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Abstract

Physical simulations are at the core of many critical industrial systems. How-
ever, today’s physical simulators have some limitations such as computation
time, dealing with missing or uncertain data, or even non-convergence for some
feasible cases. Recently, the use of data-driven approaches to learn complex
physical simulations has been considered as a promising approach to address
those issues. However, this comes often at the cost of some accuracy which
may hinder the industrial use. To drive this new research topic towards a better
real-world applicability, we propose a new benchmark suite "Learning Industrial
Physical Simulations" (LIPS) to meet the need of developing efficient, indus-
trial application-oriented, augmented simulators. To define how to assess such
benchmark performance, we propose a set of four generic categories of criteria.
The proposed benchmark suite is a modular and configurable framework that
can deal with different physical problems. To demonstrate this ability, we pro-
pose in this paper to investigate two distinct use-cases with different physical
simulations, namely: the power grid and the pneumatic. For each use case,
several benchmarks are described and assessed with existing models. None
of the models perform well under all expected criteria, inviting the commu-
nity to develop new industry-applicable solutions and possibly showcase their
performance publicly upon online LIPS instance on Codabench.

1 Introduction

Physical simulations constitute today a key enabler for real-world complex industrial systems
(power grid management, rail infrastructure, aeronautics, pneumatic, gas production plants,
thermal comfort, etc.), and are used at several critical stages of the system life-cycle (system design,
solutions exploration, system V&V, etc.) to enhance decision making. Typically, the main drawback
of using numerical simulations is their high computational cost to reach satisfactory solutions.
It can become prohibitive for complex systems requiring large number of simulations. To tackle
this issue, several techniques have been explored in the literature to design simplified physical
models [1, 2, 3, 4], dimension reduction, or considering simplified assumptions to linearize the
problem. In recent years, there has been a growing interest in using machine learning techniques
to solve physical problems [5] for which conventional modeling approaches are very expensive to
compute. The main goal is to accelerate the computation time while maintaining an acceptable
accuracy of simulation predictions under some specified tasks. Going even further to reach the
best trade-off, Deep Neural Networks (DNN) have recently led to promising results in various
domains (see e.g.,[6, 7, 8, 9, 10]), allowing an important speed-up of simulations by substituting
some computational bricks with data-driven numerical models.
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These approaches emulate often existing simulators by learning from them in a supervised fashion
and are generally used to complement them. Other approaches also aim at developing new kinds
of differential solvers [11, 12, 13] in an unsupervised manner, and could possibly directly fit into
existing simulator core. They often fall in the class of Physics-informed machine learning [14],
where the learning is performed through a residual loss function and then physical constraints
are verified on the learned model to validate the obtained solution. They could lead to stronger
convergence and generalization than emulators. Another work in [15] provides also a taxonomy of
integrating prior knowledge into learning systems. As automated learning of complex physical
simulations is still considered as a new field of research, there exists a lack of common benchmark-
ing pipeline, starting from available datasets, across various applications and finally common
evaluation criteria as reviewed in section 3. This may allow to rigorously compare these methods
and drive further advances into real-world applications, in particular when considering industrial
use-cases.

In this paper, we propose a new benchmark suite "Learning Industrial Physical Simulations (LIPS)"
to facilitate the use and the assessment of augmented physical systems, when applied on real-
world applications. Depending on the application scope, the set of required physical variables
to be considered may be different. The trade-off between computation speed and accuracy, as
well as the expected generalization capability, may be specific to each industrial domain and the
considered application. The compliance to physical laws of the learnt simulations may also be very
important to validate them and consequently increase the user trust toward theses augmented
simulators.

To develop the LIPS benchmark suite over several physical domains, we use a bottom-up approach
by investigating two use cases described in section 2 with distinct physics: power grid and pneu-
matic. These 2 industrial domains both contribute in tackling ongoing real-world challenges, such
as Climate Change, by transforming our energy system through electricity decarbonization and
gains in transportation energy efficiency, or improving the decision-making efficiency regarding
industrial products. They also allow, thanks to their heterogeneity in terms of physics lying behind
modeling, a better assessment of our proposed benchmark. Preliminary ML models to benchmark
also exist in the respective literatures. Our contributions, described in greater details in section 4,
hence lie in:

1. defining application-oriented benchmark tasks for industry use cases as opposed to general-
purpose simulation tasks;

2. proposing four categories of evaluation criteria that generalize to several physical, industrial
and application domains and challenges beyond usual ML-only evaluation metrics;

3. sharing an open-source benchmarking suite framework (LIPS) with associated datasets;

4. opening a publicly available Codabench [16] thread providing a shared result table for user’s
submission and a fully automated and comparable evaluation.

Baseline experiments to demonstrate the usefulness of these benchmarks are run with existing
state-of-the-art methods in section 5 and further discussed, highlighting the relevance of our
benchmark.

2 Use-cases

2.1 The power grid case

Industrial context Power System Operators are in charge of managing the security of large critical
power grids (thousands electrical lines and substations that can be reconfigured) in real time
and coordinate the supply and demand for electricity while avoiding fluctuations in frequency
or interruptions of supply. It is of the utmost importance for a grid to be robust to blackouts at
any time, which means in particular avoiding powerline overflows that can lead to a cascading
failure (Figure 1, left). Operators have to face unexpected events (losing a line for example due to
weather constraints) or to anticipate events such as variation of production during the day or as
equipment’s maintenance. They do so by assessing the risks, leveraging grid flexibility through
simulations and carefully choosing sets of remedial actions which act on the grid topology or on
the production levels.



Applications Near real-time operations of a power grid can be classified into three steps with
different expected speed and accuracy simulation trade-offs (Table 1):

1. Risk assessment, i.e., identifying problematic contingencies over a large number of possible
cases while assessing their severity (anticipating for instance lines overloads, maintenance
operations...);

2. Remedial action search, i.e., exploring for solutions to find a set of remedial actions on the grid
such as topology change, to solve a local problem and assess its overall impact;

3. Decision making, i.e., selection and validation of one of the best solutions before implementa-
tion.

Physical Simulations The computation of the grid state involves a set of physical laws (see
appendix C.1) such as Kirchhoff’s law or Joule effect. More specifically, the physical resolution
of the problem is derived from a set of powerflow equations [17] described at any node k of the
grid. The power injected at a node of the network sy, is the sum of active (py) and reactive powers
(gx): Sk = pk + qx. From Kirchhoff energy conservation law, the relation between voltage angle
and magnitude can be formulated for node k and neighboring nodes m as follows:
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where phasors 6}, are unknown for all node k; either voltage |vg| or reactive power ¢y are known
input at any given node k ; active power py. is a known input and g, b, known line charac-

teristics for all nodes. For each line [, active pe and reactive g¢ powerflows or the current af can
further be derived with Ohm’s law.

Significance The problem 1 is non linear and non convex. To estimate these variables, a Newton-
Raphson power flow solver such as LightSim2grid [18] can be used. Over the past years, the
required amount of simulations has drastically increased due to emerging trends [19] — mainly
driven by Energy Transition initiatives, increasing renewable energy share as well as stronger
exchanges with neighboring countries over the whole European grid, which lead to a greater
stochasticity. In this context, the complexity of physical solvers becomes an obstacle for upgraded
decision support [20]. An acceleration by several order of magnitudes is now expected.
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Figure 1: Left, illustration of line overloading in a power grid and a proposed solution (topology
action) to overcome the cascading failure. Right, cross section of a simplified tire.

2.2 The pneumatic domain use case

Industrial Context The tire performances have been improved over years with the aim to in-
crease their resistance and to provide more comfort to driver’s experience under various conditions.
As such, their performance could be assessed with respect to the durability, ground adhesion or
robustness. To do so, the tire behavior could be modelled during either rolling cycles or conditions
such as crushing forces. Besides, to predict the global behavior, it is crucial to estimate the forces
arising from the tire/ground interface which are concentrated on the contact area. Consequently,



to be able to optimize the underlying processes and deepen our understanding of the physical phe-
nomena, we consider the conditions as near as possible to the real-world situations (considering
the vehicle velocity, the tire pressure, the friction, the material behavior, etc.).

Applications Real-world tests performed on tires involve in particular two classical configura-
tions depending on the accuracy/computational time simulation trade-offs (Table 1):

1. Wheel sustaining: assess whether the wheel is able to properly sustain the weight of a vehicle;
2. Rolling cycle: assess the behavior of the tire during the rolling phase.

Physical Simulations The computation of the tire state, involving the displacement and the
contact stress arising from the contact conditions on the discretized domain (i.e. the mesh),
is performed based on the resolution of a set of Partial Differential Equations (PDE) through
Finite Element (FE) formalism (see appendix C.2 for more details). As such, the solution for
the displacement is evaluated at all the nodes of the domain’s mesh, whereas it is evaluated
at the nodes on the contact boundary for the contact stress. In these PDEs, several physical
considerations are involved: the behavior law, the relation between the stress acting on a body
and the displacement, the motion law, the unilateral contact conditions (equivalent to assuming
the ground is perfectly rigid), the Coulomb’s law of dry friction. For more details about contact
mechanics, the readers may refer to [21, 22, 23]. Note that, while the displacements and contact
stress at the contact boundary are the actual unknowns of the problem, they may not represent all
the required measures depending on the use case. Some physical quantities relevant to a given
application can be computed as a post-processing of the unknowns. Figure 1, right, depicts the
cross section of a simplified tire. We consider an idealized straight rolling on a non-deformable
ground at constant speed.

Significance The problems mentioned above are strongly nonlinear due to the nonlinearity of
the underlying behavior law, the large deformation framework and the frictional contact condi-
tions. In order to estimate the displacement and the stress, the FE solver "Getfem" [24] is used.
In practical applications, rolling simulations in particular provides a lot of useful information,
such as the contact area, forces, contact pressure and moments. Classical methods exist [25, 26],
however, because of the inherent complexity of the problem, the computation time is prohibitively
expensive. Running over a day sometimes, it limits the use of such models in industrial applica-
tions compared to simpler surrogate model. An order of magnitude acceleration with acceptable
accuracy would democratize its usage.

Table 1: Grid and pneumatic apps: speed vs accuracy and physical law compliance trade-offs

Application Variables to predict  Accuracy & PL compliance Speed
» = (1) Riskassessment al + +++
% &  (2) Action Search a’, pl, v + ++
§ (3) Decision Making  a/, p’, v, 4%, 6% +H +
= 2 (1) Wheel sustaining  ug +++ ++
= (2) Rolling cycle uq, Ac ++ +++

2.3 Added value of ML

Generally speaking, ML model can provide more direct and faster predictions than a Newton-
Raphson resolution over the non-linearities of both use cases. It can leverage a learning memory of
any given grid, mesh or last rolling cycle iteration of interest, without restarting the resolution from
scratch as if it was a new system or problem. Additionally, in some of our benchmark tasks, we
require the ML models to predict only a subset of the variables such as the flows or contact forces,
unlike the physical solvers which usually compute all the variables by design. ML models could
finally provide more factorized computation, such as, for instance, for varying grid topologies
(varying number of electrical nodes), whereas existing physical solvers does not offer factorization
over such dimension.



3 Related works and novelty

Simulations and benchmarks in power grids. Although, simulation time and convergence have
improved over decades thanks to benchmarks based on shared power grid cases and some con-
tests [27, 28], it remains still slow to compute large volume of simulations. In addition, existing
simulators are general purpose and not application specific, that we consider in this work. Some
application-oriented simulation-related benchmarks emerged lately in the power system commu-
nity (SimBench [29], Power Grid Lib [30]). However, they are mostly designed to drive advances
in operational research algorithms. In comparison, our benchmark: a) stresses the importance
of considering the complexity of varying grid topologies for industrial applications; b) unlocks
the creation of data-driven models by providing comprehensive data distributions to train them,
similarly to [31] for other power grid related applications; ¢) defines specific metrics to evaluate
them such as physics compliance, out-of-distribution generalization over unseen topologies
or industrial readiness considering available data volume and scalability. It eventually allows a
fair comparison of pre-existing ML models [8, 32, 33, 34, 35, 36] over all necessary dimensions
as summarized in Table 2 and detailed in Appendix D. A similar evaluation over defined set of
categories is also concurrently advocated by [37] as a first step towards proper benchmarks. Fi-
nally, we reference as an analogous initiative this recently published physical simulation-less but
application-oriented dataset for power-grid ML [38].

Table 2: Comparative table between LIPS and related work for the power grid case.
Impact /

Evaluation criteria categories Readability Environment setup
Reference ML-related IndU§trlal ey Ph¥§lcs Th.[ eSh.(.’ldl.ng & Dataset Re.f Bl 1L m_odel Baselines
Readiness | Generalization C ion Simulator repository
Large, simple
LeapNet [39] + [40] Partial prod & varied topo
distributions
Do gmenian
3
£ 05,8 distributions
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% analysis [33]
g Physics
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= GNN [41]
Data generation,
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distributions
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% LIPS
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El SimBench [29] realistic prod
_E simple topo
g Small, doc, Med-speed
2 , doc,
2 Eousr LD realistic prod PowerModel
[30] .
static topo (open source)

PDEs simulations and benchmarks for pneumatic. In the last few years, the success of deep
learning techniques has encouraged researchers to investigate their capability to solve PDE
problems. Several works were proposed to hybridize PDE-based physical problems with Neural
Networks (NN), from black-box resolution on unstructured meshes with graphs NN [42], to more
interpretable approaches like the physics informed NN [14]. Some other works have focused on
using un-supervised learning techniques to avoid the mesh construction (mesh-free methods)[43,
44]. Regarding pneumatic domain in particular, several attempts to use these techniques have
already been made so far: the first tire/pavement contact-stress model based on artificial NN in
[45] using a Neuro-Patch Model, tire modeling was investigated in [46] relying on a feedforward
back propagation algorithm and [47] proposed a Structure-Preserving NN to predict the stress
field within the tire. While providing promising results, none of these works attempt to compare
fairly the performances of several ML models with respect to a set of significant application-based
criteria and we propose to fill that gap. To our knowledge, this is the first ML-friendly benchmark
for pneumatic.

Benchmark for Learning to simulate physics. Learning to simulate benchmarks started to emerge
recently. The performance of a neural network architecture is studied extensively in [7] through
several simulators based on different physical domains. Unfortunately, no resulting benchmark
has been made available yet. It mainly relies on qualitative visual analysis, while more quantitative
metrics as well as physical law verification could help for better comparison, as formalized later
in this paper. The authors eventually claim that scalability to large systems remains currently an



issue, as well as the proper generalization in regions with high variability, highlighting the need
for further advances. A new benchmark is also proposed lately in [48] over four PDEs canonical
physical systems to drive forward the development of data-driven time integration solutions. Both
focus primarily on scientific needs, with limited evaluation criteria categories, as opposed to
industrial needs and applications.

Identified research question (RQ). In this paper, compared to above-mentioned related works,
we address the following research questions: 1) There has been ongoing ML research for physical
simulations for several years now. Are current evaluation setup comprehensive enough to actually
provide applicable models in industry? If not, what is missing? 2) Can we define an homoge-
neous evaluation framework, with generic and comprehensive categories of criteria, for different
industrial domains that could systematize the creation of such benchmarks and possibly drive
cross-domain advances? 3) How can we represent an exhaustive set of benchmark results in an
interpretable way?

We also set open research questions (ORQ) yet to be addressed that should be of interest for ML
research: 1) What kind of inductive biases could help enforce ood generalization and physical
consistency without sacrificing speed? 2) Is there a one-size-fits-all simulation model that per-
forms best for all applications in a given domain or should it be more tailored to achieve better
application-specific trade-off? 3) Could we foster the emergence of foundational models across
domains?

Regarding RQ1, Table 2 shows the heterogeneity and weaknesses of current evaluation setups.
Hence, a standardized and a comprehensive setup with meaningful categories and targets is
needed, driving research towards industrial impact.

4 Benchmark suite design

4.1 Comprehensive evaluation criteria for benchmarking industrial physical simulations

The first step towards LIPS benchmark is a design of generic and yet comprehensive categories of
evaluation criteria. It allows for a comparison within and across physical domains, while being
expressive enough to represent industrial needs and expectations. ML-related only metrics are not
sufficient in that regard. Thus, we introduce four categories of criteria of importance for industrial
applications and illustrate their applicability and utility on 2 use cases in section 5.

ML-related performance Among classical ML metrics, we focus on the trade-offs of typical model
accuracy metrics such as Mean Absolute Error (MAE) vs computation time (optimal ML inference
time without batch size consideration as opposed to application time later).

Industrial Readiness When deploying a model in real-world applications, it should consider
the real data availability and scale-up to large systems. We hence consider: 1) Scalability: the
computational complexity of a surrogate method should scale well with respect to the problem
size, e.g. number of nodes in power grid, mesh refinement level in pneumatic; 2) Application Time:
as we are looking for a model tailored to a specific application, we measure the computation time
when integrated in this application. To this end, we define a realistic application-dependent batch
size, which may affect the speed-up.

Application-based out-of-distribution (ood) Generalization For industrial physical simulation,
there is always some expectation to extrapolate over minimal variations of the problem geometry
depending on the application. We hence consider ood geometry evaluation such as unseen power
grid topology or unseen pneumatic mesh variations.

Physics compliance Physical laws compliance is decisive when simulation results are used to make
consistent real-world decisions. Depending on the expected level of criticality of the benchmark,
this criterion aims at determining the type and number of physical laws that should be satisfied.

4.2 Power grid application-oriented benchmarking task descriptions and datasets

From applications in Table 1, we define two application-oriented benchmarks. The Benchmark
datasets depart from the same published realistic production and consumption distributions
[49, 50], over two widely studied grids (IEEE 14 and IEEE 118 bus-systems) in the power system



literature [51]. However, each dataset has its own application-specific grid topologies (applied
using Grid20p [52] framework). The ground-truth for physical variables are further computed
using LightSim2Grid [18], a physical solver with industrial-like performance on the selected grids.

1. Benchmark 1 - Risk assessment through contingency screening. The problem is to anticipate
near real-time potential threats on the power grid and warn the operators accordingly [53]. It
simulates incidents (aka contingencies) involving various elements of the grid (such as the
disconnection of a line), one by one. For each contingency, a risk is identified when overloads
on lines are detected. On a real grid, this scenario means running hundred of thousands
of simulations, thereby, computation time is critical, especially since this risk assessment is
refreshed every few minutes. We consider large simulation batches and the main physical
variable is the line electric current a’, because an overload occurs when it exceeds the line
capacity.

Dataset specificity: It presents grid snapshots including all possible line disconnections (N-
1) for few different reference grid topologies. An ood topology test set containing N-2 line
disconnections (2 line disconnections combined) is also attached to test for such generalization.

2. Benchmark 2 - Remedial action search. We need to explore possible solutions (aka "remedial

actions") to identified risks for recommendation to the grid operator as in [54]. A solution
consists in a predefined topological change on the grid that alleviates the previous overflow
without generating any new problem. Those changes such as node splitting (see Figure 1) bring
more non-linearity than line disconnections in benchmarkl, making the distributions more
complex. We here target medium-sized batches. Additional physical variables are predicted:
active power flows p’ and voltages vy. A level of compliance with more related physical laws is
expected. This allows the operator to better assess the system state in a difficult situation with
some consistency.
Dataset specificity: It presents grid snapshots when applying a topological reconfiguration
(among a set of specified ones) on a single substation. It also considers some possible line
contingencies that could cause overloads. An ood topology test set containing combination of
2 topological unitary actions is also attached to test for such generalization.

For more details about the datasets (input and output variables and their dimensions) for both
industrial use cases, please refer to appendix C. Our "Datasheet for dataset" [55] in appendix A will
also provide additional information concerning creation and contents of these datasets. For the
power grid use case, we refer the readers to the Grid2op documentation [56]. A visual illustration
of the baseline architecture is also provided in appendix E2.

4.3 Pneumatic application-oriented benchmarking task descriptions and datasets

In this article, we focus on the tire mechanics concerning rigid surfaces. As shown in Table 1, we
define two application-oriented benchmarks addressed in the literature, for instance in [47] for
the rolling. To generate the datasets, we rely on the tire and experiment configurations described
in [57]. Both the reference physical solution and the physical criteria of interest are computed by
using the FE physical solver Getfem [24] and used as ground truth. Note that, the computation of
pure mechanical criteria is performed by the physical solver for convenience, as their calculation
rely on the underlying physical model at hand.

1. Benchmark 1 - Wheel sustaining. One of the basic function of a pneumatic tire is to support the
vehicle weight. When a normal load is applied to a tire, it deflects as the load increases. Then,
using the vertical load—deflection curves, we can estimate the so-called static vertical stiffness
of tires. Such a criteria is known to have significant impacts on riding comfort, steering stability,
and driving performance. Experimentally, this scenario implies running several simulations
where different loads are applied on the wheel (inputs) to observe the resulting displacement
of the structure (output). To be more specific, the physical variable we are interested in is the
displacement uq.

Dataset specificity: It presents displacement snapshots for different forces applied on the
tire. Each displacement field arise from the simulation of a different static problem on a fixed
axisymmetric mesh for the same physic.

2. Benchmark 2 - Design testing during a rolling cycle. We are also interested in assessing
the behavior of the tire under the action of displacement-enforced rolling. Rather than the
actual value of the evaluation criteria, we are interested about the relevancy of the design, i.e.



whether the values are within an acceptable range. Unlike the first scenario, this is a quasi-static
configuration. Instead of running static simulations, a single quasi-static problem is run for
several time instants within a time interval over rolling cycles. The physical variables we are
interested in are the displacement uq and the contact stress on the contact boundary A..
Dataset specificity: It presents displacement and contact stresses snapshots evaluated at
different instants during the rolling process. The idea is to train the model during [0, ;] and
then evaluate the model for ¢ > #1; as such, it is a pure out of distribution example. Unlike the
first case, it involves a single quasi-static problem on a fixed non-axisymmetric mesh with time
as input variable.

4.4 Configurable benchmark suite architecture & ressources

Herein, we propose a unified extensible platform consisting of three modules combining data
management, benchmark core and evaluation metrics. It allows the integration of all the previ-
ously mentioned benchmarks. The developed platform is flexible and allow to integrate more
benchmarks from other similar domains. Note that this is different but complementary to NVIDIA
Modulus framework [58]: one facilitates the design of PINNs models while ours focuses on bench-
mark design setup.
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Benchmark resources The benchmark
implementation and corresponding data
are provided in open-source via a github
1, alongside a starting kit aiming to facil-
itate the use of main functionalities. In
addition, we make LIPS available on Codabench [59] — an open, public platform that allows to
submit easily surrogate models, and to compare fairly submissions, under the same settings
and in a fully automated way. The participant will also able to monitor their progress through a
ranking table. We strongly encourage ML community working on physical problems to submit
and evaluate their methods on previously-mentioned applications through the proposed platform.
The public results could be highlighted and discussed at NeurIPS 2022.

Figure 2: Benchmarking framework

5 Experiments

This section presents the evaluation results of baseline methods for each scenario of both use
cases, alongside the experimental configurations used to obtain them.

5.1 Experimental setup

Regarding the stochastic nature of the optimisation methods based on gradient descent, 5 trials
with different seeds has been executed and the performances reported based on mean and
standard deviation of different runs. All the experiments in the following sections are performed
using a server equipped with AMD EPYC 7502P 32-Core Processor, NVIDIA RTX A6000 GPU and
128 GB of RAM. All computation time evaluation are run on the CPU with time measured per
simulation or prediction.

Ihttps://github. com/IRT-SystemX/LIPS
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Power grid - Our reference simulator LightSim2Grid has comparable speed to the proprietary RTE
solver Hades 2 on mentioned IEEE grid cases, and is faster than PandaPower [60]. It is faster than
the physical simulator used in SimBench, [29] by at least a factor 30 (see [18]) and also faster than
the one used in Power Grid Lib [30] by at least a factor 5 on the hardware setup described above.
Hence, the choice of this reference simulator makes our benchmark quite challenging. We have
looked at a first baseline with differently tuned reference simulator. We set the maximum solver
iteration to 1 to assess the maximum possible speed such solver can reach. Regardless of accuracy,
we never go beyond a factor 5 speed-up. Hence, as it is far from expected speed-up, it has not
been considered in further experimentation. But it definitely set a lower bound to outperform.
We have then considered three different baselines for evaluation: a physics based simplification
of power flow calculus which is DC approximation [61] and two augmented simulators which
are Fully Connected (FC) architecture and a state-of-the art LEAP net [39], where contrary to FC,
the topology intervenes in the latent space and demonstrate better combinatorial generalization
capabilities. Note that we have conducted automated grid search to find the best performing
network hyper-parameters for both architectures (see appendix E4). Through this benchmark
suite, we encourage the community to contribute and to suggest approaches aiming to improve
the performances of the existing baselines.

Pneumatic - Our reference simulator Getfem is used to generate data in both benchmarks. Simi-
larly to the Power grid case, we considered a simulation where only 1 nonlinear iteration is allowed
for the underlying Newton algorithm used within the simulator. Putting aside the resulting loss of
accuracy, the equivalent lower bound to outperform is close to 4.

We have considered two types of augmented simulators within the first benchmark: a FC ar-
chitecture and a Unet [62] architecture. For the latter, the numerical solution evaluated by the
physical solver on an unstructured mesh is projected on a 128 x 128 grid then, after the evaluation
by the augmented solver, it is projected back to the mesh. For the second benchmark, two FC
architecture are used: one to predict the displacement and one to predict the contact stress on the
contact boundary.

5.2 Benchmark results and experiments

Table 3 summarizes the benchmark results for both use cases and their specific applications. In
order to enhance the readability, we have made use of three qualitative levels from "not acceptable”
to "great", relying on application-relevant threshold values reported in appendix C (tables 3 and
6). The full quantitative table from which this table is derived is also provided in section G.1 of
appendix.

Power grid As it can be seen it this Table, the ML based models (FC and LeapNet) show better
accuracy for target variables than the baseline DC approximation. However, their performance on
out-of-distribution dataset is still challenging and not acceptable. While the LeapNet shows a little
better generalization performance, the accuracy is still above 6% error, on par with the reported
performance in [39]. Maybe surprisingly, quantitative ood results on the small grid (inner small
circles) are worse than the larger one. It can be explained by the fact that, in the smaller grids,
any change has overall impact on all lines, hence it is even more challenging. The only possible
physical law is also verified for this benchmark. Looking at a more complex benchmark 2, we can
observe that further variables should be predicted and other laws should also be verified. The
DC approximation respects most of the laws as it is based on physical solver, however it comes
with some costs from the accuracy point of view. One order of magnitude speed-up when using
ML models can be observed in comparison to a very optimized solver. Two order of magnitude
speed-up would be expected at least on even larger grids. We emphasize that such speed-up time
depends on the application context which needs to be considered. For more detailed comparison
concerning the physics-based criteria, the readers may refer to appendix G.2.

Pneumatic Likewise, regarding the pneumatic use case, it seems ML models perform relatively
well in the first benchmark using FC architecture for the prediction of the displacement field,
despite questionable results regarding the physics. The considered small dataset could also explain
not acceptable obtained results using UNet architecture. Further investigations are required to
assess its adaptability for this benchmark. For the second benchmark, despite the fact that it is
a pure out-of-distribution case, the ML model behaves surprisingly well: the prediction is quite



Table 3: Benchmark result table for the two use cases under 4 categories of evaluation criteria.
The performances are reported using three colors computed on the basis of two thresholds.

Colors and symbol meaning: @ Not acceptable O Acceptable @ Great © two problem
scales reported (in that case, speed-up for smaller scale is in parenthesis). The number of circles
corresponds to the number of variables or laws that are evaluated. For quantitative values from
which this table is derived, please refer to section G.1 of appendix and for a color blind version,
please refer to Table 11 of appendix.
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accurate for the contact stress. The choice of an adapted scaler is important and could also
influence the quality of displacement results. In all the investigated cases, the speed-up observed
is at least one order of magnitude for both benchmarks compared to the physical solver, which
was precisely our aim for the rolling case in the first place. However, given the accuracy for the
displacement field, it is far from satisfactory and only partially met with our requirements.

We have shown with two very distinct industrial and physical domains that we can systematize the
creation of comprehensive and yet homogeneous benchmarks for the use of physical simulation
in industry, hence answering our RQ2. Our result table displays also a lot of benchmark outcomes,
yet in a compact and readable way through the use of meaningful thresholds, colors and symbols:
this answers our RQ3 and is an original benchmark result representation in the ML community to
the best of our knowledge.

6 Conclusion and perspectives

This paper has investigated the definition and the implementation of a new benchmark suite,
called LIPS (Learning Industrial Physical Simulations). We have addressed simulation-based
industrial use-cases augmented with machine learning techniques. Two distinct industrial use
cases (with different physics) have been considered to illustrate the proposed framework, with
several application-oriented benchmarks. Experiments have shown several comparative studies
based on proposed categories of criteria. The obtained results have also clarified the remaining
challenges for existing state-of-the-art augmented simulators to emulate the behavior of a physical
simulator in an industrial context. Although, they are much faster for providing the appropriate
results, their interesting but yet insufficient out-of-generalization properties and vulnerability
vis-a-vis the physics compliance highlights the requirement for further improvements. This
benchmark opens the door for designing more robust and reliable augmented simulators that
will find better real-world applicability. Future works will focus on extending the suite to new
industrial use cases related to other physical domains (e.g. aeronautics, transport,...), which would
help to improve the generalization of LIPS.
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