: SIP always performs best by a clear
margin regardless of the number of states in the FSTs. As we increase the number of states and
move further away from the pre-training distribution, SIP improves less over the baselines. We see
a similar pattern for TE but with considerably smaller improvements over ByT5.

6.4 NON-DETERMINISTIC FSTS

As shown in the previous section, SIP still works well for more complex FST tasks than seen during
pre-training. However, this evaluation focused on the favourable case where both pre-training and
evaluation involve the same class of FSTs, namely deterministic FSTs. Deterministic FSTs can only
take left context into account (see Section 3), which is a restrictive assumption. Here, we evaluate if
the inductive bias conferred by SIP carries over to non-deterministic functional FSTs, i.e. those that
can also take context to the right into account.

7

Under review as a conference paper at ICLR 2024

4 5 6 7 8 9 10
Test FST states

0

10

20

30

40

50
Di

ffe
re

nc
e

in
 A

cc
 to

 B
yT

5

Iteration Generalization

4 5 6 7 8 9 10
Test FST states

5

0

5

10

15

20

25
Unseen Combinations

model
SIP-d4
TE
Set
Naive
ByT5

Figure 4: Evaluation on deterministic FST tasks with more states than seen in pre-training. We show
the deviation in percentage points from ByT5.

We automatically generate 5 non-deterministic FSTs with 21 states (see Appendix B for details) and
report averages in Table 2. Despite the structural mismatch between pre-training and the downstream
tasks, SIP-d4 shows clear improvements over the baselines. Interestingly, TE does not consistently
outperform the other baselines, despite its stronger results on deterministic FSTs.

Our pre-training procedure does not hinge on using deterministic FSTs. This raises the question
if we can achieve even better performance by adjusting the inductive bias. To investigate this, we
further pre-train SIP on 40,000 non-deterministic FSTs with up to 7 states, which we call SIP-nd7.
To control for the additional training data of SIP-nd7, we also further pre-train SIP-d4 with the same
number of deterministic FSTs with the same characteristics as in Section 4.3 (SIP-d4+). The results
in Table 2 show better performance of SIP-nd7, which supports the hypothesis that the inductive bias
can be adjusted. SIP-d4+ shows a smaller improvement over SIP-d4. Based on 5 additional FSTs
per setup to gain more statistical power, we found that the difference between SIP-nd7 and SIP-d4+
is statistically significant (p = 0.017, n = 20, paired permutation test).

7 TRANSFER TO NATURAL DATA

In this section, we investigate to what degree the inductive bias from pre-training on synthetic data
transfers to tasks with natural data that have been traditionally approached with finite state methods.

7.1 LOW-RESOURCE GRAPHEME-TO-PHONEME CONVERSION

Grapheme-to-phoneme conversion is the task of converting a word as a sequence of symbols (for
example, letters in the Latin alphabet) into a description of how this word is pronounced as letters
in the IPA alphabet. For example, a possible pronunciation of ‘explanation’ is [Ekspl@"neIS@n].
Grapheme-to-phoneme conversion can be part of text-to-speech pipelines and FSTs for this purpose
usually are two or three magnitudes larger than the FSTs we constructed for pre-training. Because
of this, it enables us to test how far beyond the pre-training distribution SIP remains helpful. We
focus on learning from small amounts of data, for which a structural inductive bias towards FSTs
should be helpful. We evaluate on 7 low-resource languages from different language families that
use their own scripts (Balinese, Coptic, Gothic, Lao, Sylheti, Telugu and Central Atlas Tamazight).
We obtained the data from Wikipron (Lee et al., 2020).

As a soft upper bound, we compare with Charsiu (Zhu et al., 2022) which is a ByT5-small model
that has been further pre-trained on 7.2 million examples of grapheme-to-phoneme conversion across
100 languages. Although Charsiu was not exposed to the scripts of the languages we chose, it may
have seen closely related languages with an overlap in the lexicon from which it can transfer.

The results are in Table 3. The original ByT5-small model performs worst on average despite being
a strong model for grapheme-to-phoneme conversion in general (Xue et al., 2022). On average
across the languages, SIP-d4 outperforms the other methods that pre-train on synthetic data as well
as ByT5. The difference between SIP-d4 and Set is statistically significant (p = 0.0004, paired
permutation test). On Coptic, SIP-d4 even comes close to Charsiu. Fine-tuning SIP-d4 without the
tunable prefix consistently leads to a drop in performance, with the exception of Gothic.

8

Under review as a conference paper at ICLR 2024

Table 3: Grapheme-to-phoneme conversion with 100 training examples. We show averages of 5
selections of training examples. PER is Phoneme Error Rate: edit distance / length of gold output.

ban cop got lao syl tel tzm Avg
Acc PER Acc PER Acc PER Acc PER Acc PER Acc PER Acc PER Acc↑ PER↓

Charsiu 68.3 .110 7.8 .579 67.0 .067 35.1 .238 47.6 .196 73.3 .070 18.6 .403 45.4 .238
ByT5 50.2 .233 1.0 .847 30.7 .269 1.9 .760 9.8 .598 6.9 .597 2.7 .851 14.8 .594
Set 53.9 .216 2.2 .742 58.2 .094 5.8 .595 28.2 .353 27.7 .293 6.4 .658 26.1 .421
TE 54.7 .183 1.9 .756 37.0 .174 5.1 .573 30.0 .309 16.2 .377 7.4 .644 21.8 .431
SIP-d4 59.2 .152 6.6 .563 56.5 .096 8.2 .498 39.8 .252 33.1 .228 11.0 .544 30.6 .333
-prefix 55.1 .168 3.2 .681 63.9 .072 7.8 .508 28.0 .333 28.9 .252 7.0 .593 27.7 .372

Table 4: Averages of accuracy and edit distance across 5-shot text editing tasks based on 8 draws
of training examples. We report results grouped by tasks that cannot be solved by a compact FST
(reverse-name, surname-initial), tasks that can be solved by FSTs, and overall averages.

reverse-name surname-initial FST Overall
Acc↑ ED↓ Acc↑ ED↓ Acc↑ ED↓ Acc↑ ED↓

ByT5 11.8 6.81 47.2 1.76 47.6 1.42 45.7 1.72
Charsiu 43.8 1.73 52.8 0.87 62.4 0.74 60.9 0.80
Set 79.0 1.34 41.5 3.37 68.2 0.71 67.4 0.89
TE 80.3 1.08 88.2 0.41 95.7 0.11 94.5 0.17
SIP-d4 92.4 0.34 97.2 0.10 91.6 0.13 91.9 0.14
-prefix 97.8 0.10 72.6 0.51 89.0 0.27 91.4 0.18

7.2 FEW-SHOT TEXT EDITING

Learning simple text editing tasks (Jane Doe → J. Doe) from a handful of examples with a Trans-
former requires a strong structural inductive bias to overcome competing explanations of the data
and hence provides a good benchmark for our approach. Text editing has been studied in the context
of program synthesis and we evaluate on 19 such tasks from the SyGuS competition 2017 (Alur
et al., 2017). Instead of predicting a program, our model directly operates on input/output examples.
We note that 17 of these tasks can be solved by compact FSTs, whereas two cannot. These two tasks
are reverse-name (Jane Doe → Doe Jane) and surname-initial (John Doe → Doe, J.), which require
tracking information about the first name (either in full or only the initial) in the states.

We report results for 5-shot experiments in Table 4. SIP-d4 and TE excel at this, reaching well above
90% accuracy on average whereas the other methods perform worse by a large margin. Charsiu does
not perform clearly better than baselines such as Set – even though it obtains excellent results on
grapheme-to-phoneme conversion. Interestingly, TE performs better than SIP-d4 on the tasks that
can be solved with FSTs, potentially because the initialization of the prefix for TE follows the
same distribution as during pre-training, which is not the case for SIP. However, SIP considerably
outperforms TE on the two tasks that cannot be compactly represented by FSTs, suggesting that
some of the mechanisms acquired during pre-training can sometimes be leveraged in other contexts
as well. In this case fine-tuning SIP-d4 without the tunable prefix leads only to a very small drop in
accuracy on average.

8 CONCLUSION

We present SIP, a simple and adjustable method for introducing a structural inductive bias into a
seq2seq model. Specifically, we focus on an inductive bias towards FSTs, one of the simplest com-
putational device that is useful for NLP applications. We achieve this by pre-training a Transformer
to simulate FSTs, i.e. to predict the output of an FST given an input string and a representation
of the FST. Our experiments show that our method imparts the desired inductive bias, resulting in
improved systematic generalization and better few-shot learning for FST-like tasks. In future work,
we plan to extend this methodology to more expressive formalisms such as Pushdown Transducers
which can be used for a wider range of downstream NLP tasks.

9

Under review as a conference paper at ICLR 2024

REPRODUCIBILITY

We release our code for generating synthetic data and running all experiments as supplementary
material, and will put it on github upon publication. The supplementary material also contains the
preprocessed natural data needed for reproducing our experiments as well as spreadsheets with raw
experimental results, each with the random seed and the configuration (including hyperparameters)
that was used. Moreover, we describe additional details about our procedure to generate the deter-
ministic FSTs in Appendix A (including pseudocode), how we generate non-deterministic FSTs in
Appendix B, and provide additional information about the model setup and hardware in Appendix F.
Upon publication, we will also release our pre-trained model as it is difficult to provide this anony-
mously.

REFERENCES

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri. Openfst:
A general and efficient weighted finite-state transducer library: (extended abstract of an invited
talk). In Implementation and Application of Automata: 12th International Conference, CIAA
2007, Prague, Czech Republic, July 16-18, 2007, Revised Selected Papers 12, pp. 11–23. Springer,
2007.

Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. Sygus-comp 2017: Results
and analysis. arXiv preprint arXiv:1711.11438, 2017.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

David Bieber, Rishab Goel, Dan Zheng, Hugo Larochelle, and Daniel Tarlow. Static predic-
tion of runtime errors by learning to execute programs with external resource descriptions. In
Deep Learning for Code Workshop, 2022. URL https://openreview.net/forum?id=
SIcz2sObJ-5.

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A Ortega. Neural networks and
the chomsky hierarchy. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=WbxHAzkeQcn.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jian, Bill Yuchen Lin, Peter West,
Chandra Bhagavatula, Ronan Le Bras, Jena D Hwang, et al. Faith and fate: Limits of transformers
on compositionality. arXiv preprint arXiv:2305.18654, 2023. URL https://arxiv.org/
abs/2305.18654.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ramanathan, Sesh Sadasi-
vam, Rui Zhang, and Dragomir Radev. Improving text-to-SQL evaluation methodology. In Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 351–360, Melbourne, Australia, July 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/P18-1033. URL https://aclanthology.org/P18-1033.

Matthew Finlayson, Kyle Richardson, Ashish Sabharwal, and Peter Clark. What makes instruction
learning hard? an investigation and a new challenge in a synthetic environment. In Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 414–426, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. URL
https://aclanthology.org/2022.emnlp-main.27.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Daniel Furrer, Marc van Zee, Nathan Scales, and Nathanael Schärli. Compositional generalization
in semantic parsing: Pre-training vs. specialized architectures. arXiv preprint arXiv:2007.08970,
2020.

Yinuo Guo, Zeqi Lin, Jian-Guang Lou, and Dongmei Zhang. Hierarchical poset decoding for com-
positional generalization in language. Advances in Neural Information Processing Systems, 33:
6913–6924, 2020.

10

https://openreview.net/forum?id=SIcz2sObJ-5
https://openreview.net/forum?id=SIcz2sObJ-5
https://openreview.net/forum?id=WbxHAzkeQcn
https://arxiv.org/abs/2305.18654
https://arxiv.org/abs/2305.18654
https://aclanthology.org/P18-1033
https://aclanthology.org/2022.emnlp-main.27

Under review as a conference paper at ICLR 2024

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: how
do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795, 2020.
URL https://www.jair.org/index.php/jair/article/view/11674.

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao
Wang, Marc van Zee, and Olivier Bousquet. Measuring compositional generalization: A com-
prehensive method on realistic data. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SygcCnNKwr.

Najoung Kim and Tal Linzen. COGS: A compositional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 9087–9105, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.731. URL https://aclanthology.org/
2020.emnlp-main.731.

Yoon Kim. Sequence-to-sequence learning with latent neural grammars. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 26302–26317. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
dd17e652cd2a08fdb8bf7f68e2ad3814-Paper.pdf.

Kundan Krishna, Jeffrey Bigham, and Zachary C. Lipton. Does pretraining for summariza-
tion require knowledge transfer? In Findings of the Association for Computational Linguis-
tics: EMNLP 2021, pp. 3178–3189, Punta Cana, Dominican Republic, November 2021. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.273. URL
https://aclanthology.org/2021.findings-emnlp.273.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In International Conference on Machine
Learning, pp. 2873–2882. PMLR, 2018. URL http://proceedings.mlr.press/v80/
lake18a/lake18a.pdf.

Jackson L. Lee, Lucas F.E. Ashby, M. Elizabeth Garza, Yeonju Lee-Sikka, Sean Miller, Alan Wong,
Arya D. McCarthy, and Kyle Gorman. Massively multilingual pronunciation modeling with
WikiPron. In Proceedings of the Twelfth Language Resources and Evaluation Conference, pp.
4223–4228, Marseille, France, May 2020. European Language Resources Association. ISBN
979-10-95546-34-4. URL https://aclanthology.org/2020.lrec-1.521.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL
https://aclanthology.org/2021.emnlp-main.243.

Yafu Li, Yongjing Yin, Yulong Chen, and Yue Zhang. On compositional generalization of neural
machine translation. In Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 4767–4780, Online, August 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.acl-long.368. URL https://aclanthology.org/
2021.acl-long.368.

Matthias Lindemann, Alexander Koller, and Ivan Titov. Compositional generalization without trees
using multiset tagging and latent permutations. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 14488–14506, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.
810. URL https://aclanthology.org/2023.acl-long.810.

R Thomas McCoy and Thomas L Griffiths. Modeling rapid language learning by distilling bayesian
priors into artificial neural networks. arXiv preprint arXiv:2305.14701, 2023. URL https:
//arxiv.org/abs/2305.14701.

R Thomas McCoy, Erin Grant, Paul Smolensky, Thomas L Griffiths, and Tal Linzen. Universal
linguistic inductive biases via meta-learning. In Proceedings of the 42nd Annual Conference of
the Cognitive Science Society, 2020. URL https://arxiv.org/abs/2006.16324.

11

https://www.jair.org/index.php/jair/article/view/11674
https://openreview.net/forum?id=SygcCnNKwr
https://aclanthology.org/2020.emnlp-main.731
https://aclanthology.org/2020.emnlp-main.731
https://proceedings.neurips.cc/paper/2021/file/dd17e652cd2a08fdb8bf7f68e2ad3814-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/dd17e652cd2a08fdb8bf7f68e2ad3814-Paper.pdf
https://aclanthology.org/2021.findings-emnlp.273
http://proceedings.mlr.press/v80/lake18a/lake18a.pdf
http://proceedings.mlr.press/v80/lake18a/lake18a.pdf
https://aclanthology.org/2020.lrec-1.521
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.acl-long.368
https://aclanthology.org/2021.acl-long.368
https://aclanthology.org/2023.acl-long.810
https://arxiv.org/abs/2305.14701
https://arxiv.org/abs/2305.14701
https://arxiv.org/abs/2006.16324

Under review as a conference paper at ICLR 2024

Stoyan Mihov and Klaus U. Schulz. Finite-State Techniques: Automata, Transducers and Bima-
chines. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2019.
doi: 10.1017/9781108756945.

Isabel Papadimitriou and Dan Jurafsky. Pretrain on just structure: Understanding linguistic inductive
biases using transfer learning. arXiv preprint arXiv:2304.13060, 2023. URL https://arxiv.
org/abs/2304.13060.

Kexin Pei, Jonas Guan, Matthew Broughton, Zhongtian Chen, Songchen Yao, David Williams-King,
Vikas Ummadisetty, Junfeng Yang, Baishakhi Ray, and Suman Jana. Stateformer: Fine-grained
type recovery from binaries using generative state modeling. In Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2021, pp. 690–702, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450385626. doi: 10.1145/3468264.3468607. URL
https://doi.org/10.1145/3468264.3468607.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Tianze Shi, Jonathan Herzig, Emily Pitler, Fei Sha,
and Kristina Toutanova. Evaluating the impact of model scale for compositional generaliza-
tion in semantic parsing. In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pp. 9157–9179, Abu Dhabi, United Arab Emirates, December
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.624. URL
https://aclanthology.org/2022.emnlp-main.624.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(1), jan 2020. ISSN 1532-4435.

Marcel-Paul Schützenberger. A remark on finite transducers. Information and Control, 4:185–196,
1961.

Richard Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic ma-
trices. The Annals of Mathematical Statistics, 35(2):876–879, 1964. ISSN 00034851. URL
http://www.jstor.org/stable/2238545.

Sara Stymne, Miryam de Lhoneux, Aaron Smith, and Joakim Nivre. Parser training with hetero-
geneous treebanks. In Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), pp. 619–625, Melbourne, Australia, July
2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-2098. URL https:
//aclanthology.org/P18-2098.

Yulia Tsvetkov, Sunayana Sitaram, Manaal Faruqui, Guillaume Lample, Patrick Littell, David
Mortensen, Alan W Black, Lori Levin, and Chris Dyer. Polyglot neural language models: A
case study in cross-lingual phonetic representation learning. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 1357–1366, San Diego, California, June 2016. Association for Com-
putational Linguistics. doi: 10.18653/v1/N16-1161. URL https://aclanthology.org/
N16-1161.

Yuhuai Wu, Markus N Rabe, Wenda Li, Jimmy Ba, Roger B Grosse, and Christian Szegedy. Lime:
Learning inductive bias for primitives of mathematical reasoning. In International Conference on
Machine Learning, pp. 11251–11262. PMLR, 2021.

Yuhuai Wu, Felix Li, and Percy S Liang. Insights into pre-training via simpler
synthetic tasks. Advances in Neural Information Processing Systems, 35:21844–
21857, 2022. URL https://papers.nips.cc/paper_files/paper/2022/hash/
89379d5fc6eb34ff98488202fb52b9d0-Abstract-Conference.html.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. Byt5: Towards a token-free future with pre-trained byte-to-byte mod-
els. Transactions of the Association for Computational Linguistics, 10:291–306, 2022.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

12

https://arxiv.org/abs/2304.13060
https://arxiv.org/abs/2304.13060
https://doi.org/10.1145/3468264.3468607
https://aclanthology.org/2022.emnlp-main.624
http://www.jstor.org/stable/2238545
https://aclanthology.org/P18-2098
https://aclanthology.org/P18-2098
https://aclanthology.org/N16-1161
https://aclanthology.org/N16-1161
https://papers.nips.cc/paper_files/paper/2022/hash/89379d5fc6eb34ff98488202fb52b9d0-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/89379d5fc6eb34ff98488202fb52b9d0-Abstract-Conference.html

Under review as a conference paper at ICLR 2024

l0 l1 l1 l1 l1
 a a a b
r1 r1 r1 r1 r0

 b b b b

(a) (b) (c) (d)

r0

r1
b

r2

c

a

al0 l1a

a,b,c

Figure 5: (a) - (c) shows a bimachine that is equivalent to Fig. 2b. (a) Left automaton Al, (b) Right
automaton Ar, (c) output function ψ. (d) shows an example run of the bimachine on the input aaab
which is mapped to bbbb.

Zhuosheng Zhang, Shuohang Wang, Yichong Xu, Yuwei Fang, Wenhao Yu, Yang Liu, Hai Zhao,
Chenguang Zhu, and Michael Zeng. Task compass: Scaling multi-task pre-training with task pre-
fix. In Findings of the Association for Computational Linguistics: EMNLP 2022, pp. 5671–5685,
Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.findings-emnlp.416. URL https://aclanthology.org/2022.
findings-emnlp.416.

Hao Zheng and Mirella Lapata. Compositional generalization via semantic tagging. In
Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 1022–1032,
Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.findings-emnlp.88. URL https://aclanthology.org/2021.
findings-emnlp.88.

Jian Zhu, Cong Zhang, and David Jurgens. ByT5 model for massively multilingual grapheme-to-
phoneme conversion. In Proc. Interspeech 2022, pp. 446–450, 2022. doi: 10.21437/Interspeech.
2022-538.

A GENERATING DETERMINISTIC FSTS

Before describing our procedure for sampling deterministic FSTs, we briefly establish notation.
An FST is a tuple ⟨Q,Σ,Γ, I, F,∆⟩, where Q is a finite set of states, Σ is the input alphabet, Γ
is the output alphabet, I ⊆ Q is a set of initial states, F ⊆ Q is a set of final states and ∆ ⊆
Q× (Σ∪ {ϵ})× (Γ∪ {ϵ})×Q are the transitions. We assume Σ = Γ and call it V for vocabulary.

For technical reasons, we exclude the three characters [,] and \ from the vocabulary as they are
interpreted as special characters by OpenFST, which we use for constructing and representing FSTs.

In addition to the shorthand for identity transitions (id), we also have shorthands for converting
upper case to lower case and vice-versa (lower-to-upper, upper-to-lower). We describe
our procedure to generate a deterministic FST with pseudocode in Algorithm 1. It receives as argu-
ment n (the number of states in the FST), f (number of final states), V (the vocabulary of this FST),
and probabilities P-ID, P-DROP, P-SHORTHAND. These probabilities control the likelihood of using
a shorthand, not drawing an outgoing edge (P-DROP) with a given symbol, and creating a single
identity transition (P-ID). We use CHOICE to denote a uniform random choice from a finite set.

We use P-ID = 0.2, P-DROP = 0.4, P-SHORTHAND = 0.15 in our experiments.

For all experiments with synthetic data, we generate 5000 training examples and 1000 test examples.
To reduce variance across tasks, we fix the vocabulary size to its maximum value (25) in the pre-
training data and only use printable ASCII characters.

B GENERATING NON-DETERMINISTIC FUNCTIONAL FSTS

It is not straightforward to directly generate non-deterministic FSTs that are guaranteed to express a
function. However, we can directly generate a bimachine, which then can be converted into an FST.

13

https://aclanthology.org/2022.findings-emnlp.416
https://aclanthology.org/2022.findings-emnlp.416
https://aclanthology.org/2021.findings-emnlp.88
https://aclanthology.org/2021.findings-emnlp.88

Under review as a conference paper at ICLR 2024

Algorithm 1 Generate a random deterministic FST

function GEN-DET-FST(n, f, V, P-ID, P-DROP, P-SHORTHAND)
Q = {0, . . . n− 1}
∆ = ∅
I = {0}
for q ∈ Q do

q′ = CHOICE(Q)
with prob P-SHORTHAND

s = CHOICE([id,lower-to-upper,upper-to-lower])

∆ := ∆ ∪ {q s : s−−→ q′)}
else

for σ ∈ V do
with prob P-DROP

no-op ▷ No outgoing edge with σ at q
else with prob P-ID

∆ := ∆ ∪ {q σ :σ−−−→ q′}
else

∆ := ∆ ∪ {q σ : CHOICE(V ∪{ϵ})−−−−−−−−−−−→ q′}
end with prob

end for
end with prob

end for
Eliminate states from Q through which no accepting path can go
Choose random subset F of Q with |F | = min(f, |Q|)
return minimized FST with states Q, transitions ∆, initial states I and final states F

end function

Algorithm 2 Generate output function for bimachine

function GEN-OUTPUT-ψ(nL, nR, V, P-ID = 0.2)
for qL ∈ 0, . . . , nL − 1 do

for qR ∈ 0, . . . , nR − 1 do
for σ ∈ V do

with prob P-ID
ψ(qL, σ, qR) := σ

else
ψ(qL, σ, qR) := CHOICE(V ∪ {ϵ})

end with prob
end for

end for
end for
return ψ

end function

Bimachines (Schützenberger, 1961) represent exactly the regular string functions, i.e. for every func-
tional FST there is a bimachine that represents it. A bimachine consists of two deterministic finite
state automata (called left and right) and an output function. Let AL be the left FSA with states
QL and transition function δL : QL × Σ → QL), and let AR bet the right FS with states QR

and transition function δR : QR × Σ → QR. The output function is ψ : Ql × Σ × Qr → Γ∗.
All states of AL and AR are final states. Given an input string x = σ1σ2σ3 . . . σn, a bima-
chine runs AL from left to right over x, keeping track of the states ql0, q

l
1, q

l
2, . . . q

l
n. It also

runs AR over the string x but this time from right to left, again keeping track of the states
qr0, q

r
1, q

r
2, . . . q

r
n that are visited. Then, the state sequence of the right automaton is reversed and

ψ is applied ‘elementwise’ as illustrated in Fig. 5. More formally, the output of the bimachine is
ψ(ql0, σ1, q

r
n−1)ψ(q

l
1, σ1, q

r
n−2)ψ(q

l
2, σ1, q

r
n−3) . . . ψ(q

l
n−1, σ1, q

r
0).

14

Under review as a conference paper at ICLR 2024

Table 5: Evaluation on deterministic FSTs with more states, showing absolute accuracies and edit
distances, corresponding to Fig. 4.

Num States 4 5 7 10
Gen. Type Model Acc↑ ED↓ Acc↑ ED↓ Acc↑ ED↓ Acc↑ ED↓
Iteration ByT5 37.8 5.87 58.7 3.21 48.2 3.71 45.7 3.87

Naive 42.6 4.41 60.5 2.20 47.7 3.16 43.6 3.65
Set 44.4 4.58 62.2 2.41 48.0 3.49 45.3 3.71
TE 61.3 2.49 78.9 0.86 55.7 2.29 50.7 2.95
SIP-d4 94.8 0.12 89.6 0.27 64.3 1.34 56.9 2.39

UC ByT5 47.4 1.49 62.6 1.05 61.9 1.29 54.1 1.70
Naive 44.9 1.52 61.6 1.08 59.3 1.30 51.8 1.68
Set 43.6 1.47 60.6 1.09 60.8 1.31 51.1 1.71
TE 57.3 1.13 65.9 0.98 65.7 1.17 55.3 1.60
SIP-d4 73.1 0.61 74.3 0.69 73.2 0.85 58.0 1.44

Bimachines can be compiled into FSTs with a simple product construction. For a bimachine
⟨AL, AR, ψ⟩, one can construct an equivalent FST as follows:

⟨QL ×QR,Σ,Γ, {sL} ×QR, QL × {sR},∆⟩

where sL and sR are initial states of AL and AR, and ∆ contains all transitions

∆ = {⟨qL, qR⟩ σ : ρ−−→ ⟨q′L, q′R⟩ | δL(qL, σ) = q′L, δR(q′R, σ) = qR, ρ = ψ(qL, σ, q′R)}

We refer to Mihov & Schulz (2019) for details and further information about bimachines.

In order to sample bimachines, we re-use Algorithm 1 with P-SHORTHAND = 0, and ignore the
outputs of the transitions, treating them as FSAs. We sample the output function according to
Algorithm 2. For the test data creation (Table 2), we use 5 states in the left FSA and 4 states in
the right FSA, and set P-DROP = 0.4. For creating the training data for SIP-nd7, we use 2 or 3 states
in either left or right automaton and set P-DROP = 0.6 to keep the length of the prefix low to save
GPU memory.

C UNSEEN COMBINATIONS OF TRANSITIONS

In the main paper, we described how we can withhold combinations of transitions. Here, we briefly
describe how we select which pairs of transitions we want to withhold. We only select adjacent
transitions, i.e. transitions where one can be used immediately after the other. In addition, some
transitions cannot be deleted without cutting off a vital initial or final state, which can lead to ftrain =
∅. We ensure this never happens by never withholding the first transition into each state based on a
depth-first traversal of the FST.

While this procedure generates an FST ftrain that requires more states/transitions than the original f ,
it is unlikely but not guaranteed that there is no equivalent FST to ftrain that is smaller than f .

D ADDITIONAL RESULTS WITH MORE STATES

In Fig. 4, we show accuracy relative to the accuracy of ByT5. Here, we show the absolute accuracies
and edit distances in Table 5.

E ADDITIONAL RESULTS WITH T5-BASE

We run a subset of the experiments starting off from a pre-trained T5-Base (Raffel et al., 2020)
instead of ByT5. This model is about one-third smaller than ByT5 (around 200 million instead of
300 million parameters). T5-Base uses a different vocabulary than ByT5, so we resize the output
layer to the vocabulary size of ByT5 and re-initialize it. For the input embeddings, we re-purpose
the first n embeddings in the T5-Base embedding matrix to represent the token ids according to

15

Under review as a conference paper at ICLR 2024

Table 6: Evaluating systematic generalization on
FST tasks with 4 states (cf. Table 1). Due to an
outlier task on UC, we additionally report the me-
dian after ‘/’.

Iteration UC
Acc↑ ED↓ Acc↑ ED↓

T5-Set 26.6 6.26 55.1/54.6 1.18/1.02
T5-SIP-d4 94.5 0.11 75.4/99.5 0.54/0.01

Table 7: Evaluation with T5-Base on non-
deterministic FSTs (cf. Table 2)

Iteration UC
Acc↑ ED↓ Acc↑ ED↓

T5-Set 77.9 0.73 81.7 0.53
T5-SIP-d4 83.3 0.56 86.1 0.37

Table 8: Grapheme-to-phoneme conversion with 100 training examples based on T5-Base. In con-
trast to the experiments in the main paper, we found that T5-SIP-d4 did not perform well on com-
pletely unseen scripts, so we mapped all Unicode code points to arbitrary ASCII characters. This
maintains the structure of the task and is completely reversible. T5-Set is evaluated in the same way.

ban cop got lao syl tel tzm Avg
Acc PER Acc PER Acc PER Acc PER Acc PER Acc PER Acc PER Acc↑ PER↓

T5-Set 47.9 .231 1.2 .783 6.7 .458 3.6 .643 6.6 .611 4.9 .612 2.7 .797 10.5 .591
T5-SIP-d4 59.1 .154 4.7 .640 69.6 .059 5.9 .566 22.1 .447 35.4 .191 12.5 .509 29.9 .367

the ByT5 tokenizer. While this is suitable as a starting point for further pre-training, we found that
directly fine-tuning T5-Base with these modifications led to very poor results and do not include
them here. Instead, we train T5-Set (analogous to Set) for a fair point of comparison.

We report a subset of the results from the main paper in for T5-Base in Tables 6 to 8.

F ADDITIONAL MODEL DETAILS & HYPERPARAMETERS & HARDWARE

SIP. For completeness, we now describe the order in which we arrange the transitions. While
the ordering of the transitions does not matter for expressing FSTs, the Transformer uses positional
encodings which might have impacts on the pre-training. We assemble the overall prefix by stacking
the individual vectors h0, . . . , hn of the transitions p0

σ0 : ρ0−−−−→ q0, . . . , pn
σn : ρn−−−−→ qn. We group the

transitions by their originating state (i.e. pi) and go over the states by their id, starting with 0, the
initial state.

During pre-training, we might encounter FSTs with different numbers of transitions within the same
batch. To handle this, we use padding encodings by reserving a special padding state and padding
symbol in the embedding matrices of states and symbols. To initialize the prefix for fine-tuning, we
use the average of 32 FST encodings (chosen at random) from pretraining.

For pre-training, we use embeddings of dimensionality 64 for states, embeddings of dimensionality
256 for symbols, and of dimensionality 16 to indicate final/non-final states.

Task embeddings. In order to enable faster adaption of the task embeddings than the rest of the
model to fit a particular task, we use a higher learning rate for the task embeddings (1.0) than for
the rest of the model (5 · 10−4) during pre-training. We also use a higher learning rate for the prefix
during fine-tuning, analogously to SIP.

Because we have to store 40,000 task embeddings (one for each generated FST), TE requires a lot
of memory. To reduce memory consumption, the task embeddings have a dimensionality of 180
and are up-projected to fit into the Transformer, analogously to W in Section 4.1. Nevertheless,
the memory consumption of the embeddings is substantial and we store them on a separate GPU.
Analogously to SIP-d4, we pre-train for 20 epochs.

Naive. We pre-train for a single epoch only as we found this achieved better results on downstream
tasks than training for 20 epochs.

16

Under review as a conference paper at ICLR 2024

Set. We sample 200,000 examples according to the procedure described by Wu et al. (2022) to match
our pre-training dataset size. Again, we found it more helpful for downstream task performance to
train for a single epoch rather than 20 epochs.

Fine-tuning Hyperparameters. The main hyperparameters involved for both SIP and TE are the
learning rates for the main model, and (separately) the learning rate of the tunable prefix. We chose
these manually. Generally, we found that using a learning rate of 1.0 was a good choice for the
prefix. Lester et al. (2021) report a similarly high learning rate to be useful for prompt tuning. For
the rest of the model, we found 3 · 10−4 and 5 · 10−4 to work well for SIP-d4 and TE, respectively.
For few-shot experiments, we use a somewhat smaller learning rate for TE for the main model
(3 · 10−4). We noticed that T5-SIP-d4 (see Appendix E) was more sensitive to the learning rate
choice in general than SIP-d4.

For any experiment, the chosen learning rates can also be found in the spreadsheet with the raw
experimental results in the supplementary material.

Hardware. We ran our experiments on NVIDIA GeForce RTX 2080 Ti GPUs (11264MiB RAM)
with driver version 535.54.03 and cuda version 12.2.

G ANALYSIS OF FINE-TUNED PREFIXES

To gain some understanding of how the prefix of tunable embeddings is used by the model and
what it contains, we consider the setup of fine-tuning only the prefix and keeping the rest of the
model unchanged. That is, all the task-specific information has to be captured in these embeddings.
Specifically, we fine-tune on the 5 FSTs from Section 6.2 for iteration generalization for 20 epochs
with a learning rate of 0.5.

We explore two questions:

1. Is the model robust towards different permutations of the fine-tuned prefixes? Intuitively,
these permutations correspond to changing the order in which transitions are listed, so
ideally the model should not be sensitive to that order.

2. Does the fine-tuned prefix represent the task-specific information in a similar way to how
FSTs were encoded during pre-training?

To address the first question, we randomly permute the tuned prefixes and compute accuracy on the
iteration generalization data before and after permuting the tuned prefixes. We use 20 permutations
per learned prefix and average results across the 5 FSTs. Overall, we find that this results only in a
small drop in accuracy: the median drop in accuracy is only around 1.3 percentage points, and the
arithmetic mean of the drop is around 7.1 percentage points. Most permutations do not have a big
impact on how the prefix is interpreted but a few permutations do have a stronger negative impact,
skewing the arithmetic mean.

To address the second question, we test if the learned prefix for a task t resembles an encoding of
an FST that solves t. For each of the 5 FSTs, we generate 10,000 distractors, i.e. FSTs that have the
same number of states and use the same vocabulary as the FST solving t. We define the similarity
of two prefixes p, q as follows:

sim(p, q) = max
π

1

n

∑
i

pTi qπ(i)

||pi||2 · ||qπ(i)||2

where π is a permutation, and pi is the i-th vector in prefix p, and prefixes p and q both have length n.
That is, we define the similarity between p and q as the highest possible average cosine similarities
between positions in p and q that one can achieve by assigning a position in p to exactly one position
in q and vice-versa.4 Taking the maximum over all permutations is justified by our results to the
first question above, which showed that the model is largely invariant to different permutations of
the tuned prefix.

4Computing the similarity sim(p, q) is relatively expensive because it involves solving the assignment prob-
lem (e.g. with the Hungarian algorithm). Instead of solving the assignment problem exactly, we approximate
it with the Sinkhorn algorithm (Sinkhorn, 1964). We then take the output of the algorithm (a matrix of ‘soft’
assignments) and for each position in p, we greedily select a matching position in q.

17

Under review as a conference paper at ICLR 2024

0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.500
Similarity of learned prefix to ground truth FST

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

M
ax

im
um

 si
m

ila
rit

y
to

 a
 d

ist
ra

ct
or

 F
ST

(0.466, 0.388)

(0.421, 0.364)
(0.389, 0.344)

(0.487, 0.412)

(0.357, 0.342)

Figure 6: Each dot represents a fine-tuned prefix when the rest of the model remains frozen during
fine-tuning. The x-coordinates represent the similarity to a ground truth gold prefix, and the y-
coordinates represent the maximum similarity to any of the 5× 10000 distractor FSTs. All dots are
below the diagonal, hence all learned prefixes are most similar to an encoding of the ground truth
FST.

Num. states Split Min Max Mean

4 train 2 11 4.66
4 test 4 30 18.97
5 train 2 14 5.39
5 test 4 30 19.53
7 train 2 20 6.12
7 test 4 30 20.13

10 train 2 25 7.31
10 test 4 30 20.62
21 train 2 30 11.80
21 test 5 30 23.07

Table 9: Distribution of input lengths of the train/test data we generate for the iteration generalization
experiments in Section 6. The tasks with 21 states are the non-deterministic FSTs from Section 6.4.

For every task t, we compute the similarity between the prefix p learned by fine-tuning on in-
put/output pairs and the union of encodings of the distractors and encodings of the gold standard
FST for task t. Where necessary, we truncate encodings of FSTs to have the same length as the
learned prefix. We present the results in Fig. 6 showing that all learned prefixes are most similar to
an encoding of the ground truth FST.

H LENGTH DISTRIBUTIONS

The input strings in the pre-training data we generate for SIP-d4 have a minimum length of 1, an
average length of 15.57 and a maximum length of 35. We report the length distributions for the
iteration generalization experiments in Section 6 in Table 9.

I GENERALIZATION TO LONGER STRINGS

In the main paper, we report results on iteration generalization where a model is trained on strings
such that each state has been visited at most 3 times, and is tested on strings where at least one
state is visited at least 4 times. Here, we explore a more extreme version, where there is a large gap
between the maximum length seen during training and the minimum length seen during testing. As

18

Under review as a conference paper at ICLR 2024

Table 10: Average generalization ability across 5 FSTs with 4 states. Models were trained on inputs
of length up to 15, and tested on much longer inputs.

Test length Model Max pretrain length Acc↑ ED↓
40 to 70 ByT5 1024 29.3 15.60

SIP-d4 35 69.4 2.61
90 to 110 ByT5 1024 1.4 55.37

SIP-d4 35 3.4 34.50
SIP-d4-long 110 81.5 1.09

another point of comparison, we further pre-train SIP-d4 on 40,000 FSTs with strings of length up
to 110 (SIP-d4-long).

We report results in Table 10. ByT5 struggles with this generalization setup across the board. SIP-
d4 performs remarkably well on lengths 40-70 which are beyond the lengths seen during its pre-
training. However, performance drops starkly when testing on inputs of length 90 to 110. We
hypothesize that this is because the relevant positional embeddings were not pre-trained by SIP. In
contrast, SIP-d4-long performs well on inputs of length 90 to 110, as it has seen strings of such
length during pre-training.

19

	Introduction
	Related Work
	Finite State Transducers
	Simulation-Induced Prior
	Pre-training
	Fine-tuning
	Constructing Pre-Training Data

	Methodology for Measuring Inductive Bias
	Evaluating SIP's Inductive Bias
	Setup and Baselines
	Systematic Generalization within the Pre-training Distribution
	More Complex FSTs
	Non-Deterministic FSTs

	Transfer to Natural Data
	Low-resource Grapheme-to-Phoneme Conversion
	Few-shot text editing

	Conclusion
	Generating deterministic FSTs
	Generating Non-deterministic Functional FSTs
	Unseen Combinations of Transitions
	Additional Results with More States
	Additional results with T5-Base
	Additional model details & Hyperparameters & Hardware
	Analysis of fine-tuned prefixes
	Length Distributions
	Generalization to longer strings

