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ABSTRACT

Learning generalizable representations for machine learning and computer vision
tasks is an active area of research. Typically, methods utilize data from multiple
domains and seek to transfer the invariant representations to new and unseen do-
mains. This paper proposes to perform causal inference on transportable, invariant
interventional distribution to improve the prediction performance under distribu-
tion shifts. Specifically, we first introduce a structural causal model (SCM) with
latent representations to capture the underlying causal mechanism that underpins
the data generation process. Subject to the proposed SCM model, we can per-
form the intervention on the spurious representations that are affected by domain-
specific factors and the latent confounders to eliminate the spurious correlations.
Guided by the proposed SCM and the invariant interventional distribution, we
propose a causal representation learning framework. Compared to state-of-the-art
domain generalization approaches, our method is robust and generalizable un-
der distribution shifts. Furthermore, the empirical study shows that the proposed
causal representation scheme outperforms existing causal learning baselines.

1 INTRODUCTION

While deep learning models have made significant strides in enhancing performance across various
applications, from image recognition to natural language processing, they are also known to exhibit
shortcomings such as poor generalization in out-of-distribution (OOD) scenarios, a lack of inter-
pretability, and issues related to fairness. These limitations can be attributed to spurious correlations
arising from selection biases within the data (Nagarajan et al., 2020), potentially leading to substan-
tial predictive errors. Various efforts have been dedicated to addressing these challenges through
domain generalization, transfer learning, explainable AI, and fair AI (Vu & Thai, 2020; Kusner
et al., 2017; Blanchard et al., 2021; Arjovsky et al., 2019; Li et al., 2018). However, they have had
varied success, often relying on additional assumptions and primarily exploiting correlations that
can prove to be spurious. Furthermore, many existing methods aimed at enhancing generalization
require data from multiple domains, which can be impractical in real-world applications.

In this study, we propose a novel framework grounded in causal learning. Causal learning employs
a structural causal model (SCM) to capture the underlying causal mechanisms that encode intrin-
sic, stable, and interpretable relationships within the data. Consequently, causal learning exhibits
robustness to changes in exogenous factors, invariance under distribution shifts, and strong perfor-
mance in OOD settings. Current endeavors in causal representation learning for improving OOD
prediction can be categorized into two main approaches: 1) learning without intervention and 2)
learning with intervention. Methods in the former category include stable representation learning
approaches (Cui et al., 2020; Cui & Athey, 2022; Kuang et al., 2018; 2020), as well as invariant
representation learning methods across multiple domains (Arjovsky et al., 2019; Koyama & Ya-
maguchi, 2020; Chalupka et al., 2014; Gao et al., 2021). Stable representation learning typically
focuses on learning causal or anti-causal representations of the target variable. Invariant representa-
tion learning, on the other hand, seeks to learn a set of invariant features based on specific invariance
criteria from data collected across multiple environments. However, these approaches often rely on
domain-specific knowledge and work effectively only when a sufficient number of diverse domains
is available during training. Additionally, they often assume causal sufficiency, neglecting the pres-
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ence of latent confounders, which can significantly limit their accuracy and applicability. Methods in
the latter category aim to perform either active and passive intervention in accordance with a prede-
fined or learned SCM (Mao et al., 2021; Liu et al., 2022; Wang et al., 2020; Mao et al., 2022; 2021).
Mao et al. (2021) approximate data from different domains by performing interventions based on a
predefined SCM, which allows them to generate synthetic interventional data. Subsequently, they
carry out invariant representation learning using both observed and interventional data. Liu et al.
(2022); Wang et al. (2020); Mao et al. (2022) learn causal representations under interventions and
aim to estimate the interventional distribution of causal effects between images and labels through
backdoor/frontdoor adjustments. While effective against confounders and domain biases, they often
require knowledge of the estimation of confounders and rely on intricate training procedures.

Inspired by these previous works, we introduce a novel framework that learns causal representations
and performs causal interventional inference to enhance OOD prediction. Our framework offers
three key contributions: 1) We utilize a novel SCM to capture intricate factors and their causal rela-
tions that underline the data generation mechanism. 2) Building upon the SCM, We tackle spurious
correlations by drawing inferences from interventional distributions, derived specifically from ob-
servational distributions. 3) We introduce a training procedure to estimate the essential observational
distributions required for computing interventional distributions. To demonstrate the effectiveness of
our framework, we conduct experiments on benchmark datasets with distribution shifts. Empirical
results showcase the power of our approach, yielding significant improvements over state-of-the-art
methods for OOD prediction, while maintaining comparable in-distribution accuracy.

2 RELATED WORK

There are two main approaches for learning domain-invariant representations: the causal approach
and the non-causal approach.

Causal approaches: Causal methods can be categorized by their use of interventions. Methods
that do not involve interventions include stable representation learning (Cui et al., 2020; Cui &
Athey, 2022; Janzing, 2019; Jiang & Veitch, 2022) and invariant feature learning (Arjovsky et al.,
2019; Koyama & Yamaguchi, 2020; Ahuja et al., 2020; 2021b; Rosenfeld et al., 2021; Ahuja et al.,
2021a). Stable representation learning methods aim to discover causal or anti-causal features, either
through strategies that balance covariates or by incorporating an SCM as a regularization compo-
nent. Invariant feature learning aims to obtain non-spurious representations by ensuring invariance
across environments, emphasizing their robust connections to the target variable. One well-known
approach within this realm is invariant risk minimization (IRM). IRM seeks to identify invariant
predictors corresponding to the causal parents of a target variable, given multiple environments that
correspond to different interventional distributions in a data generation process. Subsequent work
has introduced more efficient variants (Ahuja et al., 2020) and conducts further theoretical analy-
ses (Ahuja et al., 2021b). Nevertheless, it has been recently revealed that this principle has limita-
tions in certain scenarios (Rosenfeld et al., 2021; Ahuja et al., 2021a), where it may fail to uncover
such predictors. Various other strategies have also been explored, such as risk variance regulariza-
tion (Krueger et al., 2021), domain gradient alignments (Koyama & Yamaguchi, 2020), smoothing
cross-domain interpolation paths (Chuang & Mroueh, 2021), and task-oriented techniques (Zhang
et al., 2021). However, these approaches typically either require explicit domain differentiation
information or some level of target domain knowledge, making them challenging to apply in real-
world scenarios. Causal learning methods involving intervention encompass robust feature learning
through data augmentation and transportable interventional inference-guided feature learning tech-
niques. For instance, Mao et al. (2021) performs intervention on input data by identifying a set of
transformations that can be applied without compromising invariant features. However, the selection
of admissible transformations necessitates domain-specific expertise. Liu et al. (2022), Wang et al.
(2020), and Mao et al. (2022) estimate the invariant and transportable interventional distribution
between input and target through backdoor/frontdoor adjustments. Nevertheless, these approaches
require the identification and estimation of all covariation sources between input and target for back-
door adjustment, limiting their applicability in real-world scenarios. While Mao et al. (2022) avoids
this issue by employing front door adjustment, it is computationally expensive to train due to the
introduction of integration over the input space.

Non-causal approaches: The primary approach is disentangled representation learning. In the
early stages, methods focused on enforcing statistical independence among different dimensions of
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the learned representation (Achille & Soatto, 2018; Bengio et al., 2013; Burgess et al., 2018; Chen
et al., 2018). However, relying solely on statistical independence proved inadequate for achieving
effective disentanglement, primarily due to its non-identifiability (Locatello et al., 2019). Recent
approaches (Khemakhem et al., 2020; Locatello et al., 2020; 2019; Shen et al., 2022) have sought
to enhance disentanglement by incorporating auxiliary information, thereby enabling identifiability
and achieving improved results. Other approaches include “mix-up” kind of strategies (Zhang et al.,
2017; Yun et al., 2019; Hendrycks et al., 2019), adversarial training strategies (Volpi et al., 2018;
Wang et al., 2021) and frequency spectrum strategies (Sun et al., 2021; Zhang et al., 2023). However,
these strategies are heuristic and computationally expensive if adversarial training is required.

3 CAUSAL INFERENCE FROM INTERVENTIONAL DISTRIBUTION

In this paper, we focus on tasks that perform robust prediction under distribution shifts. We formu-
late, interpret, and solve such tasks from a causal perspective. We utilize our intuitions regarding the
data generation process into an SCM and leverage causal tools to construct invariant, transportable
prediction distribution and deduce properties of the ideal representations.

3.1 STRUCTURAL CAUSAL MODEL FOR DATA GENERATION PROCESS

Figure 1: SCM over (X,Z, Y,U).

Our ultimate objective is to identify the invariant distri-
bution that exhibits generalizability and transportability
across various domains. Previous works in causal repre-
sentation learning (Mao et al., 2021; 2022; Wang et al.,
2020; Liu et al., 2022) employ SCMs to describe the data
generation process for prediction tasks involving inputs
X and targets Y . The learning process seeks to cap-
ture the underlying causal mechanisms that adhere to a
directed acyclic graph (DAG). Building upon and refining
the SCMs used in prior methods, we introduce an SCM,
depicted in Figure 1. In this representation, X signifies the high-dimensional input data, such as
images, videos, or texts; Y represents the target variable for prediction; and Z = {Zc,Zs} denotes
the latent, high-level multidimensional representations responsible for generating X . Our proposed
SCM inherits several fundamental settings, including the decomposition of latent representations
Z into causal representation Zc and spurious representation Zs, and the generation of X by both
Zc and Zs. However, some existing approaches assume that spurious correlations arise from either
direct causal relations or a latent confounder between Zc and Zs. Such an assumption may fall short
in accounting for various types of biases present in the given data distribution. We incorporate un-
observed variables, denoted as U = {Uxy, Ux}, to encode external sources of factors. In particular,
Uxy represents the latent confounder that impacts both Zs and Y , creating spurious correlations be-
tween X and Y through the path X ← Zs ← Uxy → Y . The domain-specific factor Ux affects X
via the spurious representation Zs and influences Y through the path Ux → Zs → X ← Zc ← Y
given X . By incorporating Ux and Uxy , our SCM explicitly addresses two prevalent data biases:
selection bias and stereotype bias, which we will further elaborate on with examples later. Addi-
tionally, we select Zc as the anti-causal features of Y because empirical evidence has demonstrated
their superior performance in prediction tasks compared to causal features (Schölkopf et al., 2012;
Kilbertus et al., 2018; Lopez-Paz et al., 2017). Compared to Wang & Jordan (2021); Lu et al. (2021),
the differences between the SCMs lie in the modeling of high-level latent factors Ux and Uxy . Mao
et al. (2022) and Kong et al. (2022) adopt the same high-level latent factors as ours. However, they
assume that causal features as the parent variables to target while we use the child variables.

In accordance with our proposed SCM, traditional deep learning models employed for prediction
tasks may falter when confronted with distribution shifts. Under a probabilistic framework, the
primary goal of prediction tasks is to estimate the probability p(Y |X). We consider two distinct
data distributions: the source data distribution πs and the target data distribution πt. The training
data originates from πs, while the testing data is drawn from πt. Both of these data distributions
are generated within the framework of the same causal structure illustrated in Figure 1. We denote
the distributions for the source distribution as ps(·) and those for the target distribution as pt(·).
The distribution of latent domain-specific factor Ux exhibits variations between πs and πt, i.e.,
ps(Ux) ̸= pt(Ux). We further assume that the confounding effects remain invariant. This implies
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that the distribution of the latent confounder and its causal mechanisms concerning Zs and Y also
remains invariant, i.e., ps(Uxy) = pt(Uxy). The probability p(Y |X), which is captured by tradi-
tional machine learning models, unfortunately takes into account the covariance between Ux, X ,
and Y through the path Ux → Zs → X ← Zc ← Y when X is known. Due to the varying
distributions of p(Ux) , p(Y |X) fluctuates with distribution shifts, i.e., ps(Y |X) ̸= pt(Y |X).

To illustrate our concept, we employ an image from the Waterbird dataset to provide a conceptual
understanding of representations Zc and Zs. For image classification tasks, Zc typically contains
information intrinsic to the object itself, such as its shape or color (Lopez-Paz et al., 2017). In
contrast, Zs extracts information from other aspects of the image, such as the background. For
instance, in the case of an image featuring a waterbird flying over the sea, Zs represents the features
responsible for generating the sea in the background. The latent confounder Uxy is the high-level
factor that naturally leads to the co-occurrence of a water background with the waterbird object.
For example, the temperature, altitude, or humidity. We denote the bias that is caused by a high-
level invariant confounder between spurious features and the target as the stereotype bias. However,
domain-specific factor Ux can introduce spurious co-occurrences between the background and the
object. By influencing the distribution of X through data acquisition, Ux can select images in the
training set in such a way that the water background co-occurs with the water bird. We refer to these
types of biases as selection bias.

These distribution shifts, caused by variations in Ux, directly result in changes in Zs. Consequently,
the spurious co-occurrences between Zs and Y vary under distribution shifts and can compromise
model accuracy. For instance, a model that leverages the water background for predicting water-
birds may fail when presented with an image of a waterbird against a ground background. Our
intention is to encourage the model to rely on invariant features as opposed to features that may ex-
hibit strong but unstable statistical correlations for prediction. Numerous studies have suggested
the adoption of an intervention mechanism to eliminate paths involving variables vulnerable to
distribution shifts. The primary technical challenge lies in effectively integrating and deploying
this interventional mechanism without acquiring information for domain-specific and confound-
ing factors. As a solution, we propose the estimation of an interventional distribution, denoted
as p(Y |X, do(Zs)). This distribution describes a scenario where the influence from Ux and Uxy

to X is mitigated through the intervention on the representation Zs. Hence, p(Y |X, do(Zs)) ef-
fectively prevents the Ux from influencing Y , and is invariant and transportable across domains,
i.e., ps(Y |X, do(Zs)) = pt(Y |X, do(Zs)). We then identify and estimate the p(Y |X, do(Zs)) in
accordance with the proposed SCM, utilizing the corresponding observational distributions. This
process is detailed in Section 3.2.

3.2 CAUSAL INTERVENTIONAL INFERENCE

Figure 2: Intervention on the proposed SCM, where (a) is the original graph and (b) is the mutilated
graph after intervention on Zs.

Intuitively, we aim to infer from the interventional regime, where all the arrows into variable Zs

are removed as shown in Figure 2(b). We denote the original graph before intervention in Figure.
2(a) as G and the interventional graph in Figure. 2(b) as G′ (as known as the mutilated graph). The
difference between G and G′ is the removal of links Uxy → Zs and Ux → Zs. A key contribution
of this paper is the ability to represent the distribution of y given x in the mutilated graph as a
function of observational distributions in the original graph. Theorem 3.1 demonstrates that the
interventional distribution p(y|x, do(zs)) can be computed using a set of observational distributions.
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Theorem 3.1. Subject to the SCM in Figure 2(a), the interventional distribution p(y|x, do(zs)) can
be computed through Eq. (1) with a set of observational distributions.

p
(
y|x, do(zs)

)
=

∫
zc

p(y|zc)p(x|zc, zs)p(zc) dzc∫
zc

p(x|zc, zs)p(zc) dzc
(1)

We provide detailed proof in Appendix A. p(y|x, do(zs)) is invariant across domains when given
x and zs. However, it is important to note that p(y|x, do(zs)) depends on zs. To infer the label
for an input xt, it is imperative to utilize the true value of Zs for xt to accurately account for the
confounding effects. We construe p(zs|x) as a proxy distribution that enables us to derive the true
values of Zs from an input X . We will elaborate in Section 4.2 about how to approximate this proxy
distribution. By applying Theorem 3.1, we have

Ep(zs|x)[p(y|x, do(zs))] ≈
1

N

N∑
n=1

[

L∑
l=1

p(y|zc,l)ω(zc,l, zs,n)], ω(zc,l, zs,n) =
p(x|zc,l, zs,n)∑L

l′=1 p(x|zc,l′ , zs,n)
(2)

where zc,l ∼ p(zc), zs,n ∼ p(zs|x). The intuition of the interventional distribution
Ep(zs|x)

[
p
(
y|x, do(zs)

)]
is that instead of performing inference using a single zc through p(y|zc),

we utilize a set of zc,l through the linear combination of p(y|zc,l) weighted by w(zc,l, zs,n). The
weight w(zc,l, zs,n) value is high for samples whose zc is compatible with that of x.

According to Eq. (2), calculating Ep(zs|x)
[
p
(
y|x, do(zs)

)]
necessitates observational distributions

such as p(y|zc), p(x|zc, zs), p(zc), as well as the distributions p(zc|x), p(zs|x) to extract zc, zs
from the input x. Since we can approximate p(zc) =

∫
p(zc|x)p(x)dx by marginalizing x, our

goal is to develop a causal representation learning framework that constructs and estimates the dis-
tributions p(y|zc), p(x|zc, zs), p(zc|x), and p(zs|x) based on the proposed SCM, all from a single
observational dataset. Subsequently, we utilize these distributions to construct the interventional
distribution for inferring labels for testing data.

4 CAUSAL REPRESENTATION LEARNING AND INTERVENTIONAL INFERENCE

We propose a framework for performing causal representation learning and interventional inference.
The framework comprises three steps. Given the SCM architecture, we first parameterize the SCM
with conditional distributions. We then model the conditional distributions using neural networks
and learn their parameters by minimizing the logarithm marginal likelihood over observed variables,
denoted as − log p(x, y). With the estimated distributions, we are able to calculate interventional
distributions for inference. We introduce the procedures of SCM parameterization and learning in
Section 4.1, while introducing the inference procedure in Section 4.2.

4.1 SCM-GUIDED REPRESENTATION LEARNING

SCM parameterization: To parameterize the proposed SCM, we factorize the joint distribution of
all the variables using the chain rule, as illustrated in Eq. (3).

p(x, y, zc, zs, ux, uxy) = p(ux)p(uxy)p(y|uxy)p(zc|y)p(zs|ux, uxy)p(x|zc, zs) (3)

Notably, we employ Bayes’ theorem and transform p(zc|y) into p(y|zc)p(zc)
p(y) to explicitly model

p(y|zc) for classification. Since zc, zs are unobserved, we leverage expressive neural networks to
parameterize the corresponding conditional distributions. Especially, we model p(x|zc, zs) with a
decoder and parameter Φ, p(y|zc) with a classifier and parameter Ψ. We regard the distributions
related to ux and uxy as prior distributions. To learn the unobserved representation zc and zs given
x, we introduce a variational distribution q(zc, zs|x) as approximation for p(zc, zs|x). We model
q(zc, zs|x) with encoders and parameter Θ. We further assume that q(zc, zs|x) = q(zc|x)q(zs|x)
and parameterizes two encoders q(zc|x), q(zs|x) with Θc,Θs respectively.

SCM parameters learning: Subject to the above parameterization, we learn the parameters
{Θ,Φ,Ψ} by minimizing an upper bound of − log p(x, y), as outlined in Eq. (4):

− log p(x, y) ≤Lobj(x, y,Θ,Φ,Ψ)

=− Ep(ux,uxy)KL
(
qΘ(zs|x)||p(zs|ux, uxy)

)
−KL

(
qΘc(zc|x)||p(zc)

)
+ EqΘc (zc|x)[log pΨ(y|zc)] + EqΘ(zc,zs|x)[log pΦ(x|zc, zs)]

(4)
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The detailed derivations can be found in Appendix B.2. Guided by the training objective, we con-
struct a learning framework with two encoders, a decoder, and a classifier, as illustrated in Figure 3.

Figure 3: The proposed causal represen-
tation learning framework

The two KL divergences serve as regularization, align-
ing the encoder distributions with prior distributions, no-
tably p(zs|ux, uxy) and p(zc). Essentially, the spuri-
ous representation zs varies with changes in ux, re-
flecting their domain-specific and latent confounding ef-
fects. Ux denotes any information specific to the do-
main. We adopt a common simplification procedure
to assume that Ux is a discrete variable represents the
domain index (Lu et al., 2021). p(Ux) follows a cat-
egorical distribution. Additionally, we further assume
q(zs|x), q(zc|x), and p(zs|ux, uxy) follow Gaussian dis-
tributions. p(zs|ux, uxy) has distinct means and vari-
ances with different values of ux. We collectively refer
to these variables as U = {Ux, Uxy} and the distinct classes of U are associated with the diverse
values of Ux.. In practice, we need to pre-determine the number of classes for the variable U . After
each epoch, we cluster the learned zs values and adjust the means and variances for p(zs|ux, uxy)
based on empirical values from each cluster. Without extra data, we assume p(zc) adheres to a
standard multivariate normal distribution. We summarize the training procedure in Algorithm 1.
Algorithm 1 Causal Representation Learning Procedure
1: Input: Training set D over {(X, Y )}; p(U); |U | = J .
2: Goal: Estimate qΘc(Zc|X), qΘs(Zs|X), pΦ(X|Zs,Zc), and pΨ(Y |Zc).
3: Initialize encoders, decoder, and classifier.
4: for i = 1, 2, · · · ,M do
5: Obtain one input observation xi

6: Input X = xi into the encoder qΘs(Zs|X), obtain zi
s = µzs(x

i)
7: end for
8: Cluster {zi

s}Mi=1 into J bins with Kmeans algorithm. For each bin U = uj , we set the mean and variance
for p(Zs|U = uj) as the empirical mean and variance of the zss in this bin.

9: repeat
10: for i = 1, 2, · · · ,M do
11: Obtain one input observation and its label (xi, yi) from training batch.
12: Sample zi

s ∼ qΘs(zs|xi), zi
c ∼ qΘc(zc|xi).

13: Input Zs = zi
s, Zc = zi

c into the decoder and compute pΦ(x
i|zi

c,z
i
s).

14: Input Zc = zi
c into the classifier and compute pΨ(y

i|zi
c).

15: end for
16: Update Θ,Φ,Ψ by minimizing the training objective in Eq. (4) via gradient descent.
17: for i = 1, 2, · · · ,M do
18: Obtain one input observation xi

19: Input X = xi into the encoder qΘs(Zs|X), obtain zi
s = µzs(x

i)
20: end for
21: Cluster {zi

s}Mi=1 into J bins with Kmeans algorithm. For each bin U = uj , we update the mean and
variance for p(Zs|U = uj) as the empirical mean and variance of the zss in this bin.

22: until Converge
23: Output qΘ̂c

(Zc|X), qΘ̂s
(Zs|X), pΦ̂(X|Zc,Zs),and pΨ̂(Y |Zc).

Intuition of the learning framework: Our causal representation learning captures intrinsic mech-
anisms from a provided causal graph using partially observed data. Unlike conventional parameter
learning methods that handle missing data, our framework employs deep learning models to tackle
the intricate mapping from the input x to the representations zs and zc. The primary challenge in
our learning procedure stems from the presence of a substantial number of latent variables. Among
the six variables of interest in the SCM, we only have access to the values of X and Y . The absence
of observations for Zs, Ux and Uxy necessitates our framework to rely on strong assumptions. We
also need to estimate p(zs|ux, uxy) during training in order to effectively regularize the learning of
q(zs|x). Nevertheless, despite these strong assumptions, our framework demonstrates the capability
to identify and learn causal representations, even when operating solely within a single observational
training domain and without requiring any domain/index knowledge.

Identifiability of representation Z = {Zc,Zs}: Establishing the identifiability of the representa-
tions Z is a crucial prerequisite for enabling causal intervention within our framework. We assess
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the identifiability of the learned Z in our model, leveraging advanced theoretical results in the field.

Proposition 4.1. If the data distribution is generated via the SCM in Figure 1, the obtained Z from
within our training framework is identifiable up to an affine transformation.

Kivva et al. (2022) provides rigorous theoretical guarantees regarding the identifiability of the
learned Z subject to a set of assumptions governing p(z) and mapping function from z to x, denoted
as f . These assumptions encompass the following aspects: (1) p(z) follows a distribution with the
format p(z) =

∑J
j=1 λjN (µj ,Σj), J ≥ 1; (2) f takes the form of a piecewise affine function; (3)

f is injective. In particular, our formulation of p(zs) resembles a mixture Gaussian distribution:
p(zs) =

∑J
j=1 λjN (µj ,Σj) with p(U = uj) = λj and |U | = J . Meanwhile, p(zc) adheres to a

standard normal distribution, satisfies the assumption (1) by setting J = 1. Furthermore, a multi-
layer perceptron utilizing leaky ReLU activations can be recognized as a piecewise affine function.
Based on Corollary H.4 in Kivva et al. (2022), if such a function uses leaky ReLU activations and
features a monotonically increasing number of hidden neurons, it’s considered injective. Therefore,
in our framework, we design f (serving as the decoder) as leaky ReLU networks that match the
encoders in complexity and fulfill assumptions (2) and (3). This identifiability assurance empow-
ers us to discern Zc,Zs. This, in turn, allows us to declare our ability to intervene on the desired
representation and obtain the invariant interventional distribution to infer from.

Disentanglement between zs and zc: Our learning process disentangles zs from zc using asym-
metric regularizations such as the distinct prior assumptions for p(zs) and p(zc) and the inclusion
of downstream tasks for zc. It’s worth noting that our framework, which does not require domain-
specific knowledge, cannot theoretically guarantee a perfect disentanglement between these repre-
sentations. This limitation serves as a motivation for our method to perform inference from interven-
tional distribution. If the anti-causal representation zc were perfectly disentangled, one could obtain
theoretically optimal OOD prediction by inferring directly from p(y|zc). However, in cases where
zc contains some degree of zs information, interventional inference, which estimates a weighted
expectation of p(y|zc), can effectively mitigate errors arising from the representation learning pro-
cess and outperform the OOD prediction performance compared to inferring solely from p(y|zc).
Empirical results on multiple benchmark distribution shift datasets have confirmed these assertions.

4.2 INTERVENTIONAL INFERENCE

The framework for learning causal representation furnishes the observational distributions required
to compute interventional distributions. For performing interventional inference of an input xt, our
goal is to infer its label from the expected interventional distribution Ep(zs|xt)[p(y|xt, do(zs))]. In
particular, we approximate p(zs|x) with qΘ̂s

(zs|x), p(zc|x) with qΘ̂c
(zc|x)1. We observe from

Figure 1 that X is independent of U given Z = [Zc,Zs], rendering p(X|Z) invariant. There-
fore, we choose to obtain the identifiable zt

s from qΘ̂(z|xt) with a high p(xt|zt). However, as
q(zs|xt) represents a variational estimation of the desired proxy distribution p(zs|xt), we average
the interventional distribution over multiple samples of zs from q(zs|xt). In practice, randomly
obtaining a zs value is likely to yield a low p(X|Z) and contribute minimally to the calculation
of the interventional distribution. However, due to the high dimensionality of the input data x, the
differences between p(x|zc,l, zs,n)s with distinct zc,l are significantly large. This results in a weight
ω(zc,l, zs,n) that is close to 1 for the zc,l with the highest probability. This situation contradicts our
objective of mitigating the spurious correlations’ influence through summation and could lead to
erroneous predictions due to the imperfect disentanglement of zc and zs. Hence, we employ Baye’s
theorem to transform p(x|zc, zs) into p(zc, zs|x), which has lower dimensions.

ω(zc,l, zs,n) =
p(x|zc,l, zs,n)∑L

l′=1 p(x|zc,l′ , zs,n)
=

p(zc,l,zs,n|x)
p(zc,l,zs,n)∑L

l′=1

p(zc,l′ ,zs,n|x)
p(zc,l′ ,zs,n)

(5)

We can estimate p(zc, zs) using p(zc, zs|x) as follows: p(zc, zs) =
∫
x
p(zc, zs|x)p(x) dx ≈

1
L

∑L
k=1 p(zc, zs|xk),xk ∼ p(x). Given these approximations, we can compute the expected

1Since we approximate p(zc,zs|x) using q(zc,zs|x) and further assume q(zc,zs|x) = q(zc|x)q(zs|x),
p(zc|x) and p(zs|x) can be approximated by q(zc|x) and q(zs|x) respectively. For example, p(zs|x) =∫
zc

p(zs,zc|x) dzc ≈
∫
zc

q(zs,zc|x) dzc =
∫
zc

q(zs|x)q(zc|x) dzc = q(zs|x)
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interventional distribution using only pΨ̂(Y |Zc) and qΘ̂(Zc,Zs|X), as outlined in Equation (6).

Ep(zs|xt)[p(y|xt, do(zs))] =
1

N

N∑
n=1

[
L∑

l=1

pΨ̂(y|zc,l)ω(zc,l, z
t
s,n)]

ω(zc,l, z
t
s,n) =

qΘ̂(zc,l,z
t
s,n|x

t)∑L
k=1 qΘ̂(zc,l,zt

s,n|xk)∑L
l′=1

qΘ̂(zc,l′ ,z
t
s,n|xt)∑L

k=1 qΘ̂(zc,l′ ,z
t
s,n|xk)

zt
s,n ∼ qΘ̂s

(zs|xt), zc,l ∼ qΘ̂c
(zc|xl),xl,xk ∼ D

(6)

The procedure for interventional inference is detailed in Algorithm 2 in Appendix C. For efficiency,
we do not enumerate zc for every training input. We choose L samples of zc,l based on the top
weights w(zc,l, z

t
s,n). The optimal L value is determined empirically during inference.

5 EXPERIMENTS

We demonstrate the effectiveness of our proposed method, which we denote as Causal
Representation Learning and Interventional Inference (CRLII), in terms of OOD pre-
diction. We conduct experiments on both the synthetic and real benchmark dis-
tribution shift datasets against state-of-the-art domain generalization (DG) baselines.

Table 1: Comparison with SOTA methods
on CMNIST data set.

Algorithms Prediction Acc (%)
In-distribution OOD

ERM 99.6 12.3
RSC 96.3 20.5
IRM 98.4 19.9
GenInt 58.5 31.6
CTrans 82.9 51.4
CRLII 96.0 69.8

Datasets. We evaluate our CRLII method on a synthetic
dataset, Colored-MNIST, and three real datasets: PACS,
VLCS, and OfficeHome. CMNIST (Mao et al., 2022)
contains digit images from 10 different categories.2 In the
training domain, the data is generated such that digits are
associated with different background or foreground colors.
However, in the testing domain, the digits’ colors are in-
dependent. PACS (Li et al., 2017) contains images from
four domains: Photo (P), Art painting (A), Cartoon (C),
and Sketch (S), with each domain comprising images in 7
categories. VLCS (Torralba & Efros, 2011) has images of 5 categories from four domains: PASCAL
VOC 2007 (P), LabelMe (L), Caltech (C), and Sun (S). OfficeHome (Venkateswara et al., 2017) in-
cludes images from four domains: Artistic (A), Clipart (C), Product (P), and Real World (R), with
65 object categories related to office and home settings. We use the standard leave-one-domain-out
protocol, as per previous domain generalization methods, testing on images from one domain and
training on the others.

Baselines. We compare with three types of approaches. First, we compare to the correlation-based
classifier and adopt the state-of-the-art classifier as the ERM approach for each dataset. We then
compare with causal DG approaches, including IRM(Arjovsky et al., 2019), GenInt(Mao et al.,
2021), CTrans(Mao et al., 2022), SageNet(Nam et al., 2021), MatchDG(Mahajan et al., 2021). For a
comprehensive comparison, especially on real datasets, we also compare to other DG methods, such
as DRO(Sagawa et al., 2019), MLDG(Li et al., 2017), CORAL(Sun & Saenko, 2016), RSC(Huang
et al., 2020), Mixup(Yan et al., 2020), etc.

Implementation Details. For CMNIST, we use a two-layer MLP for our encoders and decoder. For
PACS, VLCS, and Office-Home, we utilize a pre-trained ResNet-50 on ImageNet as the encoder
backbone and select a decoder of comparable complexity. We set the number of classes for |U |
to 2 for CMNIST and 3 for the other datasets. Results are averaged over 5 trials. For detailed
hyperparameter choices and ablation studies, see the Appendix.

We present the empirical results for the synthetic dataset in Table 1, and for the real
datasets in Tables 2 and 3. As evident from Table 1, our CRLII method achieves opti-
mal OOD performance on the CMNIST dataset while ensuring comparable in-distribution ac-
curacy. Notably, CRLII significantly outperforms leading methods such as CTrans, GenInt,
and RSC by a margin of at least 18.4%. In our experiment setup, each combination

2We adopt the most challenging setting of the colored MNIST dataset as one of our baselines (Mao et al.,
2022). This setting creates a significant difference between the distributions of training domain images and
testing domain images, making correlation-based models capture spurious correlations between color and dig-
its.
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of color and digit is treated as a unique scenario for the latent variables U (or a do-
main). Within this context, zs captures color information and zc embodies shape details.

Table 2: Comparison with SOTA methods on PACS.

Algorithms PACS
A C P S Avg

ERM 84.8±1.3 76.4±1.1 96.7±0.6 76.1±1.0 83.5
GroupDRO 83.5±0.9 79.1±0.6 96.7±0.3 78.3±2.0 84.4
MLDG 85.5±1.4 80.1±1.7 97.4±0.3 76.6±1.1 84.9
CORAL 88.3±0.2 80.0±0.7 97.5±0.3 78.8±1.3 86.2
MMD 86.1±1.4 79.4±0.9 96.6±0.2 76.5±0.7 84.6
RSC 85.4±0.8 79.7±1.8 97.6±0.3 78.2±1.2 85.2
Mixup 86.1±0.7 78.9±0.8 97.6±0.1 75.8±1.8 84.6
DANN 86.4±0.8 77.4±0.8 97.3±0.4 73.5±2.3 83.6
CDANN 84.6±1.8 75.5±0.9 96.8±0.3 73.5±0.6 82.6
MTL 87.5±0.8 77.1±0.7 96.4±0.8 77.3±1.8 84.6
ARM 86.8±0.6 76.8±0.7 97.4±0.3 79.3±1.2 85.1
IRM 84.7±0.4 80.0±0.6 97.2±0.3 79.3±1.0 85.5
SagNet 87.4±1.0 80.7±0.6 97.1±0.1 80.0±0.4 86.3
MatchDG 85.7±1.6 82.5±0.7 97.9±0.7 77.3±1.1 85.9
CRLII 89.2±0.7 84.6±1.2 97.1±0.5 83.6±0.6 88.6

This configuration results in a training
dataset spanning two domains, i.e., |U | =
2. Empirically, the color information
across these domains is distinct, as evi-
denced by the considerable distance be-
tween p(zs|u = 0) and p(zs|u = 1). For
instance, images of the digit 1 might ap-
pear against either a black or cyan back-
ground. The significant difference in the
distributions of the spurious representation
zs enhances CRLII’s ability to effectively
disentangle zs from zc, enabling more pre-
cise zc extraction for interventional infer-
ence. Thus, we contend that our method
excels on datasets aligning with our SCM
assumptions.

Table 3: Comparison with SOTA methods on VLCS and OfficeHome datasets.

Algorithms VLCS OfficeHome
C L S V Avg A C P R Avg

ERM 98.0±0.4 62.6±0.9 70.8 ±1.9 77.5 ±1.9 77.2 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
GroupDRO 98.1± 0.3 66.4 ± 0.9 71.0 ± 0.3 76.1 ± 1.4 77.9 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
MLDG 98.5± 0.3 61.7± 1.2 73.6± 1.8 75.0± 0.8 77.2 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
CORAL 96.9± 0.9 65.7± 1.2 73.3± 0.7 78.7± 0.8 78.7 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD 98.3± 0.1 65.6± 0.7 69.7± 1.0 75.7± 0.9 77.3 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
RSC 97.5± 0.6 63.1± 1.2 73.0± 1.3 76.2± 0.5 77.5 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5
Mixup 98.4± 0.3 63.4± 0.7 72.9± 0.8 76.1± 1.2 77.7 62.4 ± 0.8 54.8 ± 0.6 77.3 ± 0.3 79.2 ± 0.2 68.4
DANN 98.5± 1.3 64.9± 1.3 72.6± 1.4 78.7± 1.7 78.2 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN 97.6± 0.6 65.2± 0.8 73.4± 1.4 76.9± 0.5 78.3 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL 97.6± 0.6 60.6± 1.3 71.0± 1.2 77.2± 0.7 76.6 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
ARM 97.2± 0.5 62.7± 1. 70.6± 0.6 75.8± 0.9 76.6 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
IRM 98.6±0.1 66.0 ±0.9 72.3 ±0.6 77.3 ±0.9 78.5 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
SagNet 97.3± 0.4 61.6± 0.8 73.4± 1.9 77.6± 0.4 77.5 63.4± 0.2 54.8± 0.4 75.8± 0.4 78.3± 0.3 68.1
CRLII 97.3± 0.2 67.2± 0.1 73.0± 0.2 78.8± 0.1 79.1 63.1 ±0.1 56.9±0.2 78.8±0.2 79.1±0.1 69.5

To evaluate our CRLII method more com-
prehensively, we applied it to more challenging datasets comprised of images sourced from the real
world.

Figure 4: Visualization of Grad-CAMs
on PACS dataset

As shown in Table 2, our CRLII achieves superior OOD
prediction performance on the PACS dataset, surpassing
the next best by a margin of 2.3%. Additionally, it outper-
forms SOTA methods in the Art painting, Cartoon, and
Sketch domains. We visualize the GradCAM of ERM,
SageNet, and CRLII in Figure 4 and observe that our
CRLII captures more invariant, discriminative features of
the object. Our method also attains optimal average per-
formance on both the VLCS and OfficeHome datasets,
though it only surpasses SOTA methods in 2 out of the 4
domains for these datasets. The effectiveness of our CR-
LII method relies on how a given data distribution aligns
with our assumptions. Empirical results underscore the capability of our proposed method to di-
minish spurious correlations and deliver robust, generalizable predictive performance across various
applications.

6 CONCLUSION

In conclusion, our proposed framework for causal representation learning and interventional infer-
ence effectively disentangles robust and stable causal representations from spurious ones. This not
only offers an interpretable explanation for causal representation in images but also enhances out-
of-distribution prediction performance by estimating the interventional cause-effect between inputs
and their corresponding labels. Empirical results further demonstrate that our approach surpasses
SOTA domain generalization methods on benchmark distribution shift datasets.
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A PROOF FOR THEOREM 3.1

Proof. To estimate p
(
y|x, do(zs)

)
, we introduce variables Zc:

p
(
y|x, do(zs)

)
=

∫
zc

p
(
y|zc,x, do(zs)

)
p
(
zc|x, do(zs)

)
dzc (7)

We can simplify the calculation of p(y|zc,x, do(zs)) using Pearl’s Do-Calculus Rules.

p
(
y|zc,x, do(zs)

)
=p

(
y|zc, do(zs)

)
(Y ⊥⊥X|Zc,Zs)GZs

According to Rule 1

=p(y|zc) (Y ⊥⊥ Zs|Zc)GZs
According to Rule 3

(8)

We employ the Backdoor Adjustment Theorem and Pearl’s Do-Calculus Rule 2 to estimate
p
(
zc|x, do(zs)

)
,

p(zc|x, do(zs)) =
p
(
zc|do(zs)

)
p
(
x|zs, do(zs)

)
p
(
x|do(zs)

) Bayes’s Theorem

=
p
(
zs|do(zs)

)
p(x|zc, zs)

p
(
x|do(zs)

) (X ⊥⊥ Zs|Zc)GZs
According to Rule 2

(9)

Between Zs,Zc, there is a valid backdoor path from Zc ← Y ← Uxy → Zs, we can directly apply
the Backdoor Adjustment Theorem with a valid adjusting set {Y }:

p
(
zc|do(zs)

)
=

∑
y

p(zc|y,zs)p(y)

=
∑
y

p(zc|y)p(y) (Zc ⊥⊥ Zs|Y )G

= p(zc)

(10)

Between Zs,X , there is a valid backdoor path from X ← Zc ← Y ← Uxy → Zs. We are able to
adjust on {Y }, {Zc} or {Y,Zc}3. In our case, we choose to adjust on {Zc}:

p
(
x|do(zs)

) Adjust on Zc
=

∫
zc

p(x|zc, zs)p(zc) dzc (11)

Substitute Eq. equation 10, equation 11 into Eq. equation 9, we obtain:

p
(
zc|x, do(zs)

)
=

p(x|zc, zs)p(zc)∫
zc

p(x|zc, zs)p(zc) dzc
(12)

Substitute Eq. equation 12 and equation 8 into Eq. equation 7, we obtain Eq. equation 1 in Theorem
3.1:

p
(
y|x, do(zs)

)
=

∫
zc

p
(
y|zc,x, do(zs)

)
p
(
zc|x, do(zs)

)
dzc

=

∫
zc

p(y|zc)
p(x|zc, zs)p(zc)∫

zc
p(x|zc, zs)p(zc) dzc

dzc

(13)

3The equations for conditioning on those three different adjusting sets are the same.
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B DERIVATIONS

B.1 THE DERIVATION IN EQ. (2)

Ep(zs|x)[p(y|x, do(zs))] =Ep(zs|x)[

∫
zc

p(y|zc)p(x|zc, zs)p(zc) dzc∫
zc

p(x|zc, zs)p(zc) dzc
]

≈ 1

N

N∑
n=1

[

L∑
l=1

p(y|zc,l)
p(x|zc,l, zs,n)∑L

l′=1 p(x|zc,l′ , zs,n)
], zc,l ∼ p(zc), zs,n ∼ p(zs|x)

=
1

N

N∑
n=1

[

L∑
l=1

p(y|zc,l)ω(zc,l, zs,n)],where ω(zc,l, zs,n) =
p(x|zc,l, zs,n)∑L

l′=1 p(x|zc,l′ , zs,n)
(14)

B.2 THE DERIVATION OF THE MARGINAL LIKELIHOOD IN EQ. (4)

We character the joint likelihood over the variables in the proposed SCM. However, there are 6
variables of interest and only the observations for 2 of them are available. Therefore, we start from
the marginal likelihood p(x, y).
log p(x, y)

= log

∫
zc

∫
zs

∑
ux

∑
uxy

p(ux, uxy, zs, zc,x, y) dzc dzs

= log

∫
zc

∫
zs

∑
ux

∑
uxy

p(ux)p(uxy)p(zs|ux, uxy)p(y|uxy)p(zc|y)p(x|zs, zc) dzc dzs Bayesian Network Chain Rule

= log
1

p(y)

∫
zc

∫
zs

∑
ux

∑
uxy

p(ux)p(uxy)p(zs|ux, uxy)p(y|uxy)p(y|zc)p(zc)p(x|zs, zc) dzc dzs Bayes Theorem

= log
1

p(y)
+ log

∫
zc

∫
zs

∑
ux

∑
uxy

p(ux)p(uxy)p(zs|ux, uxy)p(y|uxy)p(y|zc)p(zc)p(x|zs, zc) dzc dzs

≥ log

∫
zc

∫
zs

[∑
ux

∑
uxy

p(ux)p(uxy)p(zs|ux, uxy)p(y|uxy)
]
p(y|zc)p(zc)p(x|zs, zc) dzc dzs

= log

∫
zc

∫
zs

[∑
ux

∑
uxy

p(ux|uxy)p(uxy)p(zs|ux, uxy)p(y|uxy)
]
p(y|zc)p(zc)p(x|zs, zc) dzc dzs Ux ⊥⊥ Uxy

= log

∫
zc

∫
zs

[∑
uxy

p(uxy)p(zs|uxy)p(y|uxy)
]
p(y|zc)p(zc)p(x|zs, zc)

q(zs, zc|x)
q(zs, zc|x) dzc dzs

= logEq(zs,zc|x)

[[∑
uxy

p(uxy)p(zs|uxy)p(y|uxy)
]
p(y|zc)p(zc)p(x|zs, zc)

q(zs, zc|x)

]
= logEq(zs,zc|x)

[[∑
uxy

p(uxy)p(zs|uxy)p(y|uxy)
]
p(y|zc)p(zc)p(x|zs, zc)

q(zs|x)q(zc|x)

]
Assume q(zs, zc|x) = q(zs|x)q(zc|x)

≥Eq(zs,zc|x) log
[[∑

uxy
p(uxy)p(zs|uxy)p(y|uxy)

]
p(zc)

q(zs|x)q(zc|x)
p(y|zc)p(x|zs, zc)

]
Jensen’s inequality

=Eq(zs,zc|x)

[
log

[∑
uxy

p(uxy)p(zs|uxy)p(y|uxy)
]

q(zs|x)
+ log

p(zc)

q(zc|x)
+ log p(y|zc) + log p(x|zs, zc)

]
=Eq(zs|x) log

∑
uxy

p(uxy)p(zs|uxy)p(y|uxy)

q(zs|x)
+ Eq(zc|x) log

p(zc)

q(zc|x)
+ Eq(zc|x) log p(y|zc) + Eq(zc,zs|x) log p(x|zc, zs)

=Eq(zs|x) log

∑
uxy

p(uxy)p(zs|uxy)p(y|uxy)

q(zs|x)
−KL

(
q(zc|x)||p(zc)

)
+ Eq(zc|x) log p(y|zc) + Eq(zc,zs|x) log p(x|zc, zs)

(15)
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We further simplify the first term as follows,

Eq(zs|x) log

[∑
uxy

p(uxy)p(zs|uxy)p(y|uxy)
]

q(zs|x)

=Eq(zs|x) log
[∑

uxy

p(zs|uxy)p(y|uxy)

q(zs|x)
p(uxy)

]
=Eq(zs|x) logEp(uxy)

p(zs|uxy)p(y|uxy)

q(zs|x)

≥Eq(zs|x)Ep(uxy) log
[p(zs|uxy)p(y|uxy)

q(zs|x)

]
Jensen’s inequality

=Eq(zs|x)Ep(uxy)

[
log

p(zs|uxy)

q(zs|x)
+ log p(y|uxy)

]
=Ep(uxy)Eq(zs|x)

[
log

p(zs|uxy)

q(zs|x)

]
+ Ep(uxy) log p(y|uxy)

=Ep(uxy)Eq(zs|x)

[
log

∑
ux

p(zs|ux, uxy)p(ux|uxy)

q(zs|x)

]
+ Ep(uxy) log p(y|uxy) Re-introduce Ux

=Ep(uxy)Eq(zs|x)

[
log

∑
ux

p(zs|ux, uxy)

q(zs|x)
p(ux)

]
+ Ep(uxy) log p(y|uxy) Ux ⊥⊥ Uxy

=Ep(uxy)Eq(zs|x)

[
logEp(ux)

p(zs|ux, uxy)

q(zs|x)

]
+ Ep(uxy) log p(y|uxy)

≥Ep(uxy)Ep(ux)Eq(zs|x)

[
log

p(zs|ux, uxy)

q(zs|x)

]
+ Ep(uxy) log p(y|uxy) Jensen’s inequality

=− Ep(ux)Ep(uxy)KL
(
q(zs|x)||p(zs|ux, uxy)

)
+ Ep(uxy) log p(y|uxy)

=− Ep(ux,uxy)KL
(
q(zs|x)||p(zs|ux, uxy)

)
+ Ep(uxy) log p(y|uxy)

(16)

We parameterize the encoder distributions using parameter Θ = {Θs,Θc}, denoted as qΘs(zs|x)
and qΘc(zc|x), the decoder distribution with parameter Φ as pΦ(x|zc, zs), and the classifier dis-
tribution with parameter Ψ as pΨ(y|zc). During training, we optimize these defined parameters
to construct the corresponding distributions. Additionally, we make assumptions or estimations
about the prior distributions, specifically p(zc) and p(zs|ux, uxy), to help regularize the learning
of representations. Notably, we do not parameterize over p(y|uxy), as it is not necessary for either
obtaining representations or computing interventional distributions. As a result, we omit the term
Ep(uxy) log p(y|uxy), as it is independent of the parameters for optimization. By combining Eq.(15)
with Eq.(16), we propose the following training objective for the causal representation learning pro-
cedure:

Lobj(x, y,Θ,Φ,Ψ) =− Ep(ux,uxy)KL
(
qΘs(zs|x)||p(zs|ux, uxy)

)
−KL(qΘc(zc|x)||p(zc))

+ EqΘc (zc|x) log pΨ(y|zc) + EqΘ(zc,zs|x) log pΦ(x|zc, zs)
(17)
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C ALGORITHM FOR INFERENCE

Algorithm 2 Interventional Inference
1: Input: An input from test set xt; trained encoders qΘ̂c

(Zc|X) and qΘ̂s
(Zs|X); trained classifier

pΨ̂(Y |Zc); Training data D.
2: for n = 1, 2, · · · , N do
3: Sample zt

s,n ∼ qΘ̂s
(zs|xt).

4: for xi ∼ D do
5: Sample zc,i ∼ qΘ̂c

(zc|xi). Compute w(zc,i,z
t
s,n).

6: Select L samples of zc,l with the highest w(zc,l,z
t
s,n) and their corresponding xl.

7: end for
8: Given {zc,l,x

l}Ll=1, Compute {p(y|zc,l),w(zc,l,z
t
s,n)}Ll=1 for Zs = zt

s,n.
9: end for

10: Compute Ep(zs|xt)[p(y|xt, do(zs))] via Eq. (6)
11: ŷt ← argmaxy Ep(zs|xt)[p(y|xt, do(zs))]

12: Output Prediction of label: ŷt

D ASSUMPTIONS

Theorem and practical gap: We would like to emphasize that the causal mechanisms in the
proposed SCM in Figure 1 are all assumptions that are widely adopted in the area of causal repre-
sentation learning, including the three following points: 1) The latent high-level factors Z can be
separated into causal factors Zc and spurious factors Zs. 2) The input X is generated by the the
high-level factors Z. 3) Causal factor Zc is either direct cause or effect of target Y . 4) The latent
confounding effects between Zs and Y remain invariant. 5) The domain specific factor Ux varies
across domains. We cannot prove these assumptions always hold in real-world data and we admit
the effectiveness and soundness of our derived theorem and algorithm is built upon these assump-
tions. This framework may not generalize to new domains with different and unknown confounding
effects.

Factorized variational distribution q: While we acknowledge that the true distribution
p(Zc,Zs|X) cannot be factored under our SCM assumption, it often becomes intractable due to
the conditions that only X and Y are observed in the SCM. The distribution p(Zc,Zs|X) is likely
to be complex and non-Gaussian. As an alternative solution, we approximate p(Zc,Zs|X) by a
variational distribution q(Zc,Zs|X) with Gaussian assumptions. Although using non-factorized
Gaussians might slightly enhance results, it requires more time to estimate the large covariance
matrix. There is always a balance between accuracy and efficiency. We believe our assumption,
commonly used in many VAEs, is reasonable and effective. Moreover, our empirical results indi-
cate that the factorized Gaussian approximation effectively leads to better OOD generalization. We
appreciate your suggestion and will include an analysis of using non-factorized Gaussians in our
revised paper.

E EMPIRICAL ABLATION STUDY

In this section, we perform three ablation studies: 1) We show the sensitivity of our proposed CRLII
method with respect to the value of |U | that we specify during SCM parameterization and learning.
2) We demonstrate the necessity of our intervention inference approach due to the imperfect disen-
tanglement between zs and zc. 3) We provide a detailed approach to choose the number of zc,l that
we need to obtain to perform interventional inference.

E.1 THE NUMBER OF DOMAINS

In this section, we explore how varying the number of domains |U | affects out-of-distribution (OOD)
prediction performance. We incrementally increase the values of |U | from 1 to 5 and present the
corresponding prediction performance in Figure 5.
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Figure 5: Ablation study on the influence from the number of domains |U |. The results on PACS
dataset are averaged over four domains.

The findings from Figure 5 reveal that our method exhibits its poorest performance when the number
of domains, denoted as |U |, is set to 1. In such a scenario, the assumption is made that zs follows
a Gaussian distribution, and its prior distribution mirrors that of zc. This results in a compromise
in the asymmetry regularization between the two types of representations, leading to suboptimal
disentanglement. The restoration of this asymmetry occurs when we set |U | ≥ 2. However, per-
formance results appear comparable for cases where |U | exceeds 2. The optimal selection of |U |
hinges on the dissimilarities between the true data distributions across each domain. In situations
involving observational datasets lacking domain-specific information, setting |U | = 2 can still yield
a reasonably well-disentangled set of representations.

E.2 INFLUENCE OF INTERVENTIONAL INFERENCE

In Section 4.1, we provide theoretical justification for our choice of interventional inference, driven
by the partial disentanglement observed between zc and zs during the SCM learning process. In
Table 4, our empirical results demonstrate that the zc representation we obtain still retains infor-
mation from zs. Consequently, interventional inference proves effective in further enhancing OOD
performance when compared to direct prediction using p(y|zt

c), where zt
c = argmaxzc

q(zc|xt).

Table 4: Comparison between prediction and interventional inference.

Datasets Accuracy (%)
Prediction with zc Interventional Inference

CMNIST 52.6 69.8
PACS 86.7 88.6
VLCS 76.3 79.1
OfficeHome 67.7 69.5

E.3 THE SELECTION OF L

For the purpose of inference, we generated a set of zc samples from the training inputs and computed
their weighted sum for p(y|zc). However, this process proved to be time-consuming and inefficient,
especially when dealing with a large number of training inputs. We observed significant variation
in the magnitudes of weights assigned to different samples of zc. Let’s denote the obtained samples
as zc,1, zc,2, · · · , zc,l, with ω(zc,1, zs,n) ≥ ω(zc,2, zs,n) ≥ · · · ≥ ω(zc,L, zs,n). Notably, when
L > 5, the ratio ω(zc,1,zs,n)

ω(zc,L,zs,n)
exceeds 10, and when L > 10, it surpasses 100. In cases where

ω(zc,1, zs,n) > 100ω(zc,L, zs,n), the contribution of ω(zc,L, zs,n) to the weighted sum becomes
negligible. Consequently, it becomes unnecessary to consider values of L greater than 10.
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