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Abstract

Retrieval models are often evaluated on001
partially-annotated datasets. Each query is002
mapped to a few relevant texts and the remain-003
ing corpus is assumed to be irrelevant. As a004
result, models that successfully retrieve false005
negatives are punished in evaluation. Unfortu-006
nately, completely annotating all texts for every007
query is not resource efficient. In this work, we008
show that using partially-annotated datasets in009
evaluation can paint a distorted picture. We cu-010
rate D-MERIT, a passage retrieval evaluation011
set from Wikipedia, aspiring to contain all rele-012
vant passages for each query. Queries describe013
a group (e.g., “journals about linguistics”) and014
relevant passages are evidence that entities be-015
long to the group (e.g., a passage indicating that016
Language is a journal about linguistics). We017
show that evaluating on a dataset containing an-018
notations for only a subset of the relevant pas-019
sages might result in misleading ranking of the020
retrieval systems and that as more relevant texts021
are included in the evaluation set, the rankings022
converge. We propose our dataset as a resource023
for evaluation and our study as a recommen-024
dation for balance between resource-efficiency025
and reliable evaluation when annotating evalu-026
ation sets for text retrieval.027

1 Introduction028

Passage retrieval, the task of retrieving relevant029

passages for a given query from a large corpus, is030

a traditional IR task (Kaszkiel and Zobel, 1997;031

Callan, 1994; Zobel et al., 1995). Within NLP,032

it has many applications, such as Open-Domain033

Question-Answering (ODQA) (Karpukhin et al.,034

2020; Zhu et al., 2021; Mavi et al., 2022; Rogers035

et al., 2023) and fact verification (Bekoulis et al.,036

2021; Murayama, 2021; Vallayil et al., 2023).037

Recently, the task has experienced a renaissance038

due to the modern retrieval-augmented-generation039

setup leveraging LLMs (aka “RAG”) (Lewis et al.,040

2021; Cai et al., 2022; Li et al., 2022). In all of041

Names of first world war camoufleurs

 ,The narrative also covers 20th-century military camouflage …סססס
begun by the painter Abbot Thayer who advocated disruptive 
coloration and countershading and continued in the First World 
War…

Frederick Judd Waugh (September 13, 1861 in Bordentown, New 
Jersey – September 10, 1940) was an American artist, primarily 
known as a marine artist. During World War I, he designed ship 
camouflage for the U.S. Navy…

Everett Longley Warner (July 16, 1877 – October 20, 1963) was 
an American Impressionist painter and printmaker, as well as a 
leading contributor to US Navy camouflage during both World 
Wars.

EVIDENCE

QUERY

Figure 1: Demonstrating the evidence retrieval task
described in Section 2.2. The query is “Names of first
world war camoufleurs”. Highlighted text corresponds
to the query requirements: names (green), “First World
War” (red), and “camouflage” (orange). A passage must
match all requirements to be considered as evidence.

those cases, retrieval makes for a crucial compo- 042

nent of the system (Cai et al., 2022; Ram et al., 043

2023). 044

It is common practice, and often essential to 045

evaluate the retriever component separately from 046

the full system. This is done by using large-scale 047

data resources that map queries to relevant pas- 048

sages.1 The vast majority of available datasets are 049

only partially-annotated; a query is mapped to a 050

single (or a few) relevant passages and all other 051

passages are assumed to be irrelevant (Bajaj et al., 052

2018; Kwiatkowski et al., 2019), leading to many 053

false negatives in the dataset. This practice has 054

long been contested (Zobel, 1998; Buckley and 055

Voorhees, 2004; Craswell et al., 2020; Gupta and 056

MacAvaney, 2022), yet due to the massive size of 057

modern corpora, exhaustively annotating all pas- 058

sages for every query is highly impractical. As 059

an example, MS-MARCO (Bajaj et al., 2018) con- 060

1Relevancy is defined according to the task in hand. In this
work, we adopt the definition of TREC (Craswell et al., 2020),
a popular retrieval research challenge.
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sists of ~1M queries and ~8.8M passages, which061

amounts to ~8.8 trillion annotations.062

Evaluating retrieval solutions using a partially-063

annotated dataset is obviously not ideal. A sys-064

tem retrieving a non-annotated relevant passage065

rather than an annotated one is unjustly penalized.066

Some work has been done on metrics and meth-067

ods attempting to deal with this issue (Buckley and068

Voorhees, 2004; Yilmaz and Aslam, 2006; MacA-069

vaney and Soldaini, 2023). However, the common070

practice is still using vanilla metrics (e.g. MRR,071

Recall), and the impact of partial annotation dur-072

ing evaluation using these metrics is still unclear.073

Does the ranking of systems change? Do the in-074

accurate scores falsely crown the wrong systems075

as the SOTAs? Moreover, we wonder how many076

relevant passages are needed in order to sufficiently077

reduce the error and correctly rank systems.078

In this work, we propose D-MERIT; Dataset for079

Multi-Evidence Retrieval Testing, an evaluation set080

for retrieval systems, striving to pair each query to081

all of its relevant passages. In our setting, relevant082

passages are evidence that some entity belongs to083

a group described in the query. While we use it to084

explore the consequences of having an evaluation085

dataset with only a few relevant passages annotated,086

D-MERIT is also highly suitable for use in high-087

recall settings, where the task is to retrieve as many088

relevant texts as possible for a given query, as it089

contains almost all relevant passages available in090

the corpus for each query.091

We first show that evaluation of systems with092

the common single-relevant setup (for each query,093

annotate passages until a single relevant passage094

is found) is sensitive to the way in which passages095

were selected during annotation. As a result, differ-096

ent selections lead to different rankings of systems.097

However, we observe that when a system very sig-098

nificantly outperforms another (p− value < 0.01),099

representing a seminal improvement or break-100

through, the single-relevant setup is likely to pro-101

vide accurate rankings. Then, we mimic partially-102

annotated setups, gradually adding annotated rele-103

vant passages to queries, hence reducing the num-104

ber of false negatives in the data. Our findings105

reveal that in order to reliably evaluate retrieval106

systems that are reasonably close in performance,107

a significant portion of relevant passages must be108

found. This is substantial because it implies that109

when evaluating using partially-annotated datasets,110

some system might seem better-performing than111

another, while in fact, the opposite is true. To sum-112

marize, our contributions are as follows: 113

• D-MERIT: A publicly available passage re- 114

trieval evaluation set, aspiring to contain all 115

relevant passages per query. 116

• A study on the consequences of leaving too 117

many false negatives in evaluation sets. 118

• Recommendations for a balance between 119

resource-efficiency and reliable evaluation 120

when annotating retrieval datasets. 121

2 D-MERIT 122

2.1 Desiderata 123

To observe the impact of having false negatives in 124

an evaluation set, we need to have a dataset where 125

the false negatives are marked as such. This calls 126

for a completely-annotated dataset, that will allow 127

us to reliably evaluate systems’ performance, as 128

well as examine the effects of partial-annotation. 129

To accentuate the gap between partial and full an- 130

notation, queries in the dataset should be mapped 131

to many relevant passages. We are set to try to 132

identify all relevant passages for each query, but 133

annotating all passages for each query is unreal- 134

istic. Therefore, we desire a framework that of- 135

fers inherent mappings between queries and high 136

quality candidate passages. To push our method 137

towards exhaustiveness, our automatic approach to 138

candidate collection needs to lean towards recall, 139

followed by an automatic filtering stage. 140

2.2 Task Definition 141

Evidence Retrieval. We choose evidence re- 142

trieval as our task as it naturally complements our 143

need to collect queries with numerous relevant pas- 144

sages. In this task, passages are considered relevant 145

if they contain text that can be seen as evidence that 146

some answer satisfies the query. Previous work con- 147

sidering this task did not collect more than a single 148

evidence (Malaviya et al., 2023; Amouyal et al., 149

2023) or did not aspire to be completely-annotated 150

(Zhong et al., 2022). Instead, they map queries to 151

answers, and collect evidence for each answer from 152

a single document. Our goal is to map a query to 153

all evidence in the corpus, without the limitation 154

of a single document. 155

Our setup. In our setup, that can be seen as an ex- 156

tension of the single-evidence setup in (Malaviya 157

et al., 2023) to an all-evidence one, a query de- 158

scribes a group of entities and relevant passages are 159
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evidence that an entity is a member of the group.160

The task is then, given a query representing some161

group, to retrieve all texts stating that some entity162

is a part of this group. For instance, Fig. 1 shows163

evidence for the query “names of first World War164

camoufleurs”. The first passage confirms “Fredrick165

Judd Waugh” is an entity that belongs to the group166

of World War 1 camoufleurs. More concretely,167

each query lists constraints, and an evidence would168

associate an entity with all of them.2 In the exam-169

ple above, a query describes the group of all World170

War 1 camoufleurs, an evidence would then need171

to indicate an entity (1) took part in World War 1;172

(2) was a camoufleur. For example, the second pas-173

sage in Fig. 1 states “Abbot Thayer” advocated for174

coloration and countershading camouflage during175

World War 1, which satisfies these requirements.176

2.3 Dataset Curation177

We adopt the Wikipedia framework 3, which al-178

lows us to take advantage of the Wikidata struc-179

ture (Vrandečić and Krötzsch, 2014) to extract180

groups and their corresponding members. We use181

the Wikipedia link network to obtain mappings be-182

tween an article and all other articles referencing183

it. Our curation process involves three stages: (1)184

collecting queries and candidates – all passages185

with high likelihood of containing evidence (Sec-186

tion 2.3.2); (2) automatic annotation of candidate187

passages (Section 2.3.3); (3) generating natural lan-188

guage queries (Section 2.5).189

2.3.1 Corpus190

Our corpus is limited to the introduction section191

of Wikipedia articles. Without limiting our collec-192

tion process to a specific section, the number of193

annotations per article would have multiplied by194

~5, which would have made the annotation process195

significantly more expensive. We opted to focus on196

the introduction section, because it is a section that197

is consistent across most articles, and it is intuitive198

that many evidence lie there. In total, our corpus is199

comprised of 6, 477, 139 passages.200

2.3.2 Query and Candidate Collection201

Extracting list members. The collection process202

begins by scanning articles prefixed with “list of”203

for tables using the Wikidata format. We extract204

columns with “name” in their title, as these are205

2The queries in our setup are somewhat reminiscent to the
intersection queries in (Malaviya et al., 2023), where a query
makes for a list of requirements.

3The Wikidump is from July 1st, 2023.

most likely to describe entities. Each such column 206

is extracted separately and makes for a set of mem- 207

bers. Columns containing empty values or values 208

without a dedicated Wiki article are discarded. 209

Collecting candidates We employ the "What 210

Links Here" feature from Wikidata. This tool pro- 211

vides a list of all articles that reference a specific 212

article (and its aliases). The reference count of an 213

article can vary significantly, even for members of 214

the same list. For example, “Shogi” has over 600 215

references, while “Machi Koro” only has 9. Both 216

appear in the group “Japanese board games”. To 217

manage this disparity and keep the candidate count 218

feasible, we discard columns containing an article 219

with more than 10K references. 220

2.3.3 Evidence Identification 221

To complete the dataset construction, we need to 222

sift through the collected candidates. Human evalu- 223

ation would have been the most reliable route, how- 224

ever, it does not scale. We thus turn to the current 225

state-of-the-art large language model for automatic 226

filtering, and show it nears human judgement. 227

Automatic identification. We use GPT-44 to fil- 228

ter ∼ 250K passages across ∼ 2.5K queries. Each 229

prompt consists of a passage paired with a query 230

embedded in our definition of relevance, asking 231

the model to judge for relevance. To ensure each 232

query is meaningful in number of evidence, queries 233

with less than five evidence were discarded. For 234

technical details, see Appendix C. 235

2.4 Evaluation of Construction Process 236

In order for D-MERIT to contain a significant por- 237

tion of the positives for each query, some assump- 238

tions need to hold. First, Wikipedia list pages need 239

to be exhaustive.5 This is a common assumption 240

also taken by (Amouyal et al., 2023) and (Malaviya 241

et al., 2023). Our dataset construction method 242

also relies on the accuracy of Wikipedia’s linking 243

network. This is a limitation of the method (and 244

is therefore mentioned in the limitations section). 245

Herein, we want to show these assumptions do not 246

meaningfully degrade the quality of the dataset. To 247

this end, we approximate D-MERIT’s complete- 248

ness and soundness by evaluating the candidate 249

4We used GPT-4-1106-preview. Future references to
GPT-4 refer to this version.

5Note that we only need the list to be exhaustive with
respect to the corpus, i.e. if some set member is not in the list
but is also not mentioned in Wikipedia introductions, it will
not hinder the exhaustiveness of our collection method.
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Query Member Candidate Evidence
names of Indian
Marathi romance
films

Sairat Jeur Jeur is a village in the Karmala taluka of Solapur district in
Maharashtra state, India. Sairat, the controversial and
highest-grossing Marathi film of all time based on the theme of
forbidden love was set and shot in Jeur village.

names of National
Wildlife Refuges in
West Virginia

Ohio River
Islands

National
Wildlife
Refuge

Mill Creek
Island

Mill Creek Island is a bar island on the Ohio River in Tyler
County, West Virginia. The island lies upstream from Grandview
Island and the towns of New Matamoras, Ohio and Friendly, West
Virginia. It takes its name from Mill Creek, which empties into
the Ohio River from the Ohio side in its vicinity. Mill Creek
Island is protected as part of the Ohio River Islands National
Wildlife Refuge.

Names of players
on 1992 US
Olympic ice
hockey team

Dave
Tretowicz

Dave
Tretowicz

Dave Tretowicz (born March 15, 1969) is an American former
professional ice hockey player. In 1988, he was drafted in the
NHL by the Calgary Flames. He competed in the men’s
tournament at the 1992 Winter Olympics.

Table 1: Examples of records in our dataset. Query is the generated natural-language query describing a group.
Member is an entity that belongs to the group described by the query. Candidate is the Wikipedia article from
which the evidence is taken from. Evidence is a passage indicating the member’s association with the group.

collection process – if we have missed a meaning-250

ful number of evidence during candidate collection.251

To complete the evaluation of D-MERIT’s qual-252

ity, we also evaluate our automatic identification253

model, GPT-4, to confirm it reliably identifies the254

vast majority of evidence without adding much255

false positives.256

Evaluation tasks. We turn to Amazon Mechani-257

cal Turk (AMT) for sourcing human raters. For the258

candidate collection evaluation, a human rater is259

provided with a passage and a prompt containing260

the query, and is requested to mark whether the261

passage is evidence or not. In the task designed to262

gauge the quality of the automatic identification,263

in addition to the passage and prompt, the annota-264

tion of GPT-4 is also provided. The rater is then265

requested to judge the correctness of the annota-266

tion. Since judging relevance can be subtle6, we267

make a decision to judge the correctness of annota-268

tions, instead of to annotate and compare results to269

GPT-4. This encourages the rater to consider the an-270

notation’s perspective and allows tolerance toward271

borderline cases. The selection and conditioning272

process of human raters is detailed in Appendix C.273

Exhaustiveness of candidate collection. To en-274

sure our collection process is nearly exhaustive, we275

need another evidence collection process, indepen-276

dent of ours. We thus adopt the popular TREC ap-277

proach (Craswell et al., 2020), where a number of278

6Consider row 2 in Table 1, where the passage does not ex-
plicitly say that “Ohio River Islands National Wildlife Refuge”
is in “West Virginia”. Instead, it says that “Mill Creek Island”,
which is in “West Virginia”, is part of the “Ohio River Islands
National Wildlife Refuge”.

systems retrieve the top-k passages given a query, 279

and are then unified to a single set of passages to 280

be judged for relevancy. We use 12 different sys- 281

tems, described in Section 3.1. As for the pool 282

depth, we select k = 20 to match our experimental 283

study. Several works researched the relation be- 284

tween pool depth and the completeness of TREC 285

evaluations (Buckley et al., 2007; Keenan et al., 286

2001; Lu et al., 2016) raising concerns regarding 287

reliability of the shallow pool depth commonly 288

used (the typical TREC setup uses a k = 10 depth), 289

hence we also extrapolate the results of this evalua- 290

tion to a k = 100 pool depth. 291

We select 23 random queries from D-MERIT, 292

and use the TREC approach to retrieve 2, 329 293

unique passages. Since we are looking for rele- 294

vant passages that we missed, we discard unique 295

passages that were already annotated by our pro- 296

cess (311 such cases, all relevant) and are left with 297

2, 018 passages. We ask human raters to mark the 298

remaining passages for relevance and find only 35 299

new evidence. In total, the TREC process finds 300

346 relevant passages, 311 of which were found 301

by our process too. To put this in context, for the 302

same 23 queries, our process finds 990 relevant 303

passages. We note that while our method retrieves 304

many more evidence, it is tailor-made to the Wiki- 305

data format, while the method from TREC can be 306

applied to any corpus. To further attest to the ex- 307

haustiveness of our approach, we extrapolate the 308

analysis to k = 100, and estimate the number of 309

identified evidence to increase to 638, with only 310

60 new evidence. A more profound discussion of 311

TREC’s coverage, including details on the extrapo- 312

4



lation process, can be viewed in Appendix E.313

To summarize, the TREC process, with a pool314

depth of k = 20, finds 346 positives and requires315

2, 329 annotations (∼ 14.9% positives in the pool).316

Our method finds 990 positives, requiring 3, 206317

annotations (∼ 30% positives in the pool). The318

TREC process adds only ∼ 3.5% new positives319

to our method. When TREC is extrapolated to320

a pool depth of k = 100, D-MERIT still has a321

high (estimated) coverage of 94.5% of identified322

evidence.323

Comparing automatic to manual identification.324

To verify GPT-4 is comparable to manual identifica-325

tion, we collect a random sample of 1, 300 (query,326

passage) pairs, consisting of 650 evidence. Out of327

all the samples, the rater agrees with GPT-4 84.7%328

of the time.7 Specifically, they disagreed with the329

model on 141 cases of “relevant” and only 57 cases330

of “not relevant”.331

2.5 Natural-language Query Generation332

We generate natural sounding queries by provid-333

ing GPT-4 the “list of” page title and instructing334

the model to phrase a natural-language query. For335

details and examples see Appendix C.336

2.6 D-MERIT Overview337

The final dataset comprises 1, 196 queries, encom-338

passing 60, 333 evidence in total. There are 50.44339

evidence per query on average, and a median of340

22, ranging from a minimum of 5 to a maximum341

of 682 evidence. On average, each group member342

contributes about 2 evidence to a query, with 61.8%343

of the evidence coming from articles other than the344

members’ own articles. The average number of345

members per query stands at 23.71. We note that346

it is possible for some members to not contribute347

any evidence to a query, for example, when the348

evidence is not in the introduction. In Table 2 we349

show the members and evidence distributions, and350

the relation between the number of members and351

number of evidence mapped to a query.352

As accustomed with new datasets, we bench-353

mark D-MERIT on the evidence retrieval task,354

where all evidence should be retrieved for a given355

query. Results are reported and discussed in Ap-356

pendix A.357

7To further validate this number, we check agreement be-
tween two expert annotators. On 400 examples, a 94% agree-
ment is reached. This indicates that the task is less subjective
than general relevance tasks which tend to have a lower agree-
ment, explaining the relatively high human-GPT agreement.

# Members Avg # Evidence # Queries
1-10 25.5 558
11-20 32.0 282
21-50 69.8 236
51-100 109.7 77
100+ 281.2 43

Table 2: Dataset distribution (average number of evi-
dence, number of queries) divided to buckets by number
of set members.

3 Experimental Study 358

With our evaluation set ready, we can address the 359

questions we put forth in the beginning. We ex- 360

periment to examine the widespread practice of 361

considering only a single evidence per query, and 362

explore whether rankings stabilize as false nega- 363

tives decrease when adding more labeled evidence. 364

3.1 Setup 365

Systems. To ensure our analysis is unbiased 366

towards a specific retrieval paradigm, we uti- 367

lize the Pyserini information retrieval toolkit (Lin 368

et al., 2021a) to experiment across twelve di- 369

verse, out-of-the-box systems: five sparse, four 370

dense, and three hybrid systems. (1) In the sparse 371

category; BM25 (Robertson and Walker, 1994), 372

QLD (Zhai and Lafferty, 2001), UniCoil (Lin and 373

Ma, 2021), SPLADEv2 (Formal et al., 2021) and 374

SPLADE++ (Formal et al., 2022). (2) For the dense 375

methods; DPR (Karpukhin et al., 2020), coCon- 376

denser (Gao and Callan, 2022), RetroMAE-distill 377

(Xiao et al., 2022), and TCT-Colbert-V2 (Lin et al., 378

2021b). (3) In the hybrid category; TCT-Colbert- 379

V2-Hybrid (Lin et al., 2021b), coCondenser- 380

Hybrid, and RetroMAE-Hybrid. Further details 381

regarding the systems can be found in Appendix B. 382

Evaluation metrics. Needing a metric to quan- 383

tify the ability of systems to retrieve multiple evi- 384

dence, we opt to use recall@k as this is a simple, 385

common metric for this task. For brevity, we re- 386

port recall@20 in the main paper, and show results 387

on recall@5, recall@50, and recall@100 in Ap- 388

pendix F. We note that other k values show similar 389

trends to k=20, and conclusions drawn in this pa- 390

per generalize to other k values reported as well. 391

Other suitable metrics (NDCG, MAP, R-precision) 392

are discussed and reported in Appendix A. After 393

evaluating the performance of each system, we 394

are interested in comparing the recall-based rank- 395

ing of systems to quantify the gap between the 396
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partially- and fully-annotated settings. We utilize397

Kendall-τ (Kendall, 1938), which can intuitively be398

understood as a measure of similarity between two399

ranking orders. This metric evaluates the number400

of pairwise agreements (concordant pairs) versus401

disagreements (discordant pairs) in the ranking or-402

der of systems between the two settings. A high403

Kendall-τ score (close to 1) indicates a strong cor-404

relation, signifying that the rankings in the partially-405

and fully-annotated settings are similar, whereas a406

low score (close to −1) suggests major differences.407

Specifically, if we have n systems, and C is the408

number of concordant pairs while D is the number409

of discordant pairs, then Kendall-τ is given by the410

formula τ = C−D

(n2)
, where

(
n
2

)
is the total number411

of possible pairs. In addition to the vanilla Kendall-412

τ , we also report the probability of observing a413

discordant pair, denoted as the Error-rate, as it is a414

more intuitive metric. Formally it is defined as:415

Error-rate = 100 · D(
n
2

) = 100 · 1− τ

2
.

3.2 Is the single-relevant setup reliable?416

To assess the single-relevant setup, we start by ran-417

domly sampling an evidence for each query. We418

evaluate each system on the formed single-relevant419

evaluation set and compare the resulting system420

ranking to the ground-truth ranking formed us-421

ing the fully-annotated dataset. To mitigate the422

randomness, we run this experiment 1, 000 times,423

and find that the mean (± std) Kendall-τ value424

is 0.936 (±0.038), translating to an error-rate of425

3.2%. These numbers suggest that sampling a ran-426

dom evidence for each query leads to reliable re-427

sults. Unfortunately, in order to properly randomly428

sample an evidence, one would need to annotate a429

non-feasible amount of passages in most datasets.8430

In practice, some method is used to select the431

passages sent for annotation. This method is usu-432

ally biased9. To determine whether selecting an433

evidence in a biased manner is problematic or not,434

8For example, in the 2020 TREC challenge (Craswell et al.,
2021), operating on the MS-MARCO (Bajaj et al., 2018)
dataset, 11, 386 relevant passages were found for 54 queries,
an average of 210 per query. In Appendix E we estimate these
are only ∼ 50% of the actual relevant passages leading to
roughly 500 per query. Given the corpus size, ∼ 8M pas-
sages, one would need ∼ 16K annotations on average to find
a single relevant passage randomly for a single query.

9For example, it has been shown that models tend to suffer
from popularity bias (Gupta and MacAvaney, 2022) and that
sparse methods tend to prefer longer texts over shorter ones
while a human annotator is likely to prefer shorter texts.

Selection τ -similarity Error-rate (%)
Random 0.936 3.20

Most popular 0.696 15.10
Longest 0.545 22.75
Shortest 0.696 15.10

System-based 0.616 19.20

Table 3: Kendall-τ similarities and Error-rate for the
different biases in a single-annotation setup.

Figure 2: Selection techniques for a single-relevant set-
ting. The x-axis denotes systems used to select passages
for annotation. Each tick represents the performance of
systems on the same dataset with different annotations.
An intersection demonstrates a swap in rankings.

we explore 3 biases: most popular selects the most 435

popular10 evidence for each query. We also con- 436

sider a length-selection approach, which considers 437

the number of words in a given passage, by select- 438

ing the longest and shortest evidence available for 439

each query. Results are presented in Table 3. It 440

can be seen that as opposed to random selection, in 441

the more likely scenario of a biased selection the 442

error-rate is much higher, suggesting that the single- 443

relevant setting is unreliable. A popular technique 444

for sampling passages for annotation is using an ex- 445

isting retrieval system, and annotating passages in 446

the order they are retrieved until a relevant passage 447

is found. We simulate this by considering each of 448

our 12 considered retrievers as the base system. We 449

then evaluate all of the systems on the 12 formed 450

evaluation sets. Results are plotted in Fig. 2. The 451

graph shows that the selection technique, used to 452

pick which passages are annotated, has a major 453

effect on the systems’ measured performance and 454

10We define popularity as the number of times an article is
referenced, which can be derived using the “What Links Here”
feature from Section 2.3.2.
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on the ranking of the different systems. For exam-455

ple, when choosing evidence using BM-25, QLD is456

ranked as the best system (excluding BM-25 itself),457

while when choosing evidence using either coCon-458

denser, coCondenser-Hybrid, DPR or TCT-Colbert,459

QLD is the worst performing system. For other sys-460

tems selecting evidence, it is ranked somewhere in461

between. When comparing the 12 rankings formed462

using these evaluation sets to the ranking formed463

by the completely annotated dataset, the average464

Kendall-τ score computed is 0.616, translating to465

an average error-rate of 19.2%.11 Table 3 indicates466

that system-based selection is indeed closer to bi-467

ased selection than it is to random selection. In468

summary, the experiments presented in this section469

show that while random selection of evidence can470

lead to reliable results in the single-relevant sce-471

nario, the more realistic case (where the annotated472

evidence is not randomly selected) is prone to gen-473

erating misleading results and ranking of systems.474

3.3 Is the single-relevant scenario enough475

when systems are significantly separated?476

After establishing that there are cases where the477

single-relevant scenario is not reliable, we ask in478

what cases it can be sufficient. To explore this,479

we first define buckets of pairs of systems as fol-480

lows. A pair of systems (A,B) is in a [pmin, pmax)481

bucket if A is better performing than B, and the482

statistical significance computation for the differ-483

ence between these two systems leads to a p-value484

of at least pmin and at most pmax, using a rel-485

ative t-test, as computed on the fully annotated486

evaluation set. We then repeat the final experi-487

ment described in Section 3.2, but when calculat-488

ing Kendall-τ and it’s error-rate we only consider489

pairs of systems that fall in some bucket. We de-490

note this measure as partial-Kendall-τ .12 We con-491

sider 3 buckets: [0, 0.01) represents systems with492

very low p-values, meaning they are very far apart493

in performance, hence should be easier to order494

correctly. [0.01, 0.05) represents systems with a495

significant, yet not extreme difference. The final496

11We eliminate the system used to select the evidence from
the computation, as it generates artificial swaps. For example
when computing the Kendall-τ for the ranking formed by
choosing the first evidence as ranked by BM-25, Kendall-τ is
computed on the ranking of all except BM-25.

12We opt to use Kendall-τ due to its simplicity, yet it does
not accurately capture all the intricacies of ranking system
performance. More details on this and an involved metric,
taking into account the significance of differences between
systems, is presented in Appendix D. Results using this metric
validate our choice of Kendall-τ .

bucket, [0.05, 1), contains pairs of systems that do 497

not differentiate in a statistically significant way. 498

Results are shown in Table 4. We observe that, 499

as expected, the error-rate drops when a bucket 500

represents a smaller p-value, indicating higher sig- 501

nificance that the systems are ordered correctly. 502

pmin pmax partial-τ Error-rate (%)
0.0 0.01 0.658 17.1
0.01 0.05 0.333 33.3
0.05 1.0 0.0 50.0

Table 4: Partial-Kendall-τ similarity (defined in Sec-
tion 3.3, denoted partial-τ ) and Error-rate computed on
pairs of systems that belong to the [pmin, pmax) bucket.

3.4 Do rankings stabilize as false negatives 503

decrease? 504

Taking the evidence chosen using the different sys- 505

tems as discussed in Section 3.2, we gradually add 506

a fraction of annotated evidence for all queries in 507

the evaluation set. We then evaluate the systems on 508

each partially annotated dataset by comparing the 509

ranking achieved to the fully annotated evaluation 510

set. We divide pairs of systems into buckets based 511

on their p-values, as described in Section 3.3, and 512

for each percentile we average results across the 513

different system pairs falling within each bucket. 514

Results are presented in Fig. 3. Depending on the 515

significance of the difference between systems, re- 516

sults show a different portion of evidence needs to 517

be annotated in order to achieve the correct order. 518

For example, if we are aiming at a ∼ 0.8 Kendall-τ 519

score, representing a ∼ 10% error-rate, for very 520

significant pairs of systems acquiring ∼ 20% of 521

the positives should suffice, while for systems with 522

a non-significant difference between them, almost 523

all positives are needed. 524

4 Related Work 525

Our work builds on previous efforts in benchmark 526

creations in multi-answer and multi-evidence set- 527

tings and the complete annotation setting. Below, 528

we detail how our work relates to both. 529

Multi-answer retrieval. QAMParI (Amouyal 530

et al., 2023) introduce a benchmark of ques- 531

tions with multiple answers extracted from lists 532

in Wikipedia, and Quest (Malaviya et al., 2023) is 533

a dataset with queries containing implicit set oper- 534

ations based on Wikipedia category names. Both 535

limit evidence collection to the Wikipedia article 536

7



Figure 3: Partial-Kendall-τ between rankings of sys-
tems with k percent annotations and ranking with all
evidence, using recall@20. System pairs are divided
into 3 buckets as described in Section 3.3.

of the answer. In contrast, our goal is to identify all537

relevant evidence for each answer, including other538

Wikipedia articles. RomQA (Zhong et al., 2022)539

curates a large multi-evidence and multi-answer540

benchmark derived from the Wikidata knowledge541

graph with the goal of challenging the retriever and542

QA model. Although RomQA provides a large543

number of evidence, they do not aim for complete544

annotation nor to understand the negative effect545

of evaluation with partial annotations. Our paths546

diverge in that they seek to evaluate QA models547

and we aim to understand the effects of partial an-548

notations on retriever evaluation, and to collect all549

evidence for each answer.550

Exhaustive annotation. TREC Deep Learning551

(Craswell et al., 2020, 2021, 2022, 2023, 2024)552

is a yearly effort to completely-annotate queries553

for passage retrieval from the MS-Marco bench-554

mark (Bajaj et al., 2018). Since annotating the en-555

tirety of MS-MARCO is unrealistic (~1M queries556

and ~8.8M passages), they conduct a competition557

where participants submit the results of their re-558

trievers. Then, the results are pooled and their559

relevancy is evaluated. However, manual evalua-560

tion is a non-scalable approach, and over a span561

of five years (2019–2023) only 312 queries were562

annotated. In addition, exhaustiveness is unlikely563

as previously observed in (Zobel, 1998) and fur-564

ther corroborated in Appendix E. NERetrieve (Katz565

et al., 2023) shares our aspiration for a completely-566

annotated dataset. It proposes a retrieval-based567

NER task that creates a Wikipedia-based dataset568

where entity types function as queries and relevant569

passages contain a span that mentions instances 570

of the entities (e.g., “Dinosaurs” is an entity type 571

and “Velociraptor” is an instance of it). With some 572

similarity to our process, they collect candidates 573

by relaxed matching of mentions of entities in doc- 574

uments that reference them (on DBPedia’s link- 575

graph (Lehmann et al., 2015)), and then use a clas- 576

sifier to filter out cases that do not match their query. 577

However, our work annotates evidence and not sim- 578

ply mentions of entities in a passage. Moreover, 579

in addition to creating an exhaustively annotated 580

dataset, we study the effects of partial annotation. 581

5 Conclusions 582

In this work we question whether the lack of rigor- 583

ous annotation in modern retrieval datasets results 584

in false conclusions. To answer this, we create D- 585

MERIT, a dataset aspiring to collect all relevant 586

passages in the corpus for each query. We use 587

it to explore the impact of evaluating systems on 588

datasets riddled with false negatives; We demon- 589

strate that evaluation based on queries with a single 590

annotated relevant passage is highly dependent on 591

the passages selected for annotation, unless one sys- 592

tem is significantly superior to all others. We also 593

show that the number of annotations required to 594

stabilize the rankings is a factor of the difference in 595

performance between systems. We conclude that 596

there is a clear efficiency-reliability curve when 597

it comes to the amount of annotations invested 598

in a retrieval evaluation set, and that when pick- 599

ing the correct spot on this curve considerations 600

should include the estimated difference between 601

the systems in question and the method used to 602

choose the passages sent to annotation. We show 603

that the commonly used TREC-style evaluation 604

method fails to find a significant portion of the rel- 605

evant passages in D-MERIT, suggesting that using 606

this annotation approach on D-MERIT would lead 607

to a non-negligible error rate. If it’s possible, our 608

recommendation for other datasets would be to es- 609

timate the coverage of the TREC method before 610

using it for evaluation. Otherwise, its results should 611

be taken with a grain-of-salt. Finally, our dataset 612

opens a new avenue for research, both as a test-bed 613

for evaluation studies, as well as evaluation in a 614

high-recall setting. 615
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Limitations616

Exhaustiveness. Our evidence identification pro-617

cess is automated by GPT-4, the current state-of-618

the-art for text analysis. Despite achieving high619

agreement with human annotators, it is not perfect.620

Furthermore, even with a flawless model, comput-621

ing the relevance of all passages in Wikipedia for622

each member in each query would have resulted623

in millions of inferences, which would have made624

the creation of this dataset unfathomably expen-625

sive. We thus make the (sensible) assumption that626

a passage with evidence must contain a link to the627

article of the entity. It is possible some evidence628

were never collected, as analyzed in Section 2.4.629

Generalization of conclusions. We (and many630

before us) believe that in order to properly evaluate631

retrieval systems, the community should strive to632

collect all (or most) relevant passages. We believe633

this is true for many different datasets and scenarios.634

Having said that, showing this explicitly requires635

to completely annotate datasets, which is hard and636

expensive. Therefore, while we do believe that637

most of our conclusions can generalize to many638

other datasets, technically we could show them639

only on the dataset we used.640

Data evaluation compatibility. Our dataset is641

made of set-queries with multiple members (trans-642

lating to multiple answers in the QA setting). In643

such cases, systems are usually evaluated using644

datasets containing a single relevant per answer.645

In Section 3.2 we evaluate and draw conclusions646

using a single positive per query. We do so in order647

to draw conclusions regarding cases where single648

positives per query are used, but in practice these649

datasets usually contain single-answer queries (e.g.650

MS-MARCO). While we do believe our conclu-651

sions generalize to this case, it would have been652

more accurate to use such a single-answer-per-653

query dataset. Unfortunately, collecting such a654

fully annotated dataset is not trivial.655

Ethics Statement656

Automatic annotation. Since our annotation is657

automatic, it is model-dependent. This means it658

is vulnerable to the model’s biases. As a result, it659

may fail to attribute evidence to a query if a can-660

didate is under-represented in the model’s training661

data. This might cause D-MERIT to miss out on662

evidence that belongs to some under-represented663

group.664

Rater details. To collect annotations on our 665

dataset, we used Amazon Mechanical Turk (AMT). 666

All raters had the following qualifications: (1) over 667

5,000 completed HITs; (2) 99% approval rate or 668

higher; (3) Native English speakers from England, 669

New Zealand, Canada, Australia, or United States. 670

Raters were paid $0.07 per HIT, and on average, 671

$20 an hour. In addition, raters that performed the 672

task well were given bonuses that reached double 673

pay. 674

Annotation collection and usage policy. Raters 675

were notified that their annotations are intended 676

for research use in the field of Natural Language 677

Processing and Information Retrieval, and will ulti- 678

mately be shared publicly. The task and collected 679

annotations were objective and excluded personal 680

information. Moreover, all data sources for the 681

study were publicly accessible. 682

Computing resources. We used only modest 683

computing resources. For both, the dataset cre- 684

ation and the experimentation, we used a single 685

Amazon-EC2-g5.4xlarge instance for 200 hours, 686

which costs $1.6 per hour. For the annotation of 687

the passages, and creation of the natural-language 688

queries, we utilized GPT-4-1106-preview, which 689

at the time of writing, is priced at $0.01 for 1K 690

input tokens, and $0.03 for 1K output tokens. In 691

total, we paid ~$3,000 for our use of the model. 692
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A Benchmarking D-MERIT927

While tangential to this paper, the D-MERIT928

dataset allows us to benchmark the ability of exist-929

ing retrieval models to perform on the full-recall930

retrieval setup, as it’s coverage is very high as re-931

ported in Section 2.4. This section describes this932

benchmark process.933

Benchmark metrics. We select Recall, Normal-934

ized Discounted Cumulative Gain (NDCG) and935

Mean Average Precision (MAP). In addition, given936

that we possess complete evidence for every query,937

we can calculate R-precision– a form of recall938

where k varies for each query, determined by the939

specific total evidence count to that query. For940

instance, if a query corresponds to 40 pieces of941

evidence, then k is set at 40. Achieving a perfect942

score means that the top 40 results are all evidence943

associated with the query.944

Results. Performance of all systems is shown945

in Table 5, with SPLADE++ and SPLADEv2 per-946

forming best across all metrics. The scores sug-947

gest there is substantial room for improvement on948

our evidence retrieval task. For example, the re-949

call@100 score indicates no system successfully950

retrieves even half of the evidence on average.951

B Further Details: Experimental Study952

To allow reproduction of our results, we detail953

the hyper-parameters used in our work. We954

utilize the Pyserini information retrieval toolkit955

(Lin et al., 2021a) with the following settings956

for each system: BM25 is employed using the957

standard Lucene index for indexing and retriev-958

ing results. Similarly, QLD is used but with959

the QLD reweighing option to refine the pro-960

cess. UniCoil embeddings are generated with the961

castorini/unicoil-noexp-msmarco-passage encoder,962

and retrieval is conducted using Lucene search with963

the ‘impact’ option to incorporate unicoil weights.964

SPLADEv2 and SPLADE++ follow a similar ap-965

proach, where passages and queries are embedded966

using their respective official code repositories, and967

retrieval is performed using Lucene with the ‘im-968

pact’ option. DPR involves embedding passages969

and queries with the facebook/dpr-ctx_encoder-970

multiset-base and facebook/dpr-question_encoder-971

multiset-base encoders, respectively, with retrieval972

via FAISS (Douze et al., 2024). RetroMAE-973

distill adopts a similar strategy, utilizing the974

Shitao/RetroMAE_MSMARCO_distill encoder for975

both queries and passages. TCT-Colbert- 976

V2 also mirrors this approach but uses the 977

castorini/tct_colbert-v2-msmarco encoder. co- 978

Condenser involves training document and 979

query encoders on the Natural Questions dataset 980

(Kwiatkowski et al., 2019) using the CoCondenser 981

official code repository. Hybrid models such as 982

TCT-Colbert-V2-Hybrid, coCondenser-Hybrid, 983

and RetroMAE-Hybrid combine the strengths 984

of BM25 with TCT-Colbert-V2, coCondenser, 985

and RetroMAE-distill respectively, using a fusion 986

score with α = 0.1. 987

C Further Details: D-MERIT Creation 988

License. D-MERIT builds on data from 989

Wikipedia, which carries a Creative Commons 990

Attribution-ShareAlike 4.0 International License. 991

This license requires that any derivative works also 992

carry the same license. 993

Conditioning human raters. Before the evalu- 994

ation process begins, we need to assure the raters 995

we use understand the task and can perform it ad- 996

equately. We thus begin a conditioning process. 997

First, we run a qualification exam, and the raters 998

that get all the questions right, are invited to an 999

iterative training process. The process includes 1000

small batches, of up to 100 (passage, prompt) pairs, 1001

where the rater submits their response and we pro- 1002

vide personal feedback. Moreover, all tasks in- 1003

cluded an option to mark the example as difficult 1004

or provide textual feedback about it, to encourage 1005

communication from the raters as they work. After 1006

each batch raters are filtered out, until we remain 1007

with a single rater with a success rate of over 95% 1008

on a single batch. The task is visualized in Fig. 10. 1009

Automatic identification details. To automati- 1010

cally identify evidence, GPT-4 is provided with a 1011

passage and a structured query. In this context, a 1012

structured query begins with the article name, fol- 1013

lowed by its section names arranged hierarchically 1014

(separated by “»”), corresponding to the structure 1015

of the article, and ultimately culminating in the 1016

column value. For instance, a typical structured 1017

query could be “Cities and Towns in Cambodia” 1018

(article name) » “Cities” (section name) » “Name” 1019

(column name). The task for GPT-4 is to determine 1020

whether the passage provides evidence supporting 1021

the query. The evaluation involves analyzing the 1022

text to ascertain whether the passage directly or 1023

indirectly confirms the entity in question is part of 1024
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System Recall@k NDCG@k MAP@k R-precision5 20 50 100 5 20 50 100 5 20 50 100
SPLADE++ 9.43 24.11 36.02 45.16 38.17 36.54 38.05 40.56 7.11 15.0 19.35 21.72 28.16
SPLADEv2 7.82 21.21 33.29 43.34 32.09 31.43 33.78 37.00 5.74 12.20 16.03 18.27 24.82
TCT-Colbert-Hybrid 7.85 19.62 29.71 37.97 34.86 31.60 32.23 34.33 5.80 11.48 14.78 16.56 22.75
bm25 6.65 17.46 27.54 35.76 28.93 27.20 28.62 31.13 4.76 9.76 12.83 14.61 20.86
RetroMAE-Hybrid 7.30 17.48 25.95 32.85 33.95 29.21 29.19 30.82 5.71 10.63 13.14 14.48 20.12
RetroMAE 7.03 16.62 24.78 31.61 32.71 27.98 27.94 29.61 5.47 10.05 12.38 13.66 19.29
TCT-Colbert 6.27 15.44 23.59 30.95 29.31 25.73 26.08 27.95 4.58 8.64 11.02 12.39 18.02
CoCondenser-Hybrid 5.28 14.81 24.25 32.88 22.13 21.87 23.96 26.89 3.41 6.82 9.10 10.63 16.78
QLD 5.49 13.96 23.56 31.96 24.54 21.71 23.63 26.55 3.77 7.07 9.51 11.13 16.56
CoCondenser 4.87 13.75 23.02 31.52 20.71 20.42 22.64 25.54 3.14 6.20 8.35 9.77 15.69
Unicoil 4.47 10.95 17.27 23.28 20.86 17.96 18.70 20.49 3.25 6.05 7.72 8.83 13.19
DPR 3.90 9.62 15.99 21.72 18.51 15.90 16.64 18.41 2.63 4.48 5.67 6.37 10.89

Table 5: Performance of a variety of baselines on D-MERIT. Recall, NDCG, and MAP are evaluated over four k
values: 5, 20, 50, and 100. The k value in R-precision is the total number of evidence of a query, which changes
from query to query.

the group defined by the query. For example, in a1025

query aimed at identifying names of Cambodian1026

cities, the passage must either explicitly state or1027

strongly suggest that a particular city belongs in1028

Cambodia to be considered relevant. Our prompts1029

follow our definition of relevance from Section 2.2:1030

If you were writing a report on1031

member being part of article-name,1032

and would like to gather *all* the1033

documents that directly confirm member1034

is part of article-name, in the category1035

hierarchy article-name » section-name »1036

column-name, will you add the following1037

document to the collection? Answer with1038

“yes” or “no”.1039

Natural-language query generation prompt.1040

To translate a structured query to its natural-1041

language variant, we prompt GPT-4 using the1042

template below. Examples of input and output can1043

be viewed in Table 6.1044

Please pretend you are a typical Google1045

Search user, show me what you would write1046

in the search bar. For example: cultural1047

property of national significance in1048

Switzerland:Zurich » Richterswil » Name,1049

where » indicates a hierarchy, a typical1050

search would be: names of cultural1051

properties of national significance in1052

Richterswil, Zurich, Switzerland.1053

1054

Here, try this one: {input}1055

1056

D Concordance1057

Kendall-τ (Kendall, 1938) is a popular metric for1058

evaluating rank correlation between rankings. This1059

is done by comparing the number of concordant1060

Structured Query Natural-language Query
List of Zhejiang University alumni »

Politics & government » Name
names of Zhejiang University alumni in

politics and government
List of Wisconsin state forests » Forest

name
names of Wisconsin state forests

List of World War I flying aces from
the United States » Served with the

Aéronautique Militaire » Name

names of US World War I flying aces
who served with the Aéronautique

Militaire
List of LGBT classical composers »

20th century » Name
names of 20th century LGBT classical

composers
List of Eliteserien players » Name names of Eliteserien football players

List of National Monuments in County
Sligo » National Monuments »

Monument name

names of National Monuments in
County Sligo, Ireland

Table 6: Examples of structured queries and their corre-
sponding natural-language form.

and dis-concordant elements between two ranks 1061

over a set of elements. More general variants of 1062

Kendall-τ (Kendall, 1945; Stuart, 1953) address 1063

cases where ties exist (i.e., in one ranking two ele- 1064

ments received an identical score). 1065

The simplicity of Kendall-τ makes it tempting 1066

to utilize it to compare the ranking of retrieval sys- 1067

tems. However, it fails to capture some of the 1068

intricacies of this comparison due to several rea- 1069

sons. First, simply comparing system scores is 1070

insufficient, as an additional verification using a 1071

significance test is necessary. Ties can be defined 1072

(i.e., system A is tied with system B if p > 0.05), 1073

but the relation is not transitive (A tied with B and 1074

B tied with C does not imply that A is tied with C), 1075

as required by variants of Kendall-τ that support 1076

ties. Second, some ranking errors are more trou- 1077

blesome than others. Finding that a new system is 1078

“tied” with the baseline system when in fact it is 1079

worse might be undesirable. However, incorrectly 1080

reporting that it is better is improper. 1081

Even though Kendall-τ suffers from the short- 1082

comings above, we hypothesize that it is still a good 1083

metric for comparing performance rankings. To val- 1084

idate this we propose a new metric, concordance, 1085
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Figure 4: Concordance between rankings of systems with varying percentages of evidence and ranking with all
evidence, using recall@5, recall@20, recall@50, and recall@100. System pairs are divided into 3 buckets as
described in Section 3.3.

that addresses these shortcomings of Kendall-τ and1086

its variants. This is done by considering the rela-1087

tions A > B and A < B for a pair of systems A1088

and B. This way if in the ground truth A is signifi-1089

cantly better than B and in the compared ranking1090

A is tied with B, the two rankings will agree on the1091

relation A < B (will be false in both) and disagree1092

on the relation A > B. In a more troublesome1093

error, where A < B in the compared ranking, the1094

two rankings will disagree on both relations. For-1095

mally, let π1 and π2 be two rankings of a set of1096

retrieval systems S. For each pair of systems s1, s21097

and ranking π we define1098

π(s1, s2) =

{
1, s1 is significantly better than s2

0, otherwise.
1099

Then concordance is defined as the agreement be-1100

tween the rate of agreement over all ordered pairs1101

of systems between two rankings:1102

conc(π1, π2) =1103

1

P (|S|, 2)
∑
s1

∑
s2 ̸=s1

π1(s1, s2)⊙ π2(s1, s2),1104

where P (n, r) is the number of permutations of 1105

size r from a set of size n, and ⊙ is the XNOR 1106

operator (equals to 1 if both inputs equal). 1107

Using concordance, we validate the results found 1108

in Section 3.3 and Section 3.4 using Kendall-τ . 1109

This is done by repeating the experiment and cal- 1110

culating the mean concordance of system rankings 1111

given evidence found by different systems with 1112

the ground truth ranking (in which all evidence 1113

are annotated). We run this experiment for a sin- 1114

gle annotated evidence and different percentiles of 1115

annotated evidence. 1116

In Table 7 and Figure 4 we see that pairs of sys- 1117

tems with a very significant difference between 1118

them (i.e., p < 0.01) are evaluated with higher ac- 1119

curacy than systems falling in the other two buckets. 1120

This validates the results found in Section 3.3 and 1121

Section 3.4 and shows that Kendall-τ is a good 1122

proxy for evaluating the rankings of IR systems. 1123

E TREC Coverage 1124

TREC (Craswell et al., 2020, 2021, 2022, 2023, 1125

2024), a popular retrieval competition, also tries to 1126

deal with the problem of partial annotated retrieval 1127

15



k pmin pmax Concordance
5 0.0 0.01 0.809
5 0.01 0.05 0.292
5 0.05 1.0 0.646
20 0.0 0.01 0.823
20 0.01 0.05 0.708
20 0.05 1.0 0.611
50 0.0 0.01 0.821
50 0.01 0.05 0.556
50 0.05 1.0 0.592
100 0.0 0.01 0.813
100 0.01 0.05 0.500
100 0.05 1 0.583

Table 7: Concordance computed only on pairs of sys-
tems that fall within the [pmin, pmax) bucket. k is the
recall@k used.

datasets. In this section we compare our approach1128

for collecting multiple evidence for queries with1129

their approach. This is done by applying TREC’s1130

approach to our dataset and testing its coverage.1131

This will reveal, even though anecdotally, the abil-1132

ity of TREC’s approach to find numerous evidence.1133

The approach in TREC does not utilize a struc-1134

tured data source for the creation of the judgement1135

set. Instead, they create a pool of candidates from1136

the set of passages retrieved by a large set of sys-1137

tems. Specifically, TREC runs a competition and1138

publishes a query set and a corpus. Any partic-1139

ipant team executes their system and submits a1140

retrieved list. Then, TREC pools top-k passages1141

from each participant and sends them for human1142

annotation, annotating for relevancy. Before ap-1143

plying the approach used by TREC to our dataset1144

we first formally define this process. Let Q be the1145

set of queries and Eq the evidence set of query1146

q ∈ Q. In addition, let S be the set of systems and1147

Eq,s be the evidence set found in the top-10 pas-1148

sages retrieved by system s ∈ S for query q ∈ Q.1149

Then, the judgement set of query q is defined as1150

Jq(S) = ∪s∈SEq,s. We denote the coverage of S1151

on Q as:1152

CQ(S) =
1

|Q|
∑
q∈Q

|Jq(S)|
|Eq|

.

When fixing the number of passages retrieved1153

by each system to k = 10, as done in TREC, and1154

given the 12 systems considered in this paper (see1155

Section 3.1), we can compute their coverage on1156

D-MERIT which is equal to 31.7%. While this1157

may be low, we only consider a small number of1158

systems, as it is typical to use around 100 systems.1159

Also, increasing k is expected to increase the cov-1160

erage. Following, we use extrapolation techniques 1161

to estimate the affect of both. 1162

E.1 Extrapolating Number of Systems 1163

Due to time and compute constraints using 100 sys- 1164

tems, as typically done in the TREC competition, 1165

is unrealistic. This leads us to approximate the cov- 1166

erage instead. In order to approximate the coverage 1167

of a larger number of systems we first fix k = 10, 1168

and compute the expected coverage of a random 1169

subset of systems of size t uniformly sampled from 1170

S. That is, 1171

C∗
Q(S, t) = E

S′∼U(S), |S′|=t
[CQ(S

′)].

Given the values of C∗
Q(S, t) for t = 1, . . . , 12, we 1172

fit a logarithmic curve (as coverage is both con- 1173

cave and monotonically-increasing) to these ob- 1174

servations and observe a root mean-squared-error 1175

(RMSE) of 0.16% and a maximum error of 0.31%. 1176

Finally we extrapolate to predict the coverage for 1177

t = 13, . . . , 100. The results of the experiment is 1178

presented in Fig. 5. As can be seen, we predict that 1179

broadening the judgement sets by retrieving with as 1180

many as 100 systems only increases the coverage 1181

from 31.7% to 47.1%. This result further corrob- 1182

orates the finding by (Zobel, 1998), which states 1183

that the pooling approach used in TREC finds, at 1184

best, 50-70% of the evidence. We conclude that 1185

our approach is able to achieve a much higher cov- 1186

erage. This is expected to improve the correctness 1187

of our evaluation. Note that our approach depends 1188

on structured data in Wikipedia. On the other hand, 1189

the approach utilized in TREC is universal as it can 1190

be applied to any corpus and query.

Figure 5: Fraction of relevant passages covered by top-
10 passages for s systems.

1191

E.2 Extrapolating Number of Retrieved 1192

Documents per System 1193

Increasing the pool size can uncover additional 1194

positive results, but will result in a significantly 1195
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larger annotation pool size. We adopt a similar1196

method to extrapolating the coverage by increasing1197

the number of systems, and but focus instead on1198

the size of the pool.1199

We use the coverage evaluation dataset described1200

in section 2.4 which takes a the top-20 pool from1201

12 systems and uses human annotators to label the1202

relevancy of each entry in the pool. Next, we assign1203

each relevant entry in the pool its minimum rank1204

from all systems and construct pools for each depth1205

size. For example, for k=10, we take all documents1206

that were ranked at the top-10 by at least a single1207

system.1208

Finally, we extrapolate to predict for the num-1209

ber of newly identified evidence (Figure 6) and the1210

overall documents found by the pooling approach1211

(Figure 7) for t = 21, . . . , 100. The results show1212

that even for a pool-depth of k = 100, we esti-1213

mate that only 60 new evidences will be identified.1214

This means that the coverage of our method is esti-1215

mated to be ∼ 94.5% out of all identified evidence.1216

In addition, we see that the pooling approach for1217

k = 100 is estimated to retrieve 638 evidence (5781218

already found by our method) covering only 60.8%1219

with a significant increase of annotation overhead.1220

Figure 6: Number of newly identified evidence by pool
depth k.

Figure 7: Number of identified evidence by pool depth.
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F Extended Results1221

In the main paper we focused on recall@20 for1222

brevity when reporting results. Here, we report1223

experiments shown in Section 3 measuring also1224

recall@5/50/100. Conclusions pointed out in the1225

main paper hold for all values of k.1226

k pmin pmax partial-τ Error-rate (%)
5 0.0 0.01 0.654 17.30
5 0.01 0.05 -0.583 79.15
5 0.05 1.0 -0.125 56.25

20 0.0 0.01 0.658 17.10
20 0.01 0.05 0.333 33.35
20 0.05 1.0 0.000 50.00
50 0.0 0.01 0.658 17.10
50 0.01 0.05 0.167 41.65
50 0.05 1.0 0.200 40.00
100 0.0 0.01 0.642 17.90
100 0.01 0.05 -0.083 54.15
100 0.05 1 0.185 40.75

Table 8: partial-Kendall-τ similarity (as defined in Sec-
tion 3.3, denoted here as partial-τ ) and Error-rate com-
puted only on pairs of systems that fall within the [pmin,
pmax) bucket. k is the recall@k used.

k Selection τ -similarity Error-rate (%)
5 Random 0.815 9.25
5 Most popular 0.727 13.65
5 Longest 0.462 26.90
5 Shortest 0.585 20.75
5 System-based 0.587 80.65
20 Random 0.936 3.20
20 Most popular 0.697 15.15
20 Longest 0.545 22.75
20 Shortest 0.697 15.15
20 System-based 0.616 19.20
50 Random 0.916 4.20
50 Most popular 0.687 15.65
50 Longest 0.606 19.70
50 Shortest 0.576 21.20
50 System-based 0.596 20.20

100 Random 0.894 5.30
100 Most popular 0.818 9.10
100 Longest 0.697 15.15
100 Shortest 0.545 22.75
100 System-based 0.523 23.85

Table 9: Kendall-τ similarities and error for different
biases, in a single-annotation setup. k is the recall@k.
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Figure 8: Single-annotation per query datasets with varying selection methods. Left to right: recall@5/50/100.

Figure 9: Kendall-τ between rankings of systems with varying percentages of evidence and ranking with all
evidence, using recall@5/50/100. System pairs are divided into 3 buckets as described in Section 3.3.

Figure 10: The human evaluation task detailed in Section 2.4.
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Figure 11: A screenshot of the Wikipedia article corresponding to the first query in Table 6.
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