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Abstract

Non-uniform bias field due to external factors hampers quantitative MR image analysis.
For reliable quantitative MR image analysis, appropriate correction for the bias field is
necessary. In this study, we propose Hampel denoising diffusion model to effectively correct
the bias field fromMR images. Compared with N4 and Gaussian denoising diffusion models,
the proposed model provided higher PSNRs, SSIMs and lower MSEs. Higher efficiency
could be achieved compared to N4 when our model takes 9 times faster in inference time.
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1. Introduction

Magnetic Resonance Imaging (MRI) is a widely used medical imaging modality. But bias
field obscure subtle details and impede accurate identification (Meyer et al., 1995; Vovk
et al., 2007). N4 (Tustison et al., 2010) has been a commonly used method for correcting
the inhomogeneities, however, this method has limitations in terms of its accuracy, technical
factor, and efficiency. We propose Hampel Denoising Diffusion Model (HDDnet) conceived
to model inhomogeneities by Cauchy-Lorentz distribution (Borgia et al., 1996). We modeled
the Hampel mixture distribution to represent the image intensity disrupted by the inhomo-
geneities. To assess the fitness of Hampel function to the image intensity, the mean fitting
error between the histogram and the probability function was calcuated, shown in Figure 1.
The intensity difference between the input image and t-step image of diffusion process was
used in both histogram and the probability function. The mean fitting error is 0.012 less
in Hampel function showing that it is a much better fit to MRI with the bias field, Figure
1A-D (Nachmani et al., 2021). Proposed method effectively corrects the bias field and gener-
ates reduced inhomogeneities MRI with higher accuracy and faster inference time than N4.
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Figure 1: (A) Hampel distribution (B) Gaussian distribution (C) Comparing the fit
(D) The mean fitting MSE between the histogram and the density function

2. Method and Experiments

Method: We modeled the Hampel Mixture distribution (Hampel and Zurich, 1998) to
represent the image intensity disrupted by the inhomogeneities. Denote H(α, x0, γ) as the
Hampel mixture distribution, where α, x0, γ are weight, location, scale parameter, respec-
tively; We use the term Fh(x, α), Fn(x; 0, 1), Fc(x;x0, γ) as probability distribution function
of Hampel, Gaussian, and Cauchy-Lorentz, respectively. Hampel function1 could be written

Fh(x, α) = (1− α)Fn(x; 0, 1) + αFc(x;x0, γ) with 0 ≤ α ≤ 1

Fn(x; 0, 1) =
1√
2π

exp(
−x2

2
), Fc(x;x0, γ) =

1

π

(
γ2

(x− x0)2 + γ2

)
Hampel function was optimized with MLE2 (Haynes, 2013). Through maximizing the Ham-
pel function, we were able to allocate (α, x0, γ) as (1e− 05, 0.6332, 0.0274). Detail explana-
tion and the source code can be found in our Github repository3.

H(α, x0, γ) = H(1e− 05, 0.6332, 0.0274)

Dataset: This study was approved by the Institutional Review Board. We used 202
subjects (126 male, 76 female, age 26.27 ± 7.84 years) scanned on a 3T MRI following 3D
gradient echo protocol with MT pulse (Nam et al., 2017; Nam et al.). Each of the brain
slices is resized to a size of 512×512 and normalized the values to range between [0, 1]. Our
dataset is composed of 6, 000 images (n = 176) to train and 780 images (n = 26) to test.
Model and Training: HDDnet is trained on Nvidia RTX 3090 GPU 24GB with the batch
size of 8 for 512 iterations. HDDnet is trained with L2 loss, the sigmoid noise schedule for
1,000 steps, a learning rate of 10−6 for the Adam optimizer, the first layer is chosen as 64.
Evaluation: Evaluation was took in both quantitative and qualitative. For the quantitative
evaluation, MSE, PSNR, and SSIM4(Wang et al., 2004) were used. Each was calculated
between model output and the N4 label image. Inference time was measured in same

1. Hampel mixture probability distribution function
2. Maximum Likelihood Estimation
3. github.com/junhyk-lee/Bias-Field-Correction
4. Mean Squared Error, Peak Signal-to-Noise Ratio, Structural Similarity Index Map, respectively
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environment with training setup, with 26 patients. The qualitative assessment was done by
comparing N4 and HDDnet prediction of synthetic bias field. The synthetic bias field was
generated from train image bias field merged to test set, shown in Figure 2(A).

3. Results

Model MSE PSNR SSIM Time

A
Gaussian 0.0004 32.486 0.950 4.471
Hampel 0.0003 35.945 0.983 4.473

B
N4 0.0003 34.766 0.979 39.601

HDD 0.0001 36.865 0.978 4.478

Table 1: Evaluation Metrics

As shown in Table 1(A), Hampel ran-
dom noise outperformed Gaussian ran-
dom noise in MSE, PSNR, SSIM.
Quantitatively, Hampel mixture dis-
tribution can provide clear evidence of
convergence. Figure 2(B) shows N4
and HDDnet follow similar pattern of
the bias field in synthetic image. But
as in Table 1(B), our model outper-
formed on its MSE and PSNR, while SSIM is small in difference. While N4 takes average
of 39.6014 secs to correct the bias field of from its corrupted MRI, HDDnet takes about
average of 4 secs, which is 9.75 times faster. While maintaining or improving the bias field
correction our model shows high efficiency in time.

Figure 2: Comparison of bias field estimation results with synthetic bias field

4. Conclusion

In this paper, we propose a new bias field correction method by altering the Gaussian noise
to Hampel noise, a mixture of Gaussian distribution and Cauchy-Lorentz distribution. Our
proposed method is more robust with automatic parameter settings on correcting the bias
field than N4. Such automation can give less complexity to the user. We also point out
that such deep learning approach is faster in time while still maintaining the accuracy.
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