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Abstract

The major histocompatibility complex (MHC) class-1 pathway supports the de-
tection of cancer and viruses by the immune system. It presents parts of proteins
(peptides) from inside a cell on its membrane surface enabling visiting immune cells
that detect non-self peptides to terminate the cell. The ability to predict whether a
peptide will get presented on MHC Class I molecules helps in designing vaccines
so they can activate the immune system to destroy the invading disease protein.
We designed a prediction model using a BERT-based architecture (ImmunoBERT)
that takes as input a peptide and its surrounding regions (N and C-terminals) along
with a set of MHC class I (MHC-I) molecules. We present a novel application
of well known interpretability techniques, SHAP and LIME, to this domain and
we use these results along with 3D structure visualizations and amino acid fre-
quencies to understand and identify the most influential parts of the input amino
acid sequences contributing to the output. In particular, we find that amino acids
close to the peptides’ N- and C-terminals are highly relevant. Additionally, some
positions within the MHC proteins (in particular in the A, B and F pockets) are
often assigned a high importance ranking - which confirms biological studies and
the distances in the structure visualizations. The source code can be found on
https://github.com/hcgasser/ImmunoBERT.

1 Introduction

The immune system defends us from a broad range of threats, some of which are expressed from
inside the body’s own cells. For example cancer is a disease of the genome, arising from aberrations
that accumulate over many years. Also, viruses utilize the cell’s gene expression system for their own
reproduction and spreading. Cytotoxic T-lymphocytes (CTL), a special kind of T-cells, can detect
affected cells and terminate them. For them to ‘look inside’ cells, a system revolving around MHC
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Figure 1: MHC-I pathway and our prediction model for peptide presentation

proteins - also called Human Leukocyte Antigen (HLA) in humans - has evolved [1]. We focus on
MHC-I proteins and their antigen presentation pathway which is active in the nucleated cells of the
human body [2]. Proteins present in these cells are constantly being fragmented into smaller pieces
(peptides) by proteasomes (see Figure 1a). These then bind to MHC proteins forming peptide:MHC
protein complexes (pMHCs) and are eventually presented to the outside world on the cell’s surface.
These pMHC are antigens for the T-cell receptors (TCRs). [3]

An infection by a virus or a cancer causing mutation, can both result in the production of proteins
that would not be present in a healthy cell. Eventually this leads to the presentation of neo-antigens
(non-self pMHC) to the outside world [4, 5]. Dependent on whether the CTL consider the peptides
presented to them as self or non-self, they decide to terminate the cell. Peptide-based vaccines are a
tool that can be used to strengthen the immune response. Identifying which non-self peptides will
most likely be presented by a cancerous cell or virus and elicit an immune response (immunogenic
peptides [6]) is an important component in their development [7]. This process can be divided
into two phases — (1) Identification of peptides that are likely to be presented by the MHC protein
which is the focus of this paper, (2) Predicting activation of the immune system by the presented
peptides (outside the paper’s scope). Deep learning models have been used for Phase 1 that identifies
presented peptides on MHC molecules. Cheng et al. used a bi-directional transformer architecture
to predict peptide presentation by a related molecule - MHC class II (MHC-II). We adapted this
work for the MHC-I presentation prediction and find our model, ImnmunoBERT, provides comparable
performance to popular state of the art (SOTA) models, NetMHCpan [10] and MHCflurry [11] (see
Appendix Subsection A.7). InmunoBERT, as seen in Figure 1b, takes a peptide, its surrounding
regions (N-flank and C-flank) and MHC-I molecules as inputs and provides as output a score that
represents the likelihood of the peptide being presented on MHC-I molecules.

In this paper, we focus on interpreting the results from our deep learning model. We apply Local
Interpretable Model-agnostic Explanations (LIME) [12] and SHapley Additive exPlanations (SHAP)
[13] to find the parts of the peptide, MHC protein and surrounding flanks of the peptide, that
are particularly relevant for presentation. We corroborate the results of LIME and SHAP using
visualizations that present 3D peptide-MHC-II molecule interactions and a motif (short, recurring
patterns [14]) analysis that confirms that our model has indeed learnt MHC allele dependent peptide
presentations.

Section 2 below introduces the necessary biological concepts, while Section 3 presents the current
SOTA approaches. In Section 4, we introduce the datasets and our InmunoBERT model. Finally, we
present model interpretation and visualization in Section 5.



2 Background

Proteins play a pivotal role in the human body. They consist of amino acids (AAs) chained together
via peptide bonds into a polypeptide or peptide for short [15]. There are 20 naturally occurring
amino acids and each contains a specific side chain that gives it unique properties to interact with
the environment [16, 15]. The end of the chain with an exposed amino group is called N-terminus,
the end with an exposed carboxyl group is called C-terminus. Each of them can be represented by a
letter. Once joined together, we refer to the single AAs as residues. Short residue chains are referred
to as peptides, while longer ones are referred to as polypeptides. The full-length polypeptide encoded
by a gene in the genome is called a protein. Proteins typically adopt a 3D molecule structure due to
the chemical properties of their AAs.

Proteins perform diverse tasks like breaking up nutrition, muscle movement and sustaining cell
structure. Owing to their wide range of functionality, and for protection against foreign invading
proteins from viruses and cancers, controlling which proteins are present in a cell is important. The
MHC-I pathway achieves this (see Figure 1a) [17] with the following steps:

1. Proteasomes constantly fragment the cell’s internal proteins into peptides (mostly 8-
12 AAs long [18]). For example, part of the AA sequence of the protein Albumin

is MKWVTFISLLFLFSS LQQCP. . and the
proteasomes could fragment this into peptides — "VIFISLLFL", " " and
"FAQYLQQ". Each of these peptides are associated with a N-flank and a C-flank. For
example, the peptide " " would have a 15 AA N-flank of " "

and a 15 AA C-flank of "

2. Transporter associated with antigen processing (TAP) proteins transport these peptides into
the endoplasmic reticulum (ER) where they bind to MHC-I proteins, forming pMHC with
the peptides.

3. The pMHCs gets transported to the cell membrane, where the MHC protein acts as a pedestal
for the peptide and presents it to the extracellular environment

4. Finally, A CTL with a fitting TCR could bind a presented neo-antigen. This might trigger
an immune reaction. CTLs do not strongly bind to the body’s own (self) peptides but only
non-self ones.

We focus on steps 1-3 in this paper that form Phase 1 of identifying non-self peptides by the immune
system. There are many different HLA alleles [15, 3] in the human population with three main loci
coding for MHC-I proteins: HLA-A, HLA-B and HLA-C [2], with every human expressing up to
six different HLA proteins. As the HLA alleles can have different binding properties there is a large
variety in immunopeptidomes (entirety of all presented peptides) across humanity. Currently, more
than 4,064 HLA-A, 4,962 HLA-B and 3,831 HLA-C proteins are known [19]. Each can bind roughly
1,000 to 10,000 different peptides [20].

Predicting the immunopeptidome of a particular individual is challenging owing to two reasons.
First, any of the six different MHC-I alleles present in a cell might be responsible for a peptide
observation in an eluted ligand (EL) experiment (see Appendix Subsection A.1). So the observations
need to be deconvoluted (assigned to a HLA allele). Second, the high throughput eluted ligand
assays only produce positive examples resulting in a highly imbalanced dataset that requires the
creation of artificial negative ones (decoys). This is exacerbated by the fact that available labelled
data accounts for a very small fraction of the peptides that can/cannot be presented. Absence of
ground truth, variance among individuals, limited labeled data makes prediction modeling in the field
of immunopeptidomics extremely challenging.

3 Related Work

Below, we take a brief look at the two most popular state of the art prediction models for peptide
presentation on MHC-I molecules.

NetMHCpan: The most commonly used model today is NetMHCpan. It has a long history and is
currently in version 4.1 which is an ensemble of 50 single hidden layer feed forward neural networks
[10]. The MHC allele is input into the model as a pseudo sequence consisting of only 34 AAs. These
were identified by [21] as being particularly close to the presented peptide and relevant for peptide
binding.



To deconvolute multi-allele (MA) data, NetMHCpan uses the NNAlign_MA [22] framework. First,
only single-allele (SA) data (the observation can be unambigiously linked to a single MHC protein)
is used to train a classifier (takes as input a peptide and a single MHC allele). In the deconvolution
step, each observation that could be caused by multiple MHC alleles, is deconvolved separately. To
do so, the classifier trained in the previous step is used to predict the likelihood of each potential
peptide:MHC protein combination independently. The MHC allele showing the highest scaled
prediction is chosen and used as the MHC protein responsible for the observation until the next
deconvolution step. In case of a negative example, a MHC allele is picked at random.

MHCAlurry 2.0 [11] explicitly models the process of MHC binding separately from the others (e.g.
proteasomal cleavage). This results in a natural integration of binding affinity (BA) and EL data (see
Appendix Subsection A.1). There are three sub-models. First, MHCflurry BA models the process
of the peptide binding to a MHC protein. Second, MHCflurry AP models the remaining antigen
processing steps, like proteasomal cleavage and TAP transportation. Finally, MHCflurry PS combines
the output of those two models to predict peptide presentation. O’Donnell, Rubinsteyn, and Laserson
[11] benchmarked their performance on held-out MS data against NetMHCpan 4.0 and MixMHCpred
2.0.2. They found their model had better performance (with regards to their chosen metric - positive
predictive value). We use this benchmark dataset for comparing our model, InmunoBERT, against
SOTA models, NetMHCpan and MHCflurry 2.0 (see Appendix Subsection A.7).

Some work has been done to interpret protein data predictions. For example Vig et al. [23] have
used the transformers attention mechanism to show that some of the transformer’s nodes were able to
learn biological properties of proteins (e.g. secondary structure, binding sites, ...). However, these
attention based approaches are hardly suitable for the explanation of a single prediction and to our
knowledge, there is no existing work on interpreting deep learning models for peptide presentation
with MHC molecules. However, several interpretation techniques for deep learning models have been
recently developed in the field of computer vision - popular ones include LIME [12] and SHAP [13].
LIME produces local (for a particular example) explanations, treating the model to be explained as a
black-box (model-agnostic). Given a particular input, LIME samples the neighborhood of this input
and creates a linear model to approximate the model’s local behavior. In comparison, SHAP values
are based on the idea of Shapley values, that attribute the difference between the average prediction
over the dataset and the example’s prediction fairly to the various features. Lundberg and Lee [13]
developed the SHAP package for the efficient approximation of SHAP values under the assumption
that the model’s output restricted to a subset of the features is given by the expected model prediction
conditioned on this subset. We apply these two techniques to the problem of peptide presentation and
combine it with visualizations and anlysis accessible to biologists and clinicians.

4 Method

In this section, we present the peptide and MHC-I data used to train and validate ImnmunoBERT, the
model architecture and interpretation techniques. Source code for our model and interpretation can
be found at https://github. com/hcgasser/ImmunoBERT.

4.1 Data

We combined data from two sources. The first one consists of a collection of peptides from EL
assays mapped to the GRCh38 Homo sapiens reference genome and proteins within the Ensembl
v94 database. The source of this data is studies included in the PRoteomics IDEntifications Database
(PRIDE) [24]. We removed samples without linked HLA proteins or where the peptide is not present
in the human proteome (neo-antigens). The second data source is the HLA Ligand Atlas [25].
This includes tissue and HLA allele specific ligands from EL experiments. In contrast to the first
data source, the HLA Ligand Atlas maps peptides to the Uniprot proteome, some of which map to
GRCh38. Similar to other studies, we consider peptides of sequence lengths between 7 and 15 amino
acids [10, 11].

A sample represents the experiment carried out on a particular cell-line/individual to measure the
presented peptides. It is, therefore, linked with up to 6 different HLA alleles and the observations
(also referred to as hits) of peptides during the experiment. Each peptide was mapped to proteins in
the human genome. In total we had 293k SA and 1,666k MA observations of 430k unique peptides.
These were observed in 469 samples linked with 109 different MHC alleles.
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Decoy generation: Negative example (decoy) generation is particularly important due to the
imbalanced nature of the dataset. We follow a similar procedure to the MHCflurry benchmark
dataset[11]. A decoy is associated with a single hit. To match the observations’ length distribution,
the decoy peptides have the same length as their associated hit. To generate a decoy peptide we
randomly select a position within all proteins of the hit’s sample as the start of the decoy peptide.
Implicitly we take the absence of a peptide’s observation as evidence for it actually not being
presented. We considered using 19 or 99 decoys per hit in our hyper-parameter search.

Data splits: Splitting the data into train, test and validation set is not trivial, as we assessed general-
ization along 2 dimensions - to unseen MHC alleles and unseen proteins. Also, each observation can
be associated with up to six MHC alleles from which at least one is responsible for the presentation.
There are also many homologues (areas having a common ancestor) in the human genome and,
ideally, a group of homologues would not span different splits. Our methodology for splitting the
data can be found in Appendix Subsection A.2. We get one training set, two validation sets and two
test sets. The data partition can also be found in the Appendix.

4.2 Model Architecture and Training

We use the pre-trained Tasks Assessing Protein Embeddings (TAPE) transformer as backbone for
our model (a BERT architecture adapted to amino acid sequences). As input we provide our model
with the peptide’s AA sequence. If uniquely identified, we also input the peptide’s context which
consists of (1) up to 15 AAs that occur to the left of the peptide in its source protein sequence known
as N-flank, and (2) up to 15 AAs that occur to the right referred to as C-flank. Finally, the model also
receives the MHC pseudo sequence as defined by NetMHCpan (see Subsection 3).

Off the shelf, the TAPE transformer supports only a single token type id. To make it easy to distinguish
between the various input parts, we use a novel representation of the input and extend the TAPE
model’s token type embedding matrix to four different token types - one for the N-flank, peptide,
C-flank and MHC protein. The resulting embedding vectors are fed through the TAPE encoder
(12 self attention layers with 12 heads each). In contrast to BERTMHC [9] that then uses average
pooling with the embedded vectors, we explored three options as part of the hyper-parameter search:
averaging, attention layer or the classification token’s vector. This was done to consider the meaning
of the peptide, context and MHC sequence. After comparison of the three options, we chose the
classification token’s vector that was best performing.

The structure of our model’s head is similar to the one used by BERTMHC [9]. It is also a multi layer
perceptron (MLP) consisting of two fully connected layers with a hidden dimension of 512. There
is a single output neuron, with sigmoid activation for the presentation score. Our model’s training
procedure is inspired by the NNAlign_MA framework and general results from Multi Instance
Learning (MIL). In the first training epoch we only use SA data. This is followed by a deconvolution
phase. During this, we deconvolve each MA observation by at first predicting the presentation score
for each potentially responsible allele and then selecting the one with the highest score as the relevant
allele. This means, the MA example is treated (forward-propagation and backward-propagation) as if
coming from the relevant allele until the next deconvolution phase (happens after each epoch). The
decoy’s relevant MHC allele is the same as the observation.

For training we use standard binary cross entropy as loss function. We trained the full network
(including encoder and embedding layers) using the ADAM optimizer (51 = 0.9, 2 = 0.999 [26]).
We chose the initial learning rate as part of the hyper-parameter search.

4.2.1 Interpretation

To check, whether our model has learned relationships grounded in biology, we employ LIME [12]
and SHAP [13]. We restrict our analysis to 9-mer peptides and SA data. As we interpret test set data,
the analysis demonstrates our model’s ability to generalize to unseen MHC proteins. We additionally
use Sequence Motifs and 3D visualization of the MHC and peptide structures to better understand the
model results and the interpretations from LIME and SHAP.

LIME analysis of all features: We first interpret the model output by assessing the importance
of all AA features in the input peptide, context and HLA allele sequences. For this, we use the
LIME framework. This is conceptually faster than SHAP - in particular when handling numerous
features (in our case 73 AA positions). SHAP could be sped up by using fewer samples for the
background distribution or sampling fewer feature subsets. It is then, however, questionable if the



results would still be good estimates for SHAP’s central claim - to attribute the difference between
the unconditional expected prediction and the prediction conditional on the relevant example to the
example’s particular features. No such strong claim is made by LIME.

To use the LIME package for our domain, we adapted the text version approach of LIME. This means,
we implemented the deactivation of a feature by setting the input mask token to zero. We use the
standard cosine distance metric (in binary space) between the original example and the sampled
examples. For each test set HLA allele, we selected a random set of 500 observations with each of
these observations accompanied by a decoy bringing the total to 1000 examples in the test set that we
aim to interpret. Each example output gets explained by sampling from 2000 feature combinations.
Figures 2 and 5 then show in each bar the proportion of examples with a given importance-ranking for
an AA at a certain position. If for example the bright red bar (1st) of peptide position 9 showed 0.5,
this means that 50% of samples in the test set had peptide position 9 as the most important feature.

SHAP analysis of peptide positions: Finally, we examine the average contribution of peptide
AAs using Kernel SHAP and adapted this to our input structure. Similar to the LIME setup, the
interpretation of each HLA allele uses 500 9-mer single allele hits and 500 decoys. We sample 250
sequences as background distribution. The nine position features in the peptide would result in a
maximum of 512 feature subsets. We carry out the Kernel SHAP analysis using a sample of 64 of
these. For the whole process we ignore the flanks. In Figures 4b and 7b we plot the average SHAP
value for each AA at each peptide position.

Sequence Motifs: We visualize for each HLA allele, the frequency of various amino acids at
presented peptide positions [27] and contrast this with the feature importance rankings generated by
LIME and SHAP. We use two different motifs to understand the results from ImmunoBERT -

1. Model Motif: we generate 100,000 random 9-mer peptides from the human proteome (from
Uniprot and Ensembl proteins, as well as their context). Then we predict for each of those
examples the presentation score for the HLA protein concerned. We select the ones with
a presentation score > (0.5 and use them to create the HLA allele dependent model motif
(using the logomaker [28] package). Our approach for creating model motifs is similar to
Wau et al. [29] who use the 2% highest scoring peptides for model motif.

2. Data Motif: we take the data from our test set and use all of the 9-mer peptides presented by
the HLA allele to create it.

The data motif shows the frequency of AAs at presented peptide positions (independent of our model)
based on existing labelled data on peptide presentation within a sample. The model motif, on the
other hand, shows the frequency of AAs at presented peptide positions predicted by our model -
sampled for peptides across the genome. We do not expect both motifs to be the same but if the test
set for any given HLA allele were a representative sample from the human proteome, we expect there
will be overlap between the data motif and the model motif.

In a motif logo, for each peptide position a stack of AA letters is displayed. The size of each letter is
proportional to the AA’s frequency at this position. More frequent AAs can be found on top. Each
stack is then scaled with the position’s information content (IC), resulting in a bit representation [27].
The lower the position’s entropy, the higher the IC and, so, the logo. We do not display positions with
IC < 0.5 to avoid distraction. AA with similar chemistry are coloured the same.

PyMOL visualizations: PyMOL [30], a cross-platform molecular graphics tool, has been widely
used for three-dimensional (3D) visualization of proteins, nucleic acids, small molecules, electron
densities, surfaces, and trajectories. The 3D visualizations presented in this paper are based on the
MHC 3D structures in [31]. We colored them with their mean importance ranking - AA that were
not used as features are blue, in contrast, the highest important AA are colored red. Visualizing the
importance of various amino-acids on a structure of peptide bound MHC can help to shed light on
how importance correlates with physical interactions known to be important.

5 Results

In this chapter, we present the results from applying the interpretability techniques described in 4.2.1
to the ImmunoBERT model, limited to peptide presentation by two test set HLA alleles. There are
many more test HLA alleles in our data, but we are unable to fit all their analyses and visualizations



within the defined page limit. Figures for all the remaining test HLA alleles can be found in the
Appendix. It is worth noting that to improve readability all SHAP values were multiplied by 100.

Visualizing the importance of various amino-acids on a 3D structure of peptide bound MHC can
help to shed light on how importance correlates with physical interactions known to be important.
The Figures 3 and 6 demonstrate that regions near the anchor residues on the MHC molecule are
important both within the peptide and the MHC molecule. This re-affirms known biology of antigen
binding to MHC and indicates that LIME and SHAP provide reasonable results.

5.1 HLA-A*33:01

LIME Analysis and 3D structure visualization: Figure 2 shows for each input position, the
proportion of examples in which this position had a certain value range of importance ranking (see
Subsection 4.2.1). The 9-mer peptide’s AAs tend to be much more highly ranked than its flanking
regions or the AA in the HLA protein. Peptide position 9 is ranked first in roughly half of the
examples. The HLA pseudo sequence positions display a high variance in their ranking distributions.
Some positions tend to be particularly highly ranked - like 63, 73, 77,97, 116 and 171. HLA positions
63, 171 are located in the HLA’s A and 77, 116 are located in its F pocket [32] which both are
supposed to house a peptide terminus [33]. This might explain what we see in the motifs of Figure 4a.
A peptide C-terminus arginine (R) is very common and also the N-terminus shows preference for
certain AAs.

1.00 N-flank 1.00

. 25-49 . 1st N 4th
s Lower 0.75 % mmm 2nd BN Lower
0.50 N 3rd

9-mer peptide 1.00

0.75
0.50

0.25 0.25

0.00 0.00

HNMQ‘LOKOI\@U)SHNMQ‘LH

— N M < N O ~

LA-A33:01 protein

! =
e R e ]
1.00
0.75
0.50
0.25
0.00
© O MNON© WO MN -
A H S NN N N n W OW N~

position

Figure 2: LIME feature importance rank distribution for HLA-A*33:01

The significance of HLA positions 73 (in pocket C) and 63 (in pocket B) is less clear. However, in
Figure 3 we display the residues of HLA positions 63, 73, 77, 97, 116 and 171 as well as peptide
positions 1, 2 and 9. We see, that they can all be found close to the peptide’s termini - which aligns
with the terminis’ high importance values assigned by LIME. We also observe, that the distance
between HLA position 116 and peptide position 9 is only 2.4 Angstrom in Figure 3c. Whatsmore,
position 116 of the MHC protein is a negatively charged aspartate (D), which explains the frequent
occurrence of the positively charged arginine (R) at position 9 of presented peptides. In addition, the
distance between HLA position 63 and peptide position 2 is only 3.5 Angstrom in Figure 3b. The
visualizations clearly show that these high importance features are physically close to each other in
3D space helping us understand how the peptides are presented on MHC-I molecules.

The peptide flanks are the the least important in Figure 2. This is similar to observations in [11]
where they found that including the peptide flanks resulted in a small but consistent improvement in
prediction. Within the flanks, our model attributes most importance to positions closest to the 9-mer
peptide.

Sequence Motifs: Figure 4a shows the data and model motifs for HLA-A*33:01. We remind
the reader that data motif at the top of Figure 4a is generated from 100K random 9-mer peptides
from the human proteome that are presented (have a presentation score > 0.5) with the given HLA
allele. Model motif at the bottom of Figure 4a is generated from 9-mer peptides in our test set



(b) Zoom on peptide’s N terminus (c) Zoom on peptide’s C terminus

(a) Overall perspective

Figure 3: PyMOL visualizations of the HLA-A*33:01protein and the peptide
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Figure 4: Motifs and SHAP values for peptide samples presentation on HLA-A*33:01

that are presented with the given HLA allele. We find both motifs show a high frequency for R
in position 9. AAs frequencies in positions 1 and 2 do not match exactly. This might be because
they were generated from different background distributions - while the model’s motif is based on
peptides samples from the whole human genome, the data motif is only based on the proteins actually
expressed in the samples of the test HLA allele.

SHAP Values: With regards to SHAP values, Figure 4b left side shows the mean SHAP value
of each AA at each peptide position. We see the strong positive mean contribution of R at peptide
position 9, making its high frequency in Figures 4a plausible. It also shows high values for V and T
at position 2 which are also enriched in the model motif.

5.2 HLA-B*54:01

Feature importance ranking generated by LIME in Figure 5 for peptide presentation with HLA-
B*54:01is similar to that observed in Figure 2. We find again the 9-mer peptide is the most important
element followed by the HLA allele. Peptide flanks are the least important. We find two positions in
the 9-mer peptide samples to be particularly important for presentation on the HLA-B*54:01, namely
positions 2 and 9. This corresponds to what we see in the motifs in Figure 7a and the SHAP values in
Figure 7b.

Figure 7a shows that the peptide position 9 is enriched by alanine, valine and leucine - all of which
are hydrophobic. So it is important that also the corresponding positions in the HLA protein’s F
pocket are hydrophobic as well. Figure 6b shows a tryptophan in orange at position 95 and a leucine
in yellow at position 116 - both as well hydrophobic. In figure 5 we then see that the model indeed
gives high importance to those two HLA positions.
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Figure 6: PyMOL visualizations of the HLA-B*54:01protein and the peptide

The HLA protein’s second most important position is 66 in pocket B. Given the enrichment of peptide
position 2 by P and A we speculate that pocket B houses this peptide position. A similar finding
was reported in [34]. Indeed, when we look at figure 6b, we see that the peptide position 2 in red is
located between the two HLA positions 66 (in orange) and 67 (in yellow). These two are isoleucine
and tyrosine - two hydrophobic amino acids.

6 Conclusion

We applied interpretability techniques LIME and SHAP to find that our model learned biologically
meaningful importance rankings and feature contributions. We confirmed the interpretations using
3D structure visualizations and sequence motifs of peptides and MHC molecules. We found across
HLA alleles, high importance for peptide presentation was given to AAs near the N- and C-termini of
the peptide and varying MHC positions in the A, B and F pockets. In contrast, the peptide flanks
showed less importance, which explains why [11] found that including them only results in a small
but consistent model improvement. The motifs we found using our model followed broadly those
observed in the data. As these analysis were all carried out on held out MHC proteins, it also
demonstrates the generalization ability of our model.

We have only scratched the surface in attempting to understand peptide presentation with MHC-I
molecules by interpreting the results from deep learning models. Visualizations, sequence motifs
and interpretability techniques like LIME go hand in hand in helping both computer scientists
and biologists understand the application of deep learning models for peptide presentation and the
underlying biology. Given the interdisciplinary nature of this field, it is important that future deep
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Figure 7: Motifs and SHAP values for peptide samples presentation on HLA-B*54:01

learning models that provide accurate predictions in this field are accompanied with explanations and
visualisations accessible to biologists and clinicians.

7 Ethics considerations

We expect our research to contribute to an improved understanding of the MHC-I pathway which will
enable better customized therapies also for patients with less common MHC-I alleles. The datasets
we worked with did not include any sensitive personally identifiable information. It, however, does
not represent the diversity of the global human population. This is exactly the reason, why it is
important to develop models that can extrapolate to unseen MHC proteins.
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SA single-allele. 4, 5, 15
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A Appendix

A.1 Experimental datasources

As the most restrictive step in epitope presentation is MHC binding, measuring the BA between a
particular MHC protein and a peptide in vitro, can give us some insight into how likely it is that a
particular peptide will be presented to the extracellular environment. Early presentation predictors
were, therefore, only trained on this BA data. Its biggest disadvantage is, that it is costly to carry out
the experiments that then only generate little data [22].

In the modern high throughput EL approach, the whole immunopeptidome of the cell is harvested
and then the peptides are identified using mass spectrometry [35]. This identifies many peptides at
once. However, it is typically not possible to measure which of the up to six different MHC alleles
presented which eluted peptide. Monoclonal cell lines, that only express a single MHC allele are a
potential way around this limitation. There also exist algorithms to identify which allele is responsible
for a peptide’s presentation. This step is called “deconvolution” in the literature. However, it also
often relies on data that can be unambiguously ascribed to a single allele to kickstart it.

Another disadvantage of the EL approach is, that it does not generate definitive negative examples. It
only reports about the presence of a peptide at the cell’s surface. It cannot assert the absence of a
peptide from the individuals immunopeptidome. For example a peptide present in the human genome,
might only not be presented by the cell because its protein is not being expressed by the particular
cell. Despite it’s drawbacks, the high quantity of data generated by this approach will make it the
backbone of our examinations.

A.2 Data split

MHC allele dimension: As each individual normally has at least one working copy of each HLA
gene (A/B/C), it is not possible to hold out a full gene. So, we hold out observations on the HLA
group level (e.g. HLA-A*0L, ...). First we count how many observations belong to each HLA group
(from a donor/cell with at least one HLA gene being in the group). We find that the groups are highly
unequally represented in the dataset. To find at least 5 groups for each set, we perform the following
steps until a satisfactory split is found.

First, we randomly assign HLA groups (and the linked examples) to the validation set until its target
number of examples is reached - overriding the standard training set assignment. Then we randomly
assign allele groups to the test set until its target number of examples is reached - overriding any
earlier assignment. If we assigned too few or too many we repeat. This process ensures that no
validation or test MHC group enters the training phase and no test MHC group enters the validation
or training phases.

Protein dimension: Following this, we split off another validation and test set from the remaining
training set. This second split is, however, based on an observation’s mapped proteins not its linked
MHC alleles. Due to homology we cannot just split the dataset based on the protein names. There are
different approaches to deal with this. We use the python networkx package, which allows to build
and explore graph structures. With it we use the Ensembl BioMart paralogue table [36] to link related
genes as well as proteins to their respective gene. We then randomly assign disconnected sub-graphs
to the various splits until our target values are reached.

Applying the above, we obtain the partition of our data in Table 1.

[ SpLiT [ TRAIN [ VAL-PROT  TEST-PROT | VAL-MHC  TEST-MHC |
TOTAL OBSERVATIONS 1,408K 70K 71K 204K 206K
(71.8%) (3.6%) (3.6%) (10.4%) (10.5%)
SINGLE ALLELE 206K 10K 11K 24K 43K
(10.5%) (0.5%) (0.6%) (1.2%) (2.2%)
MULTIPLE ALLELE 1,202K 60K 60K 181K 164K
(61.3%) (3.1%) (3.1%) (9.2%) (8.3%)

Table 1: Observations per dataset split
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A.3 Hyperparameter search and training

We searched parameters along 3 dimensions: pooling mechanism, decoys per hit and learning rate.
We considered using the <cls> tokens embedding, averaging and a classical attention mechanism
as pooling mechanism. Further, we compare using datasets enriched by 19 and 99 decoys per
observation. Eventually, we tried using 1e-04, 1e-05 and 1e-06 as initial learning rates. For the
hyperparameter search, each model was trained on 10% of the SA data for 64,599 steps (one epoch
for the 99 decoys per observation datasets and five epochs for the 19 decoys per observation datasets -
so both of them have seen the same observations at least once).

We evaluated each model on 10% of the MHC-validation and protein-validation set SA data (using 99
decoys per hit). Appendix Table 3 shows the result for the hyper-parameter search using a learning
rate of 1e-05 and Appendix Table 4 the results for a learning rate of 1e-06. Using a learning rate of
le-04 would most of the time not result in any detected hits.

Table 3 shows various performance metrics (best column values in red) on our two validation sets
for the 6 models described above at two points during their training. Different initializations might
deliver different results, as mentioned above we didn’t use the full dataset and the training will not
have converged after 64,559 steps yet. However, given our limited computing resources and the
time it takes to train transformers, we had to base our decision on these numbers. Dependent on
the chosen metric, one or the other pooling mechanism and one or the other hits-to-decoys ratio
looks best. In general, the unbalanced dataset (99 decoys per hit) at first (step 12,911) leads to quite
poor classifiers in terms of receiver-operating-curve (ROC)-area-under-the-curve (AUC) and average
precision (AP). However, after a full epoch they are able to make up most of this. In fact, as found by
[37], models trained on an unbalanced dataset close to the actual data distribution (99 decoys per
observation) show better accuracy. Actually, the models using only 19 decoys per observation have
a worse accuracy than just always predicting negative. However, accuracy is not informative and
reliable when dealing with highly imbalanced data (e.g. when the majority to minority class ratio
1s 999:1 a classifier always predicting the majority class will have 99.9% accuracy). The models
performing best on ROC-AUC and AP all were trained using 19 decoys-per-hit (Appendix Table
3). So we will use this. Using the classification token as input to the head had the best performance
(in red) in 5 cases while the attention mechanism only had the best performance in 3 cases and the
averaging in 2 cases. We will, therefore, train our final model using the classification token’s output
as input to the model’s head. Due to time reasons and little improvement we stopped after epoch 5
and use this as our final model (Table 2).

AFTER VAL-MHC VAL-PROTEIN
ROC o ROC o
EPOCHS STEPS AP AUC Acc AP AUC Acc

1 128494 0.571 0.966 0.989 | 0.667 0.985 0.988
2 1008417 | 0.646 0.976 0.992 | 0.762 0.993 0.993
3 1888340 | 0.671 0.978 0.993 | 0.767 0.993 0.994
4
5

2768263 | 0.673 0.978 0.992 | 0.768 0.993 0.993
3648186 | 0.683 0.979 0.992 | 0.765 0.993 0.994
Table 2: Performance comparison during training (°... accuracy)

AFTER VAL-MHC VAL-PROTEIN
POOLING | DECOYS X STEPS Roe AP Acc® RO AP Acc®
19 12911 0.938 0.319 0.986 | 0.956 0.447 0.987
CLs 64559 0.949 0.394 0.982 | 0.964 0.552 0.983
99 12911 0.823 0.062 0.990 | 0.917 0.232 0.990
64559 0.945 0.349 0.991 0.960 0.492 0.992
19 12911 0.936 0.298 0.973 | 0.957 0.447 0.982
ATTN 64559 0.941 0.410 0.983 | 0.964 0.535 0.982
99 12911 0.792 0.044 0.990 | 0.884 0.184 0.990
64559 0.938 0.315 0.990 | 0.958 0.496 0.992
19 12911 0.926 0.252 0.982 | 0.954 0.417 0.985
AVG 64559 0.949 0.369 0.977 | 0.960 0.506 0.980
99 12911 0.689 0.026 0.990 | 0.835 0.145 0.990
64559 0.924 0.287 0.990 | 0.956 0.471 0.992

Table 3: Performance comparison for a learning rate of 1e-05 (°... accuracy)
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POOLING | DECOYS AFTER coc VAL-MHC . roc VAL-PROTEIN .
X STEPS AUC AP Acc AUC AP Acc

19 12911 0.660 0.020 0.990 | 0.771 0.061 0.990

CLs 64559 0.902 0.209 0.974 | 0.943 0.356 0.975
99 12911 0.584 0.013 0.990 | 0.689 0.033 0.990

64559 0.721 0.027 0.990 | 0.835 0.119 0.990

19 12911 0.649 0.018 0.990 | 0.774 0.073 0.990

ATTN 64559 0.902 0.210 0.975 | 0.937 0.349 0.975
99 12911 0.594 0.0I14 0.990 | 0.694 0.034 0.990

64559 0.731 0.029 0.990 | 0.829 0.132 0.990

19 12911 0.657 0.020 0.990 | 0.776 0.081 0.990

AVG 64559 0.892 0.202 0.969 | 0.937 0.349 0.970
99 12911 0.601 0.016 0.990 | 0.700 0.037 0.990

64559 0.733 0.031 0.990 | 0.840 0.134 0.990

Table 4: Performance comparison for a learning rate of 1e-06 (°... accuracy)

A.4 Evaluation and Benchmarking

To shed light on what our model has learnt and to assess its quality, we performed:

- Evaluation on the test sets

- Comparison of our model to MHCflurry and NetMHCpan

- Model interpretation by LIME analysis of peptide, flanks and pseudo sequence feature importances,
using motifs and by SHAP analysis of peptide AAs contributions (see)

A.5 Evaluation on the test set

Table 5 shows the test set performance of our selected final model (epoch 5 in Table 2). We see that
the values are not very different.

AFTER TEST-MHC TEST-PROTEIN
EPOCHS STEPS AP Roe Acc® AP RO Acc®
[ 5 3648186 [ 0.704 0.981 0.993 [ 0.755 0.992 0.993 ]

Table 5: Performance on the test set (°... accuracy)

A.6 Comparison to MHCflurry and NetMHCpan

The MULTIALLELIC benchmark dataset of MHCflurry consists of 9,158,100 examples. Each has
a peptide, N-flank (15 AA), C-flank (15 AA), up to six HLA alleles as well as the predictions of
NetMHCpan, MixMHCpred and MHCflurry for the example. [11] generated this dataset from 11
studies using EL data. For each hit they randomly generated 99 decoys. A more detailed description
and the full dataset is available in [11, Supplement Data S1]. We run two evaluations on this - one on
the whole dataset (9,158,100 examples) and one for which we removed examples of peptides that
were already part of our training dataset (2,781,898 examples). For these we predict our model’s
presentation score, calculate performance metrics and plot precision-recall (PR) curves for MHCflurry,
NetMHCpan and our model (ImmunoBERT).

A.7 Benchmarking

Unluckily, there are no generally agreed upon standard benchmarking datasets available in our
domain. However, [11] have curated a benchmark dataset. We ran the below analysis on the full
dataset as well as on one in which we exclude peptides from our training set. We calculated the
AP as well as the ROC-AUC for MHCflurry, NetMHCpan and ImmunoBERT. We also plotted the
PR-curves for them (Table 6). The models were trained on different datasets. So any judgement about
the advantageousness of the architectures is not valid. However, the comparison is useful to compare
the practical predictive power of the models.

For both datasets, our model shows an AP in between MHCflurry and NetMHCpan. In particular,
it does well for thresholds corresponding to intermediate recall levels. However, it achieves less
ROC-AUC than the others, possibly caused by the sharp drop in performance for higher recall values.
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The performance on the reduced set is far worse for all models. So, also the other two models might
have already seen similar peptides as were removed during their training. As we explicitly only
removed ours, this skews the reduced dataset against our model.

We decided to generate decoys once and show the model the same decoys in each epoch. This
was done to ensure reproducibility of results. In contrast, NetMHCpan and MHCflurry resample
decoys each epoch [11]. In hindsight, this might be a better design choice and might have led to later
convergence during training of our model.

’ ‘ MODEL / METRIC AP Roe PR-CURVE
5 | NETMHCPAN 0.327 0.916 .
% | MHCFLURRY 0.427 0.938 ' — NetMHCpan
£ | IMMUNOBERT 0.383  0.893 | °°A ImmnaBERT
3 NN
= Loa N\
=} O\
- 02 \\\\\:\
0'00.0 0.2 0.4 0.6 0.8 \7\10
5 | NETMHCPAN 0.151 0.873 B
%2 | MHCFLURRY 0.215 0.890 ' NethHCpan
£ | IMMUNOBERT 0.163 0.831 | °°f minobesT
a 506
a 50.4 M\\C\f\
@) N\
=) 0.2 .
a ~
&" 0‘00.0 0.2 0. 4R ”0.6 08 1.0

Table 6: Performance comparison on benchmark dataset

A.8 Interpretation

On the following pages, the charts for the remaining HLA alleles that were note selected for detailed
discussion can be found.
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Figure 8: Motifs (top left), mean SHAP values (top right) and LIME feature ranks
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Figure 9: Motifs (top left), mean SHAP values (top right) and LIME feature ranks
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Figure 10: Motifs (top left), mean SHAP values (top right) and LIME feature ranks
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Figure 11: Motifs (top left), mean SHAP values (top right) and LIME feature ranks
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Figure 12: Motifs (top left), mean SHAP values (top right) and LIME feature ranks
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Figure 13: Motifs (top left), mean SHAP values (top right) and LIME feature ranks
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Figure 14: Motifs (top left), mean SHAP values (top right) and LIME feature ranks
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Figure 15: Motifs (top left), mean SHAP values (top right) and LIME feature ranks
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Figure 16: Motifs (top left), mean SHAP values (top right) and LIME feature ranks
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Figure 17: Motifs (top left), mean SHAP values (top right) and LIME feature ranks
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