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ABSTRACT

Balancing exploration and exploitation remains a central challenge in reinforcement
learning with verifiable rewards (RLVR) for large language models (LLMs). Cur-
rent RLVR methods often overemphasize exploitation, leading to entropy collapse,
reduced exploratory capacity, and ultimately limited performance gains. Although
techniques that add randomness increase policy stochasticity, they frequently fail
to escape dominant behavioral modes. The resulting sample-and-reward dynamics
amplify these modes, eroding exploration and leading to entropy collapse. We
introduce Exploration-Enhanced Policy Optimization (EEPO), a novel framework
that promotes exploration through two-stage rollouts with adaptive unlearning.
In the first stage, the model generates half of the trajectories; it then undergoes
a lightweight, temporary unlearning step to suppress these sampled responses,
forcing the second stage to explore different regions of the output space. This
sample-then-forget mechanism actively steers the policy away from dominant
modes and encourages mode-seeking exploration. Across five reasoning bench-
marks, EEPO consistently outperforms baselines, achieving average gains of 24.3%
on Qwen2.5-3B, 33.0% on Llama3.2-3B-Instruct, and 10.4% on Qwen3-8B-Base.

1 INTRODUCTION

The emergence of OpenAI’s o1 (OpenAI) and DeepSeek-R1 (DeepSeek-AI et al., 2025) marks
a significant advance in LLM reasoning capabilities, particularly for challenging tasks such as
mathematics (Cobbe et al., 2021; Hendrycks et al., 2021b) and programming (Chen et al., 2021;
Codeforces, 2025). A key driver of this progress is reinforcement learning with verifiable rewards
(RLVR). Despite its success, RLVR remains challenged by the classic exploration–exploitation
dilemma (Sutton & Barto, 2018). Specifically, policies tend to over-emphasize exploitation of high-
reward trajectories, leading to entropy collapse and reduced exploratory capacity (Yu et al., 2025; Cui
et al., 2025). This not only causes premature performance saturation but also prevents the discovery
of diverse reasoning strategies essential for robust generalization.

A growing body of work has attempted to mitigate this issue, but most approaches increase exploration
in an indiscriminate manner. Common strategies such as increasing the softmax temperature or adding
entropy regularization (Hou et al., 2025) operate by flattening the distribution indiscriminately. While
this raises stochasticity, it still fails to shift probability mass away from dominant trajectories, often
causing instability or degraded performance when applied strongly. More recent efforts take a closer
view at entropy collapse: DAPO (Yu et al., 2025) alleviates it by adjusting clipping ranges to give
low-probability actions more headroom, and (Cui et al., 2025) analyze how high-probability updates
drive entropy decay. Although these refinements provide meaningful gains, they largely remain
indiscriminate—boosting randomness rather than suppressing dominant behaviors—and thus struggle
to avoid premature convergence toward a narrow set of trajectories.

To address this gap, we propose Exploration-Enhanced Policy Optimization (EEPO), a new RLVR
framework that promotes exploration by equipping the rollout process with a sample-then-forget
mechanism. EEPO employs two-stage rollouts: the model first generates trajectories, then performs
a lightweight, temporary unlearning step that suppresses the modes just explored. This encourages
subsequent rollouts to deviate from dominant behaviors and uncover alternatives trajectories, ef-
fectively steering the policy toward other promising regions of the output space rather than getting
stuck in a single dominant mode. Notably, this mechanism is applied only during the rollout phase,
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leaving the main policy update unchanged. This decoupling allows the rollout model to broaden the
trajectory space without modifying the actor’s policy optimization, while the enriched trajectories, in
turn, provide better supervision for exploitation during policy learning.

Concretely, EEPO modifies the GRPO rollout by decomposing one-shot group sampling into three
steps. First, Stage 1 samples half of the trajectories; second, an unlearning operation is applied
to the rollout model to suppress the just-sampled modes; third, Stage 2 samples the remaining
half from the updated model. Sampling in Stages 1 and 2 mirrors GRPO; the key change is the
intervening unlearning step. For the exploration setting, we make three design choices: (1) to
impose stronger penalties on dominant regions, we replace the standard negative log-likelihood with
a complementary loss that penalizes high-probability tokens more than low-probability ones; (2)
to trigger intervention at the onset of mode collapse, we introduce an entropy-conditioned gating
mechanism that activates unlearning only when exploration deteriorates (i.e., low entropy); and (3) to
keep the intervention lightweight and temporary, we apply a single-step gradient update to the GRPO
rollout model—synchronized from the actor in each iteration and used solely for sampling—thereby
decoupling unlearning from policy optimization and confining its effect to the rollout phase.

To validate our approach, we evaluate EEPO on five challenging mathematical reasoning benchmarks
using three distinct LLMs. The benchmarks include Minerva Math (Lewkowycz et al., 2022),
OlympiadBench (He et al., 2024), and three competition-level datasets: AMC 2023, AIME 2024, and
AIME 2025. EEPO consistently outperforms the baselines, yielding average relative improvements
over GRPO of 24.3% on Qwen2.5-3B, 33.0% on Llama3.2-3B-Instruct, and 10.4% on Qwen3-8B-
Base. Furthermore, our analyses show that EEPO achieves superior performance through more
effective exploration while maintaining comparable training time to standard GRPO.

2 PRELIMINARIES

We begin by reviewing RLVR and its prevalent implementation, the GRPO algorithm, which has
been widely adopted for training large-scale reasoning models. We then analyze its limitations related
to insufficient exploration and revisit existing solutions attempted to mitigate this issues.

2.1 RL FOR TRAINING LARGE-SCALE REASONING MODELS

Reinforcement Learning with Verifiable Rewards (RLVR) . The success of RLVR relies on reliable
reward signals (DeepSeek-AI et al., 2025), typically provided by a rule-based reward model that
delivers precise feedback for tasks in mathematical, coding, and logical reasoning domains. Consider
a mathematical dataset D := {(q, a)}, where q denotes a question and a denotes its corresponding
ground-truth answer. The reward depends solely on the correctness of the final prediction â compared
to a, without enforcing constraints on the reasoning process:

r(â, a) = 1[â ≡ a]. (1)
The RLVR objective is often implemented using the large-scale policy optimization method GRPO
(DeepSeek-AI et al., 2025). Compared to proximal policy optimization (PPO; Schulman et al., 2017),
GRPO improves computational efficiency by eliminating the need for a separate value function.

Group Relative Policy Optimization (GRPO) . Given a question q and a set of responses, i.e.,
reasoning paths, O = {o1, o2, . . . , oG} sampled from the old policy model πold, GRPO directly
computes advantages to optimize the policy model π using the following objective:

JGRPO(θ) =
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
[
ri,t(θ)Âi, clip (ri,t(θ), 1− ϵ, 1 + ϵ) Âi

]
− βDKL[πθ ∥ πref]. (2)

Here, πref denotes a reference model used to constrain policy updates via a KL divergence penalty. The
score Âi represents the normalized advantage of response oi, computed as Âi =

ri−mean({r1,...,rG})
std({r1,...,rG}) ,

where {r1, . . . , rG} denotes the rewards corresponding to the sampled responses in the group O.

The importance weight ri,t(θ) denotes the probability ratio between current and old policies:

ri,t(θ) =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
(3)

This importance sampling ratio is crucial for obtaining unbiased gradient estimates when responses
are sampled from πold rather than the current policy πθ.
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Figure 2: Illustration of exploration challenges in GRPO. (a) Policy distribution showing imbalanced
modes with a dominant peak. (b) Self-reinforcement effect where the dominant mode becomes
increasingly concentrated through positive feedback. (c) Effect of adding randomness (e.g., entropy
regularization) which flattens the distribution but maintains the relative dominance of modes.

2.2 REVISITING THE INSUFFICIENT EXPLORATION PROBLEM

We examine the exploration problem through entropy metrics and performance changes on test and
OOD benchmarks to characterize the issue and its implications. Figure 1 presents our analysis of
GRPO’s behavior during training on the MATH dataset. We observe two interconnected phenomena:
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Figure 1: GRPO training dynamics:
rapid entropy collapse accompanies
rising Testset and decline on AMC23.

(1) Rapid entropy collapse: Despite incorporating substantial
entropy regularization (λ = 1× 10−3)1, the policy entropy
decreases precipitously within the first few training steps, in-
dicating rapid convergence to deterministic behaviors. This
collapse stems from GRPO’s inherently exploitative objec-
tive function (Equation 2), which prioritizes reward maxi-
mization over exploration.

(2) Deteriorating generalization: As entropy collapses, we
observe a divergent trend: while MATH test accuracy con-
tinues to improve, performance on OOD benchmarks such
as AMC 23 plateaus early. This suggests that reduced explo-
ration causes the model to overfit to the training distribution
rather than learn robust reasoning strategies that generalize.

To explain entropy collapse, we hypothesize that when en-
tropy begins to decline, the policy has developed partial but
uncertain knowledge about the problem. This manifests in
the response distribution of the policy as multiple modes—multiple plausible reasoning traces may
exist for a given question. Importantly, these modes are imbalanced: a dominant mode receives
disproportionately more probability mass than others, as illustrated in Figure 2(a). Once responses are
predominantly sampled from this dominant mode and receive positive feedback, the policy reinforces
it further, amplifying its probability while suppressing alternative responses. This self-reinforcing
dynamic creates a feedback loop that inhibits exploration and ultimately leads to entropy collapse,
as shown in Figure 2(b). This process is particularly problematic: once the policy finds a dominant
mode that is correct, it prevents the discovery of alternative, potentially superior reasoning strategies,
leading to local optima and overfitting to the training distribution. The theoretical analysis of the
intuition is provided in Appendix F.1, which shows that RL updates are intrinsically self-reinforcing /
mode-seeking.

Current approaches to enhance exploration primarily increase randomness in the policy optimization
or sampling process, such as strengthening entropy term or raising sampling temperature. These
methods essentially flatten the policy distribution to make it more uniform, as depicted in Figure 2(c).
However, they fail to fundamentally break the self-reinforcing loop: the dominant mode remains
most likely to be sampled even after flattening. This observation motivates our central question: How
can we enable the policy to explore plausible behaviors beyond the dominant mode?

3 METHOD

We present EEPO, a novel approach that enhances the exploration of GRPO through strategic
trajectory unlearning. We first provide an overview of our method, then detail its implementation.

1This value is significantly larger than the 1× 10−4 suggested by SimpleRL (Zeng et al., 2025).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Comparison of GRPO and EEPO rollout processes. GRPO samples all trajectories
simultaneously from a fixed rollout model, while EEPO introduces an unlearning step on the rollout
model between two sampling stages to promote exploration of diverse modes.

3.1 EXPLORATION-ENHANCED POLICY OPTIMIZATION

To address the self-reinforcing dynamics that lead to entropy collapse, we propose a framework that
promotes exploration by modifying the rollout process, as shown in Figure 3. The key idea is to
prevent the rollout model from repeatedly sampling from dominant modes by unlearning previously
sampled responses during rollout generation.

Figure 3 illustrates the key difference between GRPO and EEPO. In GRPO, the rollout model πrollout
(corresponding to πold in Equation 2) samples all responses O = {o1, o2, . . . , oG} simultaneously.
These responses are then used to compute rewards and advantages for policy optimization. While
EEPO introduces a sample-then-forget mechanism that modifies this process, instead of sampling all
G trajectories at once, it divides the rollout into two stages separated by an unlearning step:

• Stage 1 sampling: Sample G/2 trajectories {o1, o2, . . . , oG/2} from πrollout.

• Unlearning: Update πrollout to forget the sampled trajectories.

• Stage 2 sampling: Sample the remaining trajectories {oG/2+1, . . . , oG} from the updated model.

After collecting all G trajectories across both stages, we compute their rewards and apply the standard
GRPO objective (Equation 2) to update the policy model. Importantly, the denominator in Equation 3
uses the rollout model’s probabilities, ensuring unbiased gradient estimates. Following standard
GRPO practice, the rollout model is synchronized with the actor model at the beginning of each
iteration, so the unlearning effect is temporary and does not affect the policy model.

ol
d(o

x)

unlearn

sampling

(a) Stage 1

sampling

(b) Stage 2

Figure 4: Unlearning suppresses the dominant
mode and enables exploration of alternative
modes that would otherwise be hard to reach.

This approach decouples policy optimization
from exploration. While the policy model πθ fo-
cuses on reward maximization through standard
policy optimization, the rollout model actively
explores alternative trajectory spaces by suppress-
ing previously visited regions. As shown in Fig-
ure 4, the unlearning step explicitly encourages
Stage 2 to sample from previously underexplored
regions, effectively breaking the self-reinforcing
loop that causes entropy collapse.
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3.2 ADAPTIVE UNLEARNING FOR DOMINANT MODE SUPPRESSION

Our goal is to temporarily suppress dominant modes in πrollout when entropy begins to collapse, while
preserving non-dominant, informative modes. An effective unlearning mechanism for this setting
should: (a) activate at the onset of mode collapse, (b) penalize dominant regions more than others,
and (c) remain lightweight. We realize these desiderata with three simple designs.

Complementary Loss to Suppress Dominant Modes The unlearning strength should increase
with token probability: strong in dominant regions with high probability mass and weak elsewhere.
However, minimizing the standard negative log-likelihood (NLL) does not meet this requirement.

LNLL = − log πrollout(ok,t | q, ok,<t), (4)

since it penalizes low-probability predictions more than high-probability ones (where the loss ap-
proaches 0). We instead use a complementary loss that reverses this emphasis:

Lcomp = − log
(
1− πrollout(ok,t | q, ok,<t)

)
, (5)

which imposes stronger penalties on dominant (high-probability) tokens and weaker penalties on
small-probability modes.

To ensure numerical stability when πrollout(ok,t | q, ok,<t) → 1, we clip the probability before
applying the loss:

pclip = min(πrollout(ok,t | q, ok,<t), 1− ϵ) , (6)
where ϵ > 0 is a small constant that prevents 1− pclip from approaching zero. The stabilized loss is:

Lcomp = − log
(
1− pclip

)
. (7)

Entropy-Conditioned Activation We activate unlearning only when exploration deteriorates, as
indicated by low entropy; when entropy is high, no intervention is applied. We implement this via an
entropy-based indicator:

It = I
[
H(m)

t < α
]
, (8)

where α > 0 is a threshold and H(m)

t is the m-step moving average of the actor (or rollout) token
entropy at step t:

H(m)
t =

1

m

m−1∑
j=0

Ht−j . (9)

Here Ht denotes the token-level entropy at step t. A short horizon (e.g., m = 3) promptly detects
low-entropy phases. The indicator multiplicatively gates the complementary loss in Eq. 7, yielding
the entropy-conditioned loss:

Lunlearn = It ·
[
− log

(
1− pclip

)]
, (10)

Lightweight Unlearning via Single-Step Gradient Update we apply a single-step update to
optimize the unlearning objective and confine its effect to the rollout model within each iteration. Let
ok = (ok,1, . . . , ok,Tk

) denote the k-th trajectory in the stage-1 rollout set O1 = {o1, o2, . . . , oG/2}.
The entropy-conditioned unlearning loss over O1 is:

L(O1) =
1

|O1|
∑

ok∈O1

1

Tk

Tk∑
t=1

It
[
log

(
1− pclip(ok,t)

)]
. (11)

where pclip denotes the clipped probability and It is the entropy-based activation indicator. We then
perform a single gradient ascend step without momentum to unlearn these trajectories:

θ′ ← θ′ + η∇θ′L(θ′) , (12)

where θ′ parameterizes the rollout model, which is synchronized from the policy model (parameterized
by θ), θ′ ← θ, as in GRPO’s implementation (see Figure 3). Consequently, the unlearning effect is
temporary—confined to the rollout model within the current iteration, without accumulation—and
does not alter the policy parameters or optimization.

Algorithm 1 summarizes the EEPO procedure. It follows GRPO’s structure but incorporates adaptive
unlearning between the two rollout stages. After sampling the first G/2 trajectories (Stage 1), we
check if policy entropy falls below threshold α. If so, we perform a single gradient step to unlearn

5
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Algorithm 1: EEPO — Exploration-Enhanced Policy Optimization
Initialize: actor θ0; learning rates ηGRPO, η; group size G; iteration K; entropy threshold α
for k = 0 to K − 1 do

Sample q ∼ D; set θ′ ← θk // sample query and synchronize rollout from actor
Sample {oi}G/2

i=1 ∼ πθ′(· | q) // Stage 1: sample G/2 trajectories
ifH(m)

(πθ′) < α then // single-step adaptive unlearning
θ′ ← θ′ − η∇θ′Lunlearn({oi}G/2

i=1 )
end if
Sample {oi}Gi=G/2+1 ∼ πθ′(· | q) // Stage 2: sample remaining trajectories
Form O ← {oi}Gi=1 and compute advantages {A(o)}o∈O

θk+1 ← θk + ηGRPO∇θJGRPO(θ
k;O, r) // update actor with GRPO

end for

these trajectories using the complementary loss, temporarily modifying only the rollout model. We
then sample the remaining G/2 trajectories (Stage 2) from the potentially modified rollout model.
Finally, we update the policy with GRPO’s objective on all G trajectories. Note that in Eq. 3, the
denominator is computed using the rollout model πθ′ that generated each trajectory.

The theoretical analysis of EEPO’s effect is provided in Appendix F.2 and Appendix F.3. It shows
that complementary unlearning can be characterized as a mode-favoring mass transport process that
directly counteracts the self-reinforcement or mode-seeking effect of the RL update.

Appendix G presents the convergence analysis of EEPO’s policy update, demonstrating that EEPO
converges to a stationary point at a rate of O(1/

√
T ).

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. We train on the MATH dataset (Hendrycks et al., 2021a) using 8.5K hard problems
(difficulty levels 3-5) following SimpleRL (Zeng et al., 2025). We evaluate on five mathematical
reasoning benchmarks: Minerva Math (Lewkowycz et al., 2022), OlympiadBench (He et al., 2024),
AMC 2023, AIME 2024. For the stronger Qwen3-8B-Base, we additionally include AIME 2025.

Models. We experiment with four LLMs: Qwen2.5-3B (Yang et al., 2024), Llama-3.2-3B-Instruct
(Team, 2024), Qwen2.5-7B-Instruct (Yang et al., 2024) and Qwen3-14B-Base (Yang et al., 2025).

Training Details. We employ a binary reward (+1 for correct answer, 0 otherwise) without format
constraints. All models are trained using VERL (Sheng et al., 2024) with GRPO for 2 epochs, using
batch size 128, learning rate 5 × 10−7, and 8 rollouts per question. For EEPO, we set entropy
threshold α = 0.3 and unlearning rate η = 3× 10−3.

Further details of the experimental setup are provided in Appendix B. Experiments on Qwen3-14B-
Base are provided in Appendix C.

4.2 BASELINES

We compare EEPO against GRPO and several variants that are explicitly designed to enhance
exploration.

Base/Instruct Model. The base model, or its instruction-tuned variant without any additional
reasoning-specific training, serves as a performance lower bound.

GRPO. Standard GRPO applied to the base or instruction-tuned model using default training
settings.

Increased Entropy Regularization. This variant enhances exploration by increasing the entropy
weight in the training objective, encouraging the policy to generate more diverse outputs. It represents
a common approach where stronger entropy regularization is used to promote exploration.

6
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Method Minerva
Math

Olympiad
Bench AMC 23 AIME 24 Average

Qwen2.5-3B 11.8 7.9 20.0 0.0 9.9

GRPO 22.4 27.9 30.3 3.3 21.0
- Higher Temp. 25.0 25.2 32.5 3.3 21.5
- Increased Ent. 25.0 29.6 37.5 3.3 23.9
- Clip High. 22.1 26.1 40.0 3.3 22.9
- More rollouts. 21.7 26.8 37.5 6.7 23.2

DAPO 22.8 27.5 35.0 6.7 23.0

EEPO 23.5 29.3 45.0 6.7 26.1 (+24.3)

Table 1: Performance of EEPO compared to baseline methods on Qwen2.5-3B across four math
benchmarks. Baseline results report the best performance across different hyperparameter settings
(refer to Fig. 5). Average relative performance improvements (%) over GRPO are highlighted in blue.

Higher Sampling Temperature. This variant applies a higher sampling temperature during the
actor’s decoding process to promote exploration and reduce output determinism. Temperature-based
softmax exploration (also known as Boltzmann exploration) is a widely used method to implement
the ε-greedy algorithm in stochastic policies. As the temperature t→ 0, the policy becomes nearly
greedy; as t→∞, the action distribution approaches uniform, effectively increasing exploration.

Clip Higher. This variant incorporates the “clip higher” heuristic from DAPO, which encourages
the selection of rare or low-probability tokens during training. It is one of the most widely used
exploration-enhancing baselines in modern RLVR pipelines.

Increased Number of Rollouts. This baseline increases the number of rollouts per training step to
expand the trajectory space and encourage broader exploration. It is designed to evaluate whether
EEPO with 8 rollouts can match or outperform GRPO with a larger number of rollouts (default: 16).

4.3 EXPERIMENTAL RESULTS

Overall results across three LLMs. To validate the effectiveness of our method across differ-
ent models and scales, we compare EEPO with baselines on three model families—Qwen2.5-3B,
Llama3.2-3B-Instruct, and Qwen3-8B-Base. Tables 1–3 report the results. EEPO consistently out-
performs GRPO and all exploration-enhanced GRPO variants across models and scales. Relative to
standard GRPO, EEPO improves average accuracy by 24.3% on Qwen2.5-3B (21.0% → 26.1%),
33.0% on Llama3.2-3B-Instruct (17.6% → 23.4%), and 10.4% on Qwen3-8B-Base (34.7% → 38.3%).
This pattern indicates that EEPO’s sample-then-forget mechanism yields targeted exploration that
scales from 3B to 8B parameters and transfers across base and instruction-tuned policies, providing a
robust and model-agnostic improvement for mathematical reasoning under RLVR.

Method Minerva
Math

Olympiad
Bench AMC 23 AIME 24 Average

Llama3.2-3B-Instruct 14.3 12.1 20.0 10.0 14.1

GRPO 19.5 17.5 20.0 13.3 17.6
- Higher Temp. 20.6 19.1 22.5 10.0 18.1
- Increased Ent. 20.2 18.1 30.0 10.0 19.6
- Clip High. 19.1 17.3 25.0 16.7 19.5
- More rollouts. 19.1 17.2 22.5 16.7 18.9

DAPO 18.8 18.1 25.0 13.3 18.8

EEPO 20.6 18.1 35.0 20.0 23.4 (+33.0)

Table 2: Performance on Llama3.2-3B-Instruct.
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Comparison with baselines. We compare EEPO to four exploration strategies, each evaluated at its
best hyperparameter setting (Figure 5). Despite careful tuning, all baselines fail to match EEPO’s
performance. While these strategies can outperform GRPO, gains are modest and require brittle tuning.
Temperature-based exploration exhibits a clear exploration–exploitation trade-off: performance peaks
around 1.2 but degrades sharply at higher values (1.5). We also observe substantially longer training
time at the best temperatures (1.2) due to the much longer reasoning paths caused by inefficient
exploration (Figure 7). Clip-higher and entropy regularization likewise swing between under- and
over-exploration and lag behind EEPO across all models. Increasing the number of rollouts provides
benefits but plateaus quickly while computational cost also grows substantially (Figure 7). In contrast,
EEPO achieves larger gains by enabling targeted exploration within the rollout process.
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Figure 5: Impact of hyperparameter choices on baselines performance using Qwen2.5-3B. Each
subplot shows the average accuracy across four math benchmarks as a function of (a) temperature,
(b) entropy coefficient, (c) clip higher ratio, and (d) number of rollouts. The orange dashed line
represents the EEPO with fixed hyperparameters.

Generalization to benchmarks. To assess generalization, we evaluate EEPO against baselines on
five diverse math reasoning benchmarks, as shown in Tables 1–3. Our method achieves consistent
improvements over GRPO across all benchmarks. Performance continues to improve on harder and
distribution-shifted splits where baselines plateau. On a competition-level benchmark with Qwen2.5-
3B, EEPO reaches 45.0% compared to 30.3% for GRPO. These gains stem from EEPO’s sustained
exploration and superior entropy maintenance (Figures 6), which prevent the entropy collapse that
leads to overfitting on the training distribution and degraded generalization (Figure 1).

Method Minerva
Math

Olympiad
Bench AMC 23 AIME 24 AIME 25 Average

Qwen3-8B-Base 33.1 36.0 52.5 10 13.3 29.0

GRPO 41.2 45.5 50.0 20.0 16.6 34.7
- Higher Temp. 40.1 44.3 55.0 16.7 20.0 35.22
- Increased Ent. 40.4 42.8 60.0 16.7 20.0 35.9
- Clip High. 40.1 41.6 55.0 16.7 10.0 32.7
- More rollouts. 40.8 44.0 57.5 16.7 16.7 35.1

DAPO 40.1 43.1 62.5 13.3 16.7 35.1

EEPO 41.5 44.3 62.5 20.0 23.3 38.3 (+10.4)

Table 3: Performance on Qwen3-8B-Base.

5 ANALYSIS

Effectiveness of EEPO: Exploration Enhancement and Quality Preservation. To understand the
effectiveness of EEPO, we compare its training dynamics with GRPO, as shown in Figure 6.

The entropy dynamics in Figure 6(a) reveal how sample-then-forget changes exploration behavior.
While GRPO exhibits continuous entropy collapse indicating that responses samples increasingly
concentrate on high-probability modes, EEPO maintains consistently higher entropy throughout
training. Notably, EEPO’s Stage 2 achieves higher entropy than Stage 1, suggesting that temporary
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Figure 6: Training dynamics comparison between EEPO and GRPO. (a) Entropy evolution shows
EEPO maintains higher exploration ability throughout training, with Stage 2 exhibiting increased
entropy compared to Stage 1, demonstrating effective exploration enhancement. In contrast, GRPO
exhibits monotonic entropy decay. (b) Mean training rewards remain comparable between the two
methods, reflecting similar exploitation capability. (c) Response length distributions show similar
patterns, indicating preserved generation quality.

response suppression successfully forces the model to explore low-density regions that the original
actor rarely visits. This entropy gap demonstrates that our mechanism effectively prevents mode
collapse by strategically sampling from diverse regions of the probability distribution.

Despite this enhanced exploration, generation quality remains preserved. Figure 6(b-c) shows that
both mean rewards and response lengths of EEPO remain stable and comparable to GRPO. These
results validate our hypothesis: temporarily suppressing sampled responses can enhance exploration
by steering the actor away from high-probability regions toward other plausible alternatives, while
preserving the generation capabilities necessary for effective training.
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Figure 7: Training efficiency comparison on Qwen3-8B-Base. (a) Wall-clock training time for EEPO
and baseline methods. (b) Mean response length during training for each method. EEPO achieves the
fastest training time while maintaining stable response lengths.

Training Efficiency. We evaluate the computational efficiency of EEPO and baseline methods on
Qwen3-8B-Base using B200 GPUs. As shown in Figure 7(a), EEPO achieves comparable training
time to standard GRPO. This is primarily due to a slight reduction in the mean response length under
EEPO (Fig. 6c), which modestly lowers the cost of generating trajectories and offsets the additional
computation introduced by unlearning. Among baseline configurations, higher sampling temperatures
significantly slow training by approximately 30%, as these methods generate substantially longer
responses throughout training (Figure 7(b)). Additional rollouts incur the highest computational
cost due to increased trajectory sampling, while adjusting the clipping ratio has minimal impact on
efficiency. These results demonstrate that EEPO achieves superior performance through effective
exploration while preserving the training efficiency of the original GRPO algorithm.

Details of the hyperparameter analysis and ablation are provided in Appendix D.

6 RELATED WORK

Reinforcement learning with verifiable rewards. RLVR (Shao et al., 2024; DeepSeek-AI et al.,
2025; Team et al., 2025) has recently attracted growing interest for its ability to incentivize reasoning
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in LLMs using rule-based verifiable rewards. Notably, DeepSeek-R1 (DeepSeek-AI et al., 2025)
demonstrates that RLVR can elicit emergent reasoning behaviors through extended chain-of-thought
outputs, achieving strong performance on reasoning-intensive tasks. Despite these advances, RLVR
faces challenges in exploration, often leading to early convergence and performance plateaus.

Exploration in RL. Policy gradient methods rely on policy stochasticity for exploration, but
policies tend to rapidly collapse into deterministic behavior due to the exploitative nature of objectives.
Common remedies increase policy randomness through ϵ-greedy policies (Sutton & Barto, 2018),
temperature adjustment (Hou et al., 2025; Chen et al., 2025a), or entropy regularization (Hou et al.,
2025). Recent work shows exploration is driven by high-entropy tokens (Wang et al., 2025), while
Chen et al. (2025b) propose Pass@k rewards to encourage broader search. However, these methods
remain inefficient as they ignore the action space structure. We propose a strategic exploration strategy
that explicitly discourages revisiting previously sampled trajectories during rollout, encouraging
sequential exploration of different modes.

Machine Unlearning for LLMs Machine unlearning for LLMs studies removing the influence of
specific data (e.g., sensitive or copyrighted content) without retraining models from scratch (Liu et al.,
2024). Typical motivations include privacy compliance and mitigating bias or harmful behaviors.
Common approaches involve weight editing (Mitchell et al., 2022) or gradient-based optimization
(Jang et al., 2023) to forget targeted data, and inference-time strategies such as prompt manipulation.
However, prior work primarily focuses on knowledge erasure, whereas EEPO repurposes and tailors
unlearning for RL exploration: during rollout generation, we temporarily unlearn previously sampled
trajectories to prevent the rollout model from repeatedly sampling from dominant modes.

We provide an extended discussion of related work in Appendix A.

7 CONCLUSION

We introduced EEPO, an exploration-enhanced policy optimization framework that augments the
rollout process with a sample-then-forget mechanism. By temporarily suppressing recently sampled
trajectories during rollouts, EEPO encourages exploration of alternative modes in the output distribu-
tion that would otherwise remain underexplored. Our method transforms indiscriminate stochasticity
into strategic exploration, breaking the self-reinforcing loop that causes insufficient exploration
and entropy collapse. Extensive experiments across three models and five mathematical reasoning
benchmarks demonstrate that EEPO consistently outperforms existing methods while maintaining
comparable training efficiency. These results establish EEPO as a practical and effective approach for
addressing the exploration-exploitation trade-off in RLVR.

ETHICS STATEMENT

All authors have read and adhered to the ICLR Code of Ethics. Our study relies solely on publicly
available datasets and models, as detailed in Appendix B. No private or personally identifiable
information was used. The work aims to advance the scientific understanding of PO methods while
upholding principles of transparency, fairness, and responsible research.

REPRODUCIBILITY STATEMENT

The codebase will be made publicly available upon acceptance. All base models and PO benchmarks
used in this work are publicly accessible. All experiments were conducted using NVIDIA A100
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A RELATED WORK

Reinforcement learning with verifiable rewards. Reinforcement learning has shown considerable
promise in improving the capabilities of language models, particularly through reinforcement learning
from human feedback (RLHF) (Ouyang et al., 2022; Bai et al., 2022; Rafailov et al., 2023), which
aligns model outputs with human preferences. Building on this foundation, reinforcement learning
with verifiable rewards (RLVR) (Shao et al., 2024; DeepSeek-AI et al., 2025; Team et al., 2025)
has recently attracted growing interest for its ability to incentivize reasoning in LLMs using rule-
based, automatically verifiable reward signals. Notably, DeepSeek-R1 (DeepSeek-AI et al., 2025)
demonstrates that RLVR can elicit emergent reasoning behaviors (Gandhi et al., 2025) such as
summarization, backward reasoning, verification, and self-reflection, often manifested through
long chain-of-thought (CoT) outputs. This leads to strong performance across a wide range of
reasoning-intensive tasks, such as mathematics, programming, and other problem-solving domains.
The SimpleRL framework further explores how extended reasoning chains emerge under various RL
training regimes. Despite these advances, RLVR still faces notable challenges in performance and
stability. For example, limited exploration capabilities often lead to early convergence, resulting in
performance plateaus that hinder further progress.

Exploration in RL. Policy gradient methods typically rely on randomization in the policy to
encourage exploration, based on the intuition that a stochastic policy enables the agent to visit a
diverse set of actions and states. However, the inherent stochasticity of the policy is insufficient,
as policies tend to rapidly collapse into deterministic behavior—commonly referred to as ”entropy
collapse”—due to the exploitative nature of the objective function. To mitigate this issue, common
remedies increase policy randomness by using an ϵ-greedy policy (Sutton & Barto, 2018), adjusting
the softmax temperature (Hou et al., 2025; Chen et al., 2025a), or incorporating an entropy term
into the objective to promote uncertainty (Hou et al., 2025). Wang et al. (2025) further show that
exploration is disproportionately driven by a minority of high-entropy tokens. In parallel, Chen et al.
(2025b) propose to replace the standard Pass@1 reward with Pass@k, thereby relaxing correctness
constraints and encouraging the policy to maintain broader search behavior. Although these methods
have shown utility, they remain inefficient as they fail to consider the structure of the action space. In
contrast, we propose a strategic exploration strategy that explicitly discourages revisiting previously
sampled trajectories by reducing their likelihood during the rollout process. This encourages the agent
to sequentially explore different modes of the action distribution at a given state, thereby visiting a
more diverse set of actions. Importantly, these methods are orthogonal to ours and can be combined
with our approach to further enhance exploration in RLVR.

Machine Unlearning for LLMs Machine unlearning for LLMs studies how to remove the influence
of specific data (e.g., sensitive or copyrighted content) without retraining models from scratch
(Liu et al., 2024). Typical motivations include privacy compliance and mitigating bias or harmful
behaviors. Common approaches involve weight editing (Mitchell et al., 2022) or gradient-based
optimization (Jang et al., 2023) to forget targeted data, as well as inference-time strategies such as
prompt manipulation. However, prior work primarily focuses on knowledge erasure, whereas EEPO
repurposes and refines unlearning for RL exploration: during rollout generation, we temporarily
unlearn previously sampled responses to prevent the rollout model from repeatedly sampling dominant
modes.

B DETAILED EXPERIMENTAL SETUP

Datasets. We use the MATH dataset (Hendrycks et al., 2021a) for RL training. Following the setup
of SimpleRL (Zeng et al., 2025), we train on the hard data, which contains 8.5K problems with
difficulty levels ranging from 3 to 5. For evaluation, we adopt five challenging mathematical reasoning
benchmarks: Minerva Math (Lewkowycz et al., 2022), OlympiadBench (He et al., 2024), and three
recent competition-level datasets—AMC 2023, AIME 2024, and AIME 2025. For smaller models
(Qwen2.5-3B and LLaMA-3.2-3B-Instruct), evaluation is conducted on the first four benchmarks.
For the stronger Qwen3-8B-Base model, we additionally include AIME 2025.

Models. To demonstrate the generality of our approach, we experiment with three LLMs from
different model families and scales.
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• Qwen2.5-3B (Yang et al., 2024): a base model from the Qwen2.5 series, with stronger pretraining
and support for long-context inputs.

• Llama-3.2-3B-Instruct (Team, 2024): an instruction-following model based on Meta’s Llama
architecture, included to evaluate cross-family generalization.

• Qwen3-8B-Base (Yang et al., 2025): a larger base model from the Qwen3 family, used to assess
performance at a larger scale.

Reward Function. We employ a binary reward based on answer correctness: +1 for a correct final
answer and 0 otherwise. We exclude format-based rewards, which can constrain exploration and
degrade performance (Zeng et al., 2025), particularly when training base models.

Implementation Details. All models are trained using the VERL framework (Sheng et al., 2024),
employing the GRPO algorithm. We use a batch size of 128, a mini-batch size of 64, a learning rate
of 5× 10−7, and 8 rollouts, training for 2 epochs. The KL loss and entropy loss coefficient are set to
1×10−4 and 1×10−5, respectively. The maximum response length varies by model: up to 4K tokens
for Qwen2.5-3B, and up to 6K tokens for both LLaMA-3.2-3B-Instruct and Qwen3-8B-Base. During
evaluation, we use greedy decoding to compute pass@1 accuracy. All experiments are conducted on
compute clusters equipped with NVIDIA A100 GPUs (80GB) and B200 GPUs.

C EXPERIMENTS ON LARGE-SCALE MODELS

To assess how EEPO scales with model size, we extend our experiments from 3B and 8B models to a
larger 14B model, Qwen3-14B-Base. The results are summarized in Table 4.

Table 4: Results on Qwen3-14B-Base across five reasoning benchmarks.

Method Benchmark Avg.
Minerva Math OlympiadBench AMC23 AIME24 AIME25

GRPO 36.8 48.6 67.5 23.3 26.7 40.6
EEPO 39.3 50.1 67.5 36.7 30.0 44.7

As shown in Table 4, EEPO continues to provide consistent improvements over GRPO on Qwen3-
14B-Base, particularly on the more challenging benchmarks (e.g., AIME24 and AIME25). This
suggests that EEPO scales well with model size and remains effective in the 3B–14B range.

D ABLATION ON HYPERPARAMETERS

We study the effect of two key hyperparameters in EEPO: (i) the entropy threshold α that controls
when unlearning is activated, and (ii) the unlearning learning rate η that controls the step size.

D.1 ENTROPY THRESHOLD α

The entropy threshold α determines when the policy entropy is sufficiently low that additional
exploration should be encouraged. In practice, we select α by inspecting the training curves (cf.
Fig. 2), where we observe that (1) the generalization performance begins to degrade when the entropy
enters roughly the [0.2, 0.4] range, with a tipping point around 0.3, and (2) before this range, entropy
decays rapidly, whereas afterward the decay becomes much flatter, indicating that the policy has
already become highly concentrated.

To quantify the effect of this choice, we conduct an ablation over α ∈ {0.0, 0.1, 0.2, 0.3, 0.4}, where
α = 0.0 corresponds to GRPO (no intervention). As shown in Table 5, EEPO consistently improves
over GRPO across a reasonably wide range of α, with the best performance achieved at α = 0.3.
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Table 5: Ablation on the entropy threshold α.

α 0.0 0.1 0.2 0.3 0.4
Avg. acc. 21.0 25.2 24.8 26.1 25.4

D.2 UNLEARNING LEARNING RATE η

The unlearning learning rate η controls the step size of the complementary unlearning update. In
practice, we choose η to be as large as possible while keeping the unlearning process stable.

We perform an ablation over η ∈ {0, 1× 10−4, 1× 10−3, 3× 10−3, 1× 10−2}, where η = 0 reduces
to GRPO (no unlearning). The results are summarized in Table 6. Performance improves steadily as
η increases up to 3× 10−3, while an overly large rate (10−2) makes the unlearning step unstable and
degrades performance, which is consistent with intuition.

Table 6: Ablation on the unlearning learning rate η.

η 0 1e−4 1e−3 3e−3 1e−2
Avg. acc. 21.0 23.3 24.4 26.1 22.5

E ADDITIONAL COMPARISON WITH GRPO VARIANTS

To make the gain of EEPO more directly and comparable, we also provide the following fair
comparisons, where EEPO is s implemented on GRPO and its variants.

Method Avg. acc.

GRPO 21.0
EEPO 26.1

GRPO + Increased Entropy 23.9
EEPO + Increased Entropy 27.9

GRPO + Clip High 22.9
EEPO + Clip High 26.6

Table 7: Average accuracy of GRPO variants and their EEPO-enhanced counterparts. EEPO provides
gains of 3.7–5.1 absolute accuracy points over already strong exploration-enhanced baselines.

Table 7 reports the average accuracy of GRPO and its variants, together with their EEPO-enhanced
counterparts. EEPO consistently yields an absolute improvement of about 3.7–5.1 points over the
corresponding exploration-enhanced GRPO methods.

F SELF-REINFORCEMENT EFFECT AND HOW EEPO COUNTERS IT

We provide a theoretical analysis to support the intuitions in Figure 2 and the design of EEPO.

We work in a standard neural network setting with a feature extractor ϕ : Q → Rd×1 and a linear
softmax head parameterized by W ∈ Rd×V . For a given query q, the logits and probabilities are

zt = (W t)⊤ϕ(q), pt = Softmax(zt), (13)

where V is the number of candidates (e.g., different reasoning modes) and pti denotes the probability
of candidate i at step t.
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F.1 SELF-REINFORCEMENT OF RL UPDATES

We consider an RL objective where r ∈ {0, 1}V is a reward vector with ri = 1 for positive candidates
and ri = 0 otherwise. For this fixed q, the expected reward is

J(wt) ≜
V∑
i=1

ri p
t
i. (14)

We optimize J by gradient ascent on the model parameters. Assuming the feature extractor ϕ(q) is
fixed, it suffices to analyze the dynamics of the logits zt. Using the Softmax Jacobian ∂pi

∂zk
= pi(I[i =

k]− pk), we obtain

∂J

∂zk
=

V∑
i=1

ri
∂pi
∂zk

=

V∑
i=1

ri pi(I[i = k]− pk) = pk

(
rk −

V∑
i=1

ripi

)
. (15)

Denote the average reward (i.e., the total probability mass on positive candidates) as

r̄t ≜
V∑
i=1

rip
t
i. (16)

Then Eq. 15 becomes
∂J

∂zk
= ptk(rk − r̄t). (17)

A gradient-ascent step with learning rate η > 0 and fixed ϕ(q) corresponds to

zt+1 = zt + η∥ϕ(q)∥22∇zJ = zt + η′ gt, (18)
where η′ = η∥ϕ(q)∥22 and gtk = ∂J/∂zk. In coordinates,

zt+1
k =

{
ztk + η′ptk(1− r̄t), if rk = 1,

ztk − η′ptkr̄
t, if rk = 0.

(19)

Thus all positive candidates (rk = 1) receive a positive logit update proportional to ptk, and all
negatives (rk = 0) receive a negative update. Below we focus on relative changes among positive
candidates, since the decay of negative candidates is straightforward.

Let P = {i : ri = 1} denote the set of positive candidates. We have the following lemma.
Lemma 1 (Self-reinforcing RL updates). Consider two positive candidates (modes) i, j ∈ P with
probabilities pti and ptj at step t. Let pt+1 be obtained by applying Eq. 19 and then re-normalizing
with Softmax. Then

pt+1
i

pt+1
j

= exp
(
η′(1− r̄t)(pti − ptj)

) pti
ptj

. (20)

In particular, if pti > ptj and r̄t < 1, then

pt+1
i

pt+1
j

>
pti
ptj

, (21)

i.e., the more probable positive candidate i becomes strictly more dominant relative to j after one
gradient-ascent step.

Proof. For i, j ∈ P , we have from Eq. 19 that
zt+1
i = zti + η′pti(1− r̄t), zt+1

j = ztj + η′ptj(1− r̄t). (22)
Hence the logit difference evolves as

zt+1
i − zt+1

j = (zti − ztj) + η′(1− r̄t)(pti − ptj). (23)

Using pk = ezk/
∑

u e
zu , we obtain

pt+1
i

pt+1
j

= exp
(
zt+1
i −zt+1

j

)
= exp

(
η′(1−r̄t)(pti−ptj)

)
exp
(
zti−ztj

)
= exp

(
η′(1−r̄t)(pti−ptj)

) pti
ptj

.

(24)
If pti > ptj and r̄t < 1, then the exponent is strictly positive, so the ratio increases.
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Interpretation. Lemma 1 formalizes the “rich get richer” behavior among positive candidates: the
larger pti is, the stronger the multiplicative factor in Eq. 20. Thus any small imbalance between correct
candidates is amplified: the dominant positive candidate i⋆ = argmaxi∈P pti acquires a positive drift
in its log-odds against every other positive candidate, leading to the self-reinforcing, mode-seeking
dynamics illustrated in Fig. 2(a–b).

F.2 UNLEARNING AS AN ANTI-SELF-REINFORCEMENT OPERATION

We now analyze the unlearning step in EEPO. In our implementation this step is instantiated via
a simple complementary loss, which we show induces an opposite, anti-self-reinforcing effect: it
explicitly suppresses the sampled candidate and shifts probability mass toward alternative candidates.

For a given index y, consider the complementary loss

Lcomp(p
t, y) = − log

(
1− pty

)
, (25)

which heavily penalizes large pty . Using the chain rule and Softmax derivatives, we obtain

∂Lcomp

∂zk
=

∂Lcomp

∂py

∂py
∂zk

=
1

1− pty
pty(I[k = y]− ptk), (26)

so

∂Lcomp

∂zk
=


pty, if k = y,

−
ptyp

t
k

1− pty
, if k ̸= y.

(27)

A gradient-descent step on Lcomp with learning rate η > 0 and fixed ϕ(q) leads to

zt+1 = zt − η∥ϕ(q)∥22∇zLcomp = zt − η′ ht, (28)

where η′ = η∥ϕ(q)∥22 and ht
k = ∂Lcomp/∂zk. In coordinates,

zt+1
k =


ztk − η′pty, if k = y,

ztk + η′
ptyp

t
k

1− pty
, if k ̸= y.

(29)

Thus the complementary loss decreases the logit of the selected candidate y and increases all other
logits.
Lemma 2 (Global anti-self-reinforcement). Let pt+1 be obtained by applying Eq. 29 and re-
normalizing with Softmax. Then:

(i) pt+1
y < pty;

(ii) for any k ̸= y, we have
pt+1
k

pt+1
y

>
ptk
pty

. (30)

Proof. Let N t = ez
t
y and At =

∑
j ̸=y e

zt
j , so pty = N t/(At +N t). From Eq. 29,

N t+1 = ez
t+1
y = ez

t
y−η′pt

y = N te−η′pt
y < N t, (31)

and

At+1 =
∑
j ̸=y

ez
t+1
j =

∑
j ̸=y

e
zt
j+η′ ptyptj

1−pty >
∑
j ̸=y

ez
t
j = At. (32)

Since py = N/(A+N) is increasing in N and decreasing in A, we obtain pt+1
y < pty , proving (i).

For (ii), for any k ̸= y,

zt+1
k − zt+1

y = (ztk − zty) + η′
( ptyp

t
k

1− pty
+ pty

)
, (33)
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where the increment is strictly positive since pty > 0 and ptk ≥ 0. Thus

pt+1
k

pt+1
y

= exp
(
zt+1
k − zt+1

y

)
= exp

(
η′
( ptyp

t
k

1− pty
+ pty

))
exp
(
ztk − zty

)
>

ptk
pty

. (34)

That is, one unlearning step always decreases the probability of the sampled mode y and strictly
increases the ratio pk/py for every alternative k.
Lemma 3 (Local anti-self-reinforcement). Consider two candidates i and j with probabilities pti and
ptj at step t, and suppose pti > ptj . Apply one gradient-descent step on the sum of complementary
losses Lcomp(p

t, i)+Lcomp(p
t, j) with update rule 29, and let pt+1 denote the resulting distribution

after re-normalizing with Softmax. Then

pt+1
i

pt+1
j

<
pti
ptj

, (35)

i.e., when both i and j are unlearned once with the complementary loss and i is initially more
probable than j, the probability ratio of i relative to j strictly decreases after one unlearning step.

Proof. Because Softmax preserves log-ratios, pi

pj
= exp(zi− zj) holds at every step. Thus it suffices

to study the change of the logit difference ∆(zi − zj).

Using Eq. 29, the contribution of unlearning y = i is

∆z
(i)
i = −η′pti, ∆z

(i)
j = η′

ptip
t
j

1− pti
, (36)

and the contribution of unlearning y = j is

∆z
(j)
i = η′

ptjp
t
i

1− ptj
, ∆z

(j)
j = −η′ptj . (37)

Summing the two effects, the total logit updates are

∆zi = −η′pti + η′
ptjp

t
i

1− ptj
, (38)

∆zj = η′
ptip

t
j

1− pti
− η′ptj , (39)

so the change in the logit difference is

∆(zi − zj) = ∆zi −∆zj = η′
(
−pti + ptj +

ptip
t
j

1− ptj
−

ptip
t
j

1− pti

)
. (40)

A direct algebraic simplification yields

∆(zi − zj) = − η′
(pti − ptj)

(
2ptip

t
j − pti − ptj + 1

)
(1− pti)(1− ptj)

. (41)

For probabilities pti, p
t
j ∈ (0, 1), the denominator (1 − pti)(1 − ptj) is positive, and the factor

2ptip
t
j−pti−ptj +1 = (1−pti)(1−ptj)+ptip

t
j is also strictly positive. If pti > ptj , then (pti−ptj) > 0,

so the overall expression is strictly negative:

∆(zi − zj) < 0. (42)

Therefore
pt+1
i

pt+1
j

= exp
(
zt+1
i − zt+1

j

)
= exp

(
∆(zi − zj)

) pti
ptj

<
pti
ptj

, (43)

which proves the claim.
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Interpretation. Lemmas 2 and 3 show that complementary unlearning acts as a negative feedback
on the sampled modes: each time a mode is sampled and unlearned, its probability is pushed down,
and its advantage over other modes is reduced. This is exactly the opposite of the rich-get-richer
effect in Lemma 1, and already suggests an anti-collapse behavior.

F.3 WHERE DOES THE UNLEARNED PROBABILITY MASS GO?

Lemmas 2 and 3 show that complementary unlearning decreases the probability of the selected mode
y and increases the log-odds of every other mode relative to y. However, they do not yet specify
where the probability mass removed from y goes. In particular, we would like to understand whether
this mass is redistributed preferentially toward already plausible modes or spread uniformly across
the tail.

To answer this question, we analyze the gradient flow induced by the complementary loss. We
again fix a query q and suppress its dependence in the notation. Let p(τ) denote the time-dependent
distribution over candidates and z(τ) the corresponding logits. We consider the continuous-time limit
of a gradient-descent dynamics on Lcomp(p(τ), y):

dzk
dτ

= −
∂Lcomp

∂zk
, p(τ) = Softmax(z(τ)). (44)

Using Eq. equation 27, and absorbing the positive factor ∥ϕ(q)∥22 into the time scaling τ , we obtain
the logit flow for a fixed index y:

dzk
dτ

=


− py, k = y,
pypk
1− py

, k ̸= y,
(45)

where pk = pk(τ) and py = py(τ).

Since p = Softmax(z), differentiating pk = exp(zk)/
∑

u exp(zu) yields the standard relation

dpk
dτ

= pk

(dzk
dτ
−
∑
u

pu
dzu
dτ

)
. (46)

Let S1 ≜
∑

u̸=y pu = 1− py and S2 ≜
∑

u̸=y p
2
u. Using Eq. equation 45, we compute∑

u

pu
dzu
dτ

= py
dzy
dτ

+
∑
u̸=y

pu
dzu
dτ

= py(−py) +
∑
u̸=y

pu
pypu
1− py

= −p2y +
py
S1

S2. (47)

Exact probability flow. Substituting Eq. equation 45 and Eq. equation 47 into Eq. equation 46
gives closed-form expressions for the probability dynamics.

For the selected mode y,

dpy
dτ

= py

(
−py −

[
−p2y +

py
S1

S2

])
= − p2y

(
1− py +

S2

S1

)
< 0, (48)

so the probability of y always decreases, as expected.

For any k ̸= y, we obtain

dpk
dτ

= pk

( pypk
1− py

−
[
−p2y +

py
S1

S2

])
= pkpy

( pk
1− py

+ py −
S2

S1

)
. (49)
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It is convenient to introduce the fractional growth rate

γk ≜
1

pk

dpk
dτ

, k ̸= y. (50)

From Eq. equation 49 we have

γk = py

( pk
1− py

+ py −
S2

S1

)
. (51)

Lemma 4 (Mass prefers higher-probability modes). Fix y and consider the gradient flow equation 45–
equation 46. For any two distinct candidates i, j ̸= y, their fractional growth rates satisfy

γi − γj =
py

1− py
(pi − pj). (52)

In particular, if pi > pj , then γi > γj .

Proof. Recall that for k ̸= y we defined the fractional growth rate

γk =
1

pk

dpk
dτ

= py

( pk
1− py

+ py −
S2

S1

)
, (53)

where S1 =
∑

u̸=y pu = 1− py and S2 =
∑

u̸=y p
2
u. Taking the difference for any i, j ̸= y gives

γi − γj = py

( pi
1− py

+ py −
S2

S1

)
− py

( pj
1− py

+ py −
S2

S1

)
(54)

= py
pi − pj
1− py

. (55)

Since py > 0 and 1 − py > 0, the sign of γi − γj is the same as the sign of pi − pj , proving the
claim.

Lemma 4 shows that, among all non-selected modes k ̸= y, the unlearning flow systematically favors
those with larger current probability: probability mass removed from y is reallocated so that modes
with higher pk always have a higher instantaneous growth rate than those with lower pk. Thus the
unlearned mass is not spread uniformly across the tail, but preferentially flows into already promising
regions of the distribution.
Corollary 1 (The top alternative always gains probability). Let i⋆ ∈ argmaxk ̸=y pk be any most
probable candidate among the non-selected modes. Under the same gradient flow, we have

dpi⋆

dτ
> 0 whenever py > 0. (56)

Proof. For i⋆, Eq. equation 49 gives

dpi⋆

dτ
= pi⋆py

( pi⋆

1− py
+ py −

S2

S1

)
. (57)

Since pi⋆ is the largest element among {pk : k ̸= y}, we have

S2 =
∑
k ̸=y

p2k ≤ pi⋆
∑
k ̸=y

pk = pi⋆S1, (58)

so S2/S1 ≤ pi⋆ . Therefore

pi⋆

1− py
+ py −

S2

S1
≥ pi⋆

1− py
+ py − pi⋆ (59)

= py

( pi⋆

1− py
+ 1
)
> 0. (60)

Since pi⋆ > 0 and py > 0, the whole expression pi⋆py(·) is strictly positive, which implies
dpi⋆

dτ > 0.
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Interpretation. Corollary 1 guarantees that, whenever a mode y is unlearned, at least one alternative
mode—the most probable one among {k ̸= y}—must receive a net gain in probability. Combined
with Lemma 4, this shows that the probability mass removed from y is redistributed in a mode-favoring
way: higher-probability alternatives grow faster than lower-probability ones, so mass is preferentially
pushed toward already plausible modes rather than spread uniformly over low-probability regions.

Putting Lemma 1, Lemma 2, Lemma 4, and Corollary 1 together, we obtain a concrete picture
behind Fig. 2: standard RLVR updates are intrinsically self-reinforcing and mode-seeking, while
EEPO’s complementary unlearning step implements a mode-favoring mass transport that repeatedly
siphons probability mass out of the currently dominant sampled mode and reallocates it toward other
high-probability modes, especially the strongest alternative. This theoretical behavior matches the
empirical entropy and diversity trends observed in Fig. 4.

G CONVERGENCE OF EEPO’S POLICY UPDATE

EEPO modifies only the rollout generation process, while the policy πθ is always updated by an
importance-weighted GRPO objective that aggregates all collected trajectories. This can be regarded
as mixing on-policy and slightly off-policy samples and correcting the distribution mismatch with
importance sampling. Below we show that this policy update converges to a stationary point at the
usual O(1/

√
T ) rate, where T is the number of outer iterations.

Policy objective and update. Let

J(θ) ≜
1

n

n∑
i=1

Ji(θ) (61)

denote the GRPO-style objective over n trajectories, where each Ji encodes the clipped, normalized
advantage term for one question–trajectory pair (consistent with Eq. 2). For a trajectory τi we write
the corresponding policy-gradient term as

∇Ji(θ) =

Ti∑
t=1

∇θ log πθ(ai,t | si,t) Âi, (62)

where Âi is the normalized advantage attached to τi.

At outer iteration t = 0, 1, . . . , T − 1, EEPO collects a mini-batch Bt of trajectories using its two-
stage rollout procedure. Let π(t)

roll denote the rollout distribution that actually generates Bt. For each
τi ∈ Bt we define the trajectory-level importance weight

wi(θ
t) ≜

πθt(τi)

π
(t)
roll(τi)

. (63)

In implementation these weights are clipped to improve numerical stability; for clarity of exposition
we write wi(θ

t) for the (clipped) value used in the update.

The policy update in EEPO can then be written as

θt+1 = θt + ηt gt, gt ≜
1

|Bt|
∑
τi∈Bt

wi(θ
t)∇Ji(θt), (64)

where ηt > 0 is the learning rate at iteration t. When π
(t)
roll = πθt and wi ≡ 1, Eq. 64 reduces to

standard on-policy GRPO; EEPO corresponds to the case where π
(t)
roll is temporarily perturbed by the

unlearning step, and the weights wi compensate for this perturbation.

Convergence guarantee. We now state a non-convex convergence result for the update rule 64.
We adopt common assumptions from stochastic non-convex optimization: J is L-smooth (Lipschitz
continuous gradient), the per-sample gradients ∇Ji are uniformly bounded by a constant σ > 0, and
the (clipped) importance weights are uniformly bounded by a constant wmax > 0. Moreover, since
each τi ∈ Bt is drawn from the same rollout distribution π

(t)
roll that appears in the denominator of

wi, the importance-weighted mini-batch gradient gt is an unbiased estimator of ∇J(θt) in the ideal
(unclipped) case; clipping only changes the constants but not the rate.
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Theorem G.1 (Convergence of EEPO policy update). Assume that J is L-smooth, that ∥∇Ji(θ)∥ ≤ σ
for all i and θ, and that the importance weights used in Eq. 64 satisfy |wi(θ)| ≤ wmax for all i,θ.
Let {θt}Tt=0 be generated by Eq. 64 with step sizes ηt = η = c/

√
T , where

c =

√
2
(
J(θ⋆)− J(θ0)

)
Lw2

maxσ
2

, (65)

and θ⋆ is any maximizer of J . Then

min
0≤t≤T−1

E
[
∥∇J(θt)∥2

]
≤ wmax σ

√
2L
(
J(θ⋆)− J(θ0)

)
T

. (66)

In particular,

min
0≤t≤T−1

E
[
∥∇J(θt)∥2

]
= O

( 1√
T

)
, (67)

so the EEPO policy update converges to a stationary point of J at the standard non-convex rate.

Proof. By L-smoothness of J we have

J(θt+1) ≥ J(θt) +
〈
∇J(θt),θt+1 − θt

〉
− L

2

∥∥θt+1 − θt
∥∥2

= J(θt) + ηt
〈
∇J(θt), gt

〉
− Lη2t

2
∥gt∥2. (68)

Taking expectations over the mini-batch sampling at iteration t, we obtain

E
[
J(θt+1)

]
≥ E

[
J(θt)

]
+ ηt E

[
∥∇J(θt)∥2

]
− Lη2t

2
E
[
∥gt∥2

]
. (69)

By the boundedness assumptions on ∇Ji and wi,

∥gt∥ ≤
1

|Bt|
∑
τi∈Bt

|wi(θ
t)| ∥∇Ji(θt)∥ ≤ wmax σ, (70)

so E[∥gt∥2] ≤ w2
maxσ

2 and thus

E
[
∥∇J(θt)∥2

]
≤ E[J(θt+1)]− E[J(θt)]

ηt
+

Lηtw
2
maxσ

2

2
. (71)

Summing over t = 0, . . . , T − 1 and using ηt = η = c/
√
T , we obtain

1

T

T−1∑
t=0

E
[
∥∇J(θt)∥2

]
≤ J(θ⋆)− J(θ0)

Tη
+

Lηw2
maxσ

2

2

=
1√
T

(
J(θ⋆)− J(θ0)

c
+

Lcw2
maxσ

2

2

)
. (72)

Choosing c =
√
2(J(θ⋆)− J(θ0))/(Lw2

maxσ
2) minimizes the right-hand side and yields the

desired bound. Finally, mint xt ≤ 1
T

∑
t xt for any nonnegative sequence, which gives the stated

result.

Remark. This result depends only on the fact that EEPO’s two-stage rollouts are properly
reweighted by the corresponding importance ratios πθ(τ)/π

(t)
roll(τ). The unlearning step changes

the rollout distribution π
(t)
roll (and hence the distribution of trajectories), but it does not change the

form of the policy update in Eq. 64. Therefore, under the same mild assumptions as standard
importance-weighted policy gradient, EEPO achieves the usual O(1/

√
T ) convergence rate to a

stationary point; the sample-then-forget mechanism affects which trajectories are seen, but not the
optimization stability of the policy.
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H THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we used a large language model (LLM) solely for polishing the writing
style and improving the clarity of the manuscript. The LLM was not used for generating research
ideas, designing experiments, conducting analyses, or deriving results. All scientific contributions,
including the conceptualization, methodology, experiments, and conclusions, were developed entirely
by the authors.
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