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Abstract

Segmentation of 3D volumes with a large number of labels, small convoluted structures,
and lack of contrast between various structural boundaries is a difficult task. While re-
cent methodological advances across many segmentation tasks are dominated by 3D ar-
chitectures, currently the strongest performing method for whole brain segmentation is
FastSurferCNN, a 2.5D approach. To shed light on the nuanced differences between 2.5D
and various 3D approaches, we perform a thorough and fair comparison and suggest a
spatially-ensembled 3D architecture. Interestingly, we observe training memory intensive
3D segmentation on full-view images does not outperform the 2.5D approach. A shift
to training on patches even while evaluating on full-view solves these limitations of both
memory and performance limitations at the same time. We demonstrate significant perfor-
mance improvements over state-of-the-art 3D methods on both Dice Similarity Coefficient
and especially average Hausdorff Distance measures across five datasets. Finally, our val-
idation across variations of neurodegenerative disease states and scanner manufacturers,
shows we outperform the previously leading 2.5D approach FastSurferCNN demonstrat-
ing robust segmentation performance in realistic settings. Our code is available online at
github.com/Deep-MI/3d-neuro-seg.
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1. Introduction

2.5D approaches to volumetric segmentation of neuroanatomy limit the input space visible
to their predictive models. However, models like FastSurferCNN (Henschel et al., 2020) use
stacked slices while ensembling on 3 orthogonal views to achieve remarkable accuracy on
95 structures in less than 1 minute. In contrast to segmentation tasks with limited labels
such as lesion, brain tumor, or segmentation of less granular structures, the large number
of classes is a distinguishing challenge for neuro-segmentation. In theory, 3D volumes with
added spatial context provide advantages for deep neural networks (Mehta et al., 2017).
Standard 3D deep learning models such as the 3D-UNet (Çiçek et al., 2016), VNet (Mil-
letari et al., 2016) for volumetric segmentation require significant GPU memory for even
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moderately large volumes when segmenting a large number of classes. For example, the
training of a standard V-Net with a 256 × 256 × 256 volume for segmenting 79 structures
(as in this work) requires over a 100 GB of memory with model and loss gradients sharded
across multiple GPUs. To overcome large memory requirements, models rely on 3D patches
(Moeskops et al., 2016; Mehta et al., 2017; Li et al., 2017; Dolz et al., 2018; Wachinger et al.,
2018) extracted from whole volumes, at the cost of losing relevant spatial information. In
contrast, SLANT (Huo et al., 2019) introduces the idea of specializing individual (spatially
localized, SL) networks, i.e. one network for a specific sub-region. AssemblyNet (Coupé
et al., 2019) expanded on the idea increasing the number of different models to 250.

In addition to previously mentioned methods, numerous 3D segmentation approaches
have been suggested in the last few years for segmenting large number of structures in
whole brain segmentation (de Brebisson and Montana, 2015; Roy et al., 2017; Jog et al.,
2019; Roy et al., 2019). However, superior performance across multiple datasets of the
2.5D FastSurferCNN leads us to investigate – Are 2.5D approaches superior to 3D deep
networks for whole brain segmentation? FastSurferCNN is fast, accurate and data-efficient
in its training. 3D approaches, on the other hand, face generalization difficulties due to very
large parameter counts, show infeasible memory utilization for a large number of classes,
and can exhibit limited performance outside experimental conditions.

In this work, we analyze and compare the performance of 2.5D and 3D segmenta-
tion methods. We observe 2.5D models outperform all state-of-the-art 3D models. We
(re)establish 3D networks as the performance leader with the following key methodological
improvements: 1) the training in a randomized patchification scheme, 2) Self-Ensembling,
and 3) Spatial Ensembling. Training on random patches reduces the memory footprint and
puts less constraints on consistent patch boundaries while at the same time allowing the
transfer of model weights to full-view evaluation with very limited performance loss. In
Self-Ensembling, we build an ensemble from one model by changing the patch location.
Spatial Ensembles consist of multiple models specialized to specific brain regions similar
to Spatially Localized networks originally proposed by SLANT (Huo et al., 2019). Specif-
ically, the limited performance of SLANT, nnUnet and full-view VNet leads us to suggest
an improved method for training Spatially Localized networks using our previously learnt
global representations. We also evaluated multiple architectural modifications of the back-
bone VNet without finding strong differences. After these improvements to the training
and evaluation scheme including self-ensembling and spatial ensembling strategies, we find
the performance of 3D models again superior to 2.5D for whole brain segmentation with
95 different structures. Throughout all results, we maintain a uniform training dataset for
fair comparison in a large whole brain segmentation benchmark. Finally, we validate our
method’s improvements across disease and MRI acquisition diversity in comparison to the
2.5D benchmark.

2. Methodology

2.1. Learning a patch-based Network

Directly training on full-view inputs for even relatively small input volumes is challenging
for 3D deep convolutional networks such as the modified VNet (Milletari et al., 2016) used as
a backbone network here. Addressing this, patch-based networks train a model on smaller
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Figure 1: 2D illustration of our Spatially Localized deep network ensemble, where sub-
networks are initialized with the global representations learnt on the full volumes.
Sub-networks, with overlapping input regions larger than their field-of-view, are
fine-tuned to learn local representations. Validation (as well as inference) is per-
formed jointly by spatially ensembling outputs from sub-networks to emphasize
full-volume predictive performance instead of those of individual networks.

sub-volumes. In this work, we sample input patches with a uniform distribution across
patch positions and without additional padding at the volume boundary. However, this
results in non-uniform voxel sampling skewed towards the image center during training.
To formalize, let the top-left corner point of a random patch be (x, y, z) ∼ P3

uni from a
uniform distribution Puni = (L − l + 1)−1 between 0 and L − l with the image and patch
dimensions L and l. The voxel sampling density, which is the probability that image voxel
(i, j, k) ∈ [0, L−1]3 is contained in a random patch, can be estimated by the patch indicator
function Xijk(x, y, z), which is 1 inside the patch and 0 outside.

E[Xijk] =
L−l∑

x,y,z=0

PuniXijk(x, y, z) =
P (i)P (j)P (k)

(L− l + 1)3
with P (u) =


u+ 1 if u ∈ [0, l − 1]
l if u ∈ [l, L− l − 1]
L− u if u ∈ [L− l, L− 1]
0 otherwise

(1)

In the training loop, the voxel sampling density may affect the network to focus on
regions with high density, which is the brain positioned at the image center.

2.2. Learning an Ensemble of Spatially Localized Networks

To improve the predictive performance over single model 3D deep networks, we explore
Spatially Localized (SL) networks. In contrast to one model applicable to all image regions
(Global Representation), we obtain an ensemble of 8 SL-models (Local Representations)
each associated with one image octant, i.e. network weights are allowed to specialize to the
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different brain regions in their respective image octant1. To train the ensemble (and in
contrast to SLANT), we initialize SL-models with the model learnt with patches from the
whole image and fine-tune on patches from the image octant. In order to achieve overlapping
regions of specialization, we sample patches by the patch location such that voxels at the
octant boundaries are shown to multiple SL networks albeit with a different position in the
respective patch (see Figure 1). We train the SL models collectively instead of in isolation:
Per epoch, we iterate over the image octants and train each model independently on patches
from its octant. To decide whether the updated octant-model should be committed to
the ensemble permanently, we temporarily replace one corresponding octant model in the
ensemble and determine the full-image validation performance of the ensemble (Spatial
Ensembling with an Average Ensemble Size of 3.375, see Section 2.3).

Training the models sequentially minimizes GPU memory allocation. The pre-training
allows the sub-networks to converge rapidly transitioning to fine-tuning. Instead of spe-
cializing SL-networks to a very explicit region of the volume (a limitation of SLANT), we
specialize networks to fuzzy and overlapping regions. Consistent with fuzzy specialization,
we remove the potentially erroneous and expensive registration to the MNI-template elimi-
nating the exact and normalized position of the head in the volume in favor of more flexible
networks. We provide the Algorithm 1 in the Appendix.

2.3. Ensembling and Evaluation Strategies

While full-volume (FV) inference provides one prediction per voxel, patch-wise evalua-
tion enables two ensembling concepts to generate multiple predictions per voxel: 1. Self-
Ensembling – one model predicts for different patches – and 2. Spatial Ensembling –
multiple networks are specialized per image region and the appropriate network is chosen
by the patch location. Finally, we aggregate predicted probabilities by class-wise sum and
voxel-wise softmax. A simplified 2D illustration of Spatial Ensembling is shown in Figure 1.

2.4. Datasets

For comparability within methods and generalization across multiple scenarios, FastSurfer
(Henschel et al., 2020) compiled a mixed-source dataset with dedicated splits for training,
validation, and testing (N = 140, 20 and 1374, respectively) as detailed in Table 1. As in
FastSurfer, the training set (validation set) exclusively consists of 2563 T1w images of 1mm
isotropic voxel size from ABIDE-II, ADNI, LA5c, OASIS1 and OASIS2 (only MIRIAD). In
addition to in-dataset validation on ADNI, OASIS1 and MIRIAD (non-overlapping subject
splits), we test whether the models generalize to unseen datasets (external validation) on
HCP and THP. These datasets feature various age ranges, scanners, disease states and field
strengths. Reference segmentations are obtained with FreeSurfer V6.0 and the “Desikan-
Killiany-Tourville” atlas for parcellation (Fischl et al., 2002; Klein and Tourville, 2012).
Following FastSurfer’s approach, we merge the resulting 95 regions into 78 (foreground) la-
bels for training and reconstruct the original 95 labels in postprocessing prior to evaluation.

1. We provide code at github and, for persistent availability, archive model weights of both the Global
Representation (unensembled model) and Local Representations (ensembled model <index>) online.
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2.5. Architecture

We experimented with 8 architectural modifications to our backbone VNet including mul-
tiple architectural ideas from published work. However, we could not find significant differ-
ences between various top-performing architectures. We include an overview of results in
the Appendix B. For the final (backbone) architecture, we replace each standard 5× 5× 5
kernel with two 3×3×3 kernels in a modified VNet (Szegedy et al., 2015). The batch size of
1 constrains memory usage. GroupNorm (Wu and He, 2018) increases stability in training
with a small batch size. While we experimented with smaller patch sizes, only 3D input
patches of size 128× 128× 128 employed by each deep CNN in this work feature sufficient
spatial context in training.

2.6. Baselines

FastSurferCNN is the representative 2.5D method while the full-view VNet trained on full
volumes is the first 3D baseline. A 3D-UNet architecture, generated and trained with the
nnUNet (Isensee et al., 2021) pipeline on a manual split, is selected to provide an archi-
tecturally improved 3D-UNet baseline. SLANT-27 (Huo et al., 2019) shares fundamental
similarities with our proposed Spatial Ensemble of SL models. It represents a state-of-the-
art, 3D ensemble-based baseline for neuroimage segmentation. Training and validation sets
are fixed for all baselines and the proposed method.

3. Results and Discussion

We compare the performance our method and baselines in three experiments: A cross-
dataset evaluation, an in-depth analysis of the effect of popular spatially localized ensembles
and a generalization analysis of disease states and scanner manufacturers.

3.1. Segmentation accuracy

First and without considering the method presented here, we analyze whether 2.5D ap-
proaches are superior to 3D deep networks in whole brain segmentation. To this end, we
compare the 2.5D FastSurferCNN with three popular 3D baselines: VNet, SLANT-27 and
nnUNet (3D-UNet). In a cross-dataset evaluation, we find FastSurferCNN consistently
outperforms all baselines 3D approaches with respect to both Dice Similarity Coefficient
(DSC) and Average Hausdorff Distance (HD) across five datasets, despite its limited spatial
context. Specifically, FastSurferCNN achieves higher accuracy and more consistent results
under same-training dataset conditions (see Section 2.4).

However, when improving 3D networks by our 3D methodology, our method achieves
average DSC of 0.878± 0.032 and an Average HD of 0.172mm± 0.091mm outperforming all
3D baselines2 by at least 0.03 and 0.076mm (44% error reduction), respectively (see Figure
2). Our approach outperforms the 2.5D FastSurferCNN also achieving high consistency
across all datasets. Consequently, 2.5D methods are not superior to 3D deep networks. The
significantly worse results of SLANT may have three causes: 1. architectural differences (e.g.

2. The backbone V-Net implementation achieves best results and is therefore selected as the reference,
margins to other methods are larger.
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Figure 2: Dice similarity coefficient (DSC) and Average Hausdorff distance (HD) of cortical
and subcortical structures in each dataset. The proposed network outperforms
all baselines including FastSurferCNN significantly for all evaluations (Wilcoxon
Signed-Rank test with Bonferoni correction, p < 10−14). In fact, our method
outperforms all baseline methods on 98% and 97% of subjects in the evaluation
set (DSC and Average HD, respectively).

ours has more layers), and 2. unreliable registration to MNI space, and 3. lossy interpolation
during both training and inference (Henschel et al., 2022).

3.2. The impact of Ensembles

Since several recent whole brain segmentation publications (Huo et al., 2019; Coupé et al.,
2019; Henschel et al., 2020) employ ensembles at its methodological core, we analyze how en-
sembling impacts the segmentation performance. Our experiments include 1. a full-volume
evaluation (“Ours (FV)”), 2. a Self-Ensembled model (“Ours (w/o SL)”), and 3. a Spatial
Ensemble of eight SL-models (“Ours”). “Ours (FV)” and “Ours (w/o SL)” are based on the
same training and weights – the global representation used to initialize the SL-models. In
our analysis, we exclude ensembles generated from various data splits. We plot distributions
of both DSC and Average HD for our method featuring different “degrees of ensembling”
together with the four baselines in Figure 3. Since we want to analyze in how far ensem-
bling contributes to the performance, we introduce the “Average Ensemble Size”. For it, we
count the number of predictions per image voxel (the per-voxel Ensemble Size) and average
across the image, since it varies across the image. For patch-based evaluation schemes, this
primarily depends on the overlap and image and patch dimensions (see Table 3). Methods
with an Ensemble Size of 1 do not use ensembling.
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Figure 3: Evaluation of multiple Ensemble sizes (five datasets-average): Our method shows
limited dependence on the Average Ensemble Size while outperforming the state-
of-the art in Dice Similariry Coefficient and Average Hausdorff Distance. Note,
at Ensemble Size 1 patch-based evaluation loses local context at the patch border
reducing performance. Running the same model in full-view mode (Ours FV)
recovers most of the performance. At 1.24mm, the Average Hausdorff Distance
of SLANT-27 is outside the view. FV: Full-View, SL: Spatially Localized.

We find the performance of our method increases with increasing ensemble size (see both
“Ours (w/o SL)” and “Ours” in Figure 3). However, the dependence of the performance on
the ensemble size is very limited for both “Ours (w/o SL)” (Self-Ensembling) and “Ours”
(Spatial Ensembling). While “Ours (w/o SL)” has a significantly reduced performance at
Ensemble Size 1, this phenomenon should not be misinterpreted as a trend, since predictions
on the boundary of the patch do not gain the spatial context across the patch boundary.
Disabling patch-based evaluation for this model, i.e. inference on the full volume in full-
view-mode (FV), recovers most of the performance loss (Dice difference 0.002 between “Ours
(FV)” at Ensemble Size 1 and “Ours (w/o SL)” at Ensemble Size 3.375) – even without
retraining on the full-view dataset. Training on patches and evaluating on full-view volumes
might prove a feasible strategy to mitigate the memory requirements of high class number
and large volume segmentation applications.

Spatial Ensembling improves segmentation results by up to 0.003 Dice as indicated by
the comparison of “Ours (w/o SL)” and “Ours”. This relatively small difference diminishes
the value of Spatial Ensembling in practice. Furthermore, Spatial Ensembling does not
support the transfer of patch-based models to full-view during evaluation.

3.3. Generalizability across diagnosis and scanner manufacturers

Meta-data available on the ADNI dataset enables exploratory analysis of the DSC of corti-
cal and subcortical segmentation performance extensively across diagnosis (Cognitive Nor-
mal (CN), Mild Cognitive Impaired (MCI), Demented (AD)) and scanner manufacturers
(Siemens, GE, Phillips) (Figure 4). There is a small decrease in performance on scanner
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Figure 4: Dice Similarity scores of cortical and subcortical structures across diagnosis and
device manufacturer on the ADNI dataset for FastSurferCNN and our method.
We observe superior performance across individual groups.

manufacturers (GE, Phillips) less-represented in the training set, a trend similar to Fast-
SurferCNN. Our method improves upon FastSurferCNN’s performance in both categories
for cortical and subcortical structures. This makes the proposed technique suitable for
multi-study, multi-device, multi-site datasets. The improved accuracy across disease states
ensures reliable performance in studies involving neurodegenerative disorders. While small
reductions in DSC are observed with disease progression similar to FastSurferCNN, our
method demonstrates better mean DSC in all disease states.

4. Conclusion

In this work, we answer whether 2.5D networks are superior to 3D deep networks. While
prior to this publication, this seemed to be the case, we identify several modifications of
the training and evaluation to improve the performance of 3D models. This includes ex-
ploration of a 2-step training procedure with learning global representations followed by
spatially-localized models, as well as, strategies for inference incorporating self-ensembling
and spatial ensembling. Our 3D deep networks for whole brain segmentation with 95 struc-
tures outperform all baseline models in five evaluated datasets. Moreover, the training
strategy solves GPU memory limitations while still allowing high-quality full-view evalua-
tion relevant for integrated pipelines operating on full-view feature maps. The method also
benefits from very fast inference times dominated by overhead operations, e.g., 1 second
network inference plus 10 seconds constant overhead for full-view evaluation (see Table 4).
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Usage Dataset Scanner 1.5T/3T State Age Subjects

Training

ABIDE-II (Di Martino et al., 2017) Phillips 3T Autism/Normal 20-39 20
ADNI (Mueller et al., 2005) Phillips, GE, Siemens 1.5T/3T AD/MCI/Normal 56-90 40
LA5c (Poldrack et al., 2016) Siemens 3T Neuropsych/Normal 23-44 20
OASIS1 (Marcus et al., 2007) Siemens 1.5T Normal 18-60 40
OASIS2 (Marcus et al., 2010) Siemens 1.5T AD/Normal 66-90 20

Validation MIRIAD (Malone et al., 2013) GE 1.5T AD/Normal 60-77 20

Evaluation
(Accuracy)

ADNI Phillips, GE, Siemens 1.5T/3T AD/MCI/Normal 58-85 180
HCP (Van Essen et al., 2012) Siemens 3T Normal 22-35 45
OASIS1 Siemens 1.5T AD/Normal 18-96 370
MIRIAD GE 1.5T AD/Normal 55-80 49
THP (Magnotta et al., 2012) Phillips, Siemens 3T Normal - 5

Table 1: The dataset used in the training, validation and evaluation is a replica of the
corresponding sections of the FastSurfer (Henschel et al., 2020) dataset. The
number of samples in the Evaluation set is 1374 as some datasets contains multiple
scans of subjects.
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Richard Bucholz, Acer Chang, Liyong Chen, Maurizio Corbetta, Sandra W Curtiss, et al.
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2231, 2012.

Christian Wachinger, Martin Reuter, and Tassilo Klein. Deepnat: Deep convolutional neural
network for segmenting neuroanatomy. NeuroImage, 170:434–445, 2018.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 3–19, 2018. URL https://doi.org/10.1007/

s11263-019-01198-w.

Appendix A. Ensemble Training Algorithm

The ensemble training in this work uses the VNet as the base model. However, the algorithm
is model-independent and may be adopted for any compatible deep neural network model.
This is detailed in Algorithm 1.

Appendix B. Architectural Modifications

Various modifications to the backbone VNet architecture are tried as presented in Table 2.
The modifications all wrap around the main Encoder-Decoder macro-architectural style
of the VNet without a complete overhaul. The focus is intended to be techniques that
have resulted in improvements in past work from literature. The results here are evaluated
as mean and standard deviations of dice similarity coefficients on the 78 non-background
classes, without reconverting back into the 95 classes. It should be noted that the VNet with
33 kernels is the backbone network used throughout the work. The general trend observed
is that the architectural modifications do not provide any benefits to the segmentation
performance.
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Algorithm 1: Volumetric Ensembling using tiled fine-tuning and ensembled validation

Input: L: Loss function, Tr: Training set, V ld: Validation set l: Patch Size, f : neural
network with weights w, pretrained as in Section 2.1 ;

Initialization:
Pmain: List of m nets with weights w, for each octant of 3D input space (default m: 8) ;
Pcurr : List of m neural networks with weights w as replica of Fmain ;
Frng : List of m effective receptive field ranges (25% greater than the octant size) ;
dice(f) : Dice score of f evaluated on V ld;
Algorithm:
DSCbest = 0 ;
while epochs not done do

mcnt = 1 ;
while mcnt <= m do

while (X, y) ∈ tS do
Select a point pijk ∈ Frng[mcnt]− l ;

X̃ = X[pi : pi + l, pj : pj + l, pk : pk + l] ;
ỹ = y[pi : pi + l, pj : pj + l, pk : pk + l] ;

E = L(ỹ, Fcurr[mcnt](X̃)) // Calculate loss on octant

∀w ∈ Fcurr[mcnt], update w = w − η∇wE // update current pool

end
Insert Pcurr[mcnt] temporarily into Pmain[mcnt] ;
DSCcurr = dice(pmain) ;
if DSCcurr ≤ DSCbest then

Revert changes to Fmain[mcnt] ;
else if DSCcurr > DSCbest then

Keep changes to pmain[mcnt] ;
DSCbest = DSCcurr ;

mcnt := mcnt + 1;

end

end
Return: pmain as the trained Spatially Localized (SL) models

Appendix C. Training

We train the full-view model for for 100 epochs, starting with a learning rate of 10−3 (and
halving at 40, 80, 90 epochs) with the Adam optimizer (Kingma and Ba, 2014). To obtain
an ensemble of Spatially Localized (SL) models, we branch out the training into eight
different networks associating each with the vicinity of a corner (overlapping subvolumes of
1923 voxels). Each epoch, we train each SL model in serial and jointly validate the entire
ensemble patches of 50% overlap. Here, we restart the learning rate at 10−3 (20 epochs),
and reduce to 5/2.5/1.25 · 10−4 (for 10 epochs each). Throughout, we use a combined loss
function of median frequency-balanced cross-entropy and dice loss (Roy et al., 2017).
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Model Description Params DSC Mean ± S.D.

Reference architectures

FastSurferCNN 1, 799, 223 0.8696 ± 0.0589

VNet with GroupNorm (full-view training) 71, 086, 301 0.8505 ± 0.0617

Architecture modifications (patch-based training)

Backbone VNet with GroupNorm and 33 Kernels
instead of 53 (Szegedy et al., 2015; Simonyan and

Zisserman, 2014)

16, 319, 197 0.8803 ± 0.0544

Backbone VNet with Symmetric filter
factorization with two 33 kernels instead of 53

(Szegedy et al., 2016)

30, 241, 282 0.8800 ± 0.0549

Backbone VNet with Asymmetric filter
factorization with two sets of (3× 1× 1),
(1× 3× 1), (1× 1× 3) filters instead of 53

(Szegedy et al., 2016)

10, 677, 910 0.8748 ± 0.0561

Backbone VNet with Dense residual block as in
DenseNet, with additive residuals (Huang et al.,

2017)

71, 091, 794 0.8505 ± 0.0708

Backbone VNet with Attention Block as in
Attention UNet (Oktay et al., 2018)

71, 153, 273 0.8783 ± 0.0536

Backbone VNet with Squeeze and Excite block as
in SqueezeNet (Hu et al., 2018)

71, 262, 110 0.8767 ± 0.0548

Backbone VNet with Concurrent 3 axis 2.5D and
3D paths with 75% of feature maps in 3D path

(de Brebisson and Montana, 2015)

64, 104, 868 0.8784 ± 0.0543

Backbone VNet with only 75% of feature maps
included in each block

45, 679, 866 0.8797 ± 0.0542

Table 2: Architectural modifications to the VNet (with Group Norm) architecture trained
as in Section 2.1 and evaluated with 75% overlapping patches of size 128. Results
are obtained as average Dice Similarity Coefficients on 78 classes without remap-
ping.

Appendix D. Baseline Methods

Baselines are DNN models whose results serve as existing state-of-the-art solutions in the
area of neuroimage segmentation. Most of these models have wide acceptance in the research
community as standard segmentation networks or are distinguished by recent publication
to top venues with exceptional benchmarks. There are 5 models used by us as benchmarks
and a brief description of each of them are provided in the following subsections.
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D.1. FastSurferCNN

FastSurferCNN (Henschel et al., 2020) was introduced as a 2.5D technique for neuroimage
segmentation. Three 2D encoder-decoder based deep CNN architectures were trained in-
dividually on one of three orthogonal views (coronal, sagittal and axial) of the brain. The
architecture of all 3 models were kept the same with the input to each model being a thick
slice of 7 consecutive slices from the corresponding view. The architecture used Maxout-
based Dense blocks (as opposed to concatenation-based blocks) to achieve a model with
less paramters. The final segmentation output was obtained after view aggregation of the
segmentation outputs provided by the individual networks. FastSurferCNN provides fast,
robust and accurate segmentations and is used as the non-3D benchmark for our evaluations.

D.2. SLANT

3D patch-based segmentation techniques usually train and predict on sub-volumes of the
input space followed by post-hoc fusion of the partial predictions to produce a complete
segmentation. SLANT (Huo et al., 2019) was centred on the idea of decoupling spatial
context during feature search. This was done by registering each volume to the MNI305
(Evans et al., 1993) template during postprocessing, prior to learning or inference. This
was subsequently followed by training sub-nets for sub-regions of the neuroimage — one
variant was trained on non-overlapping patches and another on overlapping ones. In theory,
a successful registration exposes each subnet to a single consistent brain/neuroimage region,
thereby reducing or even eliminating the need to learn the positional context. The networks
were retrained on our dataset and the original code was kept as much as possible. All
networks were trained individually with non-coupled losses (in terms of a global prediction)
and inferences from each network was fused using majority label voting. This was followed
by inverse registration to the original data space to provide the final segmentation. The
SLANT-27 variant (overlapping regions) provided the strongest performance in the original
publication and has been adopted as a 3D benchmark for our evaluation.

D.3. 3D-UNet: nnUNet single-fold

Neural network based solutions to segmentation problems usually vary architecturally from
each other, with the variations ranging from minor to significant. The nnUNet (Isensee
et al., 2021, 2018) framework was designed to adapt the the block architecture of a standard
robust architecture, specifically, the UNet (Ronneberger et al., 2015; Çiçek et al., 2016) and
customize an encoder-decoder model based on those blocks on a provided dataset. This
allowed for some standardization in block design while still customizing architecture to a
particular problem and associated data. The 3D-UNet architecture recommended by the
nnUNet framework on our training data was used as one of the baseline models for the
purposes of our evaluation.

D.4. VNet

The VNet (Milletari et al., 2016) was introduced as a full (or near full-volume) 3D deep
learning-based segmentation architecture for medical imaging. It is designed as an encoder-
decoder type model with residual blocks on individual layers as well as residual connections
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Model AES (OL, PS) DSC ± S.D. (↑) AVG HD ± S.D. (↓)
2.5D: FastSurferCNN 3 0.866± 0.036 0.205± 0.098

3D: VNet (FV) 1 0.848± 0.041 0.248± 0.160

3D: SLANT-27 3.375 (50%, 128) 0.803± 0.178 1.110± 5.061

3D: nnUNet 1-fold 3.375 (50%, 128) 0.848± 0.057 0.546± 1.110

3D: Ours (FV) 1 (0%, 256) 0.872± 0.033 0.187± 0.010

3D: Ours (w/o SL) 1 (0%, 128) 0.858± 0.036 0.236± 0.169

3D: Ours (w/o SL) 3.375 (50%, 128) 0.874± 0.032 0.183± 0.127

3D: Ours (w/o SL) 8 (75%, 128) 0.876± 0.032 0.176± 0.098

3D: Ours 3.375 (50%, 128) 0.877± 0.032 0.176± 0.098

3D: Ours 8 (75%, 128) 0.878± 0.032 0.172± 0.091

Table 3: Numeric values for Figure 3 Evaluations, AES: Average Ensemble Size, OL: Patch
Overlap, PS: Patch Size

Model Ens. Size Training Time (GPU time) Epochs Inf. Time (secs)

2.5D: FastSurferCNN 3 5 hours 30 60

3D: VNet (FV) 1 (4 days 20 hours)×4 (requires 4 GPUs) 100 15

3D: SLANT-27 3.375 (1 day 2 hours) × 27 100 900

3D: nnUNet 1-fold 3.375 3 days 12 hours 1000 N/A

3D: Ours (FV) 1

800

11
3D: Ours (w/o SL) 1 2 days 7 hours 11
3D: Ours (w/o SL) 3.375 (same model) 25
3D: Ours (w/o SL) 8 42

3D: Ours 3.375 1 day 19 hours (+ 3D: Ours (w/o SL))
50

40
3D: Ours 8 (same models) 133

Table 4: The total training and per sample inference times of each model under experiment.
Our 3D:Ours models also include the training time of the non-SL model from which
they were initialized

between corresponding layers from the encoder to the decoder. A slightly modified variant
of the VNet, incorporating Group Normalization (Wu and He, 2018), is used as a 3D
benchmark for our experiments. This particular evaluation is noteworthy as the modified
VNet is also the backbone architecture for most of the techniques introduced and explored
in this thesis.

Appendix E. Training and Inference Time

Table 4 indicates the total training time and inference time per sample for all models. The
training time is indicated in GPU-hours on 32GB Tesla V100s along with the number of
epochs each model was trained. The training dataset is the same for all models. The
inference times are represented per sample in seconds. The discrepancy in inference times
between 3D:VNet(FV) vs 3D:Ours(FV) is due to the former needing heavy model sharding
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to allow training on full input volumes. This also increases the inference time slightly,
though it can be optimized to be similar to the other model.

Appendix F. Statistical Tests on Model Performance

The statistical significance tests between our method with the best performance and 4
baselines from Figure 2 are performed pairwise for DSC and Average HD metrics with
groupings for cortical and subcortical structures in addition to combined results on whole
brain structures. The Wilcoxin Signed-Rank test is used at 5% significance with Bonferoni
correction for multiple comparisons. For every comparison performed, we obtain the cor-
rected p < 10e− 14 indicating statistical significant differences between the performance of
our method in comparison to competing baselines across all groupings and metrics.
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