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ABSTRACT

Compositional optimization (CO) has recently gained popularity due to its appli-
cations in distributionally robust optimization (DRO), meta-learning, reinforce-
ment learning, and many other machine learning applications. The large-scale
and distributed nature of data necessitates efficient federated learning (FL) algo-
rithms for CO, but the compositional structure of the objective poses significant
challenges. Current methods either rely on large batch gradients (which are im-
practical) or suffer from suboptimal communication efficiency. To address these
challenges, we propose efficient FedAvg-type algorithms for solving non-convex
CO in the FL setting. We first establish that standard FedAvg fails in solving the
federated CO problems due to data heterogeneity, which amplifies bias in local
gradient estimates. Our analysis establishes that either additional communication
or two-sided learning rate-based algorithms are required to control this bias. To
this end, we develop two algorithms for solving the federated CO problem. First,
we propose FedDRO that utilizes the compositional problem structure to design
a communication strategy that allows FedAvg to control the bias in the estimation
of the compositional gradient, achieving O(ϵ−2) sample and O(ϵ−3/2) commu-
nication complexity. Then we propose DS-FedDRO, a two-sided learning rate
algorithm, that eliminates the need for additional communication and achieves the
optimal O(ϵ−2) sample and O(ϵ−1) communication complexity, highlighting the
importance of two-sided learning rate algorithms for solving federated CO prob-
lems. Both algorithms avoid the need for large batch gradients and achieve linear
speedup with the number of clients. We corroborate our theoretical findings with
empirical studies on large-scale DRO problems.

1 INTRODUCTION

Compositional optimization (CO) problems deal with the minimization of the composition of func-
tions. A standard CO problem takes the form

minx∈Rd f(g(x)) with g(x) := Eζ∼Dg [g(x; ζ)], (1)

where x ∈ Rd is the optimization variable, f : Rdg → R and g : Rd → Rdg are smooth functions,
and ζ ∼ Dg represents a stochastic sample of g(·) from distribution Dg . CO finds applications in
a broad range of machine learning applications, including but not limited to distributionally robust
optimization (DRO) Qi et al. (2022), meta-learning Finn et al. (2017), phase retrieval Duchi & Ruan
(2019), portfolio optimization Shapiro et al. (2021), and reinforcement learning Wang et al. (2017).

In this work, we focus on a more challenging version of the CO problem (1) that often arises in
the DRO formulation Haddadpour et al. (2022). Specifically, the problems that jointly minimize the
summation of a compositional and a non-compositional objective. DRO has recently garnered sig-
nificant attention because of its capability of handling noisy labels Chen et al. (2022), training fair
machine learning models Qi et al. (2022), imbalanced Qi et al. (2020a) and adversarial data Chen
& Paschalidis (2018). A standard approach to solve DRO is to utilize primal-dual algorithms Ne-
mirovski et al. (2009) that are inherently slow because of a large number of stochastic constraints.
The CO formulation enables the development of faster primal-only DRO algorithms Haddadpour
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et al. (2022). The majority of existing works to solve CO problems consider a centralized setting,
however, modern large-scale machine-learning applications are characterized by the distributed col-
lection of data by multiple clients Kairouz et al. (2021). This necessitates the development of dis-
tributed algorithms to solve the DRO problem.

Federated learning (FL) is a distributed learning paradigm that allows clients to solve a joint problem
in collaboration with a server while keeping the data of each client private McMahan et al. (2017).
The clients act as computing units while the server orchestrates the parameter sharing among clients.
Numerous FL algorithms exist in the literature to tackle standard (non-compositional) problems Li
et al. (2019; 2020); Karimireddy et al. (2019); Sharma et al. (2019); Zhang et al. (2021); Khanduri
et al. (2021). However, there is a lack of efficient distributed implementations when it comes to CO
problems. The major challenges in developing FL algorithms for solving the CO problem are:
[C1]: Compositional structure of the problem leads to biased stochastic gradient estimates and this
bias is amplified during local updates, which makes the analysis intractable Chen et al. (2021).
[C2]: Typically, data distribution at each client is different, referred to as data heterogeneity. Hetero-
geneously distributed compositional objective results in client drift during local updates that lead to
divergence of federated CO algorithms. This is in sharp contrast to the standard FedAvg for non-CO
objectives where client drift can be controlled during the local updates Karimireddy et al. (2019).
[C3]: A majority of algorithms for solving CO rely on accuracy-dependent large batch gradients
where the batch size depends on the desired solution accuracy, which is not practical from an imple-
mentation point of view Huang et al. (2021); Haddadpour et al. (2022); Guo et al. (2022).
These challenges naturally lead to the following question:

Can we develop FL algorithms that tackle [C1]− [C3] to solve CO in a FL setting?

In this work, we address the above question and develop novel FL algorithms to solve CO problems.
Although, our development focuses on the DRO problem the algorithms developed in our work have
wider applicability to other general CO problems. The major contributions of our work are:

• We for the first time present a negative result that establishes that the vanilla FedAvg (customized
to CO) is incapable of solving the CO problems as it leads to bias amplification during the local
updates. This shows that either additional communication/processing or non-classical aggregation
procedure is required by FedAvg to mitigate the bias in the local gradient estimation.
• We develop two novel FL algorithms FedDRO and DS-FedDRO, for solving problems with both
compositional and non-compositional non-convex objectives. To our knowledge, such algorithms
have been absent from the open literature so far. Importantly, FedDRO and DS-FedDRO address
the above-mentioned challenges by developing several key innovations in the algorithm design.
– FedDRO addresses [C1] by designing a communication strategy that utilizes the specific

CO problem structure and allows us to control the gradient bias at the cost of additional low-
dimensional communication. On the contrary, DS-FedDRO tackles [C1] by designing 2-sided
learning rate CO algorithms for FL wherein the server aggregation is performed similarly as the
local updates.

– To address [C2], we design the local updates at each client so that the client drift is bounded.
Our analysis captures the effect of data heterogeneity on the performance of the algorithms.

– To address [C3], we utilize a hybrid momentum-based estimator to learn the compositional
embedding and combine it with a stochastic gradient (SG) estimator to conduct the local updates.
This construction allows us to circumvent the need to compute large accuracy-dependent batch
sizes for computing the gradients and the compositional function evaluations.

• We establish the convergence of FedDRO and DS-FedDRO and show that to achieve an ϵ-
stationary point both algorithms require O(ϵ−2) samples while achieving linear speed-up with the
number of clients, i.e., requiring O(K−1ϵ−2) samples per client. Moreover, FedDRO achieves a
communication complexity of O(ϵ−3/2) while DS-FedDRO achieves O(ϵ−1).

2 PROBLEM

In this work, we focus on a general version of the CO problem defined in (1). We consider the
following problem that often arises in DRO (see Section 2.1) in a distributed setting with K clients

infx∈Rd

{
Φ(x) := h(x) + f(g(x))

}
with h(x) := 1

K

∑K
k=1hk(x) & g(x) := 1

K

∑K
k=1gk(x), (2)
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where each client k ∈ [K] has access to the local functions hk : Rd → R and gk : Rd → Rdg

while f(·) is same as (1). The local functions hk(·) and gk(·) at each client k ∈ [K] are: hk(x)=
Eξk∼Dhk

[hk(x; ξk)] and gk(x) = Eζk∼Dgk
[gk(x; ζk)] and where ξk ∼ Dhk

(resp. ζk ∼ Dgk )
represents a sample of hk(·) (resp. gk(·)) from distribution Dhk

(resp. Dgk ). Moreover, the data at
each client is heterogeneous, i.e., Dhk

̸= Dhℓ
and Dgk ̸= Dgℓ for k ̸= ℓ and k, ℓ ∈ [K].

In comparison to the basic CO in (1), (2) is significantly challenging, first, because of the presence of
both compositional and non-compositional objectives and second, because of the distributed nature
of the compositional function g(·). We would also like to point out that the algorithms and the anal-
ysis presented in this work can be easily extended to the problems where f(·) := 1/K

∑K
k=1 fk(·)

is also distributed among K agents with each agent having access to fk(·) for k ∈ [K].
Remark 2.1 (Comparison to Gao et al. (2022) and Huang et al. (2021)). Note that formulation
(2) is significantly different than the setting considered in Huang et al. (2021); Gao et al. (2022).
Specifically, our formulation considers a setting where the compositional functions are distributed
across agents, i.e., the function is g = 1/K

∑K
k=1gk(x). In contrast, Huang et al. (2021); Gao

et al. (2022) consider a setting with objective 1/K
∑K

k=1 fk(gk(·)), note here that the compositional
function is local to each agent. This implies that algorithms developed in Huang et al. (2021); Gao
et al. (2022) cannot solve problem (2). Importantly, problem (2) models realistic FL training settings
while being more challenging compared to Huang et al. (2021); Gao et al. (2022) since in (2) the
data heterogeneity of the inner problem also plays a role in the convergence of the FL algorithm.
Please see the discussion in Appendix A.1 for more details.

2.1 EXAMPLES: CO REFORMULATION OF DRO PROBLEMS

In this section, we discuss different DRO formulations that can be efficiently solved using CO Had-
dadpour et al. (2022). DRO problem with a set of m training samples denoted as {ζi}mi=1 is

minx∈Rd maxp∈Pm

∑m
i=1 piℓ(x; ζi)− λD∗(p,1/m) (3)

where x ∈ Rd is the model parameter, Pm := {p ∈ Rm :
∑m

i=1 pi = 1, pi ≥ 0} is m-dimensional
simplex, D∗(p,1/m) is a divergence metric that measures distance between p and uniform proba-
bility 1/m ∈ Rm, and ℓ(x, ζi) denotes the loss on sample ζi, ρ is a constraint parameter, and λ is a
hyperparameter. Next, we discuss two popular reformulations of (3) in the form of CO problems.
DRO with KL-Divergence. Problem (3) is referred to as a KL-regularized DRO when the dis-
tance metric D∗(p,1/m) is the KL-Divergence, i.e., we have D∗(p,1/m) = DKL(p,1/m) with
DKL(p,1/m) :=

∑m
i=1 pi log(pim). For this case, an equivalent reformulation of (3) is

minx∈Rd log
(

1
m

∑m
i=1 exp

(
ℓ(x;ζi)

λ

))
, (4)

which is a CO with g(x) = 1/m
∑m

i=1 exp(ℓ(x; ζi)/λ), f(g(x)) = log(g(x)) and h(x) = 0.
DRO with χ2- Divergence. Similar to KL-regularized DRO, (3) is referred to as a χ2-regularized
DRO when D∗(p,1/m) is the χ2-Divergence, i.e., we have D∗(p,1/m) = Dχ2(p,1/m) with
Dχ2(p,1/m) := m/2

∑m
i=1(pi − 1/m)2. For this case, an equivalent reformulation of (3) is

minx∈Rd − 1
2λm

∑m
i=1

(
ℓ(x; ζi)

)2
+ 1

2λ

(
1
m

∑m
i=1 ℓ(x; ζi)

)2
(5)

with g(x) = 1/m
∑m

i=1 ℓ(x; ζi), f(g(x)) = g(x)2/2λ and h(x) = − 1
2λm

∑m
i=1

(
ℓ(x; ζi)

)2
.

Note that both (4) and (5) can be equivalently restated in the FL setting of (2). Moreover, in addition
to the DRO problems the developed algorithms can be used to solve general CO problems.

Related work. Please see Table 1 for a comparison of current approaches to solve CO problems in
distributed settings. For a detailed review of centralized and distributed non-convex CO and DRO
problems, please see Appendix A. Here, we point out some drawbacks of the current approaches to
solving federated CO problems:

– None of the current works guarantee linear speedup with the number of clients Huang et al. (2021);
Haddadpour et al. (2022); Tarzanagh et al. (2022); Gao et al. (2022).

– Utilize complicated multi-loop algorithms with momentum or VR-based updates Tarzanagh et al.
(2022) that sometime require computation of large batch size gradients Haddadpour et al. (2022)
to guarantee convergence. Such algorithms are not preferred in practical implementations.
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Table 1: Comparison with the existing works. Here, CO-ND refers to CO with a non-distributed compositional
part (see Remark 2.1). CO + Non-CO refers to problems with both CO and Non-CO objectives. VR refers to
variance reduction. (I) and (O) refers to the inner and outer loop, respectively.
∗ Theoretical guarantees for GCIVR exist only for the finite sample setting with m total network-wide samples.

ALGORITHM SETTING UPDATE BATCH COMP. COMM.
ComFedL Huang et al. (2021) CO-ND SGD O(ϵ−2) O(ϵ−4) O(ϵ−1)

Local-SCGDM Gao et al. (2022) CO-ND Momentum SGD O(1) O(ϵ−2) O(ϵ−1)

FedNest Tarzanagh et al. (2022) Bilevel VR O(1) O(ϵ−2) O(ϵ−1)

FedBiO Li et al. (2024) Bilevel VR O(1) O(K−1ϵ−2.5) O(ϵ−1.5)

FedMBO Huang et al. (2023) Bilevel SGD O(ln(ϵ−1)) O(K−1ϵ−2) O(ϵ−2)

SimFBO Yang et al. (2024) Bilevel SGD O(1) O(ϵ−2) O(ϵ−1)

GCIVR∗ Haddadpour et al. (2022) CO + Non-CO VR
√
m (I),m (O) O(

√
mϵ−1 ∧ ϵ−1.5) O(ϵ−1)

FedDRO (Ours) CO + Non-CO SGD O(1) O(K−1ϵ−2) O(ϵ−1.5)

DS-FedDRO (Ours) CO + Non-CO SGD O(1) O(K−1ϵ−2) O(ϵ−1)

– Recently developed bilevel algorithms although in theory can be used to solve CO problems
Tarzanagh et al. (2022); Li et al. (2024); Huang et al. (2023); Yang et al. (2024), however, since the
algorithms are designed for bilevel problems they often have complicated structure, suffer from
worse performance, and require sharing of additional parameters.

– Consider a restricted setting where the compositional objective is not distributed among nodes
Huang et al. (2021); Gao et al. (2022). Importantly, the algorithms developed therein cannot solve
the problem considered in our work (see Appendix A.1).

Our work addresses all these issues and develops, FedDRO, the first simple SGD-based FL algo-
rithm to tackle CO problems with the distributed compositional objective. Please see Table 1 for a
comparison of the above works.

3 PRELIMINARIES

In this section, we introduce the assumptions, definitions, and preliminary lemmas.
Definition 3.1 (Lipschitzness). For all x1, x2 ∈ Rd, a differentiable function Φ : Rd → R
is: Lipschitz smooth if ∥∇Φ(x1) − ∇Φ(x2)∥ ≤ LΦ∥x1 − x2∥ for some LΦ > 0; Lipschitz
if ∥Φ(x1) − Φ(x2)∥ ≤ BΦ∥x1 − x2∥ for some BΦ > 0 and; Mean-Squared Lipschitz if
Eξ∥Φ(x1; ξ)− Φ(x2; ξ)∥2 ≤ B2

Φ∥x1 − x2∥2 for some BΦ > 0.

We make the following assumptions on the local and global functions in the problem (2).
Assumption 3.2 (Lipschitzness). The following holds
1. The functions f(·), hk(·), gk(·) for all k ∈ [K] are differentiable and Lipschitz-smooth with
constants Lf , Lh, Lg > 0, respectively.
2. The function f(·) and hk(·) are Lipschitz with constants Bf > 0 and Bh > 0, respectively, and
gk(·) is mean-squared Lipschitz for all k ∈ [K] with constant Bg > 0.
Assumption 3.3 (Unbiased Gradient and Bounded Variance). The stochastic gradients and function
evaluations of the local functions at each client are unbiased and have bounded variance, i.e.,

Eξk [∇hk(x; ξk)] = ∇hk(x), Eζk [∇gk(x; ζk)] = ∇gk(x), Eζk [gk(x; ζk)] = gk(x),

Eζk [∇gk(x; ζk)∇f(y)] = ∇gk(x)∇f(y)

and Eξk∥∇hk(x; ξk)−∇hk(x)∥2 ≤ σ2
h,

Eζk∥∇gk(x; ζk)−∇gk(x)∥2 ≤ σ2
g , Eζk∥gk(x; ζk)− gk(x)∥2 ≤ σ2

g ,

for some σh, σg > 0 and for all x ∈ Rd and k ∈ [K].
Assumption 3.4 (Bounded Heterogeneity). The heterogeneity hk(·) and gk(·) is characterized as

supx∈Rd ∥∇hk(x)−∇h(x)∥2 ≤ ∆2
h and supx∈Rd ∥∇gk(x)−∇g(x)∥2 ≤ ∆2

g,

for some ∆h,∆g > 0 for all k ∈ [K].

The above assumptions are commonplace in the context of non-convex CO problems. Specifically,
Assumption 3.2 is required to establish Lipschitz smoothness of the Φ(·) (see Lemma 3.5) and
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is standard in the analyses of CO problems Wang et al. (2017); Chen et al. (2021). Assumption
3.3 captures the effect of stochasticity in the gradient/function evaluations while Assumption 3.4
characterizes the data heterogeneity among clients. We note that these assumptions are standard and
have been utilized in the past to establish the convergence of many FL non-CO algorithms Yu et al.
(2019a); Karimireddy et al. (2019); Zhang et al. (2021); Woodworth et al. (2020).
Lemma 3.5 (Lipschitzness of Φ). Under Assumption 3.2 the compositional function, Φ(·), defined
in (2) is Lipschitz smooth with constant: LΦ := Lh +BfLg +B2

gLf > 0.

Lemma 3.5 establishes Lipschitz smoothness (Definition 3.1) of the compositional function Φ(·). In
general, Φ(·) is a non-convex, and therefore, we cannot expect to globally solve (2). We instead rely
on finding approximate stationary points of Φ(·) defined next.
Definition 3.6 (ϵ-stationary point). A point x generated by an algorithm is an ϵ-stationary point of
Φ(·) if E∥∇Φ(x)∥2 ≤ ϵ, where the expectation is taken w.r.t. the stochasticity of the algorithm.
Definition 3.7 (Sample and Communication Complexity). The sample complexity is the total
(stochastic) gradient and function evaluations required to achieve an ϵ-stationary solution. Sim-
ilarly, communication complexity is the total communication rounds between the clients and the
server required to achieve an ϵ-stationary solution.

4 FEDERATED NON-CONVEX CO ALGORITHMS

In this section, we first establish the incapability of vanilla FedAvg to solve CO problems. Then, we
design communication-efficient FL algorithms to solve the non-convex CO problem.

4.1 CANDIDATE FEDAVG ALGORITHMS

Algorithm 1 Vanilla FedAvg for non-convex CO

1: Input: Parameters: {ηt}T−1
t=0 , I

2: Initialize: x0
k = x̄0, y0

k = ȳ0

3: for t = 0 to T − 1 do
4: for k = 1 to K do

5: Update:


Compute ∇Φk(x

t
k) using (6)

xt+1
k = xt

k − ηt∇Φk(x
t
k)

yt+1
k = gk(x

t+1
k )

6: if t+ 1 mod I = 0 then

7:

[Case 1] Share:
{
xt+1
k = x̄t+1

[Case 2] Share :


xt+1
k = x̄t+1

yt+1
k =gk(x̄

t+1)

yt+1
k = ȳt+1

8: end if
9: end for

10: end for

In this section, we show that vanilla
FedAvg is not suitable for solving
federated CO problems of form (2).
To establish this, we consider a de-
terministic setting with h(x) = 0.
For this setting, the local gradients of
Φ(·) are estimated as

∇Φk(x) = ∇gk(xk)∇f(yk), (6)

where the sequence yk represents the
local estimate of the inner function
g(x). To solve the above problem in a
federated setup, we consider two can-
didate versions of FedAvg described
in Case I and II of Algorithm 1. Simi-
lar to vanilla FedAvg, each agent per-
forms multiple local updates within
each communication round (see Step
5 of Algorithm 1). Moreover, since

g(x) := 1/k
∑k

k=1 gk(x) with each agent k ∈ [K] having access to only the local copy gk(·), esti-
mating g(·) locally within each communication round is not feasible. Therefore, each agent utilizes
yk = gk(x) as the local estimate of the inner function g(·). For communication, we consider two
protocols. In the first setting, after I local updates, in each communication round the agents share
the locally updated parameters with the server and receive the aggregated parameter (see Case I in
Step 7). In the second setting, in addition to the locally updated parameters the agents also share
their local function evaluations ytk = gk(x

t
k) with the server and receive the aggregated embedding

ȳt. This step is utilized to improve the local estimates of g(·) (see Case II in Step 7). The algorithm
executes for a total of ⌊T/I⌋ communication rounds.

Next, we show that Algorithm 1 is not a good choice to solve the federated CO problems.
Theorem 4.1 (Vanilla FedAvg: Non-Convergence for CO). There exist functions f(·) and gk(·) for
k ∈ [K] satisfying Assumptions 3.2, 3.3, and 3.4, and an initialization strategy such that for a fixed
number of local updates I > 1, and for any 0 < ηt < Cη for t ∈ {0, 1, . . . , T − 1} where Cη > 0
is a constant, the iterates generated by Algorithm 1 under both Cases I and II do not converge to the
stationary point of Φ(·), where Φ(·) is defined in (2) with h(x) = 0.

5
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Algorithm 2 Federated non-convex CO algorithm: FedDRO

1: Input: Parameters: {βt}T−1
t=0 , {ηt}T−1

t=0 , I
2: Initialize: x−1

k = x0
k = x̄0, y0

k = ȳ0

3: for t = 0 to T − 1 do
4: for k = 1 to K do

5: Local Update and Sharing:


Compute ∇Φk(x

t
k; ξ̄

t
k) using (7)

xt+1
k = xt

k − ηt∇Φk(x
t
k; ξ̄

t
k)

Compute yt+1
k using (8) and share with the server

Receive ȳt+1 from the server and update yt+1
k = ȳt+1

6: if t+ 1 mod I = 0 then

7: Aggregation at Server :
{
xt+1
k = x̄t+1

8: end if
9: end for

10: end for
11: Return: x̄a(T ) where a(T ) ∼ U{1, ..., T}.

Theorem 4.1 establishes that vanilla FedAvg is not suitable for solving federated CO problems. This
naturally leads to the question of how can we modify FedAvg such that it can efficiently solve CO
problems of the form (2)? Theorem 4.1 suggests that sharing yk’s in each iteration or a different
server aggregation strategy is required to ensure convergence of FedAvg since sharing the iterates
yk’s only intermittently or simple averaging at the server leads to non-convergence of FedAvg. To
this end, we propose to modify the FedAvg algorithm as presented in Algorithm 1 in two ways: 1)
by sharing yk in each iteration t ∈ {0, 1, . . . , T − 1}, and 2) by modifying the classical FedAvg
aggregation to a 2-sided update where server updates x and y incrementally Reddi et al. (2020). The
next result shows that the modified FedAvg using point 1 above resolves the non-convergence issue
of FedAvg for solving CO problems.
Theorem 4.2 (Modified FedAvg: Convergence for CO). Suppose we modify Algorithm 1 such that
ytk = ȳt is updated at each iteration t ∈ {0, 1, . . . , T − 1} instead of [t+ 1 mod I] iterations as in
current version of Algorithm 1. Then if functions f(·) and gk(x) for k ∈ [K] satisfy Assumptions
3.2, 3.3, and 3.4 such that for a fixed number of local updates 1 ≤ I ≤ O(T 1/4), there exists a
choice of ηt > 0 for t ∈ {0, 1, . . . , T − 1} such that the iterates generated by (modified) Algorithm
1 converge to the stationary point of Φ(·), where Φ(·) is defined in (2) with h(x) = 0.
Motivated by Theorem 4.2, we next develop a federated algorithm, FedDRO, to solve problem (2)
in a general stochastic setting with h(x) ̸= 0. Later, in Section 5 we develop DS-FedDRO and
establish that the additional communication required by FedDRO can be avoided by utilizing a
2-sided learning rate algorithm and an additional heterogeneity assumption.

4.2 FEDDRO: FEDERATED NON-CONVEX CO ALGORITHM

In this section, we propose a novel distributed non-convex CO algorithm, FedDRO, for solving
(2). Motivated by Theorem 4.2 above, we first develop a novel approach where the estimates of
low-dimensional embedding g(·) are aggregated in each iteration while the high-dimensional model
parameters are shared intermittently. Recall that for many practical problems (see Section 2.1 for
DRO) the embedding g(·) is low-dimensional (e.g., dg = 1), therefore, sharing of g(·) will be
relatively cheap in contrast to the high-dimensional model parameters of size d which can be very
large and take values in millions or even in billions for modern overparameterized neural networks
Vaswani et al. (2017). Moreover, to solve the CO problems for DRO the developed algorithms
generally utilize batch sizes (for gradient/function evaluation) that are dependent on the solution
accuracy Huang et al. (2021); Haddadpour et al. (2022). However, this is not feasible in most
practical settings. In addition, to control the bias and to circumvent the need to compute large batch
gradients, we utilize a momentum-based estimator to learn the compositional function (see (8)) Chen
et al. (2021). This construction allows us to develop FedAvg-type algorithms for solving non-convex
CO problems wherein the local updates resemble the standard SGD updates.

The detailed steps of FedDRO are listed in Algorithm 2. During the local updates each client k ∈
[K] updates its local model xt

k for all t ∈ [T ] using the local estimate of the stochastic gradients in
Step 6. The local stochastic gradient estimates for each client k ∈ [K] are denoted by ∇Φk(x

t
k; ξ̄k)

6
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and are evaluated using the chain rule of differentiation as

∇Φk(x
t
k; ξ̄

t
k) = ∇hk(x

t
k; ξ

t
k) +∇gk(x

t
k; ζ

t
k)∇f(ȳt) (7)

where ξ̄tk = {ξtk, ζtk} represents the stochasticity of the gradient estimate for each k ∈ [K] and
t ∈ {0, 1, . . . , T − 1}. The variable ȳt is designed to estimate the inner function 1/K

∑K
k=1 gk(x)

in (2). A standard approach to estimate gk(x) locally for each k ∈ [K] is to utilize a large batch
such that the gradient bias from the inner function estimate can be controlled Guo et al. (2022);
Huang et al. (2021); Haddadpour et al. (2022). In contrast, we adopt a momentum-based estimate
of gk(·) at each client k ∈ [K] that leads to a small bias asymptotically Chen et al. (2021). We
note that the estimator utilizes a hybrid estimator that combines a SARAH Nguyen et al. (2017) and
SGD Ghadimi & Lan (2013) estimate for the function values rather than the gradients Cutkosky &
Orabona (2019). Specifically, individual ytk’s are estimated in Step 6 as

ytk = (1− βt)
(
yt−1
k − gk(x

t−1
k ; ζtk)

)
+ gk(x

t
k; ζ

t
k). (8)

for all k ∈ [K] and where βt ∈ (0, 1) is the momentum parameter. Motivated by the discussion in
Section 4.1, the parameters ytk ∈ Rdg are shared with the server after the ytk update, however, this
sharing will not incur a significant communication cost since ytk’s are usually low dimensional as
illustrated in Section 2.1 for DRO problems. The model parameters are then updated using the SG
evaluated using (7). Finally, after I local updates the model parameters are aggregated at the server
and shared with the clients after aggregation in Step 8. Next, we state the convergence guarantees.

4.2.1 MAIN RESULT: CONVERGENCE OF FEDDRO
In the next theorem, we first state the main result of the paper detailing the convergence of FedDRO.
Theorem 4.3 (Convergence of FedDRO). For Algorithm 2, choosing the step-size ηt = η =

O(
√
K/T ), the momentum parameter β = 4B4

gL
2
fη for all t ∈ {0, 1, . . . , T − 1}, and I ≤

O(T 1/4/K3/4). For T ≥ Tth where Tth is defined in Appendix F, then under Assumptions 3.2,
3.3 and 3.4 for x̄a(T ) chosen According to Algorithm 2, we have

E
∥∥∇Φ(x̄a(T ))

∥∥2 ≤ O
(

1√
KT

)
︸ ︷︷ ︸

Initialization

+
Cσhσ

2
h + Cσgσ

2
g√

KT︸ ︷︷ ︸
Variance

+
C∆h∆

2
h + C∆g∆

2
g√

KT︸ ︷︷ ︸
Heterogeneity

,

where C(K,T, I) := max
{
K(I − 1)2/T, 1/

√
KT

}
and constants Cσh

, Cσg , C∆h
, and C∆g are

defined in Appendix F.

We note that the condition on T ≥ Tth is required for theoretical purposes. Specifically, it ensures
that the step-size η = O(

√
K/T ) is upper-bounded. A similar requirement has also been posed in

Yu et al. (2019a;b); Khanduri et al. (2021) in the past. Theorem 4.3 captures the effect of hetero-
geneity, stochastic variance, and the initialization on the performance of FedDRO. Theorem 4.3 also
states that there exists a choice of the number of local updates that guarantee that FedDRO achieves
the same convergence performance as a standard FedAvg Karimireddy et al. (2019); Woodworth
et al. (2020); Yu et al. (2019a); Khanduri et al. (2021) for solving the non-CO problems. Next, we
characterize the sample and communication complexities of FedDRO.
Corollary 4.4 (Sample and Communication Complexities). Under the setting of Theorem 4.3 and
choosing the number of local updates as I = O(T 1/4/K3/4) the following holds

(i) The sample complexity of FedDRO is O(ϵ−2). This implies that each client requires
O(K−1ϵ−2) samples to reach an ϵ-stationary point achieving linear speed-up.

(ii) The communication complexity of FedDRO is O(ϵ−3/2).

The sample and communication complexities guaranteed by Corollary 4.4 match that of the stan-
dard FedAvg Yu et al. (2019b) for solving stochastic non-convex non-CO problems. We note that in
addition to the O(ϵ−3/2) communication complexity that measures the sharing of high-dimensional
parameters, FedDRO also shares O(K−1ϵ−2) low-dimensional embeddings (usually scalar values
as illustrated in Section 2.1). Therefore, the total real values shared by each client during the exe-
cution of FedDRO is O(ϵ−3/2d+K−1ϵ−2). Notice that for high-dimensional models like training
(large) neural networks, we will usually have dK ≥ O(ϵ−0.5) meaning the total communication will
be O(ϵ−3/2) which is better than any Federated CO algorithm proposed in the literature Huang et al.
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Algorithm 3 Federated non-convex CO algorithm with 2-Sided Learning Rate: DS-FedDRO

1: Input: Parameters: {βt}T−1
t=0 , {ηt}T−1

t=0 , I , γx, γy
2: Initialize: x−1

k = x0
k = xτ , y0

k = yτ with τ = 0, ∀k ∈ [K]
3: for t = 0 to T − 1 do
4: for k = 1 to K do

5: Local Updates:


Compute ∇Φk(x

t
k; ξ̄

t
k) using (7)

xt+1
k = xt

k − ηt∇Φk(x
t
k; ξ̄

t
k)

yt+1
k = (1− βt)yt

k + βgk(x
t+1
k ; ζt+1

k )

6: if t+ 1 mod I = 0 then

7: Aggregation at Server :


xτ+1 = xτ − γx

1
K

∑K
k=1(x

τ − xt+1
k )

xt+1
k = xτ+1, ∀k ∈ [K]

yτ+1 = yτ − γy
1
K

∑K
k=1(y

τ − yt+1
k )

yt+1
k = yτ+1, ∀k ∈ [K]

8: τ = τ + 1
9: end if

10: end for
11: end for
12: Return: x̄a(T ) where a(T ) ∼ U{1, ..., T}.

(2021); Gao et al. (2022); Guo et al. (2022). Importantly, to our knowledge this is the first work that
ensures linear speed up in a federated CO setting, moreover, FedDRO achieves this performance
without relying on the computation of large batch sizes. However, to make FedDRO fully federated
it is desirable to develop an algorithm that can circumvent the need to communicate the sequences
ytk at each time instant. Next, we tackle this challenge and develop a novel 2-sided learning rate
algorithm DS-FedDRO that avoids the need for frequent communication of ytk’s.

5 DS-FEDDRO: FEDDRO WITH 2-SIDED LEARNING RATE

In this section, we propose a novel algorithm called DS-FedDRO (FedDRO with double-sided
learning rates) that relies on the 2-sided learning rate utilized in classical FL algorithms to improve
both the experimental and the theoretical performance Yang et al. (2021); Reddi et al. (2020). Im-
portantly, we establish that DS-FedDRO completely avoids the communication of sequence yt+1

k as
required by FedDRO while at the same time achieving improved communication complexity. The
steps of DS-FedDRO are listed in Algorithm 3. Let us point out a few key differences compared to
FedDRO. First, note in Step 8 that instead of performing simple aggregation, the algorithm relies
on a 2-sided learning rate update rule for both the x- and the y-update. Second, note that the 2-sided
learning update rule also allows us to update the sequence y utilizing only a single stochastic gra-
dient computation in Step 6. In contrast, FedDRO required two stochastic gradient computations
to update y. In effect, DS-FedDRO, not only reduces the communication complexity but also im-
proves the per iteration computation complexity over FedDRO. In the following, we present the
convergence guarantees of DS-FedDRO and contrast them to that achieved by FedDRO.

5.1 MAIN RESULTS: CONVERGENCE OF DS-FEDDRO

For presenting the theoretical results of this section, we utilize a different notion of heterogeneity
compared to Assumption 3.4.

Assumption 5.1 (Bounded Heterogeneity). The heterogeneity of gk(·) is characterized as
supx∈Rd ∥gk(x)− g(x)∥2 ≤ ∆2

g , for some ∆g > 0 and for all k ∈ [K].

Assumption 5.1 above is similar to (Huang et al., 2023, Assumption 5) and (Yang et al., 2024, As-
sumption 4) for solving bilevel optimization problems with quadratic lower level objective function.
Note that this assumption although strong is commonplace in optimization literature and is moti-
vated by the bounded gradient heterogeneity assumptions often made in FL literature (Yu et al.,
2019b; Karimireddy et al., 2019; Zhang et al., 2021). Next, we state the main result of the section.

Theorem 5.2. For Algorithm 3, choosing the local step-sizes ηt = η = O(
√

I/T ) and the
momentum parameter β = cβη for all t ∈ {0, 1, . . . , T − 1}. Choosing the server step-sizes

8
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γx = O(
√
K/T ) and γy = cγy

γx. Then under Assumptions 3.2, 3.3, 3.4, and 5.1 for x̄a(T ) chosen
According to Algorithm 3, we have

E
∥∥∇Φ(x̄a(T ))

∥∥2 ≤ CSyncO
(√

1

KT

)
+ CDriftO

(
1

T

)
,

for some constants cβ , cγy , CSync and CDrift.

Again choosing the optimal number of local updates I to minimize the communication complexity
of DS-FedDRO. We get the following result.
Corollary 5.3 (Sample and Communication Complexities). Under the setting of Theorem 5.2 and
choosing the number of local updates as I = O(1/ϵ) the following holds

(i) The sample complexity of DS-FedDRO is O(ϵ−2). This implies that each client requires
O(K−1ϵ−2) samples to reach an ϵ-stationary point achieving linear speed-up.

(ii) The communication complexity of DS-FedDRO is O(ϵ−1).

First, note that DS-FedDRO in addition to achieving linear speed-up also improves the communica-
tion performance compared to FedDRO. Moreover, it is important to note that the communication
complexity of O(ϵ−1) matches the best-known communication complexity even for standard FL
problems Zhang et al. (2021); Acar et al. (2020). Moreover, compared to bilevel optimization algo-
rithms the update rules employed by DS-FedDRO (and FedDRO) are much simpler and require
the sharing of fewer sequences, thereby, making DS-FedDRO communication efficient compared
to such algorithms Tarzanagh et al. (2022); Yang et al. (2024); Li et al. (2024); Huang et al. (2023).

Comparison of DS-FedDRO to FedDRO. Although DS-FedDRO performs significantly better
compared to FedDRO in terms of communication performance, there are some drawbacks of DS-
FedDRO that we highlight here. (i) Additional tuning parameters. From a practical perspective,
because of the addition of server-side learning rates for both x- and y- updates, DS-FedDRO re-
quires more parameters to tune compared to FedDRO. (ii) Strong assumptions. From a theoretical
perspective, the improved performance of DS-FedDRO is also made possible with stronger as-
sumptions compared to FedDRO. For example, the analysis of DS-FedDRO relies on additional
Assumption 5.1 which FedDRO does not.

6 EXPERIMENTS

In this section, we evaluate the performance of FedDRO and DS-FedDRO with both centralized
and distributed baselines. Our goal is to 1) establish the superior performance of FedDRO and
DS-FedDRO compared to popular federated DRO baselines, and 2) evaluate the performance of
FedDRO and DS-FedDRO with different numbers of local updates to capture the effect of data
heterogeneity. To evaluate the performance of FedDRO and DS-FedDRO, we focus on two tasks:
classification with an imbalanced dataset and learning with fairness constraints. For the first task, we
use CIFAR10-ST and CIFAIR-100-ST datasets Qi et al. (2020b) (unbalanced versions of CIFAR10
and CIFAR100 Krizhevsky et al. (2009)) for image classification, and the performance is measured
by training and testing accuracy achieved by different algorithms. For the second task, we use the
Adult dataset Dua & Graff (2017) for enforcing equality of opportunity (on protected classes) on
tabular data classification Hardt et al. (2016). For this setting, the performance is evaluated by
training/testing accuracy, and the constraint violations, which are measured by the gap between the
true positive rate of the overall data and the protected groups Haddadpour et al. (2022). Please
see Appendix B for further details of the classification problem, datasets, experiment settings, and
additional experimental evaluation.

Figure 2: FedDRO and DS-FedDRO on the
CIFAR10-ST (100-ST) for different I .

Baseline methods. For the CIFAR10-ST and
CIFAR100-ST datasets we compare FedDRO and
DS-FedDRO with popular centralized baselines
for classification with imbalanced data. The base-
lines adopted for comparison are a popular DRO
method, FastDRO Levy et al. (2020), a primal-
dual SGD approach to solve constrained problems
with many constraints, PDSGD Xu (2020), and a
popular baseline minibatch SGD, MBSGD, cus-
tomized for CO Ghadimi & Lan (2013). For the
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Figure 1: Train and test accuracy vs communication rounds for CIFAR10-ST and CIFAR100-ST.

Figure 3: Comparison of FedDRO, DS-FedDRO, GCIVR, and the unconstrained baseline (left two figures),
along with the performance of FedDRO and DS-FedDRO across different I values (right two figures).

adult dataset, we use GCIVR Haddadpour et al. (2022) as the baseline distributed model to compare
with FedDRO and DS-FedDRO, since like these, it is the only algorithm that can deal with com-
positional and non-compositional objectives simultaneously. We also implement a parallel SGD as
a baseline that ignores the fairness constraints, referred to as unconstrained in the experiments.
Implementation details. We use 8 clients to model the distributed setting and split the (unbal-
anced) dataset equally for each client. We use ResNet20 for classification tasks on CIFAR10-ST
and CIFAR100-ST datasets. For a fair comparison with centralized baselines, we choose I = 1 for
FedDRO and implement a parallel version of the centralized algorithms where the overall gradient
computation is K times larger for each algorithm. This is to make sure that the overall gradient
computations in each step are uniform across all algorithms. Performance with different values of I
is evaluated separately. For each algorithm, we used a batch size of 16 per client, and the learning
rates were tuned from the set {0.001, 0.01, 0.05, 0.1}, the learning rate was dropped to 1/10th after
90 communication rounds. As for the 2-sided learning rates for DS-FedDRO we select 1.3 and 1.4
for the respective tasks. For fairness-constrained classification on the Adult dataset, we use a logistic
regression model. For this experiment, we adopt the parameter settings suggested in Haddadpour
et al. (2022), for FedDRO and DS-FedDRO we keep the same setting as in the earlier task. All
results are averaged over 5 independent runs.
Discussion. In Figure 1, we evaluate the performance of FedDRO and DS-FedDRO against the
parallel implementations of the centralized baselines on unbalanced CIFAR datasets. Note that
FedDRO and DS-FedDRO provide superior training and comparable test accuracy to the state-of-
the-art methods, while DS-FedDRO performs even better than FedDRO . In Figure 2, we evaluate
the test performance of FedDRO and DS-FedDRO for different number of local updates, I . Note
that as I increases the performance improves, however, beyond a certain, I , the performance doesn’t
improve capturing the effect of client drift because of data heterogeneity. Finally, in Figure 3 we as-
sess the test performance of FedDRO and DS-FedDRO against the distributed baseline GCIVR on
the Adult dataset. We observe that both FedDRO and DS-FedDRO outperform both GCIVR and
unconstrained formulation in terms of accuracy and matches the constraint violation performance
of GCIVR as communication rounds increase. Finally, for the right two images we evaluate the
performance of FedDRO and DS-FedDRO with different values of I , we notice that increasing the
value of I leads to improved performance, however, beyond a certain threshold (approximately over
32), the performance saturates as a consequence of client drift.
Conclusion and limitations. In this work, we first established that vanilla FedAvg algorithms are
incapable of solving CO problems in the FL setting. To address this challenge, we showed that
either additional communication (FedDRO) or 2-sided learning rate (DS-FedDRO) algorithms are
required to guarantee the theoretical convergence of federated CO algorithms. We developed Fed-
DRO and DS-FedDRO and performed a thorough theoretical analysis of the two algorithms. We
discussed the limitations of each algorithm and established their strong empirical performance via
numerical experiments on different tasks.
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Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Sai Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich, and Ananda
Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning. arXiv
e-prints, pp. arXiv–1910, 2019.

Prashant Khanduri, Pranay Sharma, Haibo Yang, Mingyi Hong, Jia Liu, Ketan Rajawat, and Pramod
Varshney. STEM: A stochastic two-sided momentum algorithm achieving near-optimal sample
and communication complexities for federated learning. Advances in Neural Information Pro-
cessing Systems, 34:6050–6061, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Daniel Levy, Yair Carmon, John C Duchi, and Aaron Sidford. Large-scale methods for distribution-
ally robust optimization. Advances in Neural Information Processing Systems, 33:8847–8860,
2020.

Junyi Li, Feihu Huang, and Heng Huang. Communication-efficient federated bilevel optimization
with global and local lower level problems. Advances in Neural Information Processing Systems,
36, 2024.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and sys-
tems, 2:429–450, 2020.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
FedAvg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

Xiangru Lian, Mengdi Wang, and Ji Liu. Finite-sum composition optimization via variance reduced
gradient descent. In Artificial Intelligence and Statistics, pp. 1159–1167. PMLR, 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Hongseok Namkoong and John C Duchi. Variance-based regularization with convex objectives.
Advances in neural information processing systems, 30, 2017.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–
1609, 2009.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. SARAH: A novel method for ma-
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APPENDIX

Notations. The expected value of a random variable (r.v) X is denoted by E[X]. Conditioned on
an event F the expectation of a r.v X is denoted by E[X|F ]. We denote by R (resp. Rd) the real
line (resp. the d dimensional Euclidean space). We denote by [K] := {1, . . .K}. The notation ∥ · ∥
defines a standard ℓ2-norm. For a set B, |B| denotes the cardinality of B. We use ξ ∼ Dh and
ζ ∼ Dg to denote the stochastic samples of functions h(·) and g(·) from distributions Dh and Dg ,
respectively. A batch of samples from h(·) (resp. g(·)) is denoted by bh (resp. bg). Moreover, joint
samples of h(·) and g(·) are denoted by ξ̄ = {bh, bg}. We represent by x̄ the empirical average of a
sequence of vectors {xk}Kk=1.

A RELATED WORK

Centralized CO. The first non-asymptotic analysis of stochastic CO problems was performed in
Wang et al. (2017) where the authors proposed SCGD a two-timescale algorithm for solving the
problem (1). The convergence of SCGD was improved in Wang et al. (2016) where the authors pro-
posed an accelerated variant of SCGD. Both SCGD and its accelerated variant achieved convergence
rates that were strictly worse than those of SGD for solving non-CO problems. Recently, Ghadimi
et al. (2020) and Chen et al. (2021) developed a single time-scale algorithm for solving the CO prob-
lem that achieves the same convergence as SGD for solving non-CO problems. Variance-reduced
algorithms for solving the CO problems have also been considered in the literature, however, a ma-
jor drawback of such approaches is the reliance of batch size on the desired solution accuracy Lian
et al. (2017); Zhang & Xiao (2019); Hu et al. (2019).

Distributed CO. There have been only a few attempts to solve non-convex CO problems in the
FL setting, partially, because of the challenges discussed in Section 1. The first FL algorithm to
solve the non-convex CO problem, Compositional Federated Learning (ComFedL), was developed
in Huang et al. (2021). ComFedL required accuracy-dependent batch sizes that resulted in O(ϵ−4)
convergence which is significantly worse compared to FedAvg to solve standard non-compositional
problems Yu et al. (2019b). In Gao et al. (2022), Local Stochastic Compositional Gradient De-
scent with Momentum (Local-SCGDM) was proposed which removed the requirement of large
batch sizes and achieved an O(ϵ−2) convergence. However, Local-SCGDM utilized a non-standard
momentum-based update from Ghadimi et al. (2020) that does not resemble a simple SGD-based
update. Importantly, the CO problem solved by ComFedL Huang et al. (2021) and Local-SCGDM
Gao et al. (2022) is non-standard as the problem is not distributed in the compositional objective (see
Remark 2.1). In contrast, we consider a general setting where the compositional objective is also
distributed among multiple nodes. Recently, Tarzanagh et al. (2022) proposed a nested optimization
framework, FedNest, to solve bilevel problems in the FL setting. The proposed algorithm achieved
SGD rates of O(ϵ−2) Ghadimi & Lan (2013). Different from the simple SGD-based update rule,
FedNest adopted a multi-loop variance reduction-based update. In Haddadpour et al. (2022), the
authors proposed a Generalized Composite Incremental Variance Reduction (GCIVR) framework
for solving problems of the form (2) in a distributed setting. GICVR achieved a better convergence
rate of O(ϵ−1.5), however, it relied on a double-loop structure and accuracy-dependent large batch
sizes to achieve variance reduction. Importantly, none of the above works guarantee linear speedup
with the number of clients. Moreover, the current algorithms utilize complicated momentum or VR-
based update rules that require computation of accuracy-dependent batch sizes Haddadpour et al.
(2022), and/or consider a simple setting where the compositional objective is not distributed among
nodes Huang et al. (2021); Gao et al. (2022).

In contrast to all the above works, our work considers a general setting (2), where the goal is to
jointly minimize a compositional and a non-compositional objective in the FL setting. To solve (2),
we develop FedDRO a FedAvg algorithm for CO problems that achieves (i). the same guarantees
as FedAvg for minimizing non-CO problems, (ii). linear speed-up with the number of clients, (iii).
improved communication complexity, (iv). performance guarantees where the batch sizes required
are independent of the desired solution accuracy, and (v). characterizes the performance as a function
of local updates at each client and the data heterogeneity in the inner and outer non-compositional
objectives.
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DRO. DRO has been extensively studied in optimization, machine learning, and statistics literature
Ben-Tal et al. (2013); Bertsimas et al. (2018); Duchi et al. (2021); Namkoong & Duchi (2017);
Staib & Jegelka (2019) Broadly, DRO problem formulation can be divided into two classes, one is
a constrained formulation and the other is the regularized formulation (see (3)) Levy et al. (2020);
Duchi et al. (2021). A popular approach to solve the constrained DRO formulation is via primal-
dual formulation where algorithms developed for min-max problems can directly be applied to solve
constrained DRO Yan et al. (2019); Namkoong & Duchi (2017); Song et al. (2021); Alacaoglu et al.
(2022); Tran Dinh et al. (2020). Many algorithms under different settings, e.g., convex, non-convex
losses, and stochastic settings have been considered in the past to address such problems. How-
ever, primal-dual algorithms suffer from computational bottlenecks, since they require maintaining
and updating the set of dual variables equal to the size of the dataset which can become particu-
larly challenging, especially for large-scale machine learning tasks. Recently, Levy et al. (2020) Qi
et al. (2022) Haddadpour et al. (2022) have developed algorithms that are applicable to large-scale
stochastic settings. Works Levy et al. (2020) and Qi et al. (2022) consider specific formulations
of the DRO problem while Haddadpour et al. (2022) considers a general formulation, however, as
pointed out earlier the algorithms developed in Haddadpour et al. (2022) are double loop and require
accuracy-dependent batch sizes to guarantee convergence (see Table 1). In contrast, in this work, we
develop algorithms that solve general instants of CO problems that often arise in DRO formulation.
Importantly, the developed algorithms are amenable to large-scale distributed implementation with
algorithmic guarantees independent of accuracy-dependent batch sizes.

A.1 DETAILED COMPARISON WITH HUANG ET AL. (2021); GAO ET AL. (2022);
TARZANAGH ET AL. (2022)

Comparison with Huang et al. (2021); Gao et al. (2022). We note that the problem setting in
Huang et al. (2021) and Gao et al. (2022) is significantly different from the one considered in our
work. We also would like to point out that the problem formulation considered in our work is more
challenging than Huang et al. (2021); Gao et al. (2022) and the algorithms developed for solving the
problem in Huang et al. (2021); Gao et al. (2022) cannot solve the problem considered in our work.
In the following, we elaborate on the differences between our work and that of Huang et al. (2021);
Gao et al. (2022).

In Huang et al. (2021); Gao et al. (2022), the authors consider the objective function

1

K

K∑
k=1

fk(gk(·)). (9)

Please observe that in this setting the local nodes have access to local composite functions fk(gk(·)).
In contrast, we consider a setting with objective function defined in (2) where the local nodes have
access to only hk(·) and gk(·)1. Note that the major difference in the two settings in (9) and (2)
comes from the fact that in (9) the inner function gk(·) is fully available at each node, whereas in (2)
the inner function 1/K

∑K
k=1 gk(·) is not available (since each node can only access gk(·)) at the

local nodes. Below, we discuss two major consequences of this:

• Practicality: We point out that the setting in (2) is more practical as can be seen from the examples
presented in Section 2.1 wherein the DRO problems take the form of (2) rather than (9) in a
distributed setting. For illustration, let us consider a simple setting where we have a total of m
samples with each node having access to mk = m/K samples. Then the DRO problem with
KL-Divergence problem becomes

min
x∈Rd

f

(
1

K

K∑
k=1

gk(·)
)

:= log

(
1

m

m∑
i=1

exp

(
ℓi(x)

λ

))
,

where f(·) = log(·), gk(x) = 1/mk

∑mk

i=1 exp
(
ℓi(x)/λ

)
, and g(·) = 1/K

∑K
k=1 gk(·). Note

that the above formulation is same as (2) and cannot be formulated using (9). To demonstrate
this fact we have used the notation in Table 1 as CO-ND for formulation of (9 where the inner

1We would also like to note that the setting considered in the paper can be easily extended to the case where
f(·) = 1/K

∑K
k=1 fk(·) without changing the current results.
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function gk(·) can be fully locally accessed by each node whereas our setting is more general
with each node having only partial access to the inner-function g(·). Next, we show why the
algorithms developed for Huang et al. (2021); Gao et al. (2022) cannot be utilized to solve the
problem considered in our work.

• Challenges in solving (2): A major contribution of our work is in establishing the fact that the
algorithms that are developed for solving 2), i.e., the algorithms developed in Huang et al. (2021);
Gao et al. (2022), cannot be utilized to solve the problem considered in our work.
To demonstrate this consider the simple deterministic setting with fk = f , then the local gradi-
ent computed for the objective function in (2) will be ∇gk(x)∇f(gk(x)) (please see (6) in the
manuscript). Note that this is an unbiased local gradient for objective in (9) which further implies
that simple FedAVG-based implementations can be developed for solving this problem as done in
Huang et al. (2021); Gao et al. (2022). In contrast, note that the local gradient ∇gk(x)∇f(gk(x))
will be a biased local gradient for our problem in (2) and will lead to divergence of FedAvg-based
algorithms Huang et al. (2021); Gao et al. (2022) as shown in Section 4.1. Moreover, note that we
establish that even if we share the local functions gk(·) intermitteltly among nodes we may not
be able to mitigate the bias of local gradient and the developed algorithms will again diverge to
incorrect solutions. Please see Section 4.1 for more details.

Comparison with Tarzanagh et al. (2022). Next, we note that the algorithm deveoped in
Tarzanagh et al. (2022) is a bilevel algorithm with multi-loop structure with many tunable (hyper) pa-
rameters. Such algorithms are not preferred in practical implementations. In contrast our algorithm
is a single-loop algorithm with simple FedAvg-type SGD updates. In addition to being practical,
our work also significantly improves upon the theoretical guarantees achieved in Tarzanagh et al.
(2022) by achieving linear speed-up with the number of clients as well as improved communication
complexity which any of the works including Huang et al. (2021); Gao et al. (2022); Tarzanagh et al.
(2022) are unable to achieve.

B DETAILED EXPERIMENT SETUP AND ADDITIONAL EXPERIMENTS

Experiment setup. The models are trained on an NVIDIA GeForce RTX 3090 GPU with 24 GB of
memory. All experiments are conducted using the PyTorch framework, specifically Python 3.9.16
and PyTorch 1.8

Datasets. To evaluate the performance of FedDRO and DS-FedDRO, the first section of the ex-
periments is conducted on CIFAR10-ST and CIFAR-100-ST datasets for image classification. The
second section of the experiments focuses on the Adult dataset, utilizing tabular data classification
and emphasizing DRO for fairness constraints. The CIFAR10-ST and CIFAR-100-ST datasets are
modified versions of the original CIFAR10 and CIFAR-100 datasets. The modification involves in-
tentionally creating imbalanced training data. Specifically, only the last 100 images are retained for
each class in the first half of the classes, while the other classes and the test data remain unchanged.
This creates an imbalanced distribution, posing a challenge for machine learning models to effec-
tively handle imbalanced class scenarios. In the Adult dataset, we consider the race groups “white,”
“black,” and “other” as protected groups. We assign the value of ϵ as 0.05 and set the noise level to
0.3 during training across all the algorithms.

Figure 4: Training accuracy of FedDRO and DS-
FedDRO on the CIFAR10-ST and CIFAR100-ST
for different I .

Evaluation metrics. We present the Top-1 accu-
racies for the training and testing segments of the
CIFAR10-ST and CIFAR-100-ST datasets (please
see Figures 1 and 2 in Section 6 and Figure 4
in Section B). Furthermore, in addition to train-
ing and testing performance, we also include the
maximum violation values for both the training
and testing sections of the Adult dataset. Specif-
ically, the maximum group violation is evaluated
following Haddadpour et al. (2022). To ensure
equal opportunities among different groups, even
when group membership is uncertain and fluctu-
ating during training, the objective is to develop a solution that is robust across various protected
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Figure 5: Overall training performance comparison of FedDRO, DS-FedDRO, GCIVR, and the uncon-
strained baseline (left two figures), along with the performance of FedDRO and DS-FedDRO across different
I values (right two figures).

groups in the problem. We assume that we have access to the probability distribution of the actual
group memberships (P (gi = j|gi = k) where gi represents the true group membership and gi rep-
resents the noisy group membership). With this information, we aim to enforce fairness constraints
by considering all potential proxy groups based on this probability distribution, which can signif-
icantly increase the number of constraints. In the case of equal opportunity, our goal is to ensure
that the true positive rate (TPR) for each group closely aligns with the TPR of the overall dataset,
within a certain threshold ϵ. In other words, we want to achieve tpr(g = j) ≥ tpr(ALL) − ϵ for
every proxy group we define.

Figure 6: Training and testing performance of FedDRO with the number of clients (denoted as
C = 1, 2, 3 and 4 in the figure) and number of local updates, I = 1 and 4.

Discussion. In Figure 4, we assess the performance of FedDRO and DS-FedDRO on the training
dataset under the same conditions described in Section 6, but with varying numbers of local updates,
I . It is observed that as I increases, performance improves; however, beyond a certain point, further
increases in I do not lead to improvement, highlighting the impact of client drift due to data het-
erogeneity. In Figure 5, we evaluate the training performance on the adult dataset under the same
conditions as mentioned earlier for testing in Section 6. Similar to the previous findings, in the left-
most image, we observe that FedDRO andDS-FedDRO outperform both the constrained version of
GCIVR and unconstrained baseline formulation while FedDRO outperforming DS-FedDRO eas-
ily. Evaluating the maximum group violation, we see that the unconstrained optimization demon-
strates the poorest performance, while our techniques perform comparably to GCIVR and improve
performance as the communication rounds increase. The right two plots, confirm that increasing
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the local updates, i.e., I results in improved performance, aligning with the theoretical guarantees
presented in the paper.

In Figure 6, we evaluate the performance of FedDROwith the number of clients. Specifically,
the accuracy demonstrates an upward trend as the value of C (representing the number of clients)
increases in the experiments conducted on the adult dataset. The top two plots depict the training
and testing performance for I = 1, while the bottom two demonstrate the training and testing
performance with I = 4.

C USEFUL LEMMAS

Lemma C.1. For vectors a1, a2, . . . , an ∈ Rd, we have

∥a1 + a2 + . . . ,+an∥2 ≤ n
[
∥a1∥2 + ∥a2∥2 + . . . ,+∥an∥2

]
.

Lemma C.2. For a sequence of vectors a1, a2, . . . , aK ∈ Rd, defining ā := 1
K

∑K
k=1 ak, we then

have
K∑

k=1

∥ak − ā∥2 ≤
K∑

k=1

∥ak∥2.

D PROOF OF THEOREM 4.1

We restate Theorem 4.1 for convenience.
Theorem D.1 (Vanilla FedAvg: Non-Convergence for CO). There exist functions f(·) and gk(·) for
k ∈ [K] satisfying Assumptions 3.2, 3.3, and 3.4, and an initialization strategy such that for a fixed
number of local updates I > 1, and for any 0 < ηt < Cη for t ∈ {0, 1, . . . , T − 1} where Cη > 0
is a constant, the iterates generated by Algorithm 1 under both Cases I and II do not converge to the
stationary point of Φ(·), where Φ(·) is defined in (2) with h(x) = 0.

Proof. We consider a setting where we have K = 2 nodes in the network. Also, let us consider a
single-dimensional setting where the local functions gk : R → R for k = {1, 2} at each node are

g1(x) := 4x− 4 and g2(x) := −2x+ 4.

Moreover, assume f : R → R as f(y) :=
√

y2 + 4. Therefore, the CO problem becomes

min
x∈R

{
Φ(x) := f

(
1

2

(
g1(x) + g2(x)

))
:=

√√√√[1
2

(
g1(x) + g2(x)

)]2
+ 4 =

√
x2 + 4

}
. (10)

First, we establish that the functions f(·) and gk(·) for k ∈ [K] satisfy Assumptions 3.2, 3.3, and
3.4.

Claim: Functions f , g1 and g2 satisfy Assumptions 3.2, 3.3, and 3.4.

The above claim is straightforward to verify. Specifically, we have

– The functions f , g1 and g2 are differentiable and Lipschitz smooth.

– The function f(·) is Lipschitz. Moreover, gk(·)’s are deterministic functions implying mean-
squared Lipschitzness.

– Assumption 3.3 is automatically satisfied since gk(·)’s are deterministic functions.

– Bounded heterogeneity of gk(·)’s is satisfied.

Note that it is clear from (10) that the minimizer of Φ(·) is x∗ = 0. In the following, we will
show that Algorithm 1 is not suitable to solve such problems by establishing that there exists an
initialization strategy and choice of step-sizes in the range 0 < η < Cη where Cη > 0 is a constant,
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the iterates generated by Algorithm 1 under both Cases I and II fail to converge to x∗. Next, we
prove the statement of the theorem in two parts. In the first part, we tackle Case I of Algorithm 1
while in the second part, we prove Case II of Algorithm 1. Next, we consider Case I.

Case I: Let us first compute the local gradients at each agent. We have

∇Φ1(x) = ∇g1(x)∇f(y1) = 4
y1√
y21 + 4

∇Φ2(x) = ∇g2(x)∇f(y2) = −2
y2√
y22 + 4

To prove the results, we consider a simple setting with I = 2, i.e., each node conducts 2 local
updates and shares the model parameters with the server. Moreover, we initialize the local iterates
to be x0

k = x̄0 = 0.5 for k = {1, 2} at both nodes. For this setting, let us write the update rule for
Algorithm 1 in Case I.

1. Note that for every t such that t mod 2 = 0, the local update at each node will be:

xt+1
1 = x̄t − 4η

4x̄t − 4√
(4x̄t − 4)2 + 4

xt+1
2 = x̄t + 2η

−2x̄t + 4√
(−2x̄t + 4)2 + 4

,

2. Moreover, the next immediate update at each node will be

xt+2
1 = xt+1

1 − 4η
4xt+1

1 − 4√
(4xt+1

1 − 4)2 + 4

xt+2
2 = xt+1

2 + 2η
−2xt+1

2 + 4√
(−2xt+1

2 + 4)2 + 4
,

3. This process keeps repeating for T iterations.

Let us focus on the local functions f(g1(x)) and f(g2(x)). Note from the definition of g1(·), g2(·)
and f(·) that the local optimum of these functions will be x∗

1 = 1 and x∗
2 = 2, respectively. Conse-

quently, for appropriately chosen step-size η in each iteration xt+1
1 and xt+2

1 at node 1 will converge
towards x∗

1 = 1 and similarly, xt+1
2 and xt+2

2 at node 2 will converge towards x∗
1 = 2. This implies

that we can expect the sequence x̄t for each t ∈ [T ] to not converge to x∗ = 0, the minimizer of the
CO problem defined in (10). Let us present this argument formally.

Claim: For Cη = 1/8 such that we have 0 < η < Cη , and utilizing the initialization x̄0 = 0.5, we
have x̄t ≥ 0.5 for every t > 0 with t mod 2 = 0.

This above Claim directly proves the statement of Theorem 4.1 for Case I. Let us now prove the
claim formally. We utilize induction to prove the claim.

Proof of claim: First, note that the claim is automatically satisfied for t = 0 as a consequence of the
initialization strategy. Assuming the claim holds for some t ∈ [T ] with t mod 2 = 0, i.e., we have
x̄t ≥ 0.5 for some t ∈ [T ] with t mod 2 = 0, we need to show that x̄t+2 ≥ 0.5.

In the following, we consider the following three cases: (1) 0.5 ≤ x̄t < 1, (2) 1 ≤ x̄t < 2, and (3)
x̄t ≥ 2. Here, we present the proof for case (1), the rest of the cases follow in a similar manner.

• Note from Step 1 above that since 0.5 ≤ x̄t < 1, we have 4x̄t − 4 < 0 and −2x̄t + 4 > 0, which
further implies that the locally updated iterates xt+1

1 > x̄t ≥ 0.5 and xt+1
2 > x̄t ≥ 0.5. Next, let

us analyze the iterates at t+ 2.

• At node 1, we further consider two cases, when xt+1
1 < 1 and the other when xt+1

1 ≥ 1.
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– First, note that if xt+1
1 < 1 we will have 4xt+1

1 − 4 < 0 in Step 2 above implying xt+2
1 >

xt+1
1 > x̄t ≥ 0.5.

– Otherwise, if xt+1
1 ≥ 1, we have 4xt+1

1 − 4 ≥ 0 however in this case we have∣∣∣∣∣4η 4xt+1
1 − 4√

(4xt+1
1 − 4)2 + 4

∣∣∣∣∣ ≤ 1/2 for η ≤ 1

8
,

again implying from the update rule in Step 2 that

xt+2
1 ≥ xt+1

1 − 1

2
≥ 0.5,

where the last step follows from the fact that xt+1
1 ≥ 1. Therefore, we have established that

xt+2
1 ≥ 0.5.

• At node 2, it is easy to establish that for case (1) with 0.5 ≤ x̄t < 1, we will have 0.5 ≤ xt+1
2 ≤

1.5. Note from the update rule in Step 2 that for this xt+1
2 , we have −2xt+1

2 +4 > 0 which further
implies that xt+2

2 > xt+1
2 ≥ 0.5.

• Finally, we have established that both xt+2
1 ≥ 0.5 and xt+2

2 ≥ 0.5, implying x̄t+2 ≥ 0.5. This
completes the proof of Case (1). Note that the proof for the other cases follows in a very similar
straightforward manner.

Therefore, we have the proof of Case I in Algorithm 1. Next, we consider Case II where in addition
to the model parameters, the local embeddings gk(·) for k ∈ [K] are also shared intermittently
among nodes. Please see Case II in Algorithm 1.

Case II: Let us consider the same setting as in Case I. Specifically, we consider a simple setting with
I = 2, i.e., each node conducts 2 local updates and shares the model parameters with the server.
Moreover, we initialize the model parameters x0

k = x̄0 = 0.5 for k = {1, 2} at both nodes. Note
that this implies from the definition of g1(·) and g2(·) that y0k = ȳ0 = 0.5 for k = {1, 2}. For this
setting, let us write the update rule for Algorithm 1.

1. Note that for every t such that t mod 2 = 0, the local update at each node will be:

xt+1
1 = x̄t − 4η

x̄t√
(x̄t)2 + 4

xt+1
2 = x̄t + 2η

x̄t√
(x̄t)2 + 4

,

2. Moreover, the next immediate update at each node will be

xt+2
1 = xt+1

1 − 4η
4xt+1

1 − 4√
(4xt+1

1 − 4)2 + 4

xt+2
2 = xt+1

2 + 2η
−2xt+1

2 + 4√
(−2xt+1

2 + 4)2 + 4
,

3. This process keeps repeating for T iterations.

We point out that this setting is considerably challenging compared to Case I since a cursory look
at the algorithm may suggest that sharing the embeddings gk(·) for k ∈ [K] intermittently may help
mitigate the bias in the gradient estimates. However, this is not the case as we show next.

Claim: For Cη = 1/22 such that we have 0 < η < Cη , and utilizing the initialization x̄0 = 0.5, we
have x̄t ≥ 0.5 for every t > 0 with t mod 2 = 0.
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We note that for this case the intuition is not as straightforward as in the previous case. We again
prove the claim by induction.

Proof of claim: First, note that the claim is automatically satisfied for t = 0 as a consequence of the
initialization strategy. Assuming the claim holds for some t ∈ [T ] with t mod 2 = 0, i.e., we have
x̄t ≥ 0.5 for some t ∈ [T ] with t mod 2 = 0, we need to show that x̄t+2 ≥ 0.5.

Let us first construct xt+2
1 and xt+2

2 as a function of x̄t. To this end, we have from the update rule in
Steps 1 and 2 that

xt+2
1 = x̄t

(
1− ϵt1

)
− 4η

4x̄t
(
1− ϵt1

)
− 4√

(4x̄t
(
1− ϵt1

)
− 4)2 + 4

xt+2
2 = x̄t

(
1 + ϵt2

)
+ 2η

−2x̄t
(
1 + ϵt2

)
+ 4√

(−2x̄t
(
1 + ϵt2

)
+ 4)2 + 4

,

where we have defined ϵt1 := 4η√
(x̄t)2+4

and ϵt2 := 2η√
(x̄t)2+4

, therefore, we have ϵt1 = 2ϵt2. Using

the above we can evaluate x̄t+2 as

x̄t+2 =
1

2

(
xt+2
1 + xt+2

2

)
=

(
2− ϵt1 + ϵt2

2

)
x̄t + 2η

4− 4x̄t
(
1− ϵt1

)√
(4x̄t

(
1− ϵt1

)
− 4)2 + 4

+ η
4− 2x̄t

(
1 + ϵt2

)√
(−2x̄t

(
1 + ϵt2

)
+ 4)2 + 4

=

(
1− ϵt2

2

)
x̄t + 2η

4− 4x̄t
(
1− ϵt1

)√
(4x̄t

(
1− ϵt1

)
− 4)2 + 4

+ η
4− 2x̄t

(
1 + ϵt2

)√
(−2x̄t

(
1 + ϵt2

)
+ 4)2 + 4

,

where in the first term of the last equality, we have used the fact that ϵt1 = 2ϵt2. Recall from the
induction hypothesis that we have x̄t ≥ 0.5, and we need to show that x̄t+2 ≥ 0.5. Note from above
that to establish x̄t+2 ≥ 0.5, it suffices to show that

x̄t − 0.5 + 2η
4− 4x̄t

(
1− ϵt1

)√
(4x̄t

(
1− ϵt1

)
− 4)2 + 4

+ η
4− 2x̄t

(
1 + ϵt2

)√
(−2x̄t

(
1 + ϵt2

)
+ 4)2 + 4

≥ ϵt2
2
x̄t. (11)

From the definition of ϵt2 := 2η√
(x̄t)2+4

, we note that the r.h.s. term can be further upper bounded as

ϵt2
2

x̄t = η
x̄t√

(x̄t)2 + 4
≤ η.

Therefore, to establish to establish x̄t+2 ≥ 0.5, it suffices to show that

x̄t − 0.5 + 2η
4− 4x̄t

(
1− 2ϵt2

)√
(4x̄t

(
1− 2ϵt2

)
− 4)2 + 4

+ η
4− 2x̄t

(
1 + ϵt2

)√
(−2x̄t

(
1 + ϵt2

)
+ 4)2 + 4

≥ η, (12)

where we have replaced ϵt1 = 2ϵt2. Similar to the previous proof here we again consider three cases
as listed below

• Case (1): 4−4x̄t(1−2ϵt2)√
(4x̄t(1−2ϵt2)−4)2+4

< 0 and 4−2x̄t(1+ϵt2)√
(−2x̄t(1+ϵt2)+4)2+4

< 0

• Case (2): 4−4x̄t(1−2ϵt2)√
(4x̄t(1−2ϵt2)−4)2+4

< 0 and 4−2x̄t(1+ϵt2)√
(−2x̄t(1+ϵt2)+4)2+4

> 0

• Case (3): 4−4x̄t(1−2ϵt2)√
(4x̄t(1−2ϵt2)−4)2+4

≥ 0 and 4−2x̄t(1+ϵt2)√
(−2x̄t(1+ϵt2)+4)2+4

≥ 0
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We first consider Case (1). Note that Case (1) implies that x̄t > 1, and using the fact that
4−4x̄t(1−2ϵt2)√

(4x̄t(1−2ϵt2)−4)2+4
≥ −1 and 4−2x̄t(1+ϵt2)√

(−2x̄t(1+ϵt2)+4)2+4
≥ −1, we get

x̄t − 0.5 + 2η
4− 4x̄t

(
1− 2ϵt2

)√
(4x̄t

(
1− 2ϵt2

)
− 4)2 + 4

+ η
4− 2x̄t

(
1 + ϵt2

)√
(−2x̄t

(
1 + ϵt2

)
+ 4)2 + 4

≥ 0.5− 3η

Note that by choosing η ≤ 1/8, the sufficient condition in (12) is satisfied, which further implies
that under Case (1), we have x̄t+2 ≥ 0.5. Next, we consider Case (2).

Note that for Case (2) we have 2/(1 + ϵt2) > x̄t > 1, next using the fact that 4−4x̄t(1−2ϵt2)√
(4x̄t(1−2ϵt2)−4)2+4

≥

−1 and 4−2x̄t(1+ϵt2)√
(−2x̄t(1+ϵt2)+4)2+4

≥ 0, we get

x̄t − 0.5 + 2η
4− 4x̄t

(
1− 2ϵt2

)√
(4x̄t

(
1− 2ϵt2

)
− 4)2 + 4

+ η
4− 2x̄t

(
1 + ϵt2

)√
(−2x̄t

(
1 + ϵt2

)
+ 4)2 + 4

≥ 0.5− 2η

Again choosing η ≤ 1/8, the sufficient condition in (12) is satisfied, which further implies that
under Case (2), we have x̄t+2 ≥ 0.5.

Finally, we consider the most challenging Case (3). Note that in Case (3) we have 0.5 ≤ x̄t ≤
1/(1 − 2ϵt2). For this case, we revisit the sufficient condition in (11) and make it tight. Recall that
we had from (11) that

x̄t − 0.5 + 2η
4− 4x̄t

(
1− 2ϵt2

)√
(4x̄t

(
1− 2ϵt2

)
− 4)2 + 4

+ η
4− 2x̄t

(
1 + ϵt2

)√
(−2x̄t

(
1 + ϵt2

)
+ 4)2 + 4

≥ η
x̄t√

(x̄t)2 + 4
,

now using the fact that for Case (3), we have 0.5 ≤ x̄t ≤ 1/(1− 2ϵt2), we can restate the sufficient
condition as

x̄t − 0.5 + 2η
4− 4x̄t

(
1− 2ϵt2

)√
(4x̄t

(
1− 2ϵt2

)
− 4)2 + 4

+ η
4− 2x̄t

(
1 + ϵt2

)√
(−2x̄t

(
1 + ϵt2

)
+ 4)2 + 4

≥ η

2
, (13)

where we have used the fact that 0.5 ≤ x̄t ≤ 1.1 for η < 1/22 and the fact that the term
η x̄t√

(x̄t)2+4
> η

2 for 0.5 ≤ x̄t ≤ 1.1. Moreover, η < 1/22 ensures that 1 + ϵt2 ≤ 23/22. Next, using

the fact that
4−4x̄t

(
1−2ϵt2

)
√

(4x̄t
(
1−2ϵt2

)
−4)2+4

> 0 and

4− 2x̄t
(
1 + ϵt2

)√
(−2x̄t

(
1 + ϵt2

)
+ 4)2 + 4

≥
4− 2x̄t

(
23/22

)√
(−2x̄t(1 + ϵt2) + 4)2 + 4

≥ 6

10
,

Substituting in the l.h.s. of the sufficient condition stated in (13), we get

x̄t − 0.5 + 2η
4− 4x̄t

(
1− 2ϵt2

)√
(4x̄t

(
1− 2ϵt2

)
− 4)2 + 4

+ η
4− 2x̄t

(
1 + ϵt2

)√
(−2x̄t

(
1 + ϵt2

)
+ 4)2 + 4

≥ 6η

10
,

where we used that fact that x̄t ≥ 0.5. Note that 6η
10 > η

2 , therefore, the sufficient condition stated
in (13) is satisfied. This further implies that the x̄t+2 ≥ 0.5 during the execution of the algorithm.

Recall that the optimal solution for solving the CO problem is x∗ = 0. This means Algorithm 1
under both Case I and II fails to converge to the stationary solution.

Hence, the theorem is proved.

Finally, we corroborate the result presented in Theorem D.1 via numerical experiment for solving
(10) using Case II of Algorithm 1. In Figure 7, we plot the evolution of x̄t in each communication
round. We note that x̄t is lower bounded by 0.5 as established in the proof of Theorem 4.2 above. In
fact, note that for all the settings as the communication rounds increase, x̄t eventually converges to
a quantity that is greater than 1. However, as discussed for the example considered to establish the
proof of Theorem 4.1, we know that the true optimizer of the CO problem (10) is x∗ = 0.
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Figure 7: The evolution of parameter x̄t at each communication round for different choices of step-
sizes η.

E PROOF OF THEOREM 4.2

Theorem E.1 (Modified FedAvg: Convergence for CO). Suppose we modify Algorithm 1 such that
ytk = ȳt is updated at each iteration t ∈ {0, 1, . . . , T − 1} instead of [t+ 1 mod I] iterations as in
current version of Algorithm 1. Then if functions f(·) and gk(x) for k ∈ [K] satisfy Assumptions
3.2, 3.3, and 3.4 such that for a fixed number of local updates 1 ≤ I ≤ O(T 1/4), there exists a
choice of ηt > 0 for t ∈ {0, 1, . . . , T − 1} such that the iterates generated by (modified) Algorithm
1 converge to the stationary point of Φ(·), where Φ(·) is defined in (2) with h(x) = 0.

Proof. Theorem E.1 is a direct consequence of Theorem 4.3. Therefore, we next prove the main
result of the paper in Theorem 4.3.

F PROOF OF THEOREM 4.3

For the purpose of this proof, we define the filtration F t as the sigma-algebra generated by the
iterates x1

k, x
1
k, . . . , x

t
k as

F t := σ(x1
k, x

1
k, . . . , x

t
k, for all k ∈ [K]).

Moreover, we define the following. Assuming the total training rounds, T − 1, to be a multiple of
I , i.e., T − 1 = S × I for some S ∈ N, we define ts := s× I with s ∈ {0, 1, . . . , S} as the training
rounds where the potentially high-dimensional model parameters, xt

k, are shared among the clients.
Next, we state Theorem 4.3 again and present the detailed proof of the result.

Theorem F.1. Under Assumptions 3.2, 3.3, and 3.4 and with the choice of step-size ηt = η =√
|b|K
T for all t ∈ {0, 1, . . . , T − 1}. Moreover, choosing the momentum parameter βt = β = cβη

where cβ = 4B4
gL

2
f . Then for

T ≥ Tth :=max

{
4(LΦ|b|K + 8B2

g)
2

|b|K
,

B4
g(96L

2
h + 96B2

fL
2
g)

2

|b|K(L2
h + 2B2

fL
2
g + 4B4

gL
2
f )

2
,

(
216L2

h + 216B2
fL

2
g

)
I2|b|K

}
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The iterates generated by Algorithm 2 satisfy

E
∥∥∇Φ(x̄a(T ))

∥∥2 ≤
2
[
Φ(x̄0)− Φ(x∗) +

∥∥ȳ0 − g(x̄0)
∥∥2]√

|b|KT
+

K(I − 1)2

T

[
2L̄f,gσ

2
h + 2B2

f L̄f,gσ
2
g

]
+

1√
|b|KT

[(
4LΦ + 8B2

g

)
σ2
h +

(
4LΦB

2
f + 4c2β + 8B2

fB
2
g

)
σ2
g

]
+

|b|K(I − 1)2

T

[
6L̄f,g∆

2
h + 6B2

f L̄f,g∆
2
g

]
+

1√
|b|KT

[
96B2

g ∆2
h + 96B2

fB
2
g ∆2

g

]
.

Corollary F.2. Under the same setting as Theorem 4.3, for the choice of local updates I =
T 1/4/(|b|K)3/4, the iterates generated by Algorithm 2 satisfy

E
∥∥∇Φ(x̄a(T ))

∥∥2 ≤
2
[
Φ(x̄0)− Φ(x∗) +

∥∥ȳ0 − g(x̄0)
∥∥2]√

|b|KT
+

Cσh√
|b|KT

σ2
h +

Cσg√
|b|KT

σ2
g

+
C∆h√
|b|KT

∆2
h +

C∆g√
|b|KT

∆2
g. (14)

where the constants Cσh
, Cσg

, C∆h
, and C∆g

are constants dependent on Lg , Lh, Lf , Bg , and Bf .

We prove the Theorem in multiple steps with the help of several intermediate Lemmas.
Lemma F.3 (Descent in Function Value). Under Assumptions 3.2-3.4, the iterates generated by
Algorithm 2 satisfy

E
[
Φ(x̄t+1)− Φ(x̄t)

]
≤ −ηt

2
E
∥∥∇Φ(x̄t)

∥∥2 − (ηt

2
− (ηt)2LΦ

)
E
∥∥∥∥ 1

K

K∑
k=1

E
[
∇Φk(x

t
k; ξ̄

t
k)
∣∣F t
]∥∥∥∥2

+ ηt
(
L2
h + 2B2

fL
2
g + 4B4

gL
2
F

) 1
K

K∑
k=1

E∥xt
k − x̄t∥2 + 4B4

gL
2
fη

t E
∥∥∥∥ȳt − 1

K

K∑
k=1

gk(x
t
k)

∥∥∥∥2
+

2(ηt)2LΦ

K|bh|
σ2
h +

2(ηt)2LΦB
2
f

K|bg|
σ2
g .

for all t ∈ {0, 1, . . . , T − 1}.

Proof. Using the fact that the loss function Φ(x) is LΦ-Lipschitz smooth, we get

E
[
Φ(x̄t+1)− Φ(x̄t)

]
≤ E

[
⟨∇Φ(x̄t), x̄t+1 − x̄t⟩+ LΦ

2
∥x̄t+1 − x̄t∥2

]
(a)

≤ E
[
− ηt

〈
∇Φ(x̄t),

1

K

K∑
k=1

∇Φk(x
t
k; ξ̄

t
k)

〉
+

(ηt)2LΦ

2

∥∥∥∥ 1

K

K∑
k=1

∇Φk(x
t
k; ξ̄

t
k)

∥∥∥∥2]
(b)

≤ E
[
− ηt

〈
∇Φ(x̄t),

1

K

K∑
k=1

E
[
∇Φk(x

t
k; ξ̄

t
k)
∣∣F t
]〉

+
(ηt)2LΦ

2

∥∥∥∥ 1

K

K∑
k=1

∇Φk(x
t
k; ξ̄

t
k)

∥∥∥∥2]

(c)

≤ −ηt

2
E
∥∥∇Φ(x̄t)

∥∥2 − (ηt

2
− (ηt)2LΦ

)
E
∥∥∥∥ 1

K

K∑
k=1

E
[
∇Φk(x

t
k; ξ̄

t
k)
∣∣F t
]∥∥∥∥2

+
ηt

2
E
∥∥∥∥∇Φ(x̄t)− 1

K

K∑
k=1

E
[
∇Φk(x

t
k; ξ̄

t
k)
∣∣F t
]∥∥∥∥2︸ ︷︷ ︸

Term I

(15)
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+ (ηt)2LΦ E
∥∥∥∥ 1

K

K∑
k=1

∇Φk(x
t
k; ξ̄

t
k)−

1

K

K∑
k=1

E
[
∇Φk(x

t
k; ξ̄

t
k)
∣∣F t
]∥∥∥∥2︸ ︷︷ ︸

Term II

,

where (a) follows from the update step in Algorithm 2; (b) results from moving the conditional
expectation w.r.t. the filtration F t inside the inner-product; finally, (c) uses the equality 2⟨a, b⟩ =
∥a∥2 + ∥b∥2 − ∥a− b∥2 for a, b ∈ Rd and Lemma C.1 to split the last term.

Next, we consider Terms I and II separately. First, note that from the definition of ∇Φk(x
t
k; ξ̄

t
k) for

all k ∈ [K], we have

E
[
∇Φk(x

t
k; ξ̄

t
k)
∣∣F t
]
= E

[
1

|bthk
|
∑
i∈bthk

∇hk(x
t
k; ξ

t
k,i) +

1

|btgk |
∑
j∈btgk

∇gk(x
t
k; ζ

t
k,j)∇f(ȳt)

∣∣∣∣F t

]
(a)
= ∇hk(x

t
k) +∇gk(x

t
k)∇f(ȳt) (16)

where (a) follows from Assumption 3.3. Moreover, from the definition of Φ(x̄t), we have

∇Φ(x̄t) =
1

K

K∑
k=1

[
∇hk(x̄

t) +∇gk(x̄
t)∇f(g(x̄t))

]
, (17)

where g(x̄t) = 1
K

∑K
k=1 gk(x̄

t). Next, utilizing the expressions obtained in (16) and (17) we bound
Term I as

Term I := E
∥∥∥∥∇Φ(x̄t)− 1

K

K∑
k=1

E
[
∇Φk(x

t
k; ξ̄

t
k)
∣∣F t
]∥∥∥∥2

= E
∥∥∥∥ 1

K

K∑
k=1

[
∇hk(x̄

t) +∇gk(x̄
t)∇f(g(x̄t))−

[
∇hk(x

t
k) +∇gk(x

t
k)∇f(ȳt)

]]∥∥∥∥2
(a)

≤ 2

K

K∑
k=1

[
E∥∇hk(x

t
k)−∇hk(x̄

t)∥2 + ∥∇gk(x
t
k)∇f(ȳt)−∇gk(x̄

t)∇f(g(x̄t))∥2
]

(b)

≤ 2L2
h

K

K∑
k=1

E∥xt
k − x̄t∥2 + 4

K

K∑
k=1

E
∥∥∇gk(x

t
k)
[
∇f(ȳt)−∇f(g(x̄t))

]∥∥2
+

4

K

K∑
k=1

E∥
[
∇gk(x

t
k)−∇gk(x̄

t)
]
∇f(g(x̄t))∥2

(c)

≤ 2L2
h

K

K∑
k=1

E∥xt
k − x̄t∥2 +

4B2
g

K

K∑
k=1

E
∥∥∇f(ȳt)−∇f(g(x̄t))

∥∥2
+

4B2
f

K

K∑
k=1

E∥∇gk(x
t
k)−∇gk(x̄

t)∥2

(d)

≤

(
2L2

h

K
+

4B2
fL

2
g

K

)
K∑

k=1

E∥xt
k − x̄t∥2 + 4B2

gL
2
f E

∥∥ȳt − g(x̄t)
∥∥2︸ ︷︷ ︸

Term III

.
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Next, let us consider Term III above.

Term III := E
∥∥ȳt − g(x̄t)

∥∥2
(a)

≤ 2E
∥∥∥∥ȳt − 1

K

K∑
k=1

gk(x
t
k)

∥∥∥∥2 + 2E
∥∥∥∥ 1

K

K∑
k=1

gk(x
t
k)− g(x̄t)

∥∥∥∥2
(b)

≤ 2E
∥∥∥∥ȳt − 1

K

K∑
k=1

gk(x
t
k)

∥∥∥∥2 + 2

K

K∑
k=1

E
∥∥gk(xt

k)− gk(x̄
t)
∥∥2

(c)

≤ 2E
∥∥∥∥ȳt − 1

K

K∑
k=1

gk(x
t
k)

∥∥∥∥2 + 2B2
g

K

K∑
k=1

E∥xt
k − x̄t∥2,

where (a) follows from the application of Lemma C.1; (b) results from the definition of g(x) =
1
K

∑K
k=1 gk(x) and the use of Lemma C.1; finally (c) results from the Lipschitz-ness of gk(·) for all

k ∈ [K].

Next, we consider Term II below

Term II := E
∥∥∥∥ 1

K

K∑
k=1

∇Φk(x
t
k; ξ̄

t
k)−

1

K

K∑
k=1

E
[
∇Φk(x

t
k; ξ̄

t
k)
∣∣F t
]∥∥∥∥2

(a)
=

1

K2

K∑
k=1

E
∥∥∇Φk(x

t
k; ξ̄

t
k)− E

[
∇Φk(x

t
k; ξ̄

t
k)
∣∣F t
]∥∥2

(b)
=

1

K2

K∑
k=1

E
∥∥∥∥ 1

|bthk
|
∑
i∈bthk

∇hk(x
t
k; ξ

t
k,i) +

1

|btgk |
∑
j∈btgk

∇gk(x
t
k; ζ

t
k,j)∇f(ȳt)

−
[
∇hk(x

t
k) +∇gk(x

t
k)∇f(ȳt)

]∥∥∥∥2
(c)
=

2

K2

K∑
k=1

E
∥∥∥∥ 1

|bthk
|
∑
i∈bthk

∇hk(x
t
k; ξ

t
k,i)−∇hk(x

t
k)

∥∥∥∥2

+
2

K2

K∑
k=1

E
∥∥∥∥ 1

|btgk |
∑
j∈btgk

∇gk(x
t
k; ζ

t
k,j)∇f(ȳt)−∇gk(x

t
k)∇f(ȳt)

∥∥∥∥2
(d)

≤ 2σ2
h

K|bh|
+

2σ2
gB

2
f

K|bg|
,

where (a) follows from the application of Lemma C.1; (b) follows from the definition of the
stochastic gradient in (7) and its expectation in (16); (c) again uses Lemma C.1; Finally, (d) uses
Cauchy-Schwartz inequality, Lipschitzness of f(ȳt) and Assumption 3.3 and using |bhk

| = |bh| and
|bgk | = |bg| for all k ∈ [K].

Next, substituting the upper bounds obtained for Terms I, II, and III into (15), we get

E
[
Φ(x̄t+1)− Φ(x̄t)

]
≤ −ηt

2
E
∥∥∇Φ(x̄t)

∥∥2 − (ηt

2
− (ηt)2LΦ

)
E
∥∥∥∥ 1

K

K∑
k=1

E
[
∇Φk(x

t
k; ξ̄

t
k)
∣∣F t
]∥∥∥∥2

+ ηt
(
L2
h + 2B2

fL
2
g + 4B4

gL
2
F

) 1

K

K∑
k=1

E∥xt
k − x̄t∥2︸ ︷︷ ︸

Term IV

+4B4
gL

2
fη

t E
∥∥∥∥ȳt − 1

K

K∑
k=1

gk(x
t
k)

∥∥∥∥2︸ ︷︷ ︸
Term V

+
2(ηt)2LΦ

K|bh|
σ2
h +

2(ηt)2LΦB
2
f

K|bg|
σ2
g . (18)

Therefore, we have the proof of the Lemma.
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Next, we bound Terms IV and V in (18) in the next Lemmas. Let us first consider Term IV.

Lemma F.4 (Client Drift). Under Assumptions 3.2-3.4, the iterates generated by Algorithm 2 sat-
isfy

1

K

K∑
k=1

E∥xt
k − x̄t∥ ≤ (I − 1)

(
24L2

h + 24B2
fL

2
g

) t−1∑
ℓ=ts

(ηℓ)2

K

K∑
k=1

E
∥∥xℓ

k − x̄ℓ
∥∥2

+ (I − 1)

(
4

|bth|
σ2
h +

4B2
f

|btg|
σ2
g

) t−1∑
ℓ=ts

(ηℓ)2 + (I − 1)
(
12∆2

h + 12B2
f∆

2
g

) t−1∑
ℓ=ts

(ηℓ)2.

Proof. Recall from the definition of ts that we have xts
k = x̄ts for all s ∈ {0, 1, . . . , S}. Next, we

have from the update rule in Algorithm 2 that for all t ∈ [ts + 1, ts+1 − 1]

xt
k = xt−1

k − ηt−1∇Φk(x
t−1
k ; ξ̄t−1

k )
(a)
= xts

k −
t−1∑
ℓ=ts

ηℓ∇Φk(x
ℓ
k; ξ̄

ℓ
k). (19)

where (a) results from unrolling the updates from Algorithm 2. Similarly, we have

x̄t = x̄t−1 − ηt−1 1

K

K∑
k=1

∇Φk(x
t−1
k ; ξ̄t−1

k ) = x̄ts − 1

K

K∑
k=1

t−1∑
ℓ=ts

ηℓ∇Φk(x
ℓ
k; ξ̄

ℓ
k) (20)

Bounding Term IV, we have

Term IV :=
1

K

K∑
k=1

E∥xt
k − x̄t∥2

(a)
=

1

K

K∑
k=1

E
∥∥∥∥ t−1∑

ℓ=ts

ηℓ∇Φk(x
ℓ
k; ξ̄

ℓ
k)−

1

K

K∑
k=1

t−1∑
ℓ=ts

ηℓ∇Φk(x
ℓ
k; ξ̄

ℓ
k)

∥∥∥∥2
(b)
= (I − 1)

t−1∑
ℓ=ts

(ηℓ)2

K

K∑
k=1

E
∥∥∥∥∇Φk(x

ℓ
k; ξ̄

ℓ
k)−

1

K

K∑
k=1

∇Φk(x
ℓ
k; ξ̄

ℓ
k)

∥∥∥∥2︸ ︷︷ ︸
Term VI

where (a) follows from (19) and (20) and (b) follows from the application of Lemma C.1.

Next, we bound Term VI in the above expression.

Term VI := E
∥∥∥∥∇Φk(x

ℓ
k; ξ̄

ℓ
k)−

1

K

K∑
k=1

∇Φk(x
ℓ
k; ξ̄

ℓ
k)

∥∥∥∥2
(a)
= E

∥∥∥∥ 1

|bℓhk
|
∑
i∈bℓhk

∇hk(x
ℓ
k; ξ

ℓ
k,i) +

1

|bℓgk |
∑
j∈bℓgk

∇gk(x
ℓ
k; ζ

ℓ
k,j)∇f(ȳℓ)

− 1

K

K∑
k=1

[
1

|bℓhk
|
∑
i∈bℓhk

∇hk(x
ℓ
k; ξ

ℓ
k,i) +

1

|bℓgk |
∑
j∈bℓgk

∇gk(x
ℓ
k; ζ

ℓ
k,j)∇f(ȳℓ)

]∥∥∥∥2
(b)

≤ 2E
∥∥∥∥ 1

|bℓhk
|
∑
i∈bℓhk

∇hk(x
ℓ
k; ξ

ℓ
k,i)−

1

K

K∑
k=1

1

|bℓhk
|
∑
i∈bℓhk

∇hk(x
ℓ
k; ξ

ℓ
k,i)

∥∥∥∥2

+ 2E
∥∥∥∥ 1

|bℓgk |
∑
j∈bℓgk

∇gk(x
ℓ
k; ζ

ℓ
k,j)∇f(ȳℓ)− 1

K

K∑
k=1

1

|bℓgk |
∑
j∈bℓgk

∇gk(x
ℓ
k; ζ

t
k,j)∇f(ȳℓ)

∥∥∥∥2
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(c)

≤ 2E
∥∥∥∥ 1

|bℓhk
|
∑
i∈bℓhk

∇hk(x
ℓ
k; ξ

ℓ
k,i)−

1

K

K∑
k=1

1

|bℓhk
|
∑
i∈bℓhk

∇hk(x
ℓ
k; ξ

ℓ
k,i)

∥∥∥∥2
︸ ︷︷ ︸

Term VII

+ 2B2
f E

∥∥∥∥ 1

|bℓgk |
∑
j∈bℓgk

∇gk(x
ℓ
k; ζ

ℓ
k,j)−

1

K

K∑
k=1

1

|bℓgk |
∑
j∈bℓgk

∇gk(x
ℓ
k; ζ

ℓ
k,j)

∥∥∥∥2︸ ︷︷ ︸
Term VIII

,

where (a) results from the definition of the stochastic gradient evaluated in (7); (b) uses Lemma
C.1; and (c) utilizes the Cauchy-Schwartz inequality combined with the Lipschitzness of f(·). Next,
in order to upper bound Term VI, we bound Terms VII and VIII separately. First, let us consider
Term VII above

Term VII := E
∥∥∥∥ 1

|bℓhk
|
∑
i∈bℓhk

∇hk(x
ℓ
k; ξ

ℓ
k,i)−

1

K

K∑
k=1

1

|bℓhk
|
∑
i∈bℓhk

∇hk(x
ℓ
k; ξ

ℓ
k,i)

∥∥∥∥2
(a)

≤ 2E
∥∥∥∥[ 1

|bℓhk
|
∑
i∈bℓhk

∇hk(x
ℓ
k; ξ

ℓ
k,i)−∇hk(x

ℓ
k)

]
− 1

K

K∑
k=1

[
1

|bℓhk
|
∑
i∈bℓhk

∇hk(x
ℓ
k; ξ

ℓ
k,i)−∇hk(x

ℓ
k)

]∥∥∥∥2

+ 2E
∥∥∥∥∇hk(x

ℓ
k)−

1

K

K∑
k=1

∇hk(x
ℓ
k)

∥∥∥∥2
(b)

≤ 2E
∥∥∥∥ 1

|bℓhk
|
∑
i∈bℓhk

∇hk(x
ℓ
k; ξ

ℓ
k,i)−∇hk(x

ℓ
k)

∥∥∥∥2 + 2E
∥∥∥∥∇hk(x

ℓ
k)−

1

K

K∑
k=1

∇hk(x
ℓ
k)

∥∥∥∥2
(c)

≤ 2σ2
h

|bℓhk
|
+ 2E

∥∥∥∥∇hk(x
ℓ
k)−

1

K

K∑
k=1

∇hk(x
ℓ
k)

∥∥∥∥2︸ ︷︷ ︸
Term IX

,

where (a) utilizes Lemma C.1; (b) results from the application of Lemma C.2; and (c) results from
Assumption 3.3.

Next, we bound Term IX below

Term IX := E
∥∥∥∥∇hk(x

ℓ
k)−

1

K

K∑
k=1

∇hk(x
ℓ
k)

∥∥∥∥2
(a)

≤ 3E
∥∥∇hk(x

ℓ
k)−∇hk(x̄

ℓ)
∥∥2 + 3E

∥∥∥∥ 1

K

K∑
k=1

[
∇hk(x̄

ℓ)−∇hk(x
ℓ
k)
]∥∥∥∥2

+ 3E
∥∥∥∥∇hk(x̄

ℓ)− 1

K

K∑
k=1

∇hk(x̄
ℓ)

∥∥∥∥2
(b)

≤ 3L2
hE
∥∥xℓ

k − x̄ℓ
∥∥2 + 3L2

h

K

K∑
k=1

E
∥∥xℓ

k − x̄ℓ
∥∥2 + 3E

∥∥∇hk(x̄
ℓ)−∇h(x̄ℓ)

∥∥2
(c)

≤ 3L2
hE
∥∥xℓ

k − x̄ℓ
∥∥2 + 3L2

h

K

K∑
k=1

E
∥∥xℓ

k − x̄ℓ
∥∥2 + 3∆2

h,

where (a) results from the application of Lemma C.1; (b) utilizes Lipschitz smoothness of h(·)
and the definition of h(x) = 1

K

∑K
k=1 hk(x); finally, (c) results from the bounded heterogeneity
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assumption Assumption 3.4. Substituting the bound on Term IX in the bound of Term VII, we get

Term VII ≤ 2σ2
h

|bthk
|
+ 6L2

hE
∥∥xℓ

k − x̄ℓ
∥∥2 + 6L2

h

K

K∑
k=1

E
∥∥xℓ

k − x̄ℓ
∥∥2 + 6∆2

h.

Similarly, we bound Term VIII as

Term VIII := E
∥∥∥∥ 1

|bℓgk |
∑
j∈bℓgk

∇gk(x
ℓ
k; ζ

ℓ
k,j)−

1

K

K∑
k=1

1

|bℓgk |
∑
j∈bℓgk

∇gk(x
ℓ
k; ζ

ℓ
k,j)

∥∥∥∥2
(a)

≤ 2E
∥∥∥∥[ 1

|bℓgk |
∑
i∈bℓgk

∇gk(x
ℓ
k; ζ

ℓ
k,i)−∇gk(x

ℓ
k)

]
− 1

K

K∑
k=1

[
1

|bℓgk |
∑
i∈bℓgk

∇gk(x
ℓ
k; ζ

ℓ
k,i)−∇gk(x

ℓ
k)

]∥∥∥∥2

+ 2E
∥∥∥∥∇gk(x

ℓ
k)−

1

K

K∑
k=1

∇gk(x
ℓ
k)

∥∥∥∥2
(b)

≤ 2E
∥∥∥∥ 1

|bℓgk |
∑
i∈bℓgk

∇gk(x
ℓ
k; ζ

ℓ
k,i)−∇gk(x

ℓ
k)

∥∥∥∥2 + 2E
∥∥∥∥∇gk(x

ℓ
k)−

1

K

K∑
k=1

∇gk(x
ℓ
k)

∥∥∥∥2
(c)

≤
2σ2

g

|bℓgk |
+ 2E

∥∥∥∥∇gk(x
ℓ
k)−

1

K

K∑
k=1

∇gk(x
ℓ
k)

∥∥∥∥2︸ ︷︷ ︸
Term X

,

where (a) utilizes Lemma C.1; (b) results from the application of Lemma C.2; and (c) results from
Assumption 3.3. Next, we bound Term X below

Term X := E
∥∥∥∥∇gk(x

ℓ
k)−

1

K

K∑
k=1

∇gk(x
ℓ
k)

∥∥∥∥2
(a)

≤ 3E
∥∥∇gk(x

ℓ
k)−∇gk(x̄

ℓ)
∥∥2 + 3E

∥∥∥∥ 1

K

K∑
k=1

[
∇gk(x̄

ℓ)−∇gk(x
ℓ
k)
]∥∥∥∥2

+ 3E
∥∥∥∥∇gk(x̄

ℓ)− 1

K

K∑
k=1

∇gk(x̄
ℓ)

∥∥∥∥2
(b)

≤ 3L2
gE
∥∥xℓ

k − x̄ℓ
∥∥2 + 3L2

g

K

K∑
k=1

E
∥∥xℓ

k − x̄ℓ
∥∥2 + 3E

∥∥∇gk(x̄
ℓ)−∇g(x̄ℓ)

∥∥2
(c)

≤ 3L2
gE
∥∥xℓ

k − x̄ℓ
∥∥2 + 3L2

g

K

K∑
k=1

E
∥∥xℓ

k − x̄ℓ
∥∥2 + 3∆2

g,

where (a) results from the application of Lemma C.1; (b) utilizes Lipschitz smoothness of g(·)
and the definition of g(x) = 1

K

∑K
k=1 gk(x); finally, (c) results from the bounded heterogeneity

assumption Assumption 3.4. Substituting the bound on Term X in the bound of Term VIII, we get

Term VIII ≤
2σ2

g

|bℓgk |
+ 6L2

gE
∥∥xℓ

k − x̄ℓ
∥∥2 + 6L2

g

K

K∑
k=1

E
∥∥xℓ

k − x̄ℓ
∥∥2 + 6∆2

g.
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Next, we substitute the upper bounds on Terms VII and VIII in the expression of Term VI, we get

Term VI ≤ 4

|bℓhk
|
σ2
h + 12L2

hE
∥∥xℓ

k − x̄ℓ
∥∥2 + 12L2

h

K

K∑
k=1

E
∥∥xℓ

k − x̄ℓ
∥∥2 + 12∆2

h

+
4B2

f

|bℓgk |
σ2
g + 12B2

fL
2
gE
∥∥xℓ

k − x̄ℓ
∥∥2 + 12B2

fL
2
g

K

K∑
k=1

E
∥∥xℓ

k − x̄ℓ
∥∥2 + 12B2

f∆
2
g

=
(
12L2

h + 12B2
fL

2
g

)
E
∥∥xℓ

k − x̄ℓ
∥∥2 + (12L2

h + 12B2
fL

2
g

K

) K∑
k=1

E
∥∥xℓ

k − x̄ℓ
∥∥2

+
4

|bℓhk
|
σ2
h +

4B2
f

|bℓgk |
σ2
g + 12∆2

h + 12B2
f∆

2
g.

Therefore, we finally have the bound on Term IV as

Term IV ≤ (I − 1)
(
24L2

h + 24B2
fL

2
g

) t−1∑
ℓ=ts

(ηℓ)2

K

K∑
k=1

E
∥∥xℓ

k − x̄ℓ
∥∥2

+ (I − 1)

(
4

|bth|
σ2
h +

4B2
f

|btg|
σ2
g

) t−1∑
ℓ=ts

(ηℓ)2 + (I − 1)
(
12∆2

h + 12B2
f∆

2
g

) t−1∑
ℓ=ts

(ηℓ)2.

where we have chosen |bℓhk
| = |bth| and |bℓgk | = |btg| for all k ∈ [K] and ℓ ∈ {0, . . . , T − 1}.

Therefore, we have proof of the Lemma.

Next, we bound Term V from (18), we have
Lemma F.5 (Descent in the estimate of g(x)). Under Assumptions 3.2-3.4, the iterates generated
by Algorithm 2 satisfy:

E
∥∥∥∥ȳt − 1

K

K∑
k=1

gk(x
t
k)

∥∥∥∥2

≤(1− βt)2E
∥∥∥∥ȳt−1 − 1

K

K∑
k=1

gk(x
t−1
k )

∥∥∥∥2 + 8(ηt)2(1− βt)2B2
g

|bg|K
E
∥∥∥∥ 1

K

K∑
k=1

E[Φk(x
t
k; ξ̄

t
k)|F t]

∥∥∥∥2

+
(ηt)2(1− βt)2B2

g(96L
2
h + 96B2

fL
2
g)

|bg|K2

K∑
k=1

E
∥∥xt

k − x̄t
∥∥2 + 4(ηt)2(1− βt)2B2

g

|bh|K
σ2
h

+
2(βt)2 + 4(ηt)2(1− βt)2B2

gB
2
f

|bg|K
σ2
g +

48(ηt)2(1− βt)2B2
g

|bg|K
∆2

h +
48(ηt)2(1− βt)2B2

fB
2
g

|bg|K
∆2

g.

where we have chosen |bth| = |bh| and |btgk | = |bg| for all k ∈ [K] and t ∈ [T ].

Proof. From the definition of Term V, we have

Term V := E
∥∥∥∥ȳt+1 − 1

K

K∑
k=1

gk(x
t+1
k )

∥∥∥∥2
(a)
= E

∥∥∥∥ 1

K

K∑
k=1

[
yt+1
k − gk(x

t+1
k )

]∥∥∥∥2
(b)
= E

∥∥∥∥ 1

K

K∑
k=1

[
(1− βt+1)

(
ytk +

1

|bt+1
gk |

∑
i∈bt+1

gk

gk(x
t+1
k ; ζt+1

k,i )− 1

|bt+1
gk |

∑
i∈bt+1

gk

gk(x
t
k; ζ

t+1
k,i )

)

+
βt+1

|bt+1
gk |

∑
i∈bt+1

gk

gk(x
t+1
k , ζt+1

k,i )− gk(x
t+1
k )

]∥∥∥∥2
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(c)
= (1− βt+1)2 E

∥∥∥∥ 1

K

K∑
k=1

[
ytk − gk(x

t
k)
]∥∥∥∥2

+ E
∥∥∥∥ 1

K

K∑
k=1

[
(1− βt+1)

[
(gk(x

t
k)− gk(x

t+1
k ))− 1

|bt+1
gk |

∑
i∈bt+1

gk

(
gk(x

t
k; ζ

t+1
k,i )− gk(x

t+1
k ; ζt+1

k,i )
)]

+ βt+1

(
1

|bt+1
gk |

∑
i∈bt+1

gk

gk(x
t+1
k ; ζt+1

k,i )− gk(x
t+1
k )

)]∥∥∥∥2

(d)

≤ (1− βt+1)2 E
∥∥∥∥ȳt − 1

K

K∑
k=1

gk(x
t
k)

∥∥∥∥2 + 2(βt+1)2

|bg|K
σ2
g

+
2(1− βt+1)2

K2

K∑
k=1

1

|bg|2
∑

i∈bt+1
gk

E
∥∥(gk(xt

k)− g(xt+1
k ))−

(
gk(x

t
k; ζ

t+1
k,i )− gk(x

t+1
k ; ζt+1

k,i )
)∥∥2

(e)

≤ (1− βt+1)2 E
∥∥∥∥ȳt − 1

K

K∑
k=1

gk(x
t
k)

∥∥∥∥2 + 2(βt+1)2

|bg|K
σ2
g

+
2(1− βt+1)2

K2

K∑
k=1

1

|bg|2
∑

i∈bt+1
gk

E
∥∥gk(xt

k; ζ
t+1
k,i )− gk(x

t+1
k ; ζt+1

k,i )
∥∥2

(f)

≤ (1− βt+1)2 E
∥∥∥∥ȳt − 1

K

K∑
k=1

gk(x
t
k)

∥∥∥∥2 + 2(βt+1)2

|bg|K
σ2
g +

2(1− βt+1)2B2
g

|bg|K2

K∑
k=1

E
∥∥xt+1

k − xt
k

∥∥2
(g)

≤ (1− βt+1)2E
∥∥∥∥ȳt − 1

K

K∑
k=1

gk(x
t
k)

∥∥∥∥2 + 2(βt+1)2

|bg|K
σ2
g

+
2(ηt)2(1− βt+1)2B2

g

|bg|K2

K∑
k=1

E
∥∥∇Φk(x

t
k; ξ̄

t
k)
∥∥2︸ ︷︷ ︸

Term XI

,

where (a) follows from the definition of ȳt+1; (b) uses the update rule (8) for yt+1
k ; (c) results from

adding and subtracting (1−βt+1)gk(x
t
k) and utilizing the fact that the second term in the expression

has zero-mean which follows from Assumption 3.3; (d) uses Young’s inequality, Assumption 3.3
and by choosing |bth| = |bh| and |btgk | = |bg| for all k ∈ [K] and t ∈ [T ]; (e) results from the
fact that for a random variable X , we have E∥X − E[X]∥2 ≤ E∥X∥2; (f) uses the mean-squared
Lipschitzness of gk(·) in Assumption 3.2; finally (g) results from the update rule of Algorithm 2.

Next, we bound Term XI below

Term XI := E
∥∥∇Φk(x

t
k; ξ̄

t
k)
∥∥2

(a)

≤ 2E
∥∥∇Φk(x

t
k; ξ̄

t
k)− E[∇Φk(x

t
k; ξ̄

t
k)|F t]

∥∥2 + 2E
∥∥E[∇Φk(x

t
k; ξ̄

t
k)|F t]

∥∥2
(b)

≤ 2σ2
h

|bh|
+

2σ2
gB

2
f

|bg|
+ 4E

∥∥∥∥E[∇Φk(x
t
k; ξ̄

t
k)|F t]− 1

K

K∑
k=1

E[∇Φk(x
t
k; ξ̄

t
k)|F t]

∥∥∥∥2︸ ︷︷ ︸
Term XII

+ 4E
∥∥∥∥ 1

K

K∑
k=1

E[∇Φk(x
t
k; ξ̄

t
k)|F t]

∥∥∥∥2,
where (a) results from the application of Young’s inequality and (b) results from Assumptions 3.2
and 3.3 along with the application of Young’s inequality.
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Next, we bound Term XII in the above expression.

Term XII := E
∥∥∥∥E[∇Φk(x

t
k; ξ̄

t
k)|F t]− 1

K

K∑
k=1

E[∇Φk(x
t
k; ξ̄

t
k)|F t]

∥∥∥∥2
(a)
= E

∥∥∥∥∇hk(x
t
k) +∇gk(x

t
k)∇f(ȳt)−

[
1

K

K∑
k=1

(
∇hk(x

t
k) +∇gk(x

t
k)∇f(ȳt)

)]∥∥∥∥2
(b)

≤ 2E
∥∥∥∥∇hk(x

t
k)−

1

K

K∑
k=1

∇hk(x
t
k)

∥∥∥∥2 + 2E
∥∥∥∥∇gk(x

t
k)∇f(ȳt)− 1

K

K∑
k=1

∇gk(x
t
k)∇f(ȳt)

]∥∥∥∥2
(c)

≤ 2E
∥∥∥∥∇hk(x

t
k)−

1

K

K∑
k=1

∇hk(x
t
k)

∥∥∥∥2︸ ︷︷ ︸
Term IX

+2B2
f E
∥∥∥∥∇gk(x

t
k)−

1

K

K∑
k=1

∇gk(x
t
k)

]∥∥∥∥2︸ ︷︷ ︸
Term X

(d)

≤ (6L2
h + 6B2

fL
2
g)E
∥∥xt

k − x̄t
∥∥2 + 6L2

h + 6B2
fL

2
g

K

K∑
k=1

E
∥∥xt

k − x̄t
∥∥2 + 6∆2

h + 6B2
f∆

2
g

where (a) above uses the definition of ∇Φk(x
t
k; ξ̄

t
k) in (7) and Assumption 3.3; (b) results from the

application of Young’s inequality; (c) utilized Assumtion 3.2; finally, (d) results from the application
of Assumptions 3.2 and 3.4.

Replacing in the upper bound for Term XI, we get

Term XI ≤ 4E
∥∥∥∥ 1

K

K∑
k=1

E[Φk(x
t
k; ξ̄

t
k)|F t]

∥∥∥∥2 + (24L2
h + 24B2

fL
2
g)E
∥∥xt

k − x̄t
∥∥2

+
24L2

h + 24B2
fL

2
g

K

K∑
k=1

E
∥∥xt

k − x̄t
∥∥2 + 2σ2

h

|bh|
+

2σ2
gB

2
f

|bg|
+ 24∆2

h + 24B2
f∆

2
g.

Substituting the bound on Term XI in the bound of Term V, we get

E
∥∥∥∥ȳt+1 − 1

K

K∑
k=1

gk(x
t+1
k )

∥∥∥∥2

≤(1− βt+1)2 E
∥∥∥∥ȳt − 1

K

K∑
k=1

gk(x
t
k)

∥∥∥∥2 + 8(ηt)2(1− βt+1)2B2
g

|bg|K
E
∥∥∥∥ 1

K

K∑
k=1

E[Φk(x
t
k; ξ̄

t
k)|F t]

∥∥∥∥2

+
(ηt)2(1− βt+1)2B2

g(96L
2
h + 96B2

fL
2
g)

|bg|K2

K∑
k=1

E
∥∥xt

k − x̄t
∥∥2 + 4(ηt)2(1− βt+1)2B2

g

|bh|K
σ2
h

+
2(βt+1)2 + 4(ηt)2(1− βt+1)2B2

gB
2
f

|bg|K
σ2
g +

48(ηt)2(1− βt+1)2B2
g

|bg|K
∆2

h +
48(ηt)2(1− βt+1)2B2

fB
2
g

|bg|K
∆2

g.

Therefore, we have proof of Lemma.

Next, we show descent in the potential function specially designed to show convergence of Algo-
rithm 2. For this purpose, we define the potential function as

V t = E[Φ(x̄t)] + E
∥∥∥∥ȳt − 1

K

K∑
k=1

gk(x
t
k)

∥∥∥∥2. (21)

Next, we derive the descent in the potential function.
Lemma F.6 (Descent in Potential Function). Under Assumptions 3.2-3.4 with the choice of
momentum-parameter βt+1 = cβη

t with cβ = 4B4
gL

2
f where step-size ηt is chosen such that

ηt ≤
{

|bg|K
2(LΦ|bg|K + 8B2

g)
,
|bg|K

(
L2
h + 2B2

fL
2
g + 4B4

gL
2
f

)
B2

g

(
96L2

h + 96B2
fL

2
g

) }
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the iterates generated by Algorithm 2 satisfy

V t+1 − V t≤− ηt

2
E
∥∥∇Φ(x̄t)

∥∥2 + ηt
(
2L2

h + 4B2
fL

2
g + 8B4

gL
2
F

) 1
K

K∑
k=1

E∥xt
k − x̄t∥2

+
2(ηt)2LΦ

K|bh|
σ2
h +

4(ηt)2B2
g

|bh|K
σ2
h +

2(ηt)2LΦB
2
f

|bg|K
σ2
g +

(ηt)2(2c2β + 4B2
gB

2
f )

|bg|K
σ2
g

+
48(ηt)2B2

g

|bg|K
∆2

h +
48(ηt)2B2

fB
2
g

|bg|K
∆2

g.

Proof. From the definition of V t in (21) and using Lemmas F.3 and F.5, we get

V t+1 − V t = E[Φ(x̄t+1)− Φ(x̄t)] + E
∥∥∥∥ȳt+1 − 1

K

K∑
k=1

gk(x
t+1
k )

∥∥∥∥2 − E
∥∥∥∥ȳt − 1

K

K∑
k=1

gk(x
t
k)

∥∥∥∥2

≤ −ηt

2
E
∥∥∇Φ(x̄t)

∥∥2 − (ηt

2
− (ηt)2LΦ −

8(ηt)2B2
g

|bg|K

)
E
∥∥∥∥ 1

K

K∑
k=1

E
[
∇Φk(x

t
k; ξ̄

t
k)
∣∣F t
]∥∥∥∥2

+

(
ηt
(
L2
h + 2B2

fL
2
g + 4B4

gL
2
F

)
+

(ηt)2B2
g(96L

2
h + 96B2

fL
2
g)

|bg|K

)
1

K

K∑
k=1

E∥xt
k − x̄t∥2

+
(
4B4

gL
2
fη

t − βt+1
)
E
∥∥∥∥ȳt − 1

K

K∑
k=1

gk(x
t
k)

∥∥∥∥2 + 2(ηt)2LΦ

K|bh|
σ2
h +

4(ηt)2B2
g

|bh|K
σ2
h

+
2(ηt)2LΦB

2
f

|bg|K
σ2
g +

2(βt+1)2 + 4(ηt)2B2
gB

2
f

|bg|K
σ2
g +

48(ηt)2B2
g

|bg|K
∆2

h +
48(ηt)2B2

fB
2
g

|bg|K
∆2

g

(a)

≤ −ηt

2
E
∥∥∇Φ(x̄t)

∥∥2 + ηt
(
2L2

h + 4B2
fL

2
g + 8B4

gL
2
F

) 1
K

K∑
k=1

E∥xt
k − x̄t∥2

+
2(ηt)2LΦ

K|bh|
σ2
h +

4(ηt)2B2
g

|bh|K
σ2
h +

2(ηt)2LΦB
2
f

|bg|K
σ2
g +

(ηt)2(2c2β + 4B2
gB

2
f )

|bg|K
σ2
g

+
48(ηt)2B2

g

|bg|K
∆2

h +
48(ηt)2B2

fB
2
g

|bg|K
∆2

g.

where (a) results from the choice of βt and ηt given in the statement of the Lemma.

Therefore, we have the proof.

Theorem F.7 (Potential Function). Under Assumptions 3.2-3.4 and the choice of step-size ηt = η
such that we have

η ≤ 1

3I
(
24L2

h + 24B2
fL

2
g

)1/2
the iterates generated by Algorithm 2 satisfy

V T − V 0 ≤ −η

2

T−1∑
t=0

E
∥∥∇Φ(x̄t)

∥∥2 + η3(I − 1)2
(
10L2

h + 20B2
fL

2
g + 40B4

gL
2
F

)
|bh|

σ2
h T

+
2η2LΦ

K|bh|
σ2
h T +

4η2B2
g

|bh|K
σ2
h T + η3(I − 1)2

(
10B2

fL
2
h + 20B4

fL
2
g + 40B2

fB
4
gL

2
F

)
|bg|

σ2
g T

+
2η2LΦB

2
f

|bg|K
σ2
g T +

η2(2c2β + 4B2
fB

2
g)

|bg|K
σ2
g T + η3(I − 1)2

(
30L2

h + 60B2
fL

2
g + 120B4

gL
2
F

)
∆2

h T

+
48η2B2

g

|bg|K
∆2

h T + η3(I − 1)2
(
30B2

fL
2
h + 60B4

fL
2
g + 120B2

fB
4
gL

2
F

)
∆2

g T +
48η2B2

fB
2
g

|bg|K
∆2

g T.
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Proof. Telescoping the sum of Lemma F.6 for t = {0, 1, . . . , T − 1}, we get

V T − V 0 ≤ −η

2

T−1∑
t=0

E
∥∥∇Φ(x̄t)

∥∥2 + η
(
2L2

h + 4B2
fL

2
g + 8B4

gL
2
F

) T−1∑
t=0

1

K

K∑
k=1

E∥xt
k − x̄t∥2︸ ︷︷ ︸

Term XIII

+
2η2LΦ

K|bh|
σ2
h T +

4η2B2
g

|bh|K
σ2
h T +

2η2LΦB
2
f

|bg|K
σ2
g T +

η2(2c2β + 4B2
gB

2
f )

|bg|K
σ2
g T

+
48η2B2

g

|bg|K
∆2

h T +
48η2B2

fB
2
g

|bg|K
∆2

g T. (22)

We bound Term XIII in (22) using Lemma (F.4). Note that we have from Lemma (F.4)

1

K

K∑
k=1

E∥xt
k − x̄t∥2 ≤ (I − 1)

(
24L2

h + 24B2
fL

2
g

) t−1∑
ℓ=ts

(ηℓ)2

K

K∑
k=1

E
∥∥xℓ

k − x̄ℓ
∥∥2

+ (I − 1)

(
4

|bth|
σ2
h +

4B2
f

|btg|
σ2
g

) t−1∑
ℓ=ts

(ηℓ)2 + (I − 1)
(
12∆2

h + 12B2
f∆

2
g

) t−1∑
ℓ=ts

(ηℓ)2

Summing the above from t = ts to ts+1 − 1, we get

ts+1−1∑
t=ts

1

K

K∑
k=1

E∥xt
k − x̄t∥2

(a)

≤ η2(I − 1)
(
24L2

h + 24B2
fL

2
g

) ts+1−1∑
t=ts

t−1∑
ℓ=ts

1

K

K∑
k=1

E
∥∥xℓ

k − x̄ℓ
∥∥2

+ η2(I − 1)2I

(
4

|bth|
σ2
h +

4B2
f

|btg|
σ2
g

)
+ η2(I − 1)2I

(
12∆2

h + 12B2
f∆

2
g

)
(b)

≤ η2(I − 1)
(
24L2

h + 24B2
fL

2
g

) ts+1−1∑
t=ts

ts+1−1∑
ℓ=ts

1

K

K∑
k=1

E
∥∥xℓ

k − x̄ℓ
∥∥2

+ η2(I − 1)2I

(
4

|bth|
σ2
h +

4B2
f

|btg|
σ2
g

)
+ η2(I − 1)2I

(
12∆2

h + 12B2
f∆

2
g

)
(c)

≤ η2(I − 1)I
(
24L2

h + 24B2
fL

2
g

) ts+1−1∑
t=ts

1

K

K∑
k=1

E
∥∥xt

k − x̄t
∥∥2

+ η2(I − 1)2I

(
4

|bth|
σ2
h +

4B2
f

|btg|
σ2
g

)
+ η2(I − 1)2I

(
12∆2

h + 12B2
f∆

2
g

)
where in (a) we have used the fact that ηt = η for all t ∈ [T ] and (t − 1) − ts ≤ I − 1 for
t ∈ [ts, ts+1 − 1]; (b) results from the fact that t ≤ ts+1; finally, (c) again uses the fact that
(t− 1)− ts ≤ I − 1 for t ∈ [ts, ts+1 − 1].

Summing the above from s = {0, 1, . . . , S} and using the fact that S × I = T − 1, we get

T−1∑
t=0

1

K

K∑
k=1

E∥xt
k − x̄t∥2 ≤ η2I2

(
24L2

h + 24B2
fL

2
g

) T−1∑
t=0

1

K

K∑
k=1

E
∥∥xt

k − x̄t
∥∥2

+ η2(I − 1)2
(

4

|bth|
σ2
h +

4B2
f

|btg|
σ2
g

)
T + η2(I − 1)2

(
12∆2

h + 12B2
f∆

2
g

)
T.

Rearranging the terms, we get(
1− η2I2

(
24L2

h + 24B2
fL

2
g

)) T−1∑
t=0

1

K

K∑
k=1

E∥xt
k − x̄t∥2 ≤ η2(I − 1)2

(
4

|bth|
σ2
h +

4B2
f

|btg|
σ2
g

)
T

+ η2(I − 1)2
(
12∆2

h + 12B2
f∆

2
g

)
T.
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Finally, choosing η ≤ 1

3I
(
24L2

h+24B2
fL

2
g

)1/2 , such that we have 1− η2I2
(
24L2

h + 24B2
fL

2
g

)
≥ 8/9,

utilizing this we get

Term XIII :=
T−1∑
t=0

1

K

K∑
k=1

E∥xt
k − x̄t∥2

≤ η2(I − 1)2
(

5

|bth|
σ2
h +

5B2
f

|btg|
σ2
g

)
T + η2(I − 1)2

(
15∆2

h + 15B2
f∆

2
g

)
T.

Finally, substituting the bound on Term XIII in (22), we get

V T − V 0 ≤ −η

2

T−1∑
t=0

E
∥∥∇Φ(x̄t)

∥∥2 + η3(I − 1)2
(
10L2

h + 20B2
fL

2
g + 40B4

gL
2
F

)
|bh|

σ2
h T

+
2η2LΦ

K|bh|
σ2
h T +

4η2B2
g

|bh|K
σ2
h T + η3(I − 1)2

(
10B2

fL
2
h + 20B4

fL
2
g + 40B2

fB
4
gL

2
F

)
|bg|

σ2
g T

+
2η2LΦB

2
f

|bg|K
σ2
g T +

η2(2c2β + 4B2
fB

2
g)

|bg|K
σ2
g T + η3(I − 1)2

(
30L2

h + 60B2
fL

2
g + 120B4

gL
2
F

)
∆2

h T

+
48η2B2

g

|bg|K
∆2

h T + η3(I − 1)2
(
30B2

fL
2
h + 60B4

fL
2
g + 120B2

fB
4
gL

2
F

)
∆2

g T +
48η2B2

fB
2
g

|bg|K
∆2

g T.

Therefore, we have the proof.

Now, we are finally ready to prove Theorem 4.3.

Proof. Assuming |bh| = |bg| = |b| and defining L̄f,g := 10L2
h + B2

fL
2
g + 40B4

gL
2
f . Rearranging

the terms in the expression of Theorem F.7 and multiplying both sides by 2/ηT we get

1

T

T−1∑
t=0

E
∥∥∇Φ(x̄t)

∥∥2 ≤
2
[
Φ(x̄0)− Φ(x∗) +

∥∥ȳ0 − g(x̄0)
∥∥2]

ηT
+ η2(I − 1)2

[
2L̄f,g

|b|
σ2
h +

2B2
f L̄f,g

|b|
σ2
g

]

+ η2(I − 1)2
[
6L̄f,g∆

2
h + 6B2

f L̄f,g∆
2
g

]
+ η

[
4LΦ + 8B2

g

|b|K
σ2
h +

4LΦB
2
f + 4c2β + 8B2

fB
2
g

|b|K
σ2
g

]
+ η

[
96B2

g

|b|K
∆2

h +
96B2

fB
2
g

|b|K
∆2

g

]
,

where the first term on the right follows from the fact that Φ(x̄T ) ≥ Φ(x∗) and ∥ȳT −
1/K

∑K
k=1 gk(x

T
k )∥2 ≥ 0.

Next, choosing η =
√

|b|K
T then for T ≥

(
216L2

h + 216B2
fL

2
g

)
I2|b|K such that η ≤

1

3I
(
24L2

h+24B2
fL

2
g

)1/2 in Theorem F.7 is satisfied, we get the following

1

T

T−1∑
t=0

E
∥∥∇Φ(x̄t)

∥∥2 ≤
2
[
Φ(x̄0)− Φ(x∗) +

∥∥ȳ0 − g(x̄0)
∥∥2]√

|b|KT
+

K(I − 1)2

T

[
2L̄f,gσ

2
h + 2B2

f L̄f,gσ
2
g

]
+

|b|K(I − 1)2

T

[
6L̄f,g∆

2
h + 6B2

f L̄f,g∆
2
g

]
+

1√
|b|KT

[(
4LΦ + 8B2

g

)
σ2
h +

(
4LΦB

2
f + 4c2β + 8B2

fB
2
g

)
σ2
g

]
+

1√
|b|KT

[
96B2

g ∆2
h + 96B2

fB
2
g ∆2

g

]
,

Explicitly choosing I = T 1/4/(|b|K)3/4, we get

E
∥∥∇Φ(x̄a(T ))

∥∥2 ≤
2
[
Φ(x̄0)− Φ(x∗) +

∥∥ȳ0 − g(x̄0)
∥∥2]√

|b|KT
+

Cσh√
|b|KT

σ2
h +

Cσg√
|b|KT

σ2
g

+
C∆h√
|b|KT

∆2
h +

C∆g√
|b|KT

∆2
g.
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where the constants Cσh
, Cσg

, C∆f
, and C∆g

are defined as:

Cσh
= 2L̄f,g + 4LΦ + 8B2

g

Cσg
= 2B2

f L̄f,g + 4LΦB
2
f + 4c2β + 8B2

fB
2
g

C∆f
= 6L̄f,g + 96B2

g

C∆g
= 6B2

f L̄f,g + 96B2
fB

2
g .

The constant cβ is defined in the statement of Lemma F.6.

Hence, Theorem 4.3 is proved.

G PROOF OF THEOREM 5.2

Let us restate Theorem 5.2 for convenience.
Theorem G.1. For Algorithm 3, choosing the local step-sizes ηt = η = O(

√
I/T ) and the

momentum parameter β = cβη for all t ∈ {0, 1, . . . , T − 1}. Choosing the server step-sizes
γx = O(

√
K/T ) and γy = cγyγx. Then under Assumptions 3.2, 3.3, 3.4, and 5.1 for x̄a(T ) chosen

According to Algorithm 3, we have

E
∥∥∇Φ(x̄a(T ))

∥∥2 ≤ CSyncO
(√

1

KT

)
+ CDriftO

(
1

T

)
,

for some constants cβ , cγy
, CSync and CDrift.

We note that the proof of Theorem G.1 although different will follow the structure and the steps of
the proof of (Yang et al., 2024), therefore, we omit the detailed proofs. Let us first state the main
lemmas utilized in the proof of the theorem.
Lemma G.2 (Descent in Function Value). Under Assumptions 3.2-5.1, the iterates generated by
Algorithm 3 satisfy

E[Φ(xτ+1)− Φ(xτ )] ≤ −γxηI

2
E∥∇Φ(xτ )∥2

−
[
γxηI

2
− L2

Φγ
2
xη

2I2

2

]
E
∥∥∥∥ 1

K

K∑
k=1

1

I

(τ+1)I−1∑
t=τI

E[∇Φk(x
t
k; ξ̄

t
k)|Gt]

∥∥∥∥
+

γ2
xη

2I2L2
Φ

2

[
σ2
h +B2

fσ
2
g

KI

]

+ γxηI
[
L2
h + 2B2

fL
2
g + 16B4

gL
2
f

] 1
K

K∑
k=1

1

I

(τ+1)I−1∑
t=τI

E∥xt+1
k − xτ∥2

+ γxηI
[
12B2

gL
2
f

] 1
K

K∑
k=1

1

I

(τ+1)I−1∑
t=τI

E∥ytk − yτ∥2

+ γxηI
[
12B2

gL
2
f

]
E∥yτ − g(xτ )∥2.

Lemma G.3 (Drift in y-Updates). Under Assumptions 3.2-5.1, the iterates generated by Algorithm
3 satisfy

1

K

K∑
k=1

1

I

(τ+1)I−1∑
t=τI

E∥ytk − yτ∥2 ≤ β2I

1− 4β2I

[
σ2
g + 4∆2

g + 4η2IB2
gσ

2
X + 4E∥yτ − g(xτ )∥2

]
,

where σ2
X is defined as σ2

X := 3σ2
h + 3B2

fσ
2
g + 6B2

h + 6B2
gB

2
f .

Lemma G.4 (Drift in x-Updates). Under Assumptions 3.2-5.1, the iterates generated by Algorithm
3 satisfy

1

K

K∑
k=1

1

I

(τ+1)I−1∑
t=τI

E∥xt+1
k − xτ∥2 ≤ η2Iσ2

X .

Similarly, we bound the term
E∥xτ+1 − xτ∥2 ≤ γ2

xη
2Iσ2

X .
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Lemma G.5 (Descent in the estimate of y). Under Assumptions 3.2-5.1, the iterates generated by
Algorithm 3 satisfy

E∥yτ+1 − g(xτ+1)∥2 − E∥yτ − g(xτ )∥2 ≤
[
δ + 6I2γ2

yβ
2 − γyβI

]
E∥yτ − g(xτ )∥

+

[
6γ2

yβ
2I2

K
+ 8γyβI

][
1

K

K∑
k=1

1

I

(τ+1)I−1∑
t=τI

E∥ytk − yτ∥2 +B2
gE∥xt+1

k − xτ∥2
]

+B2
gE∥xτ+1 − xτ∥2 +

[
4B2

g

δ1
+

Lg

2

]
σ2
Xγ2

xη
2I,

where δ := δ1 +
η2γ2

xILg

2 σ2
X and δ1 > 0 is a parameter to be chosen later.

Next, we design the potential function as

Vτ = E[Φ(xτ ) + ∥yτ − g(xτ )∥2],

and our goal is to analyze the descent in the potential function. We analyze the term

Vτ+1 − Vτ = E[Φ(xτ+1)− Φ(xτ )] + E[∥yτ+1 − g(xτ+1)∥2 − ∥yτ − g(xτ )∥2] (23)

Choosing the learning rates such that, we have

δ1 = B2
gL

2
fγxηI, γyβ ≤ 8

6KI
, β ≤ 3

64
γy, β ≤ 1√

8I
, ηγx ≤

2B2
gL

2
f

Lgσ2
X

,

δ ≤ 2B2
gL

2
fγxηI, γ

2
yβ

2 ≤
2b2gl

2
fγxη

I
, γyβ ≤ 28B2

gL
2
fγxη, γxη ≤ 1

L2
ΦI

This choice of parameters implies that we will have

Vτ+1 − Vτ = E[Φ(xτ+1)− Φ(xτ )] + E[∥yτ+1 − g(xτ+1)∥2 − ∥yτ − g(xτ )∥2]

≤ −γxηI

2
E∥∇Φ(xτ )∥2

+
γ2
xη

2I2L2
Φ

2

[
σ2
h +B2

fσ
2
g

KI

]
+ γxηI

[
L2
h + 2B2

fL
2
g + 16B4

gL
2
f

]
× η2Iσ2

X

+ γxηI
[
12B2

gL
2
f

]
× 2β2I

[
σ2
g + 4∆2

g + 4η2IB2
gσ

2
X

]
+

[
6γ2

yβ
2I2

K
+ 8γyβI

]
2β2I

[
σ2
g + 4∆2

g + 4η2IB2
gσ

2
X

]
+

[
6γ2

yβ
2I2

K
+ 8γyβI

]
B2

gη
2Iσ2

X

+B2
gγ

2
xη

2Iσ2
X +

[
4B2

g

δ1
+

Lg

2

]
σ2
Xγ2

xη
2I,

Finally, rearranging the terms and multiplying both sides by 2
γxηI

, telescoping the sum, and choosing
the step-sizes such that we have

γx = O
(√

K

T

)
, γy = O(γx)

η = O
(√

I√
T

)
, β = O

(√
I√
T

)
This yields the statement of the theorem.
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