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Abstract. Egocentric videos present unique challenges for 3D scene un-
derstanding due to rapid camera motion, frequent object occlusions, and
limited object visibility. This paper introduces a novel approach to in-
stance segmentation and tracking in first-person video that leverages 3D
awareness to overcome these obstacles. Our method integrates scene ge-
ometry, 3D object centroid tracking, and instance segmentation to create
a robust framework for analyzing dynamic egocentric scenes. By incorpo-
rating spatial and temporal cues, we achieve superior performance com-
pared to state-of-the-art 2D approaches. Extensive evaluations on the
challenging EPIC Fields dataset demonstrate significant improvements
across a range of tracking and segmentation consistency metrics. Specif-
ically, our method outperforms the next best performing approach by
7 points in Association Accuracy (AssA) and 4.5 points in IDF1 score,
while reducing the number of ID switches by 73% to 80% across var-
ious object categories. Leveraging our tracked instance segmentations,
we showcase downstream applications in 3D object reconstruction and
amodal video object segmentation in these egocentric settings.

Keywords: Egocentric understanding · Video object segmentation · 3D-
aware tracking

1 Introduction

Egocentric videos, which capture the world from a first-person perspective, are
a focus of increasing attention in computer vision due to their importance in
applications such as augmented reality and robotics. Among various tools for
video analysis, object tracking is of particular importance, but also faces signif-
icant challenges, in the egocentric case. Most video object segmentation (VOS)
methods [8,23,28,43], in fact, assume that the videos contain slow, steady cam-
era motions that keep the view centered on the object of interest [2, 5, 31]. In
comparison, egocentric videos are taken from a first-person perspective, where
the camera wearer’s movements introduce rapid and unpredictable changes in
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viewpoint. Additionally, objects frequently move in and out of the field of view,
and thus are often partially or wholly occluded and/or truncated.

For example, in the EPIC KITCHENS dataset [12], the person recording the
video might move a pan on top of a hob and leave it there for several minutes
while moving around in the kitchen. During that time, they might observe more
objects that look similar to the pan, which may cause an algorithm to incorrectly
associate them to the pan itself. In general, video segmenters tend to lose track
of the object partially or entirely due to occlusion or truncation. These issues
are exacerbated when tracking multiple objects simultaneously.

Existing state-of-the-art video object segmenters try to overcome these lim-
itations by aligning segments with dense or sparse correspondences. These are
obtained from optical flow or point tracking [35] and serve as a proxy for spatial
reasoning. However, these methods can establish correspondences only in rela-
tively short video windows due to their computational cost and poor reliability
during severe viewpoint changes. The result are fragmented and incomplete ob-
ject tracks, which limit their usefulness, particularly in egocentric videos.

In order to address these shortcomings, we can look at how humans locate
objects. An important cue that helps correct reassociation is object permanence,
a concept that human infants develop very early [36]. Permanence captures the
idea that objects do not cease to exist when they are not visible. Combined with
spatial awareness, this means that the 3D location of objects at rest should not
change when they are out of view or occluded. It has previously been explored
for egocentric videos in ‘Out of Sight, Not Out of Mind’ (OSNOM) [32].

This brings us to the question of how to incorporate such spatial awareness
in an object tracking algorithm. We achieve this by extracting scene geometry
from the video stream and using it as an additional supervisory signal to refine
tracks produced by a video segmentation model. More specifically, we obtain
depth maps and camera parameters for the frames of the video and use this
information to calculate the 3D location of the object instances. We then propose
a novel approach for refining instance segmentation and tracking in egocentric
videos that leverages 3D awareness to overcome the limitations of 2D trackers.
By integrating a scene-level 3D reconstruction, coarse 3D point tracking, and 2D
segmentation, we obtain a robust framework for analyzing dynamic egocentric
videos. In particular, by incorporating both spatial and temporal cues from the
3D scene, our method handles occlusions and re-identifies objects that have been
out of sight for some time, leading to more consistent and longer object tracks.

Our experiments on the challenging EPIC Fields dataset [40] demonstrate sig-
nificant improvements in tracking accuracy and segmentation consistency com-
pared to state-of-the-art video object segmentation approaches. Furthermore, we
showcase the potential of our method in downstream applications such as 3D
object reconstruction and amodal video object segmentation, where the consis-
tent and accurate object tracks produced by our method enable more accurate
and complete reconstructions.
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2 Related Work

Video object segmentation. Video object segmentation (VOS) has seen sig-
nificant advancements over the past decade [50], driven by the need to accu-
rately segment and track objects across video frames. Traditional methods often
relied on frame-by-frame processing, which struggled with maintaining consis-
tent object identities over long sequences. Early approaches such as MaskTrack
R-CNN [45] and FEELVOS [41] introduced the concept of using temporal in-
formation to improve segmentation consistency. MaskTrack R-CNN extended
Mask R-CNN to video by adding a tracking head that links instances across
frames, while FEELVOS utilized a pixel-wise matching mechanism to propa-
gate segmentation masks. The introduction of memory networks and attention
mechanisms marked a significant leap in performance. STM [29], AOT [46] and
XMem [9] leveraged memory networks to store and retrieve information across
frames, enabling more robust handling of occlusions and reappearances. Many
recent works [10,11,33,42] have proposed end-to-end approaches for video object
segmentation as well as panoptic segmentation. VisTR [42] and SeqFormer [43]
employed transformers to model long-range dependencies and global context.
VisTR treated video segmentation as a direct set prediction problem, while Se-
qFormer introduced a sequential transformer architecture that processes video
frames in a temporally coherent manner.

Additionally, methods like DEVA [8] employed decoupled video segmentation
approaches, combining image-level segmentation with bi-directional temporal
propagation to handle diverse and data-scarce environments effectively. This also
helps tackle open-vocabulary settings. MASA [23] uses the Segment Anything
Model (SAM) as a robust segment proposer, and learns to match segments that
correspond to the same object. An adapter can be trained to map those segments
to a closed set of classes, in zero-shot settings.

Point tracking-based methods. Point tracking-based methods have been
pivotal in advancing VOS by providing a means to establish correspondences
across frames. Many powerful point trackers have been recently proposed such
as TAP-Vid [13] benchmark that focused on tracking physical points in a video
and works such as CoTracker [19] and PIP [17]. CenterTrack [52] combined ob-
ject detection with point tracking, leveraging the strengths of both approaches.
TAPIR [14] trains an initial matching network (analogous to SeqFormer) and an
iterative refinement network (which focuses on continuous adjustments to pre-
dicted points’ positions), using synthetic data, to predict accurate point tracks.
SAM-PT [35] is a point-centric interactive video segmentation method, which
propagates a sparse set of points, chosen by a user, to other frames.

3D-informed instance segmentation and tracking. A recent line of work
closely related to the problem we address here involves lifting and fusing incon-
sistent 2D labels or segments into 3D models. In particular, Panoptic Lifting [38],
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ContrastiveLift [3], PVLFF [7], and Gaussian Grouping [47] employ mechanisms
for 3D instance segmentation in static scenes.

Operating under the assumption that objects remain stationary, they show
that a 3D reconstruction of the scene enables the fusion of unassociated 2D
instances (i.e., inconsistent instance identities across views) using Hungarian
matching [38], contrastive learning [3,7] or video object tracking [8,47]. Instead
of instance segmentation and tracking, GARField [21], OmniSeg3D [48], and
N2F2 [4] focus on 3D hierarchical grouping, a problem which also requires re-
solving ambiguities that arise when fusing conflicting multi-view masks (such as
those obtained by the Segment Anything Model [22]).

Exploiting 3D information in egocentric videos has been less explored due to
the challenges of reconstructing dynamic objects. Following [3], EgoLifter [16]
uses contrastive learning to lift 2D segmentations to 3D, while also using a
transient prediction network to handle dynamic objects. Plizzari et al . [32] fo-
cus specifically on 3D tracking of dynamic objects, rather than segmenting or
reconstructing them. They form 3D centroid tracks by lifting 2D centroids to
3D and matching observations based on 3D distance and visual similarity. We
follow [32], in that we lift objects to 3D using estimated depth, and initialise,
match and update tracks based on 3D location and DINOv2 [30] feature simi-
larity. However, we also incorporate instance and category information from a
base VOS model into our cost formulation, creating a more robust 3D-aware
object tracking system that excels in refining imperfect or noisy input 2D object
tracks, achieving superior long-term object consistency as compared to existing
2D tracking methods.

3 Method

Given an egocentric video, our objective is to obtain long-term consistent object
tracks by leveraging 3D information as well as an initial set of object segments
and tracks obtained from a 2D-only video object segmentation (VOS) model. Our
proposed method overcomes the limitations of 2D VOS models in maintaining
long-term consistent object identities in egocentric scenarios and produces object
tracks that persist despite severe occlusion and objects intermittently moving out
of sight.

Figure 1 provides a high-level overview of the method. We take as input an
initial set of image-level segments and object tracks obtained from a pretrained
VOS model. Then, we lift these 2D segments into 3D using per-frame depth from
a pretrained depth estimator along with scene geometry information, and link
them across time using our proposed tracking cost formulation. We first define
the above problem statement more concretely in Section 3.1, and the 3D-aware
tracking algorithm in Section 3.2. Then, we describe our design that includes
different attributes we extract for the 2D segments in Section 3.3, followed by
our cost formulation in Section 3.4.
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Fig. 1: Overview of the proposed method for 3D-aware object tracking in egocentric
videos. The method begins by taking image-level segments and object tracks from a
pre-trained video object segmentation model, which are then lifted to 3D using per-
frame depth estimates and scene geometry. These segments are fused across time with
a 3D-aware tracking cost formulation to refine and maintain consistent object identities
throughout the video sequence, even when the objects go out of sight (indicated by ).

3.1 Problem statement

We begin with an egocentric video sequence consisting of N frames It, t ∈
{1, . . . , N}, along with the output of an off-the-shelf 2D VOS model. The objec-
tive of the method is to compute a set of tracks for the entire video {TN

i } with
associated segment IDs {s̃Ni } that have the desired temporal consistency. The
initial output contains a set of object tracks that, while partially correct, often
contain errors — particularly when objects temporarily leave the field of view
or are occluded. Our goal is to refine and reassemble these tracks, leveraging 3D
information to correct errors and achieve more consistent long-term tracking.
Crucially, we don’t discard the initial track IDs obtained from the 2D-only VOS
model. Instead, we incorporate this information into our refinement process, us-
ing it as a valuable prior for maintaining object identities. In this manner, we go
beyond the previous 3D aware matching, initialisation and matching method [32]
that we build upon.

3.2 3D aware tracking

First, we decompose the initial tracks into per-frame segments Mt = {mt
i | 1 ≤

i ≤ |Mt|}. Specifically, each Mt contains a set of 2D segments mt
i, representing

the objects detected in frame t. For each segment mt
i, we compute an attribute

vector bt
i = (bti,1, b

t
i,2, . . . , b

t
i,n) that encodes various characteristics of the seg-

ment including its initial ID sti from the 2D VOS model, 3D location, visual
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features, and category information. These attribute vectors play a crucial role
in our method, as they allow us to establish correspondences between segments
across frames.

We employ a frame-by-frame track refinement approach using the Hungarian
algorithm. At each frame t, we consider the existing tracks Tt−1 formed in the
previous t− 1 frames and new segments Mt from the current frame t. The i-th
track within Tt−1 is associated with an attribute vector b̃t−1

i , computed as an
aggregate of the attributes of segments assigned to it (c.f. Sec. 3.3), and refined
segment ID s̃t−1

i . We match the new segments at time t to the tracks Tt−1 by
solving the following optimization problem to obtain the new refined segment
IDs {sti}:

argmin
{sti}

∑
i,j

J(sti, s̃
t−1
j ,bt

i, b̃
t−1
j ) (1)

subject to sti ∈ {1, . . . , S} and sti ̸= stj if i ̸= j, where S is the total number of
unique object identifiers. The second condition enforces that no two segments in
the same frame can have the same identifier. The cost function J is defined as:

J(sti, s̃
t−1
j ,bt

i, b̃
t−1
j ) = 1(sti = s̃t−1

j ) ·
n∑

p=1

δp(b
t
i,p, b̃

t−1
j,p ) (2)

Here, 1(sti = s̃t−1
j ) is an indicator function. δp(bti,p, b̃

t−1
j,p ) is the consistency cost

for the p-th attribute between segment mt
i in frame t and track T t−1

j . Impor-
tantly, one of these δp functions specifically accounts for the initial track IDs
(c.f. Eq. (8)), encouraging our optimization to maintain these associations when
appropriate.

We use the Hungarian algorithm to solve for the new segment IDs and update
the initial segment IDs only if the optimisation cost from Eq. (2) is below a cost
threshold γ. This ensures that our algorithm does not change associations when
the cost is too high. Notably, for new observations that don’t match any existing
track (i.e., their matching cost exceeds γ), we initialize new tracks. Importantly,
we do not terminate tracks that fail to match with a new observation in the
current frame. Instead, we maintain these tracks in our database, propagating
their attributes from time t − 1 to time t. This approach allows our method
to handle temporary occlusions or brief disappearances of objects, maintaining
object identity over longer periods.

By iteratively applying this process across the entire video sequence, we refine
the initial tracks, correcting errors while still leveraging the valuable information
provided by the 2D VOS model. Our method’s ability to incorporate both the
initial 2D tracking information and additional 3D cues, combined with its frame-
by-frame processing and track maintenance strategy, enables it to effectively
handle the challenges of egocentric videos, including frequent occlusions, objects
moving in and out of view, and rapid camera motion. Next, we describe how
we define and compute the segment attributes bti as well as the associated cost
functions δp.
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3.3 Attributes for 3D-aware cost formulation

Our method leverages 3D information to improve the initial object tracks ob-
tained from an off-the-shelf 2D-only VOS model. In addition to 3D location
information, we leverage appearance information (visual features), as well as
categorical information (i.e., the initial category and instance labels from the
2D model) to refine the segment associations. We denote the attributes for each
segment as bt

i = (lti , v
t
i , c

t
i, s

t
i), where lti is the 3D location of the segment, vti is

the visual feature, cti is the category label and sti is the instance label.

3D locations as segment attributes. We are given for each image It, t ∈
{1, . . . , N}, a camera pose Ct, camera intrinsics K and a depth map Dt. In
order to optimise the associations with 3D information, we lift the 2D centroid
of each segment into 3D. We define the 3D centroid of segment mt

i in frame t as
lti , representing one out of several attributes of bt

i. We calculate the location of
this segment by projecting its 2D centroid into 3D with

lti = Ct

[
dtiK

−1
[
xt
i, y

t
i , 1
]T

1

]
, (3)

where dti is the depth value obtained from Dt that corresponds to the centroid
of segment mt

i of frame t, and xt
i, y

t
i are the 2D coordinates of the centroid.

Visual features as segment attributes. While the 3D location of a seg-
ment plays a crucial role in overcoming the mentioned problems of associating
segments throughout occlusions, viewpoint changes and similar issues, we also
make use of 2D-level visual features vti as one of the attributes bt

i that corre-
spond to each segment. Specifically, for an image It and each segment mt

i of the
image, we use a pretrained vision encoder, e.g . DINOv2 [30], to obtain the visual
feature vti as:

vti = V (crop(It ⊙mt
i)), (4)

where V is the vision encoder and ⊙ denotes Hadamard product. The ‘crop’
operation extracts the smallest patch with a 1:1 aspect ratio enclosing mask mt

i.

Initial instance and category labels as segment attributes. Our pro-
posed method refines the initial tracks obtained from a purely 2D video object
segmentation model. Let c̄ti and s̄ti denote the initial category and instance labels
for segment mt

i obtained from the 2D model. We use c̄ti as an attribute to dis-
courage the optimisation from matching instances which did not initially belong
to the same category. And similarly, we use s̄ti to encourage the optimization
to preserve the initial tracks of instances across frames obtained from the 2D
model. We mathematically define the associated costs below.

Attributes for a track. A track Tt−1 that exists at time t−1 is a sequence of
segments assigned to it so far. We associate each track with an attribute vector
b̃t−1
i = (l̃ti , ṽ

t
i , c̃

t
i, s̃

t
i), where l̃ti , c̃ti and s̃ti are defined to be the corresponding

attributes of the most recent segment assigned to this track. The visual feature
attribute ṽti is defined to be the mean visual feature of the 100 most recent
segments assigned to the track.
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3.4 Cost functions

The attributes used for refining the tracks are thus bt
i = (lti , v

t
i , c̄

t
i, s̄

t
i), consisting

of the 3D location, the visual features, initial category label and initial instance
label for the segment mt

i of frame t. Now, we define the cost functions δp used
in Eq. (2) for these individual attributes. We follow [32,34] for the first two:

1. We model the 3D location cost δl with the exponential distribution as follows:

δl(l
t
i , l

t′

j ) = − log

(
1

αl
exp

(
−∥lti − lt

′

j ∥2
))

(5)

2. We model the cost for the visual features, δv, using a Cauchy distribution:

δv(v
t
i , v

t′

j ) = − log

(
1

1 + αv∥vti − vt
′
j ∥22

)
(6)

3. For the category and instance label, we use a 0 − 1 cost function and refer
to it with δc and δs:

δc(c̄
t
i, c̄

t′

j ) =

{
0 if c̄ti = c̄t

′

j

αc if c̄ti ̸= c̄t
′

j

, (7) δs(s̄
t
i, s̄

t′

j ) =

{
0 if s̄ti = s̄t

′

j

αs if s̄ti ̸= s̄t
′

j

(8)

Here, αl, αv, αc and αs are used to modulate the importance of each cost func-
tion. The cost parameters for the category and instance labels discourage the
matching of segments that are inconsistent with the category and instance la-
bels from the input segments. As described in Section 3.2, we consider the tracks
formed in previous t − 1 frames and match them to the new observations from
the current frame t using the Hungarian algorithm.

We refer the reader to Appendix A for the implementation details and to
Appendix A.2 for hyperparameter settings.

4 Experiments

4.1 Benchmark and baselines

We evaluate our proposed method on 20 challenging scenes from the EPIC
Fields [40] dataset. EPIC Fields comprises of complex real-world videos with
a high diversity of activities and object interactions, making it an ideal testbed
for our evaluation. The selected videos include varied lighting conditions, oc-
clusions, objects that disappear from sight, and have an average length of 10
minutes. To further demonstrate our method’s capability, we also evaluate it on
the Ego4D [15] dataset and report the results in Table 5.

We compare against the following baselines:

1. DEVA [8] employs a decoupled video segmentation approach that combines
task-specific image-level segmentation with a class-agnostic bi-directional
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temporal propagation model. This method is particularly effective in diverse
and data-scarce environments, as it separates image and video segmentation
tasks to improve overall tracking accuracy by reducing the impact of image
segmentation errors.

2. MASA [23] is a more recent state-of-the-art method that focuses on robust
instance association learning. MASA includes a universal adapter that allows
it to integrate with various foundational segmentation or detection models,
enhancing its ability to track any detected objects robustly. By utilizing
features from these underlying 2D models, MASA can improve the instance
and category assignments, providing robust zero-shot tracking capabilities
in complex domains.

Note that, both DEVA and MASA can be used with various 2D object detection
models. We tested both methods with three 2D models: OWLv2 [27], Detic [51]
and GroundingDINO [24], and found that DEVA works best with OWLv2 while
MASA works best with Detic on the EPIC Fields dataset. Hence, we incorporate
DEVA + OWLv2 and MASA + Detic as baselines in our experiments.

Since both baselines use an open-vocabulary 2D detection model, we use text
prompts corresponding to the object categories from EPIC Fields [40] to obtain
image-level object bounding boxes (with associated class labels).

In Appendix E, we carry out an ablation disabling the category and instance
terms in our cost function. This brings our approach somewhat closer to the
method of OSNOM [32].

4.2 Metrics

We evaluate our method using the HOTA (Higher Order Tracking Accuracy)
metric [25]. HOTA assesses multi-object tracking (MOT) performance by com-
bining detection accuracy (DetA), association accuracy (AssA), and localization
IoU (Loc-IoU). It is calculated as the geometric mean of DetA and AssA over
various Loc-IoU thresholds α:

HOTA =
1

|S|
∑
α∈S

HOTA(α) =
1

|S|
∑
α∈S

√
DetA(α)×AssA(α)

where S is the set of IoU thresholds. We use S = {0.05, 0.1, . . . , 0.9, 0.95} fol-
lowing standard protocol [25]. DetA measures the overlap between the set of all
predicted segments and all ground-truth (GT) segments. It is defined as:

DetA(α) =
|TPα|

|TPα|+ |FPα|+ |FNα|

True Positives (TPα) are identified by matching predicted segments to GT seg-
ments with an IoU ≥ α using Hungarian matching. Unmatched predictions are
False Positives (FPα), and unmatched GT segments are False Negatives (FNα).
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AssA measures the tracker’s ability to maintain consistent object identities
over time:

AssA(α) =
1

|TPα|
∑

c∈TPα

TPA(c)|
|TPA(c)|+ |FPA(c)|+ |FNA(c)|

where we iterate over all TP pairs, measuring the alignment between the pre-
dicted and ground-truth segment’s whole track. True Positive Associations (TPA)
represents the number of TP matches between the two chosen tracks for a pair.

Additionally, we use the IDF1 (Identity F1) score to measure how well the
tracker maintains consistent object identities throughout the sequence:

IDF1 =
2 |IDTP|

2 |IDTP|+ |IDFP|+ |IDFN|

where IDTP (Identity True Positives) represents matches on overlapping parts
of tracks that are matched, while IDFP (Identity False Positives) and IDFN
(Identity False Negatives) represent the remaining GT and predicted segments.

4.3 Results

We evaluate our method against DEVA [8] and MASA [23] using the HOTA,
DetA, AssA, and IDF1 metrics. Table 1 presents the overall results as well as
scene-specific performance. Figure 2 provides a qualitative comparison of results.

Our approach consistently outperforms both baselines across various met-
rics. Compared to DEVA, our method achieves an overall HOTA score of 27.72,
a notable improvement over DEVA’s 25.14. This enhancement is even more pro-
nounced in the AssA metric, which measures the tracker’s ability to maintain
consistent object identities over time. Our method attains an AssA score of 43.90,
substantially higher than DEVA’s 36.72.

This further underscores our method’s superior performance in maintaining
consistent object identities throughout the video sequences. Our method also
shows significant improvements in IDF1 scores, achieving 26.63 compared to
DEVA’s 22.17. Similar improvements are observed when comparing to MASA,
which demonstrates our approach’s adaptability to different base models.

Notably, DetA scores remain relatively consistent across all methods (e.g .
18.40 for MASA vs. 18.38 for our method when using MASA as the base model).
This is because our method improves the instance and category assignments for
the segments using 3D information but does not alter the segments themselves.
Since the DetA metric only evaluates the segments regardless of IDs, it results
in similar scores for both the base 2D method and our method.

Scene-specific analysis. Our method shows remarkable improvements in com-
plex scenes, such as P01_01, where we achieve a HOTA score of 41.91 compared
to DEVA’s 33.60, a 24% improvement. This scene likely contains frequent object
occlusions or out-of-view instances where our 3D-aware approach excels. Signifi-
cant improvements are also observed in scenes like P07_101 and P22_117, with
improvements of 25% and 22% respectively in HOTA scores.



3D-Aware Instance Segmentation and Tracking in Egocentric Videos 11

Table 1: Results on the EPIC Fields [40] dataset.

Video DEVA [8] Ours (w/ DEVA) MASA [23] Ours (w/ MASA)

HOTA DetA AssA IDF1 HOTA DetA AssA IDF1 HOTA DetA AssA IDF1 HOTA DetA AssA IDF1

P01_01 33.60 25.25 45.68 28.61 41.91 24.94 71.85 38.76 9.11 4.64 17.99 8.15 8.36 4.64 15.12 7.50
P01_104 25.79 22.98 29.09 21.93 30.92 22.95 41.88 31.40 11.66 8.81 15.59 9.61 12.77 8.81 18.64 10.54
P02_09 30.07 21.85 42.29 23.46 33.76 21.77 53.11 27.73 20.51 15.46 27.46 17.67 19.04 15.47 23.68 16.45
P02_121 8.75 7.47 10.32 6.07 11.79 6.64 20.96 12.09 6.71 5.68 8.03 4.06 9.29 5.69 15.34 6.90
P02_132 26.71 25.05 28.80 29.04 29.96 24.74 36.56 35.18 15.44 11.40 21.28 13.31 15.39 11.35 20.98 13.65
P03_101 27.56 21.07 36.13 24.17 29.63 19.72 44.61 26.67 7.71 6.22 9.65 4.55 9.53 6.22 14.76 6.97
P04_03 15.60 11.72 23.41 11.24 16.85 11.64 26.63 12.23 10.21 5.12 22.80 6.22 10.17 5.12 21.92 6.67
P04_11 43.03 35.83 52.05 48.88 43.13 35.87 52.21 49.74 10.82 7.26 16.30 11.26 10.54 7.27 15.37 9.76
P04_25 18.71 6.02 58.25 10.39 18.71 6.18 56.79 10.64 12.64 5.96 27.30 6.69 13.46 5.96 30.45 8.54
P06_01 26.22 23.80 29.60 28.12 29.73 25.65 34.95 35.05 18.95 21.33 19.02 17.96 26.01 21.33 32.87 30.84
P06_102 27.71 17.37 44.81 23.75 30.42 18.09 51.88 28.71 10.42 6.17 18.87 4.87 8.71 6.18 13.91 4.17
P06_12 42.47 27.00 68.89 41.40 44.13 26.95 73.86 48.41 41.94 28.57 62.01 47.70 44.35 28.54 69.14 52.38
P07_101 18.45 15.66 23.28 14.28 23.12 15.95 34.81 21.44 12.25 7.83 19.98 8.58 12.98 7.82 22.38 9.44
P11_103 27.73 15.55 49.78 24.77 24.68 15.16 40.42 21.98 11.69 8.11 17.37 7.75 13.25 8.02 21.98 9.57
P12_02 23.51 15.26 37.40 16.16 26.21 15.45 45.35 20.63 11.46 7.33 17.96 7.46 12.77 7.34 22.34 9.59
P22_117 18.15 12.62 27.06 13.50 22.06 12.34 39.90 18.92 7.46 3.32 17.88 4.63 6.29 3.33 12.37 3.97
P24_05 19.07 12.27 30.48 16.10 21.02 12.27 36.50 19.85 11.39 9.12 14.26 7.27 13.15 9.09 19.06 10.00
P28_109 24.77 17.39 35.36 21.68 25.99 18.08 37.37 26.32 12.82 11.49 14.38 9.97 13.29 11.49 15.41 10.97
P28_14 27.11 18.85 39.90 25.30 28.04 18.18 44.28 27.54 13.22 9.21 20.28 10.17 13.35 9.17 20.16 10.61
P37_101 17.85 14.97 21.79 14.56 22.23 14.93 33.96 19.24 11.09 9.26 13.86 8.54 11.20 9.14 14.07 8.76

Overall 25.14 18.40 36.72 22.17 27.72 18.38 43.90 26.63 13.73 10.06 20.32 10.82 14.67 10.04 22.43 12.36

Table 2: Number of ID switches averaged over all videos, shown for challenging and
frequently appearing objects. Last column: number of videos featuring each object.

Object Class DEVA [8] Ours (w/ DEVA) # videos

tap 14.53 2.88 17
knife 27.21 5.29 14
chopping board 20.25 5.42 12
spoon 21.00 5.00 10
bowl 23.11 5.67 9
pan 19.44 4.11 9
sponge 22.38 5.38 8

The AssA metric shows the most significant improvements. For example, in
P02_121, our method achieves an AssA of 20.96 compared to DEVA’s 10.32, a
103% improvement. However, the degree of improvement varies across scenes. In
some, like P04_11, the improvement is marginal, suggesting that not all scenes
benefit equally from 3D awareness.

Analysis of ID switches by object class. To further understand our method’s
performance in maintaining consistent object identities, we analyze the number
of ID switches occurring throughout the videos for different object categories.
Table 2 shows the average number of ID switches over all videos for a subset of
challenging and commonly occurring object classes in the EPIC Fields dataset,
comparing our method to the DEVA baseline. Our approach consistently and sig-
nificantly reduces ID switches across all shown object classes, with improvements
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Reference object Segmentations

Ours

DEVA

Ours

DEVA

Ours

DEVA

Ours

DEVA

Ours

DEVA

Fig. 2: Qualitative comparison between our method and DEVA [8]. We show instance
segmentations for selected reference objects. Our method maintains consistent tracks
despite viewpoint changes and objects going out of view, while DEVA’s tracks break.
Our approach successfully segments the pot even when in motion.

ranging from 73% to 80% reduction. For instance, small objects, prone to occlu-
sions, such as knives, see a reduction from 27.21 to 5.29 switches, taps from 14.53
to 2.88, and pans from 19.44 to 4.11. This substantial improvement across various
object types, regardless of their size or frequency of appearance, demonstrates
the robustness of our 3D-aware approach. It highlights our method’s effective-
ness in maintaining consistent object identities through complex interactions and
occlusions typical in egocentric videos, particularly for frequently manipulated
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Table 3: Comparison with other plug-and-play tracking methods.

Method HOTA DetA AssA IDF1

BoTSORT [1] 12.83 7.81 24.23 10.30
ByteTrack [49] 20.08 16.31 27.56 16.94
OCSORT [6] 21.90 17.94 29.28 18.95
DeepOCSORT [26] 22.63 17.98 31.31 19.88

DEVA [8] 25.14 18.40 36.72 22.17
Ours (w/ DEVA) 27.72 18.38 43.90 26.63

kitchen objects and objects that may remain stationary across time, while not
necessarily staying in view.

4.4 Ablations

Comparison with other plug-and-play tracking methods The above re-
sults demonstrated our method’s generalization capability by combining with
with two state-of-the-art methods, DEVA [8] and MASA [23]. To further high-
light our method’s versatility, we compare it with other existing plug-and-play
tracking algorithms, namely BoTSORT [1], ByteTrack [49], OCSORT [6] and
DeepOCSORT [26]. We use the same ReID model with all 4 tracking methods
and use OWLv2 [27] as the 2D segmentation model for fair comparisons. Table 3
shows that all four methods perform less favourably than DEVA [8] even while
using the same base 2D model, and thus are outperformed by our method which
further refines the tracks from DEVA.

Influence of different components on tracking. Our tracking formulation
consists of four components (Eqs. (5) to (8)): instance cost, category cost, 3D lo-
cation cost, and visual feature cost. We evaluate the influence of each component
by turning off the corresponding cost one at a time in the cost-matching formu-
lation. Table 4 shows that all components contribute positively to the tracking
performance, but to varying degrees. Removing the visual features has the least
impact, reducing the HOTA score from 27.72 to 27.17. The 3D location informa-
tion proves more important, with its removal causing the HOTA score to drop
to 26.32. Removing the category term has the most significant impact on the
tracking performance, followed by the instance cost. Note that, if the instance
cost is removed, the cost optimization completely ignores the initial tracks pro-
vided by the 2D base tracker (e.g . DEVA or MASA), effectively finding instance
tracks from scratch. Notably, even without this initial guidance, our method
outperforms the 2D tracking method (DEVA [8]) in terms of HOTA (+0.82),
AssA (+2.79) and IDF1 (+2.33).

Metrics across IoU thresholds. As described in Section 4.2, HOTA, DetA,
and AssA can be calculated at different IoU thresholds. Figure 3 illustrates how
these metrics change as the IoU threshold increases. As expected, all metrics
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Table 4: Influence of different components in the tracking formulation.

Instance Category 3D Location Visual HOTA DetA AssA IDF1

✓ ✓ ✓ ✓ 27.72 18.38 43.90 26.63
✓ ✓ ✓ ✗ 27.17 18.38 42.45 26.12
✓ ✓ ✗ ✓ 26.32 18.37 41.23 26.04
✓ ✗ ✓ ✓ 25.49 18.11 38.74 24.18
✗ ✓ ✓ ✓ 25.96 18.38 39.51 24.50
✗ ✓ ✗ ✗ 21.11 18.41 26.42 16.80
✓ ✓ ✗ ✗ 25.14 18.40 36.72 22.19

DEVA [8] 25.14 18.40 36.72 22.17
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Fig. 3: HOTA and Association accuracy (AssA) metrics across different IoU thresholds.

decrease with higher thresholds, as stricter overlap requirements lead to fewer
True Positive matches between predicted and ground-truth segments. Notably,
our method consistently outperforms DEVA across all thresholds for both HOTA
and AssA metrics, while he AssA curve shows a more pronounced improvement.
This suggests that our 3D-aware approach is particularly effective at maintaining
consistent object identities throughout the video sequence, even under strict
evaluation criteria.

5 Conclusion

In this paper, we presented a novel 3D-aware approach to instance segmentation
and tracking in egocentric videos, addressing the unique challenges of first-person
perspectives. By integrating 3D information, our method significantly improves
tracking accuracy and segmentation consistency compared to state-of-the-art
2D approaches, especially over long periods. Our ablation studies highlight the
importance of 3D information and the category as well as instance cost terms
in matching, while also showing robustness to hyperparameter changes. Beyond
improved tracking, our approach enables valuable downstream applications such
as high-quality 3D object reconstructions and amodal segmentation. This work
demonstrates the power of incorporating 3D awareness into egocentric video
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analysis, opening up new possibilities for robust object tracking in challenging
first-person scenarios.
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A Implementation details

In the EPIC Fields [40] dataset, the per-frame camera pose and intrinsics are
obtained using COLMAP [37], which also provides a sparse point cloud repre-
senting the static parts of the scene. We follow [32], and obtain the depth maps,
Dt, by first calculating a mesh from the sparse point clouds, and then align-
ing the predictions of a pre-trained depth model to the mesh through shift and
scale transformations. We use Depth Anything [44], a state-of-the-art monocu-
lar depth estimation model. We obtain the scale-shift parameters for each depth
map by optimizing the L1 distance between the transformed depth map and the
rasterized mesh depth. We use the DINOv2 [30] encoder to compute the visual
features for segments. When optimizing the tracking cost, the visual feature for
a “track” is computed as the average of the visual features of the most recent
100 observations assigned to the track.

A.1 Details on frame-by-frame Tracking Cost optimization

Our tracking algorithm processes the video sequentially, applying the cost opti-
mization frame-by-frame. At each frame t, we consider:

1. M existing tracks from the previous t− 1 frames
2. N new observations from the current frame t

Here, an observation refers to the set of attributes for a segment (Section
3.2 of main paper), while a track is a sequence of observations that have been
assigned to the same instance across frames. We employ the Hungarian algorithm
to perform matching between the M existing tracks and N new observations.
This matching process is guided by our cost formulation (Section 3.3).
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For new observations that do not match any existing track (i.e. their match-
ing cost exceeds the threshold γ), we initialize new tracks. This allows our
method to accommodate the introduction of new objects into the scene.

Importantly, we do not terminate tracks that fail to match with a new obser-
vation in the current frame. Instead, we maintain these tracks in our database,
propagating their attributes from time t − 1 to time t. This approach allows
our method to handle temporary occlusions or brief disappearances of objects,
maintaining object identity over longer periods.

This process enables effective tracking of multiple objects across extended
video sequences, addressing challenges like object entries, exits, and occlusions.

A.2 Hyperparameters

Our model has five hyperparameters: γ, αs, αv, αl, αc. We set αc = 104 and
γ = 30 based on observed cost values. The remaining parameters were tuned on
a held-out set of 4 videos, yielding optimal values of αs = 10, αv = 2, αl = 10.
These settings were used across all experiments.

A.3 Evaluation Data

We evaluate our method and baselines using the VISOR dataset, which pro-
vides pixel-level annotations for active objects in kitchen environments. These
annotations include any objects used for cooking or cleaning. From these annota-
tions, we derive ground truth tracks and segmentations. The dataset’s annotation
structure supports instance-level tracking, as segments of a particular object cat-
egory often correspond to the same instance throughout a video. As mentioned
in the main paper, we evaluate our approach using the VISOR annotations for
20 videos from EPIC Fields [40] dataset.

B Additional results on the Ego4D dataset

To further demonstrate our method’s applicability, we also include results on a
few select scenes from the Ego4D [15] dataset. We follow the same evaluation
protocol used with the EPIC Fields dataset and utilize Egotracks [39] for the
ground-truth track annotations.

Table 5 shows that our method can consistently refine the tracks obtained by
DEVA [8] on 3 videos. We use the same hyperparameters for these experiments
as the ones used with the EPIC Fields datasets described in Appendix A.2.
The video lengths are 2-3× shorter compared to EPIC Fields, which we believe
results in smaller margins of improvement as compared to the ones showed in
the main paper.
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Table 5: Results on the Ego4D [15] dataset.

Video ID DEVA [8] Ours (w/ DEVA)

HOTA DetA AssA IDF1 HOTA DetA AssA IDF1

8b47ac19-7c4f-47d2-
b5d0-755b524b66b2

15.29 12.26 22.74 13.56 17.40 12.22 28.15 14.98

9f5253af-acc3-40ca-
b8bf-7b931f875bd7

12.37 9.25 18.61 10.43 14.38 9.25 23.04 12.33

bff3d583-ca3b-44b8-
9740-3b34c5a8d7a9

21.58 13.60 36.21 18.27 23.73 13.58 43.96 20.16

C On-device Inference Runtime Analysis

Our method processes egocentric videos in an online manner. While we compute
meshes in advance, we track the objects online with the entire pipeline running
at 20FPS on a A6000 GPU. Each of our method’s components runs as follows:
DINOv2 at 43FPS, the lifting to 3D with DepthAnythingV2 at 23FPS, the
prediction of segmentation masks with OWLv2 (run every 5 frames) at 31FPS,
the temporal propagation with DEVA [8] at 25 FPS. We use torch.cuda.stream
for asynchronous execution of all models on the same GPU.

D Sensitivity to Hyperparameters

We evaluate the sensitivity of our method by varying the values of the 4 hyper-
parameters: αs, αc, αl, αv in the cost-matching formulation. We perform this
analysis on a subset of 5 videos, using 3 representative values for each hyperpa-
rameter, resulting in 34 = 81 configurations. Figure 4 shows that 57 out of these
81 hyperparameter configurations lead to a HOTA score in the range 27.2± 0.2,
which shows the robustness of our method to these parameters. There are some
configurations, e.g . when αs = 100 or αc = 100, that lead to a degradation in
performance.

E Ablation without category and instance terms

Here, we ablate our method by disabling the instance and category terms in the
cost formulation, relying solely on 3D location and visual feature costs. Note that
this ablation is compared with the “full” version of our method on the object
tracking task.

As shown in Table 6, this ablation results in a significant performance drop,
with metrics falling below even the initial performance obtained using the base
2D model, DEVA [8]. This is due to two reasons. First, without the “instance”
cost, the model completely ignores the initial tracks provided by DEVA. Sec-
ond, without the “category” cost, the model often confuses objects across cate-
gories (e.g . pot vs sink, knife vs spoon). Since the Detection Accuracy (DetA)
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Fig. 4: Sensitivity analysis of HOTA performance to hyperparameters. Each vertical
axis represents a hyperparameter (αs, αl, αv, αc) or the HOTA metric (rightmost axis).
Colored lines show individual configurations, where intersections with the vertical axes
indicating parameter values and resulting HOTA scores.

Table 6: Ablation of our method without category and instance terms in the cost
formulation, evaluated on the egocentric object tracking task.

Method HOTA DetA AssA IDF1

DEVA [8] 25.14 18.40 36.72 22.17
Ours (without cat and ins terms) 11.31 6.49 24.16 12.98
Ours (full version) 27.72 18.38 43.90 26.63

for a video/scene is computed on predicted instances per class, this leads to a
severely low DetA on account of various misclassified instances. This comparison
underscores the importance of our additional cost terms in maintaining robust
long-term tracking performance in egocentric settings.

Note, the ablation brings the method somewhat closer to the the OSNOM-
like configuration of [32]. Although our method was inspired by OSNOM, we
can’t carry out a direct comparison as the authors of [32] have not yet released
their code, or details of the videos used in their evaluation.

F Downstream applications

Our 3D-aware instance segmentation and tracking method yields longer and
more consistent tracks than 2D methods. This improvement enables two key
downstream applications: 3D object reconstruction and amodal segmentation.

Reconstruction of objects. The longer, more consistent tracks produced by
our method allow us to extract the same object from many frames using the
output instance ID. This multi-view information is crucial for achieving high-
quality 3D reconstructions. This is something that fragmented or inconsistent
tracks from 2D methods often fail to achieve. Additionally, our 3D tracking ap-
proach, which uses lifted centroids, allows us to determine the time ranges when
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Fig. 5: Qualitative results demonstrating the quality of object reconstructions and
amodal segmentations obtained using our 3D-aware tracking method. The “Reference
RGB” column show an image containing the referred object unoccluded. Last 4 columns
show the resulting amodal segmentations of the object in red masks with a red border.

an object remains static. We leverage these static periods for reconstruction,
as they provide the most reliable geometric information. This selective use of
frames is only possible due to maintaining long-term tracks of objects.

Amodal segmentation. Amodal segmentation aims to estimate the full ex-
tent of objects, including parts that are occluded. Building upon our 3D object
reconstructions, we render the reconstructed 3D object from multiple viewpoints
corresponding to different frames in the video. This process allows us to generate
occlusion-free, amodal segmentations of the object.

These applications demonstrate the cascading benefits of our improved 3D-
aware tracking method. We show qualitative results in Fig. 5 that demonstrate
the quality of object reconstructions and amodal segmentations obtained using
our method. In practice, we use the 2D Gaussian Splatting [18] approach to
obtain precise mesh reconstructions for these objects.

G Details on Obtaining Amodal Segmentations

This section elaborates on the process of obtaining amodal segmentations, which
involves three main steps: identifying static object frames, 3D object reconstruc-
tion, and amodal segmentation projection.

Identifying Static Object Frames: We begin by analyzing the tracked 3D
centroid of the object of interest across the video sequence. By identifying pe-
riods where the centroid remains relatively stationary (using a threshold on 3D
location differences between frames), we can isolate a range of frames where the
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object is static. This step is crucial as it allows us to gather multiple views of the
object from different camera angles while minimizing the complexity introduced
by object motion.

3D Object Reconstruction: Once we have identified the static frames, we uti-
lize the corresponding 2D instance segmentations and associated camera param-
eters to reconstruct the 3D shape of the object. This reconstruction is achieved
through a technique known as Gaussian Splatting3. In this approach, we rep-
resent the 3D object as a collection of Gaussian functions in 3D space. Each
Gaussian is characterized by its mean position and covariance matrix, which
define its location and shape respectively. Given G as the set of 3D Gaussians
and a camera viewpoint Ci, the differentiable Gaussian Splatting renderer [20]
produces an image

Î = Π(G,Ci) ∈ RH×W×3

The same renderer can be used to render an alpha-map (equivalent to a seg-
mentation map) by setting the colors for each Gaussian to be 1. The Gaussian
Splatting model for the object of interest is optimized by minimizing this loss
function across multiple views:

L =
∑
t

(It ⊙mt −Π(G,Ci))
2

where mt and It represents the observed 2D segmentation map and RGB values
in frame t respectively.

Projecting Amodal Segmentations: Once we obtain a satisfactory 3D re-
construction of the object, we can generate amodal segmentations for any desired
viewpoint. This is done by rendering the entire 3D Gaussian representation back
onto the image plane, regardless of occlusions present in the original views. As
explained above, we set the Gaussian colors to 1 which provides an alpha map
using the renderer as

m̂ = Π(G,Ci) ∈ RH×W

where m̂ is the amodal segmentation map. This map represents the full extent
of the object, including parts that may be occluded in the original views. The
values in m̂ range from 0 to 1, indicating the likelihood of each pixel belonging
to the object.

This approach allows us to generate accurate amodal segmentations that
account for the full 3D structure of the object, providing a more complete rep-
resentation than what is directly observable in any single frame of the video.

H Limitations

Our method significantly improves object tracking in egocentric videos, espe-
cially under conditions of rapid motion, occlusions, and out-of-sight objects.
3 We use 2D Gaussian Splatting [18] which is a variation of 3D Gaussian Splatting [20]

that makes it more straightforward to obtain object meshes.
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However, there are limitations, particularly in scenarios where accurate camera
poses are difficult to obtain or estimate. Specifically, our approach relies heavily
on the assumption that high-quality camera intrinsics and extrinsics are avail-
able, as they are essential for accurate 3D lifting of object segments. Hence,
performance can degrade in cases with noisy depth maps or challenging con-
ditions like motion blur, poor lighting, or extreme viewpoint changes, as these
factors reduce the precision of 3D reconstruction.
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