

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EEPO: EXPLORATION-ENHANCED POLICY OPTIMIZATION VIA SAMPLE-THEN-FORGET

Anonymous authors

Paper under double-blind review

ABSTRACT

Balancing exploration and exploitation remains a central challenge in reinforcement learning with verifiable rewards (RLVR) for large language models (LLMs). Current RLVR methods often overemphasize exploitation, leading to entropy collapse, reduced exploratory capacity, and ultimately limited performance gains. Although techniques that add randomness increase policy stochasticity, they frequently fail to escape dominant behavioral modes. The resulting sample-and-reward dynamics amplify these modes, eroding exploration and leading to entropy collapse. We introduce *Exploration-Enhanced Policy Optimization* (EEPO), a novel framework that promotes exploration through two-stage rollouts with adaptive unlearning. In the first stage, the model generates half of the trajectories; it then undergoes a lightweight, temporary unlearning step to suppress these sampled responses, forcing the second stage to explore different regions of the output space. This *sample-then-forget* mechanism actively steers the policy away from dominant modes and encourages mode-seeking exploration. Across five reasoning benchmarks, EEPO consistently outperforms baselines, achieving average gains of 24.3% on Qwen2.5-3B, 33.0% on Llama3.2-3B-Instruct, and 10.4% on Qwen3-8B-Base.

1 INTRODUCTION

The emergence of OpenAI’s o1 (OpenAI) and DeepSeek-R1 (DeepSeek-AI et al., 2025) marks a significant advance in LLM reasoning capabilities, particularly for challenging tasks such as mathematics (Cobbe et al., 2021; Hendrycks et al., 2021b) and programming (Chen et al., 2021; Codeforces, 2025). A key driver of this progress is reinforcement learning with verifiable rewards (RLVR). Despite its success, RLVR remains challenged by the classic exploration–exploitation dilemma (Sutton & Barto, 2018). Specifically, policies tend to over-emphasize exploitation of high-reward trajectories, leading to entropy collapse and reduced exploratory capacity (Yu et al., 2025; Cui et al., 2025). This not only causes premature performance saturation but also prevents the discovery of diverse reasoning strategies essential for robust generalization.

A growing body of work has attempted to mitigate this issue, but most approaches increase exploration in an indiscriminate manner. Common strategies such as increasing the softmax temperature or adding entropy regularization (Hou et al., 2025) operate by flattening the distribution indiscriminately. While this raises stochasticity, it still fails to shift probability mass away from dominant trajectories, often causing instability or degraded performance when applied strongly. More recent efforts take a closer view at entropy collapse: DAPO (Yu et al., 2025) alleviates it by adjusting clipping ranges to give low-probability actions more headroom, and (Cui et al., 2025) analyze how high-probability updates drive entropy decay. Although these refinements provide meaningful gains, they largely remain indiscriminate—boosting randomness rather than suppressing dominant behaviors—and thus struggle to avoid premature convergence toward a narrow set of trajectories.

To address this gap, we propose Exploration-Enhanced Policy Optimization (EEPO), a new RLVR framework that promotes exploration by equipping the rollout process with a *sample-then-forget* mechanism. EEPO employs two-stage rollouts: the model first generates trajectories, then performs a lightweight, temporary unlearning step that suppresses the modes just explored. This encourages subsequent rollouts to deviate from dominant behaviors and uncover alternative trajectories, effectively steering the policy toward other promising regions of the output space rather than getting stuck in a single dominant mode. Notably, this mechanism is applied only during the rollout phase,

leaving the main policy update unchanged. This decoupling allows the rollout model to broaden the trajectory space without modifying the actor’s policy optimization, while the enriched trajectories, in turn, provide better supervision for exploitation during policy learning.

Concretely, EEPO modifies the GRPO rollout by decomposing one-shot group sampling into three steps. First, Stage 1 samples half of the trajectories; second, an unlearning operation is applied to the rollout model to suppress the just-sampled modes; third, Stage 2 samples the remaining half from the updated model. Sampling in Stages 1 and 2 mirrors GRPO; the key change is the intervening unlearning step. For the exploration setting, we make three design choices: (1) to impose stronger penalties on dominant regions, we replace the standard negative log-likelihood with a complementary loss that penalizes high-probability tokens more than low-probability ones; (2) to trigger intervention at the onset of mode collapse, we introduce an entropy-conditioned gating mechanism that activates unlearning only when exploration deteriorates (i.e., low entropy); and (3) to keep the intervention lightweight and temporary, we apply a single-step gradient update to the GRPO rollout model—synchronized from the actor in each iteration and used solely for sampling—thereby decoupling unlearning from policy optimization and confining its effect to the rollout phase.

To validate our approach, we evaluate EEPO on five challenging mathematical reasoning benchmarks using three distinct LLMs. The benchmarks include Minerva Math (Lewkowycz et al., 2022), OlympiadBench (He et al., 2024), and three competition-level datasets: AMC 2023, AIME 2024, and AIME 2025. EEPO consistently outperforms the baselines, yielding average relative improvements over GRPO of 24.3% on Qwen2.5-3B, 33.0% on Llama3.2-3B-Instruct, and 10.4% on Qwen3-8B-Base. Furthermore, our analyses show that EEPO achieves superior performance through more effective exploration while maintaining comparable training time to standard GRPO.

2 PRELIMINARIES

We begin by reviewing RLVR and its prevalent implementation, the GRPO algorithm, which has been widely adopted for training large-scale reasoning models. We then analyze its limitations related to insufficient exploration and revisit existing solutions attempted to mitigate this issues.

2.1 RL FOR TRAINING LARGE-SCALE REASONING MODELS

Reinforcement Learning with Verifiable Rewards (RLVR). The success of RLVR relies on reliable reward signals (DeepSeek-AI et al., 2025), typically provided by a rule-based reward model that delivers precise feedback for tasks in mathematical, coding, and logical reasoning domains. Consider a mathematical dataset $\mathcal{D} := \{(q, a)\}$, where q denotes a question and a denotes its corresponding ground-truth answer. The reward depends solely on the correctness of the final prediction \hat{a} compared to a , without enforcing constraints on the reasoning process:

$$r(\hat{a}, a) = \mathbb{1}[\hat{a} \equiv a]. \quad (1)$$

The RLVR objective is often implemented using the large-scale policy optimization method GRPO (DeepSeek-AI et al., 2025). Compared to proximal policy optimization (PPO; Schulman et al., 2017), GRPO improves computational efficiency by eliminating the need for a separate value function.

Group Relative Policy Optimization (GRPO). Given a question q and a set of responses, i.e., reasoning paths, $O = \{o_1, o_2, \dots, o_G\}$ sampled from the old policy model π_{old} , GRPO directly computes advantages to optimize the policy model π using the following objective:

$$\mathcal{J}_{\text{GRPO}}(\theta) = \frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \min \left[r_{i,t}(\theta) \hat{A}_i, \text{clip} (r_{i,t}(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_i \right] - \beta \mathbb{D}_{\text{KL}}[\pi_{\theta} \parallel \pi_{\text{ref}}]. \quad (2)$$

Here, π_{ref} denotes a reference model used to constrain policy updates via a KL divergence penalty. The score \hat{A}_i represents the normalized advantage of response o_i , computed as $\hat{A}_i = \frac{r_i - \text{mean}(\{r_1, \dots, r_G\})}{\text{std}(\{r_1, \dots, r_G\})}$, where $\{r_1, \dots, r_G\}$ denotes the rewards corresponding to the sampled responses in the group O .

The importance weight $r_{i,t}(\theta)$ denotes the probability ratio between current and old policies:

$$r_{i,t}(\theta) = \frac{\pi_{\theta}(o_{i,t} \mid q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i,<t})} \quad (3)$$

This importance sampling ratio is crucial for obtaining *unbiased* gradient estimates when responses are sampled from π_{old} rather than the current policy π_{θ} .

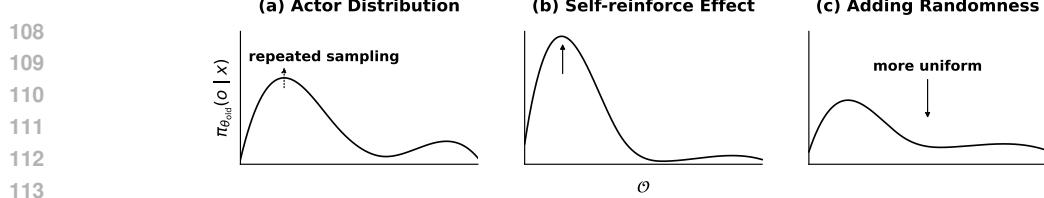


Figure 2: Illustration of exploration challenges in GRPO. (a) Policy distribution showing imbalanced modes with a dominant peak. (b) Self-reinforcement effect where the dominant mode becomes increasingly concentrated through positive feedback. (c) Effect of adding randomness (e.g., entropy regularization) which flattens the distribution but maintains the relative dominance of modes.

2.2 REVISITING THE INSUFFICIENT EXPLORATION PROBLEM

We examine the exploration problem through entropy metrics and performance changes on test and OOD benchmarks to characterize the issue and its implications. Figure 1 presents our analysis of GRPO’s behavior during training on the MATH dataset. We observe two interconnected phenomena:

(1) *Rapid entropy collapse*: Despite incorporating substantial entropy regularization ($\lambda = 1 \times 10^{-3}$)¹, the policy entropy decreases precipitously within the first few training steps, indicating rapid convergence to deterministic behaviors. This collapse stems from GRPO’s inherently exploitative objective function (Equation 2), which prioritizes reward maximization over exploration.

(2) *Deteriorating generalization*: As entropy collapses, we observe a divergent trend: while MATH test accuracy continues to improve, performance on OOD benchmarks such as AMC 23 plateaus early. This suggests that reduced exploration causes the model to overfit to the training distribution rather than learn robust reasoning strategies that generalize.

To explain entropy collapse, we hypothesize that when entropy begins to decline, the policy has developed partial but uncertain knowledge about the problem. This manifests in the response distribution of the policy as *multiple modes*—multiple plausible reasoning traces may exist for a given question. Importantly, these modes are *imbalanced*: a dominant mode receives disproportionately more probability mass than others, as illustrated in Figure 2(a). Once responses are predominantly sampled from this dominant mode and receive positive feedback, the policy reinforces it further, amplifying its probability while suppressing alternative responses. This *self-reinforcing dynamic* creates a feedback loop that inhibits exploration and ultimately leads to entropy collapse, as shown in Figure 2(b). This process is particularly problematic: once the policy finds a dominant mode that is correct, it prevents the discovery of alternative, potentially superior reasoning strategies, leading to local optima and overfitting to the training distribution. [The theoretical analysis of the intuition is provided in Appendix F.1, which shows that RL updates are intrinsically self-reinforcing / mode-seeking.](#)

Current approaches to enhance exploration primarily increase randomness in the policy optimization or sampling process, such as strengthening entropy term or raising sampling temperature. These methods essentially flatten the policy distribution to make it more uniform, as depicted in Figure 2(c). However, they fail to fundamentally break the self-reinforcing loop: the dominant mode remains most likely to be sampled even after flattening. This observation motivates our central question: *How can we enable the policy to explore plausible behaviors beyond the dominant mode?*

3 METHOD

We present EEPO, a novel approach that enhances the exploration of GRPO through strategic trajectory unlearning. We first provide an overview of our method, then detail its implementation.

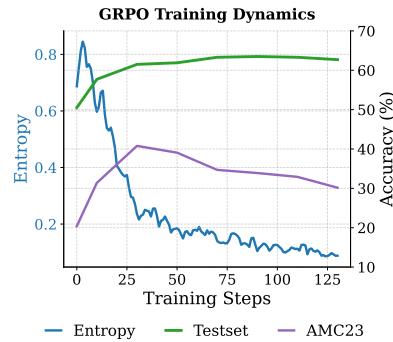


Figure 1: GRPO training dynamics: rapid entropy collapse accompanies rising Testset and decline on AMC23.

¹This value is significantly larger than the 1×10^{-4} suggested by SimpleRL (Zeng et al., 2025).

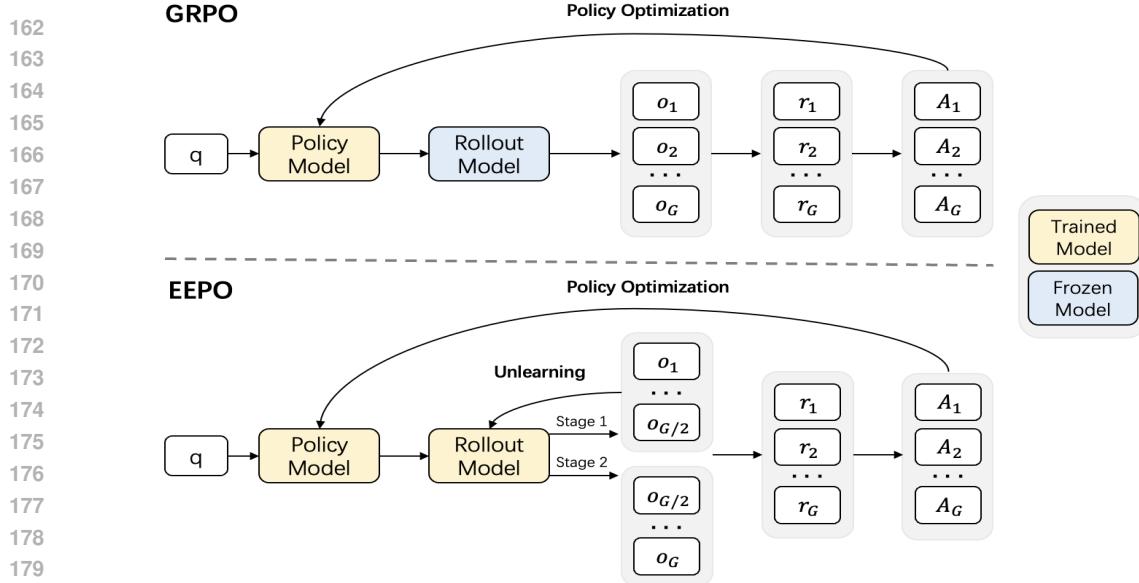


Figure 3: Comparison of GRPO and EEPO rollout processes. GRPO samples all trajectories simultaneously from a fixed rollout model, while EEPO introduces an unlearning step on the rollout model between two sampling stages to promote exploration of diverse modes.

3.1 EXPLORATION-ENHANCED POLICY OPTIMIZATION

To address the self-reinforcing dynamics that lead to entropy collapse, we propose a framework that promotes exploration by modifying the rollout process, as shown in Figure 3. The key idea is to prevent the rollout model from repeatedly sampling from dominant modes by *unlearning* previously sampled responses during rollout generation.

Figure 3 illustrates the key difference between GRPO and EEPO. In GRPO, the rollout model π_{rollout} (corresponding to π_{old} in Equation 2) samples all responses $O = \{o_1, o_2, \dots, o_G\}$ simultaneously. These responses are then used to compute rewards and advantages for policy optimization. While EEPO introduces a *sample-then-forget* mechanism that modifies this process, instead of sampling all G trajectories at once, it divides the rollout into two stages separated by an unlearning step:

- *Stage 1 sampling*: Sample $G/2$ trajectories $\{o_1, o_2, \dots, o_{G/2}\}$ from π_{rollout} .
- *Unlearning*: Update π_{rollout} to forget the sampled trajectories.
- *Stage 2 sampling*: Sample the remaining trajectories $\{o_{G/2+1}, \dots, o_G\}$ from the updated model.

After collecting all G trajectories across both stages, we compute their rewards and apply the standard GRPO objective (Equation 2) to update the policy model. Importantly, the denominator in Equation 3 uses the rollout model’s probabilities, ensuring unbiased gradient estimates. Following standard GRPO practice, the rollout model is synchronized with the actor model at the beginning of each iteration, so the unlearning effect is *temporary* and does not affect the policy model.

This approach *decouples* policy optimization from exploration. While the policy model π_θ focuses on reward maximization through standard policy optimization, the rollout model actively explores alternative trajectory spaces by suppressing previously visited regions. As shown in Figure 4, the unlearning step explicitly encourages Stage 2 to sample from previously underexplored regions, effectively breaking the self-reinforcing loop that causes entropy collapse.

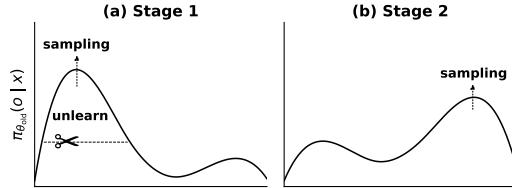


Figure 4: Unlearning suppresses the dominant mode and enables exploration of alternative modes that would otherwise be hard to reach.

216 3.2 ADAPTIVE UNLEARNING FOR DOMINANT MODE SUPPRESSION
217

218 Our goal is to temporarily suppress dominant modes in π_{rollout} when entropy begins to collapse, while
219 preserving non-dominant, informative modes. An effective unlearning mechanism for this setting
220 should: (a) activate at the onset of mode collapse, (b) penalize dominant regions more than others,
221 and (c) remain lightweight. We realize these desiderata with three simple designs.

222 **Complementary Loss to Suppress Dominant Modes** The unlearning strength should increase
223 with token probability: strong in dominant regions with high probability mass and weak elsewhere.
224 However, minimizing the standard *negative log-likelihood* (NLL) does not meet this requirement.
225

$$\mathcal{L}_{\text{NLL}} = -\log \pi_{\text{rollout}}(o_{k,t} | q, o_{k,<t}), \quad (4)$$

226 since it penalizes low-probability predictions more than high-probability ones (where the loss ap-
227 proaches 0). We instead use a complementary loss that reverses this emphasis:
228

$$\mathcal{L}_{\text{comp}} = -\log(1 - \pi_{\text{rollout}}(o_{k,t} | q, o_{k,<t})), \quad (5)$$

229 which imposes stronger penalties on dominant (high-probability) tokens and weaker penalties on
230 small-probability modes.
231

232 To ensure numerical stability when $\pi_{\text{rollout}}(o_{k,t} | q, o_{k,<t}) \rightarrow 1$, we clip the probability before
233 applying the loss:
234

$$p_{\text{clip}} = \min(\pi_{\text{rollout}}(o_{k,t} | q, o_{k,<t}), 1 - \epsilon), \quad (6)$$

235 where $\epsilon > 0$ is a small constant that prevents $1 - p_{\text{clip}}$ from approaching zero. The stabilized loss is:
236

$$\mathcal{L}_{\text{comp}} = -\log(1 - p_{\text{clip}}). \quad (7)$$

237 **Entropy-Conditioned Activation** We activate unlearning only when exploration deteriorates, as
238 indicated by low entropy; when entropy is high, no intervention is applied. We implement this via an
239 entropy-based indicator:
240

$$\mathbb{I}_t = \mathbb{I}\left[\bar{\mathcal{H}}_t^{(m)} < \alpha\right], \quad (8)$$

241 where $\alpha > 0$ is a threshold and $\bar{\mathcal{H}}_t^{(m)}$ is the m -step moving average of the actor (or rollout) token
242 entropy at step t :
243

$$\bar{\mathcal{H}}_t^{(m)} = \frac{1}{m} \sum_{j=0}^{m-1} \mathcal{H}_{t-j}. \quad (9)$$

244 Here \mathcal{H}_t denotes the token-level entropy at step t . A short horizon (e.g., $m = 3$) promptly detects
245 low-entropy phases. The indicator multiplicatively gates the complementary loss in Eq. 7, yielding
246 the entropy-conditioned loss:
247

$$\mathcal{L}_{\text{unlearn}} = \mathbb{I}_t \cdot \left[-\log(1 - p_{\text{clip}}) \right], \quad (10)$$

248 **Lightweight Unlearning via Single-Step Gradient Update** we apply a single-step update to
249 optimize the unlearning objective and confine its effect to the rollout model within each iteration. Let
250 $o_k = (o_{k,1}, \dots, o_{k,T_k})$ denote the k -th trajectory in the stage-1 rollout set $O_1 = \{o_1, o_2, \dots, o_{G/2}\}$.
251 The entropy-conditioned unlearning loss over O_1 is:
252

$$\mathcal{L}(O_1) = \frac{1}{|O_1|} \sum_{o_k \in O_1} \frac{1}{T_k} \sum_{t=1}^{T_k} \mathbb{I}_t \left[\log(1 - p_{\text{clip}}(o_{k,t})) \right]. \quad (11)$$

253 where p_{clip} denotes the clipped probability and \mathbb{I}_t is the entropy-based activation indicator. We then
254 perform a single gradient ascend step without momentum to unlearn these trajectories:
255

$$\theta' \leftarrow \theta' + \eta \nabla_{\theta'} \mathcal{L}(\theta'), \quad (12)$$

256 where θ' parameterizes the rollout model, which is synchronized from the policy model (parameterized
257 by θ), $\theta' \leftarrow \theta$, as in GRPO’s implementation (see Figure 3). Consequently, the unlearning effect is
258 temporary—confined to the rollout model within the current iteration, without accumulation—and
259 does not alter the policy parameters or optimization.

260 Algorithm 1 summarizes the EEPO procedure. It follows GRPO’s structure but incorporates adaptive
261 unlearning between the two rollout stages. After sampling the first $G/2$ trajectories (Stage 1), we
262 check if policy entropy falls below threshold α . If so, we perform a single gradient step to unlearn
263

270 **Algorithm 1: EEPO — Exploration-Enhanced Policy Optimization**
271 **Initialize:** actor θ^0 ; learning rates η_{GRPO} , η ; group size G ; iteration K ; entropy threshold α
272 **for** $k = 0$ to $K - 1$ **do**
273 Sample $q \sim \mathcal{D}$; set $\theta' \leftarrow \theta^k$ // sample query and synchronize rollout from actor
274 Sample $\{o_i\}_{i=1}^{G/2} \sim \pi_{\theta'}(\cdot | q)$ // Stage 1: sample $G/2$ trajectories
275 **if** $\bar{\mathcal{H}}^{(m)}(\pi_{\theta'}) < \alpha$ **then** // single-step adaptive unlearning
276 $\theta' \leftarrow \theta' - \eta \nabla_{\theta'} \mathcal{L}_{\text{unlearn}}(\{o_i\}_{i=1}^{G/2})$
277 **end if**
278 Sample $\{o_i\}_{i=G/2+1}^G \sim \pi_{\theta'}(\cdot | q)$ // Stage 2: sample remaining trajectories
279 Form $O \leftarrow \{o_i\}_{i=1}^G$ and compute advantages $\{A(o)\}_{o \in O}$
280 $\theta^{k+1} \leftarrow \theta^k + \eta_{\text{GRPO}} \nabla_{\theta} J_{\text{GRPO}}(\theta^k; O, r)$ // update actor with GRPO
281 **end for**
282

283
284 these trajectories using the complementary loss, temporarily modifying only the rollout model. We
285 then sample the remaining $G/2$ trajectories (Stage 2) from the potentially modified rollout model.
286 Finally, we update the policy with GRPO’s objective on all G trajectories. Note that in Eq. 3, the
287 denominator is computed using the rollout model $\pi_{\theta'}$ that generated each trajectory.

288
289 The theoretical analysis of EEPO’s effect is provided in Appendix F.2 and Appendix F.3. It shows
290 that complementary unlearning can be characterized as a *mode-favoring mass transport process* that
291 directly counteracts the self-reinforcement or mode-seeking effect of the RL update.

292 Appendix G presents the *convergence analysis* of EEPO’s policy update, demonstrating that EEPO
293 converges to a stationary point at a rate of $\mathcal{O}(1/\sqrt{T})$.

295 4 EXPERIMENT

297 4.1 EXPERIMENTAL SETUP

299 **Datasets.** We train on the MATH dataset (Hendrycks et al., 2021a) using 8.5K hard problems
300 (difficulty levels 3-5) following SimpleRL (Zeng et al., 2025). We evaluate on five mathematical
301 reasoning benchmarks: Minerva Math (Lewkowycz et al., 2022), OlympiadBench (He et al., 2024),
302 AMC 2023, AIME 2024. For the stronger Qwen3-8B-Base, we additionally include AIME 2025.

303 **Models.** We experiment with four LLMs: Qwen2.5-3B (Yang et al., 2024), Llama-3.2-3B-Instruct
304 (Team, 2024), Qwen2.5-7B-Instruct (Yang et al., 2024) and Qwen3-14B-Base (Yang et al., 2025).

306 **Training Details.** We employ a binary reward (+1 for correct answer, 0 otherwise) without format
307 constraints. All models are trained using VERL (Sheng et al., 2024) with GRPO for 2 epochs, using
308 batch size 128, learning rate 5×10^{-7} , and 8 rollouts per question. For EEPO, we set entropy
309 threshold $\alpha = 0.3$ and unlearning rate $\eta = 3 \times 10^{-3}$.

310 Further details of the experimental setup are provided in Appendix B. Experiments on Qwen3-14B-
311 Base are provided in Appendix C.

313 4.2 BASELINES

315 We compare EEPO against GRPO and several variants that are explicitly designed to enhance
316 exploration.

318 **Base/Instruct Model.** The base model, or its instruction-tuned variant without any additional
319 reasoning-specific training, serves as a performance lower bound.

320 **GRPO.** Standard GRPO applied to the base or instruction-tuned model using default training
321 settings.

322 **Increased Entropy Regularization.** This variant enhances exploration by increasing the entropy
323 weight in the training objective, encouraging the policy to generate more diverse outputs. It represents
 a common approach where stronger entropy regularization is used to promote exploration.

Method	Minerva Math	Olympiad Bench	AMC 23	AIME 24	Average
Qwen2.5-3B	11.8	7.9	20.0	0.0	9.9
GRPO	22.4	27.9	30.3	3.3	21.0
- Higher Temp.	25.0	25.2	32.5	3.3	21.5
- Increased Ent.	25.0	29.6	37.5	3.3	23.9
- Clip High.	22.1	26.1	40.0	3.3	22.9
- More rollouts.	21.7	26.8	37.5	6.7	23.2
DAPO	22.8	27.5	35.0	6.7	23.0
EEPO	23.5	29.3	45.0	6.7	26.1 (+24.3)

Table 1: Performance of EEPO compared to baseline methods on Qwen2.5-3B across four math benchmarks. Baseline results report the best performance across different hyperparameter settings (refer to Fig. 5). Average relative performance improvements (%) over GRPO are highlighted in blue.

Higher Sampling Temperature. This variant applies a higher sampling temperature during the actor’s decoding process to promote exploration and reduce output determinism. Temperature-based softmax exploration (also known as Boltzmann exploration) is a widely used method to implement the ϵ -greedy algorithm in stochastic policies. As the temperature $t \rightarrow 0$, the policy becomes nearly greedy; as $t \rightarrow \infty$, the action distribution approaches uniform, effectively increasing exploration.

Clip Higher. This variant incorporates the “clip higher” heuristic from DAPO, which encourages the selection of rare or low-probability tokens during training. It is one of the most widely used exploration-enhancing baselines in modern RLVR pipelines.

Increased Number of Rollouts. This baseline increases the number of rollouts per training step to expand the trajectory space and encourage broader exploration. It is designed to evaluate whether EEPO with 8 rollouts can match or outperform GRPO with a larger number of rollouts (default: 16).

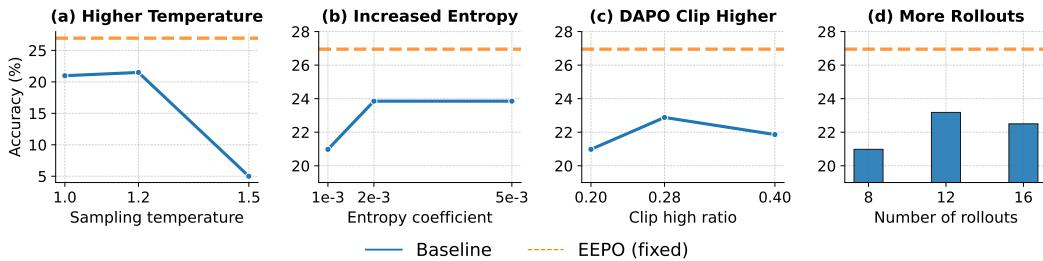
4.3 EXPERIMENTAL RESULTS

Overall results across three LLMs. To validate the effectiveness of our method across different models and scales, we compare EEPO with baselines on three model families—Qwen2.5-3B, Llama3.2-3B-Instruct, and Qwen3-8B-Base. Tables 1–3 report the results. EEPO consistently outperforms GRPO and all exploration-enhanced GRPO variants across models and scales. Relative to standard GRPO, EEPO improves average accuracy by 24.3% on Qwen2.5-3B (21.0% \rightarrow 26.1%), 33.0% on Llama3.2-3B-Instruct (17.6% \rightarrow 23.4%), and 10.4% on Qwen3-8B-Base (34.7% \rightarrow 38.3%). This pattern indicates that EEPO’s sample-then-forget mechanism yields targeted exploration that scales from 3B to 8B parameters and transfers across base and instruction-tuned policies, providing a robust and model-agnostic improvement for mathematical reasoning under RLVR.

Method	Minerva Math	Olympiad Bench	AMC 23	AIME 24	Average
Llama3.2-3B-Instruct	14.3	12.1	20.0	10.0	14.1
GRPO	19.5	17.5	20.0	13.3	17.6
- Higher Temp.	20.6	19.1	22.5	10.0	18.1
- Increased Ent.	20.2	18.1	30.0	10.0	19.6
- Clip High.	19.1	17.3	25.0	16.7	19.5
- More rollouts.	19.1	17.2	22.5	16.7	18.9
DAPO	18.8	18.1	25.0	13.3	18.8
EEPO	20.6	18.1	35.0	20.0	23.4 (+33.0)

Table 2: Performance on Llama3.2-3B-Instruct.

378 **Comparison with baselines.** We compare EEPO to four exploration strategies, each evaluated at its
 379 best hyperparameter setting (Figure 5). Despite careful tuning, all baselines fail to match EEPO’s
 380 performance. While these strategies can outperform GRPO, gains are modest and require brittle tuning.
 381 Temperature-based exploration exhibits a clear exploration–exploitation trade-off: performance peaks
 382 around 1.2 but degrades sharply at higher values (1.5). We also observe substantially longer training
 383 time at the best temperatures (1.2) due to the much longer reasoning paths caused by inefficient
 384 exploration (Figure 7). Clip-higher and entropy regularization likewise swing between under- and
 385 over-exploration and lag behind EEPO across all models. Increasing the number of rollouts provides
 386 benefits but plateaus quickly while computational cost also grows substantially (Figure 7). In contrast,
 387 EEPO achieves larger gains by enabling targeted exploration within the rollout process.



397 Figure 5: Impact of hyperparameter choices on baselines performance using Qwen2.5-3B. Each
 398 subplot shows the average accuracy across four math benchmarks as a function of (a) temperature,
 399 (b) entropy coefficient, (c) clip higher ratio, and (d) number of rollouts. The orange dashed line
 400 represents the EEPO with fixed hyperparameters.

402 **Generalization to benchmarks.** To assess generalization, we evaluate EEPO against baselines on
 403 five diverse math reasoning benchmarks, as shown in Tables 1–3. Our method achieves consistent
 404 improvements over GRPO across all benchmarks. Performance continues to improve on harder and
 405 distribution-shifted splits where baselines plateau. On a competition-level benchmark with Qwen2.5-
 406 3B, EEPO reaches 45.0% compared to 30.3% for GRPO. These gains stem from EEPO’s sustained
 407 exploration and superior entropy maintenance (Figures 6), which prevent the entropy collapse that
 408 leads to overfitting on the training distribution and degraded generalization (Figure 1).

Method	Minerva Math	Olympiad Bench	AMC 23	AIME 24	AIME 25	Average
Qwen3-8B-Base	33.1	36.0	52.5	10	13.3	29.0
GRPO	41.2	45.5	50.0	20.0	16.6	34.7
- Higher Temp.	40.1	44.3	55.0	16.7	20.0	35.22
- Increased Ent.	40.4	42.8	60.0	16.7	20.0	35.9
- Clip High.	40.1	41.6	55.0	16.7	10.0	32.7
- More rollouts.	40.8	44.0	57.5	16.7	16.7	35.1
DAPO	40.1	43.1	62.5	13.3	16.7	35.1
EEPO	41.5	44.3	62.5	20.0	23.3	38.3 (+10.4)

422 Table 3: Performance on Qwen3-8B-Base.
 423

424 5 ANALYSIS

426 **Effectiveness of EEPO: Exploration Enhancement and Quality Preservation.** To understand the
 427 effectiveness of EEPO, we compare its training dynamics with GRPO, as shown in Figure 6.
 428

429 The entropy dynamics in Figure 6(a) reveal how sample-then-forget changes exploration behavior.
 430 While GRPO exhibits continuous entropy collapse indicating that responses samples increasingly
 431 concentrate on high-probability modes, EEPO maintains consistently higher entropy throughout
 training. Notably, EEPO’s Stage 2 achieves higher entropy than Stage 1, suggesting that temporary

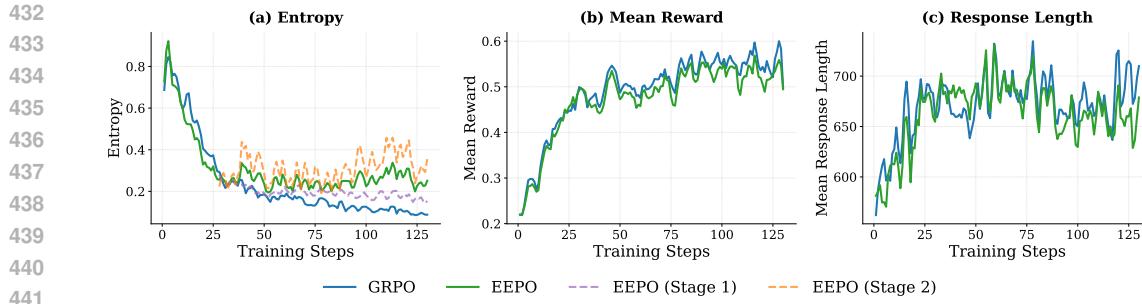


Figure 6: Training dynamics comparison between EEPO and GRPO. (a) Entropy evolution shows EEPO maintains higher exploration ability throughout training, with Stage 2 exhibiting increased entropy compared to Stage 1, demonstrating effective exploration enhancement. In contrast, GRPO exhibits monotonic entropy decay. (b) Mean training rewards remain comparable between the two methods, reflecting similar exploitation capability. (c) Response length distributions show similar patterns, indicating preserved generation quality.

response suppression successfully forces the model to explore low-density regions that the original actor rarely visits. This entropy gap demonstrates that our mechanism effectively prevents mode collapse by strategically sampling from diverse regions of the probability distribution.

Despite this enhanced exploration, generation quality remains preserved. Figure 6(b-c) shows that both mean rewards and response lengths of EEPO remain stable and comparable to GRPO. These results validate our hypothesis: temporarily suppressing sampled responses can enhance exploration by steering the actor away from high-probability regions toward other plausible alternatives, while preserving the generation capabilities necessary for effective training.

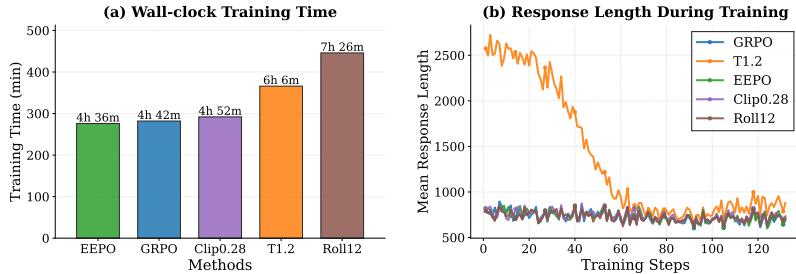


Figure 7: Training efficiency comparison on Qwen3-8B-Base. (a) Wall-clock training time for EEPO and baseline methods. (b) Mean response length during training for each method. EEPO achieves the fastest training time while maintaining stable response lengths.

Training Efficiency. We evaluate the computational efficiency of EEPO and baseline methods on Qwen3-8B-Base using B200 GPUs. As shown in Figure 7(a), EEPO achieves comparable training time to standard GRPO. This is primarily due to a slight reduction in the mean response length under EEPO (Fig. 6c), which modestly lowers the cost of generating trajectories and offsets the additional computation introduced by unlearning. Among baseline configurations, higher sampling temperatures significantly slow training by approximately 30%, as these methods generate substantially longer responses throughout training (Figure 7(b)). Additional rollouts incur the highest computational cost due to increased trajectory sampling, while adjusting the clipping ratio has minimal impact on efficiency. These results demonstrate that EEPO achieves superior performance through effective exploration while preserving the training efficiency of the original GRPO algorithm.

Details of the hyperparameter analysis and ablation are provided in Appendix D.

6 RELATED WORK

Reinforcement learning with verifiable rewards. RLVR (Shao et al., 2024; DeepSeek-AI et al., 2025; Team et al., 2025) has recently attracted growing interest for its ability to incentivize reasoning

486 in LLMs using rule-based verifiable rewards. Notably, DeepSeek-R1 (DeepSeek-AI et al., 2025)
 487 demonstrates that RLVR can elicit emergent reasoning behaviors through extended chain-of-thought
 488 outputs, achieving strong performance on reasoning-intensive tasks. Despite these advances, RLVR
 489 faces challenges in exploration, often leading to early convergence and performance plateaus.
 490

491 **Exploration in RL.** Policy gradient methods rely on policy stochasticity for exploration, but
 492 policies tend to rapidly collapse into deterministic behavior due to the exploitative nature of objectives.
 493 Common remedies *increase policy randomness* through ϵ -greedy policies (Sutton & Barto, 2018),
 494 temperature adjustment (Hou et al., 2025; Chen et al., 2025a), or entropy regularization (Hou et al.,
 495 2025). Recent work shows exploration is driven by high-entropy tokens (Wang et al., 2025), while
 496 Chen et al. (2025b) propose Pass@k rewards to encourage broader search. However, these methods
 497 remain inefficient as they ignore the action space structure. We propose a *strategic exploration strategy*
 498 that explicitly discourages revisiting previously sampled trajectories during rollout, encouraging
 499 sequential exploration of different modes.
 500

501 **Machine Unlearning for LLMs** Machine unlearning for LLMs studies removing the influence of
 502 specific data (e.g., sensitive or copyrighted content) without retraining models from scratch (Liu et al.,
 503 2024). Typical motivations include privacy compliance and mitigating bias or harmful behaviors.
 504 Common approaches involve weight editing (Mitchell et al., 2022) or gradient-based optimization
 505 (Jang et al., 2023) to forget targeted data, and inference-time strategies such as prompt manipulation.
 506 However, prior work primarily focuses on knowledge erasure, whereas EEPO repurposes and tailors
 507 unlearning for RL exploration: during rollout generation, we temporarily unlearn previously sampled
 508 trajectories to prevent the rollout model from repeatedly sampling from dominant modes.
 509

510 We provide an extended discussion of related work in Appendix A.
 511

510 7 CONCLUSION

511 We introduced EEPO, an exploration-enhanced policy optimization framework that augments the
 512 rollout process with a sample-then-forget mechanism. By temporarily suppressing recently sampled
 513 trajectories during rollouts, EEPO encourages exploration of alternative modes in the output distribu-
 514 tion that would otherwise remain underexplored. Our method transforms indiscriminate stochasticity
 515 into strategic exploration, breaking the self-reinforcing loop that causes insufficient exploration
 516 and entropy collapse. Extensive experiments across three models and five mathematical reasoning
 517 benchmarks demonstrate that EEPO consistently outperforms existing methods while maintaining
 518 comparable training efficiency. These results establish EEPO as a practical and effective approach for
 519 addressing the exploration-exploitation trade-off in RLVR.
 520

522 ETHICS STATEMENT

524 All authors have read and adhered to the ICLR Code of Ethics. Our study relies solely on publicly
 525 available datasets and models, as detailed in Appendix B. No private or personally identifiable
 526 information was used. The work aims to advance the scientific understanding of PO methods while
 527 upholding principles of transparency, fairness, and responsible research.
 528

529 REPRODUCIBILITY STATEMENT

531 The codebase will be made publicly available upon acceptance. All base models and PO benchmarks
 532 used in this work are publicly accessible. All experiments were conducted using NVIDIA A100
 533 80GB GPUs and B200 184G GPUs with Python 3.12 and PyTorch 2.7.
 534

535 REFERENCES

537 Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
 538 Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson,
 539 Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson,
 Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile

540 Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado,
 541 Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec,
 542 Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom
 543 Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
 544 Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai: Harmlessness
 545 from ai feedback, 2022.

546 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
 547 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
 548 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

549

550 Zhipeng Chen, Yingqian Min, Beichen Zhang, Jie Chen, Jinhao Jiang, Daixuan Cheng, Wayne Xin
 551 Zhao, Zheng Liu, Xu Miao, Yang Lu, Lei Fang, Zhongyuan Wang, and Ji-Rong Wen. An
 552 empirical study on eliciting and improving r1-like reasoning models, 2025a. URL <https://arxiv.org/abs/2503.04548>.

553

554 Zhipeng Chen, Xiaobo Qin, Youbin Wu, Yue Ling, Qinghao Ye, Wayne Xin Zhao, and Guang Shi.
 555 Pass@k training for adaptively balancing exploration and exploitation of large reasoning models,
 556 2025b. URL <https://arxiv.org/abs/2508.10751>.

557

558 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 559 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
 560 math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

561 Codeforces. Codeforces - competitive programming platform, 2025. URL <https://codeforces.com/>. Accessed: 2025-03-18.

562

563 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
 564 Fan, Huayu Chen, Weize Chen, Zhiyuan Liu, Hao Peng, Lei Bai, Wanli Ouyang, Yu Cheng, Bowen
 565 Zhou, and Ning Ding. The entropy mechanism of reinforcement learning for reasoning language
 566 models, 2025. URL <https://arxiv.org/abs/2505.22617>.

567

568 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 569 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 570 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 571 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 572 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 573 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 574 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 575 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
 576 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
 577 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
 578 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
 579 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
 580 Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
 581 Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
 582 Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanja Zhao, Wen Liu, Wenfeng
 583 Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
 584 Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
 585 Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
 586 Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
 587 Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
 588 Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
 589 Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
 590 He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
 591 Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
 592 Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
 593 Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
 Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
 Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
 URL <https://arxiv.org/abs/2501.12948>.

594 Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. Cognitive
 595 behaviors that enable self-improving reasoners, or, four habits of highly effective stars, 2025. URL
 596 <https://arxiv.org/abs/2503.01307>.

597

598 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 599 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
 600 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint*
 601 *arXiv:2402.14008*, 2024.

602 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 603 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 604 *preprint arXiv:2103.03874*, 2021a.

605 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
 606 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
 607 *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*,
 608 2021b.

609 Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang Li, Zijun Yao, Juanzi Li, Jie Tang, and Yuxiao
 610 Dong. T1: Advancing language model reasoning through reinforcement learning and inference
 611 scaling, 2025. URL <https://arxiv.org/abs/2501.11651>.

612

613 Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
 614 Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. In Anna
 615 Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting*
 616 *of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 14389–14408,
 617 Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
 618 *acl-long.805*. URL <https://aclanthology.org/2023.acl-long.805/>.

619 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 620 masesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 621 reasoning problems with language models. *Advances in Neural Information Processing Systems*,
 622 35:3843–3857, 2022.

623 Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang
 624 Yao, Chris Yuhao Liu, Xiaojun Xu, Hang Li, Kush R. Varshney, Mohit Bansal, Sanmi Koyejo,
 625 and Yang Liu. Rethinking machine unlearning for large language models, 2024. URL <https://arxiv.org/abs/2402.08787>.

626

627 Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, and Chelsea Finn. Memory-
 628 based model editing at scale, 2022. URL <https://arxiv.org/abs/2206.06520>.

629

630 OpenAI. Learning to reason with llms.
 631 [urlhttps://openai.com/index/learning-to-reason-with-llms/](https://openai.com/index/learning-to-reason-with-llms/). Accessed: 15 March 2025.

632

633 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 634 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 635 instructions with human feedback. *Advances in Neural Information Processing Systems*, 35:
 636 27730–27744, 2022.

637

638 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 639 Finn. Direct Preference Optimization: Your language model is secretly a reward model. *Advances*
 640 *in Neural Information Processing Systems*, 36:53728–53741, 2023.

641

642 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 643 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

644

645 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 646 Mingchuan Zhang, YK Li, Y Wu, et al. DeepSeekMath: Pushing the limits of mathematical
 647 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

648

649 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 650 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint*
 651 *arXiv:2409.19256*, 2024.

648 Richard S Sutton and Andrew G Barto. *Reinforcement Learning: An Introduction*. MIT press, 2018.
 649

650 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 651 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi K1.5: Scaling reinforcement learning with
 652 LLMs. *arXiv preprint arXiv:2501.12599*, 2025.

653 Llama Team. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.
 654

655 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 656 Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
 657 Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
 658 effective reinforcement learning for llm reasoning, 2025. URL <https://arxiv.org/abs/2506.01939>.
 659

660 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 661 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 662 arXiv:2412.15115*, 2024.

663 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 664 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 665 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 666 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 667 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 668 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 669 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 670 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 671 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.
 672

673 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 674 Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
 675 Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie
 676 Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-
 677 Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An
 678 open-source llm reinforcement learning system at scale, 2025. URL <https://arxiv.org/abs/2503.14476>.
 679

680 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
 681 zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.
 682 URL <https://arxiv.org/abs/2503.18892>.
 683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A RELATED WORK
703

704 **Reinforcement learning with verifiable rewards.** Reinforcement learning has shown considerable
705 promise in improving the capabilities of language models, particularly through reinforcement learning
706 from human feedback (RLHF) (Ouyang et al., 2022; Bai et al., 2022; Rafailov et al., 2023), which
707 aligns model outputs with human preferences. Building on this foundation, reinforcement learning
708 with verifiable rewards (RLVR) (Shao et al., 2024; DeepSeek-AI et al., 2025; Team et al., 2025)
709 has recently attracted growing interest for its ability to incentivize reasoning in LLMs using rule-
710 based, automatically verifiable reward signals. Notably, DeepSeek-R1 (DeepSeek-AI et al., 2025)
711 demonstrates that RLVR can elicit emergent reasoning behaviors (Gandhi et al., 2025) such as
712 summarization, backward reasoning, verification, and self-reflection, often manifested through
713 long chain-of-thought (CoT) outputs. This leads to strong performance across a wide range of
714 reasoning-intensive tasks, such as mathematics, programming, and other problem-solving domains.
715 The SimpleRL framework further explores how extended reasoning chains emerge under various RL
716 training regimes. Despite these advances, RLVR still faces notable challenges in performance and
717 stability. For example, limited exploration capabilities often lead to early convergence, resulting in
718 performance plateaus that hinder further progress.

719 **Exploration in RL.** Policy gradient methods typically rely on randomization in the policy to
720 encourage exploration, based on the intuition that a stochastic policy enables the agent to visit a
721 diverse set of actions and states. However, the inherent stochasticity of the policy is insufficient,
722 as policies tend to rapidly collapse into deterministic behavior—commonly referred to as “entropy
723 collapse”—due to the exploitative nature of the objective function. To mitigate this issue, common
724 remedies *increase policy randomness* by using an ϵ -greedy policy (Sutton & Barto, 2018), adjusting
725 the softmax temperature (Hou et al., 2025; Chen et al., 2025a), or incorporating an entropy term
726 into the objective to promote uncertainty (Hou et al., 2025). Wang et al. (2025) further show that
727 exploration is disproportionately driven by a minority of high-entropy tokens. In parallel, Chen et al.
728 (2025b) propose to replace the standard Pass@1 reward with Pass@k, thereby relaxing correctness
729 constraints and encouraging the policy to maintain broader search behavior. Although these methods
730 have shown utility, they remain inefficient as they fail to consider the structure of the action space. In
731 contrast, we propose a *strategic exploration strategy* that explicitly discourages revisiting previously
732 sampled trajectories by reducing their likelihood during the rollout process. This encourages the agent
733 to sequentially explore different modes of the action distribution at a given state, thereby visiting a
734 more diverse set of actions. Importantly, these methods are orthogonal to ours and can be combined
735 with our approach to further enhance exploration in RLVR.

736 **Machine Unlearning for LLMs** Machine unlearning for LLMs studies how to remove the influence
737 of specific data (e.g., sensitive or copyrighted content) without retraining models from scratch
738 (Liu et al., 2024). Typical motivations include privacy compliance and mitigating bias or harmful
739 behaviors. Common approaches involve weight editing (Mitchell et al., 2022) or gradient-based
740 optimization (Jang et al., 2023) to forget targeted data, as well as inference-time strategies such as
741 prompt manipulation. However, prior work primarily focuses on knowledge erasure, whereas EEPO
742 repurposes and refines unlearning for RL exploration: during rollout generation, we temporarily
743 unlearn previously sampled responses to prevent the rollout model from repeatedly sampling dominant
744 modes.

745 B DETAILED EXPERIMENTAL SETUP
746

747 **Datasets.** We use the MATH dataset (Hendrycks et al., 2021a) for RL training. Following the setup
748 of SimpleRL (Zeng et al., 2025), we train on the hard data, which contains 8.5K problems with
749 difficulty levels ranging from 3 to 5. For evaluation, we adopt five challenging mathematical reasoning
750 benchmarks: Minerva Math (Lewkowycz et al., 2022), OlympiadBench (He et al., 2024), and three
751 recent competition-level datasets—AMC 2023, AIME 2024, and AIME 2025. For smaller models
752 (Qwen2.5-3B and LLaMA-3.2-3B-Instruct), evaluation is conducted on the first four benchmarks.
753 For the stronger Qwen3-8B-Base model, we additionally include AIME 2025.

754 **Models.** To demonstrate the generality of our approach, we experiment with three LLMs from
755 different model families and scales.

- 756 • Qwen2.5-3B (Yang et al., 2024): a base model from the Qwen2.5 series, with stronger pretraining
757 and support for long-context inputs.
- 758 • Llama-3.2-3B-Instruct (Team, 2024): an instruction-following model based on Meta’s Llama
759 architecture, included to evaluate cross-family generalization.
- 760 • Qwen3-8B-Base (Yang et al., 2025): a larger base model from the Qwen3 family, used to assess
761 performance at a larger scale.

764 **Reward Function.** We employ a binary reward based on answer correctness: +1 for a correct final
765 answer and 0 otherwise. We exclude format-based rewards, which can constrain exploration and
766 degrade performance (Zeng et al., 2025), particularly when training base models.

768 **Implementation Details.** All models are trained using the VERL framework (Sheng et al., 2024),
769 employing the GRPO algorithm. We use a batch size of 128, a mini-batch size of 64, a learning rate
770 of 5×10^{-7} , and 8 rollouts, training for 2 epochs. The KL loss and entropy loss coefficient are set to
771 1×10^{-4} and 1×10^{-5} , respectively. The maximum response length varies by model: up to 4K tokens
772 for Qwen2.5-3B, and up to 6K tokens for both LLaMA-3.2-3B-Instruct and Qwen3-8B-Base. During
773 evaluation, we use greedy decoding to compute pass@1 accuracy. All experiments are conducted on
774 compute clusters equipped with NVIDIA A100 GPUs (80GB) and B200 GPUs.

776 C EXPERIMENTS ON LARGE-SCALE MODELS

779 To assess how EEPO scales with model size, we extend our experiments from 3B and 8B models to a
780 larger 14B model, Qwen3-14B-Base. The results are summarized in Table 4.

781 782 Table 4: Results on Qwen3-14B-Base across five reasoning benchmarks.

784 Method	785 Benchmark					786 Avg.
	787 Minerva Math	788 OlympiadBench	789 AMC23	790 AIME24	791 AIME25	
792 GRPO	36.8	48.6	67.5	23.3	26.7	40.6
793 EEPO	39.3	50.1	67.5	36.7	30.0	44.7

794 As shown in Table 4, EEPO continues to provide consistent improvements over GRPO on Qwen3-
795 14B-Base, particularly on the more challenging benchmarks (e.g., AIME24 and AIME25). This
796 suggests that EEPO scales well with model size and remains effective in the 3B–14B range.

797 D ABLATION ON HYPERPARAMETERS

798 We study the effect of two key hyperparameters in EEPO: (i) the entropy threshold α that controls
799 when unlearning is activated, and (ii) the unlearning learning rate η that controls the step size.

800 D.1 ENTROPY THRESHOLD α

801 The entropy threshold α determines when the policy entropy is sufficiently low that additional
802 exploration should be encouraged. In practice, we select α by inspecting the training curves (cf.
803 Fig. 2), where we observe that (1) the generalization performance begins to degrade when the entropy
804 enters roughly the $[0.2, 0.4]$ range, with a tipping point around 0.3, and (2) before this range, entropy
805 decays rapidly, whereas afterward the decay becomes much flatter, indicating that the policy has
806 already become highly concentrated.

807 To quantify the effect of this choice, we conduct an ablation over $\alpha \in \{0.0, 0.1, 0.2, 0.3, 0.4\}$, where
808 $\alpha = 0.0$ corresponds to GRPO (no intervention). As shown in Table 5, EEPO consistently improves
809 over GRPO across a reasonably wide range of α , with the best performance achieved at $\alpha = 0.3$.

810
811
812
813
814
815
816 Table 5: Ablation on the entropy threshold α .
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864

α	0.0	0.1	0.2	0.3	0.4
Avg. acc.	21.0	25.2	24.8	26.1	25.4

D.2 UNLEARNING LEARNING RATE η

The unlearning learning rate η controls the step size of the complementary unlearning update. In practice, we choose η to be as large as possible while keeping the unlearning process stable.

We perform an ablation over $\eta \in \{0, 1 \times 10^{-4}, 1 \times 10^{-3}, 3 \times 10^{-3}, 1 \times 10^{-2}\}$, where $\eta = 0$ reduces to GRPO (no unlearning). The results are summarized in Table 6. Performance improves steadily as η increases up to 3×10^{-3} , while an overly large rate (10^{-2}) makes the unlearning step unstable and degrades performance, which is consistent with intuition.

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
Table 6: Ablation on the unlearning learning rate η .

η	0	1e-4	1e-3	3e-3	1e-2
Avg. acc.	21.0	23.3	24.4	26.1	22.5

E ADDITIONAL COMPARISON WITH GRPO VARIANTS

To make the gain of EEPO more directly and comparable, we also provide the following fair comparisons, where EEPO is implemented on GRPO and its variants.

Method	Avg. acc.
GRPO	21.0
EEPO	26.1
GRPO + Increased Entropy	23.9
EEPO + Increased Entropy	27.9
GRPO + Clip High	22.9
EEPO + Clip High	26.6

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
Table 7: Average accuracy of GRPO variants and their EEPO-enhanced counterparts. EEPO provides gains of 3.7–5.1 absolute accuracy points over already strong exploration-enhanced baselines.

Table 7 reports the average accuracy of GRPO and its variants, together with their EEPO-enhanced counterparts. EEPO consistently yields an absolute improvement of about 3.7–5.1 points over the corresponding exploration-enhanced GRPO methods.

F SELF-REINFORCEMENT EFFECT AND HOW EEPO COUNTERS IT

We provide a theoretical analysis to support the intuitions in Figure 2 and the design of EEPO.

We work in a standard neural network setting with a feature extractor $\phi : \mathcal{Q} \rightarrow \mathbb{R}^{d \times 1}$ and a linear softmax head parameterized by $W \in \mathbb{R}^{d \times V}$. For a given query q , the logits and probabilities are

$$z^t = (W^t)^\top \phi(q), \quad p^t = \text{Softmax}(z^t), \quad (13)$$

where V is the number of candidates (e.g., different reasoning modes) and p_i^t denotes the probability of candidate i at step t .

864 F.1 SELF-REINFORCEMENT OF RL UPDATES
865866 We consider an RL objective where $\mathbf{r} \in \{0, 1\}^V$ is a reward vector with $r_i = 1$ for positive candidates
867 and $r_i = 0$ otherwise. For this fixed q , the expected reward is

868
869
$$J(\mathbf{w}^t) \triangleq \sum_{i=1}^V r_i p_i^t. \quad (14)$$

870

871 We optimize J by gradient ascent on the model parameters. Assuming the feature extractor $\phi(q)$ is
872 fixed, it suffices to analyze the dynamics of the logits z^t . Using the Softmax Jacobian $\frac{\partial p_i}{\partial z_k} = p_i(\mathbb{I}[i = k] - p_k)$, we obtain
873

874
875
$$\frac{\partial J}{\partial z_k} = \sum_{i=1}^V r_i \frac{\partial p_i}{\partial z_k} = \sum_{i=1}^V r_i p_i (\mathbb{I}[i = k] - p_k) = p_k \left(r_k - \sum_{i=1}^V r_i p_i \right). \quad (15)$$

876

877 Denote the average reward (i.e., the total probability mass on positive candidates) as

878
879
$$\bar{r}^t \triangleq \sum_{i=1}^V r_i p_i^t. \quad (16)$$

880

881 Then Eq. 15 becomes

882
883
$$\frac{\partial J}{\partial z_k} = p_k^t (r_k - \bar{r}^t). \quad (17)$$

884

885 A gradient-ascent step with learning rate $\eta > 0$ and fixed $\phi(q)$ corresponds to

886
$$z^{t+1} = z^t + \eta \|\phi(q)\|_2^2 \nabla_z J = z^t + \eta' g^t, \quad (18)$$

887 where $\eta' = \eta \|\phi(q)\|_2^2$ and $g_k^t = \partial J / \partial z_k$. In coordinates,

888
889
$$z_k^{t+1} = \begin{cases} z_k^t + \eta' p_k^t (1 - \bar{r}^t), & \text{if } r_k = 1, \\ z_k^t - \eta' p_k^t \bar{r}^t, & \text{if } r_k = 0. \end{cases} \quad (19)$$

890

891 Thus all positive candidates ($r_k = 1$) receive a positive logit update proportional to p_k^t , and all
892 negatives ($r_k = 0$) receive a negative update. Below we focus on *relative* changes among positive
893 candidates, since the decay of negative candidates is straightforward.894 Let $\mathcal{P} = \{i : r_i = 1\}$ denote the set of positive candidates. We have the following lemma.895 **Lemma 1** (Self-reinforcing RL updates). *Consider two positive candidates (modes) $i, j \in \mathcal{P}$ with
896 probabilities p_i^t and p_j^t at step t . Let p^{t+1} be obtained by applying Eq. 19 and then re-normalizing
897 with Softmax. Then*

898
899
$$\frac{p_i^{t+1}}{p_j^{t+1}} = \exp(\eta' (1 - \bar{r}^t) (p_i^t - p_j^t)) \frac{p_i^t}{p_j^t}. \quad (20)$$

900

901 In particular, if $p_i^t > p_j^t$ and $\bar{r}^t < 1$, then

902
903
$$\frac{p_i^{t+1}}{p_j^{t+1}} > \frac{p_i^t}{p_j^t}, \quad (21)$$

904

905 *i.e., the more probable positive candidate i becomes strictly more dominant relative to j after one
906 gradient-ascent step.*907 **Proof.** For $i, j \in \mathcal{P}$, we have from Eq. 19 that

908
909
$$z_i^{t+1} = z_i^t + \eta' p_i^t (1 - \bar{r}^t), \quad z_j^{t+1} = z_j^t + \eta' p_j^t (1 - \bar{r}^t). \quad (22)$$

910 Hence the logit difference evolves as

911
912
$$z_i^{t+1} - z_j^{t+1} = (z_i^t - z_j^t) + \eta' (1 - \bar{r}^t) (p_i^t - p_j^t). \quad (23)$$

913 Using $p_k = e^{z_k} / \sum_u e^{z_u}$, we obtain

914
915
$$\frac{p_i^{t+1}}{p_j^{t+1}} = \exp(z_i^{t+1} - z_j^{t+1}) = \exp(\eta' (1 - \bar{r}^t) (p_i^t - p_j^t)) \exp(z_i^t - z_j^t) = \exp(\eta' (1 - \bar{r}^t) (p_i^t - p_j^t)) \frac{p_i^t}{p_j^t}. \quad (24)$$

916

917 If $p_i^t > p_j^t$ and $\bar{r}^t < 1$, then the exponent is strictly positive, so the ratio increases. \square

918 **Interpretation.** Lemma 1 formalizes the “rich get richer” behavior among positive candidates: the
 919 larger p_i^t is, the stronger the multiplicative factor in Eq. 20. Thus any small imbalance between correct
 920 candidates is amplified: the dominant positive candidate $i^* = \arg \max_{i \in \mathcal{P}} p_i^t$ acquires a positive drift
 921 in its log-odds against every other positive candidate, leading to the self-reinforcing, mode-seeking
 922 dynamics illustrated in Fig. 2(a–b).

924 F.2 UNLEARNING AS AN ANTI-SELF-REINFORCEMENT OPERATION

926 We now analyze the unlearning step in EEPO. In our implementation this step is instantiated via
 927 a simple complementary loss, which we show induces an opposite, *anti-self-reinforcing* effect: it
 928 explicitly suppresses the sampled candidate and shifts probability mass toward alternative candidates.

929 For a given index y , consider the complementary loss

$$930 \quad 931 \quad \mathcal{L}_{\text{comp}}(p^t, y) = -\log(1 - p_y^t), \quad (25)$$

932 which heavily penalizes large p_y^t . Using the chain rule and Softmax derivatives, we obtain

$$934 \quad 935 \quad \frac{\partial \mathcal{L}_{\text{comp}}}{\partial z_k} = \frac{\partial \mathcal{L}_{\text{comp}}}{\partial p_y} \frac{\partial p_y}{\partial z_k} = \frac{1}{1 - p_y^t} p_y^t (\mathbb{I}[k = y] - p_k^t), \quad (26)$$

936 so

$$937 \quad 938 \quad \frac{\partial \mathcal{L}_{\text{comp}}}{\partial z_k} = \begin{cases} p_y^t, & \text{if } k = y, \\ -\frac{p_y^t p_k^t}{1 - p_y^t}, & \text{if } k \neq y. \end{cases} \quad (27)$$

941 A gradient-descent step on $\mathcal{L}_{\text{comp}}$ with learning rate $\eta > 0$ and fixed $\phi(q)$ leads to

$$942 \quad 943 \quad z^{t+1} = z^t - \eta \|\phi(q)\|_2^2 \nabla_z \mathcal{L}_{\text{comp}} = z^t - \eta' h^t, \quad (28)$$

944 where $\eta' = \eta \|\phi(q)\|_2^2$ and $h_k^t = \partial \mathcal{L}_{\text{comp}} / \partial z_k$. In coordinates,

$$946 \quad 947 \quad z_k^{t+1} = \begin{cases} z_k^t - \eta' p_y^t, & \text{if } k = y, \\ z_k^t + \eta' \frac{p_y^t p_k^t}{1 - p_y^t}, & \text{if } k \neq y. \end{cases} \quad (29)$$

950 Thus the complementary loss decreases the logit of the selected candidate y and increases all other
 951 logits.

952 **Lemma 2** (Global anti-self-reinforcement). *Let p^{t+1} be obtained by applying Eq. 29 and re-
 953 normalizing with Softmax. Then:*

954 (i) $p_y^{t+1} < p_y^t$;

956 (ii) for any $k \neq y$, we have

$$957 \quad 958 \quad \frac{p_k^{t+1}}{p_y^{t+1}} > \frac{p_k^t}{p_y^t}. \quad (30)$$

960 **Proof.** Let $N^t = e^{z_y^t}$ and $A^t = \sum_{j \neq y} e^{z_j^t}$, so $p_y^t = N^t / (A^t + N^t)$. From Eq. 29,

$$962 \quad 963 \quad N^{t+1} = e^{z_y^{t+1}} = e^{z_y^t - \eta' p_y^t} = N^t e^{-\eta' p_y^t} < N^t, \quad (31)$$

964 and

$$965 \quad 966 \quad A^{t+1} = \sum_{j \neq y} e^{z_j^{t+1}} = \sum_{j \neq y} e^{z_j^t + \eta' \frac{p_y^t p_k^t}{1 - p_y^t}} > \sum_{j \neq y} e^{z_j^t} = A^t. \quad (32)$$

967 Since $p_y = N / (A + N)$ is increasing in N and decreasing in A , we obtain $p_y^{t+1} < p_y^t$, proving (i).

969 For (ii), for any $k \neq y$,

$$971 \quad z_k^{t+1} - z_y^{t+1} = (z_k^t - z_y^t) + \eta' \left(\frac{p_y^t p_k^t}{1 - p_y^t} + p_y^t \right), \quad (33)$$

972 where the increment is strictly positive since $p_y^t > 0$ and $p_k^t \geq 0$. Thus
 973

$$974 \frac{p_k^{t+1}}{p_y^{t+1}} = \exp(z_k^{t+1} - z_y^{t+1}) = \exp\left(\eta' \left(\frac{p_y^t p_k^t}{1 - p_y^t} + p_y^t\right)\right) \exp(z_k^t - z_y^t) > \frac{p_k^t}{p_y^t}. \quad (34)$$

□

978
 979 That is, one unlearning step always decreases the probability of the sampled mode y and strictly
 980 increases the ratio p_k/p_y for every alternative k .

981 **Lemma 3** (Local anti-self-reinforcement). *Consider two candidates i and j with probabilities p_i^t and
 982 p_j^t at step t , and suppose $p_i^t > p_j^t$. Apply one gradient-descent step on the sum of complementary
 983 losses $\mathcal{L}_{\text{comp}}(p^t, i) + \mathcal{L}_{\text{comp}}(p^t, j)$ with update rule 29, and let p^{t+1} denote the resulting distribution
 984 after re-normalizing with Softmax. Then*

$$985 \frac{p_i^{t+1}}{p_j^{t+1}} < \frac{p_i^t}{p_j^t}, \quad (35)$$

988 i.e., when both i and j are unlearned once with the complementary loss and i is initially more
 989 probable than j , the probability ratio of i relative to j strictly decreases after one unlearning step.

990 **Proof.** Because Softmax preserves log-ratios, $\frac{p_i}{p_j} = \exp(z_i - z_j)$ holds at every step. Thus it suffices
 991 to study the change of the logit difference $\Delta(z_i - z_j)$.

993 Using Eq. 29, the contribution of unlearning $y = i$ is
 994

$$995 \Delta z_i^{(i)} = -\eta' p_i^t, \quad \Delta z_j^{(i)} = \eta' \frac{p_i^t p_j^t}{1 - p_i^t}, \quad (36)$$

997 and the contribution of unlearning $y = j$ is
 998

$$999 \Delta z_i^{(j)} = \eta' \frac{p_j^t p_i^t}{1 - p_j^t}, \quad \Delta z_j^{(j)} = -\eta' p_j^t. \quad (37)$$

1001 Summing the two effects, the total logit updates are
 1002

$$1003 \Delta z_i = -\eta' p_i^t + \eta' \frac{p_j^t p_i^t}{1 - p_j^t}, \quad (38)$$

$$1006 \Delta z_j = \eta' \frac{p_i^t p_j^t}{1 - p_i^t} - \eta' p_j^t, \quad (39)$$

1008 so the change in the logit difference is
 1009

$$1010 \Delta(z_i - z_j) = \Delta z_i - \Delta z_j = \eta' \left(-p_i^t + p_j^t + \frac{p_i^t p_j^t}{1 - p_j^t} - \frac{p_i^t p_j^t}{1 - p_i^t} \right). \quad (40)$$

1012 A direct algebraic simplification yields
 1013

$$1014 \Delta(z_i - z_j) = -\eta' \frac{(p_i^t - p_j^t)(2p_i^t p_j^t - p_i^t - p_j^t + 1)}{(1 - p_i^t)(1 - p_j^t)}. \quad (41)$$

1017 For probabilities $p_i^t, p_j^t \in (0, 1)$, the denominator $(1 - p_i^t)(1 - p_j^t)$ is positive, and the factor
 1018 $2p_i^t p_j^t - p_i^t - p_j^t + 1 = (1 - p_i^t)(1 - p_j^t) + p_i^t p_j^t$ is also strictly positive. If $p_i^t > p_j^t$, then $(p_i^t - p_j^t) > 0$,
 1019 so the overall expression is strictly negative:

$$1020 \Delta(z_i - z_j) < 0. \quad (42)$$

1021 Therefore

$$1023 \frac{p_i^{t+1}}{p_j^{t+1}} = \exp(z_i^{t+1} - z_j^{t+1}) = \exp(\Delta(z_i - z_j)) \frac{p_i^t}{p_j^t} < \frac{p_i^t}{p_j^t}, \quad (43)$$

1025 which proves the claim. □

1026 **Interpretation.** Lemmas 2 and 3 show that complementary unlearning acts as a negative feedback
 1027 on the sampled modes: each time a mode is sampled and unlearned, its probability is pushed down,
 1028 and its advantage over other modes is reduced. This is exactly the opposite of the rich-get-richer
 1029 effect in Lemma 1, and already suggests an anti-collapse behavior.
 1030

1031 F.3 WHERE DOES THE UNLEARNED PROBABILITY MASS GO?

1033 Lemmas 2 and 3 show that complementary unlearning decreases the probability of the selected mode
 1034 y and increases the log-odds of every other mode relative to y . However, they do not yet specify
 1035 *where* the probability mass removed from y goes. In particular, we would like to understand whether
 1036 this mass is redistributed preferentially toward already plausible modes or spread uniformly across
 1037 the tail.

1038 To answer this question, we analyze the *gradient flow* induced by the complementary loss. We
 1039 again fix a query q and suppress its dependence in the notation. Let $p(\tau)$ denote the time-dependent
 1040 distribution over candidates and $z(\tau)$ the corresponding logits. We consider the continuous-time limit
 1041 of a gradient-descent dynamics on $\mathcal{L}_{\text{comp}}(p(\tau), y)$:

$$1042 \frac{dz_k}{d\tau} = -\frac{\partial \mathcal{L}_{\text{comp}}}{\partial z_k}, \quad p(\tau) = \text{Softmax}(z(\tau)). \quad (44)$$

1045 Using Eq. equation 27, and absorbing the positive factor $\|\phi(q)\|_2^2$ into the time scaling τ , we obtain
 1046 the logit flow for a fixed index y :

$$1047 \frac{dz_k}{d\tau} = \begin{cases} -p_y, & k = y, \\ \frac{p_y p_k}{1 - p_y}, & k \neq y, \end{cases} \quad (45)$$

1051 where $p_k = p_k(\tau)$ and $p_y = p_y(\tau)$.

1053 Since $p = \text{Softmax}(z)$, differentiating $p_k = \exp(z_k) / \sum_u \exp(z_u)$ yields the standard relation

$$1054 \frac{dp_k}{d\tau} = p_k \left(\frac{dz_k}{d\tau} - \sum_u p_u \frac{dz_u}{d\tau} \right). \quad (46)$$

1057 Let $S_1 \triangleq \sum_{u \neq y} p_u = 1 - p_y$ and $S_2 \triangleq \sum_{u \neq y} p_u^2$. Using Eq. equation 45, we compute

$$1059 \begin{aligned} \sum_u p_u \frac{dz_u}{d\tau} &= p_y \frac{dz_y}{d\tau} + \sum_{u \neq y} p_u \frac{dz_u}{d\tau} \\ 1060 &= p_y(-p_y) + \sum_{u \neq y} p_u \frac{p_y p_u}{1 - p_y} \\ 1061 &= -p_y^2 + \frac{p_y}{S_1} S_2. \end{aligned} \quad (47)$$

1066 **Exact probability flow.** Substituting Eq. equation 45 and Eq. equation 47 into Eq. equation 46
 1067 gives closed-form expressions for the probability dynamics.

1069 For the selected mode y ,

$$1071 \frac{dp_y}{d\tau} = p_y \left(-p_y - \left[-p_y^2 + \frac{p_y}{S_1} S_2 \right] \right) = -p_y^2 \left(1 - p_y + \frac{S_2}{S_1} \right) < 0, \quad (48)$$

1073 so the probability of y always decreases, as expected.

1075 For any $k \neq y$, we obtain

$$1076 \begin{aligned} \frac{dp_k}{d\tau} &= p_k \left(\frac{p_y p_k}{1 - p_y} - \left[-p_y^2 + \frac{p_y}{S_1} S_2 \right] \right) \\ 1077 &= p_k p_y \left(\frac{p_k}{1 - p_y} + p_y - \frac{S_2}{S_1} \right). \end{aligned} \quad (49)$$

1080 It is convenient to introduce the *fractional growth rate*
 1081

$$1082 \gamma_k \triangleq \frac{1}{p_k} \frac{dp_k}{d\tau}, \quad k \neq y. \quad (50)$$

1083
 1084 From Eq. equation 49 we have
 1085

$$1086 \gamma_k = p_y \left(\frac{p_k}{1 - p_y} + p_y - \frac{S_2}{S_1} \right). \quad (51)$$

1087
 1088 **Lemma 4** (Mass prefers higher-probability modes). *Fix y and consider the gradient flow equation 45–
 1089 equation 46. For any two distinct candidates $i, j \neq y$, their fractional growth rates satisfy*

$$1090 \gamma_i - \gamma_j = \frac{p_y}{1 - p_y} (p_i - p_j). \quad (52)$$

1091
 1092 *In particular, if $p_i > p_j$, then $\gamma_i > \gamma_j$.*
 1093

1094 **Proof.** Recall that for $k \neq y$ we defined the fractional growth rate
 1095

$$1096 \gamma_k = \frac{1}{p_k} \frac{dp_k}{d\tau} = p_y \left(\frac{p_k}{1 - p_y} + p_y - \frac{S_2}{S_1} \right), \quad (53)$$

1097
 1098 where $S_1 = \sum_{u \neq y} p_u = 1 - p_y$ and $S_2 = \sum_{u \neq y} p_u^2$. Taking the difference for any $i, j \neq y$ gives
 1099

$$1100 \gamma_i - \gamma_j = p_y \left(\frac{p_i}{1 - p_y} + p_y - \frac{S_2}{S_1} \right) - p_y \left(\frac{p_j}{1 - p_y} + p_y - \frac{S_2}{S_1} \right) \quad (54)$$

$$1101 = p_y \frac{p_i - p_j}{1 - p_y}. \quad (55)$$

1102 Since $p_y > 0$ and $1 - p_y > 0$, the sign of $\gamma_i - \gamma_j$ is the same as the sign of $p_i - p_j$, proving the
 1103 claim. \square
 1104

1105 Lemma 4 shows that, among all non-selected modes $k \neq y$, the unlearning flow *systematically favors*
 1106 *those with larger current probability*: probability mass removed from y is reallocated so that modes
 1107 with higher p_k always have a higher instantaneous growth rate than those with lower p_k . Thus the
 1108 unlearned mass is not spread uniformly across the tail, but preferentially flows into already promising
 1109 regions of the distribution.
 1110

1111 **Corollary 1** (The top alternative always gains probability). *Let $i^* \in \arg \max_{k \neq y} p_k$ be any most
 1112 probable candidate among the non-selected modes. Under the same gradient flow, we have*

$$1113 \frac{dp_{i^*}}{d\tau} > 0 \quad \text{whenever } p_y > 0. \quad (56)$$

1114 **Proof.** For i^* , Eq. equation 49 gives
 1115

$$1116 \frac{dp_{i^*}}{d\tau} = p_{i^*} p_y \left(\frac{p_{i^*}}{1 - p_y} + p_y - \frac{S_2}{S_1} \right). \quad (57)$$

1117 Since p_{i^*} is the largest element among $\{p_k : k \neq y\}$, we have
 1118

$$1119 S_2 = \sum_{k \neq y} p_k^2 \leq p_{i^*} \sum_{k \neq y} p_k = p_{i^*} S_1, \quad (58)$$

1120 so $S_2/S_1 \leq p_{i^*}$. Therefore
 1121

$$1122 \frac{p_{i^*}}{1 - p_y} + p_y - \frac{S_2}{S_1} \geq \frac{p_{i^*}}{1 - p_y} + p_y - p_{i^*} \quad (59)$$

$$1123 = p_y \left(\frac{p_{i^*}}{1 - p_y} + 1 \right) > 0. \quad (60)$$

1124 Since $p_{i^*} > 0$ and $p_y > 0$, the whole expression $p_{i^*} p_y(\cdot)$ is strictly positive, which implies
 1125 $\frac{dp_{i^*}}{d\tau} > 0$. \square
 1126

1134 **Interpretation.** Corollary 1 guarantees that, whenever a mode y is unlearned, at least one alternative
 1135 mode—the most probable one among $\{k \neq y\}$ —must receive a net gain in probability. Combined
 1136 with Lemma 4, this shows that the probability mass removed from y is redistributed in a *mode-favoring*
 1137 way: higher-probability alternatives grow faster than lower-probability ones, so mass is preferentially
 1138 pushed toward already plausible modes rather than spread uniformly over low-probability regions.

1139 Putting Lemma 1, Lemma 2, Lemma 4, and Corollary 1 together, we obtain a concrete picture
 1140 behind Fig. 2: standard RLVR updates are intrinsically self-reinforcing and mode-seeking, while
 1141 EEPO’s complementary unlearning step implements a *mode-favoring mass transport* that repeatedly
 1142 siphons probability mass out of the currently dominant sampled mode and reallocates it toward other
 1143 high-probability modes, especially the strongest alternative. This theoretical behavior matches the
 1144 empirical entropy and diversity trends observed in Fig. 4.

1145

1146 G CONVERGENCE OF EEPO’S POLICY UPDATE

1147 EEPO modifies only the *rollout generation* process, while the policy π_θ is always updated by an
 1148 importance-weighted GRPO objective that aggregates all collected trajectories. This can be regarded
 1149 as mixing on-policy and slightly off-policy samples and correcting the distribution mismatch with
 1150 importance sampling. Below we show that this policy update converges to a stationary point at the
 1151 usual $O(1/\sqrt{T})$ rate, where T is the number of outer iterations.

1152

1153 **Policy objective and update.** Let

$$1154 \quad J(\theta) \triangleq \frac{1}{n} \sum_{i=1}^n J_i(\theta) \quad (61)$$

1155 denote the GRPO-style objective over n trajectories, where each J_i encodes the clipped, normalized
 1156 advantage term for one question–trajectory pair (consistent with Eq. 2). For a trajectory τ_i we write
 1157 the corresponding policy-gradient term as

$$1158 \quad \nabla J_i(\theta) = \sum_{t=1}^{T_i} \nabla_\theta \log \pi_\theta(a_{i,t} | s_{i,t}) \hat{A}_i, \quad (62)$$

1159 where \hat{A}_i is the normalized advantage attached to τ_i .

1160 At outer iteration $t = 0, 1, \dots, T - 1$, EEPO collects a mini-batch \mathcal{B}_t of trajectories using its two-
 1161 stage rollout procedure. Let $\pi_{\text{roll}}^{(t)}$ denote the rollout distribution that actually generates \mathcal{B}_t . For each
 1162 $\tau_i \in \mathcal{B}_t$ we define the trajectory-level importance weight

$$1163 \quad w_i(\theta^t) \triangleq \frac{\pi_{\theta^t}(\tau_i)}{\pi_{\text{roll}}^{(t)}(\tau_i)}. \quad (63)$$

1164 In implementation these weights are clipped to improve numerical stability; for clarity of exposition
 1165 we write $w_i(\theta^t)$ for the (clipped) value used in the update.

1166 The policy update in EEPO can then be written as

$$1167 \quad \theta^{t+1} = \theta^t + \eta_t g_t, \quad g_t \triangleq \frac{1}{|\mathcal{B}_t|} \sum_{\tau_i \in \mathcal{B}_t} w_i(\theta^t) \nabla J_i(\theta^t), \quad (64)$$

1168 where $\eta_t > 0$ is the learning rate at iteration t . When $\pi_{\text{roll}}^{(t)} = \pi_{\theta^t}$ and $w_i \equiv 1$, Eq. 64 reduces to
 1169 standard on-policy GRPO; EEPO corresponds to the case where $\pi_{\text{roll}}^{(t)}$ is temporarily perturbed by the
 1170 unlearning step, and the weights w_i compensate for this perturbation.

1171

1172 **Convergence guarantee.** We now state a non-convex convergence result for the update rule 64.
 1173 We adopt common assumptions from stochastic non-convex optimization: J is L -smooth (Lipschitz
 1174 continuous gradient), the per-sample gradients ∇J_i are uniformly bounded by a constant $\sigma > 0$, and
 1175 the (clipped) importance weights are uniformly bounded by a constant $w_{\max} > 0$. Moreover, since
 1176 each $\tau_i \in \mathcal{B}_t$ is drawn from the same rollout distribution $\pi_{\text{roll}}^{(t)}$ that appears in the denominator of
 1177 w_i , the importance-weighted mini-batch gradient g_t is an unbiased estimator of $\nabla J(\theta^t)$ in the ideal
 1178 (unclipped) case; clipping only changes the constants but not the rate.

1188
1189 **Theorem G.1** (Convergence of EEPO policy update). *Assume that J is L -smooth, that $\|\nabla J_i(\boldsymbol{\theta})\| \leq \sigma$
1190 for all i and $\boldsymbol{\theta}$, and that the importance weights used in Eq. 64 satisfy $|w_i(\boldsymbol{\theta})| \leq w_{\max}$ for all $i, \boldsymbol{\theta}$.
1191 Let $\{\boldsymbol{\theta}^t\}_{t=0}^T$ be generated by Eq. 64 with step sizes $\eta_t = \eta = c/\sqrt{T}$, where*

$$1192 \quad 1193 \quad 1194 \quad c = \sqrt{\frac{2(J(\boldsymbol{\theta}^*) - J(\boldsymbol{\theta}^0))}{L w_{\max}^2 \sigma^2}}, \quad (65)$$

1195 and $\boldsymbol{\theta}^*$ is any maximizer of J . Then

$$1196 \quad 1197 \quad 1198 \quad \min_{0 \leq t \leq T-1} \mathbb{E}[\|\nabla J(\boldsymbol{\theta}^t)\|^2] \leq w_{\max} \sigma \sqrt{\frac{2L(J(\boldsymbol{\theta}^*) - J(\boldsymbol{\theta}^0))}{T}}. \quad (66)$$

1199 *In particular,*

$$1200 \quad 1201 \quad 1202 \quad \min_{0 \leq t \leq T-1} \mathbb{E}[\|\nabla J(\boldsymbol{\theta}^t)\|^2] = O\left(\frac{1}{\sqrt{T}}\right), \quad (67)$$

1203 *so the EEPO policy update converges to a stationary point of J at the standard non-convex rate.*

1204 **Proof.** By L -smoothness of J we have

$$1205 \quad 1206 \quad 1207 \quad J(\boldsymbol{\theta}^{t+1}) \geq J(\boldsymbol{\theta}^t) + \langle \nabla J(\boldsymbol{\theta}^t), \boldsymbol{\theta}^{t+1} - \boldsymbol{\theta}^t \rangle - \frac{L}{2} \|\boldsymbol{\theta}^{t+1} - \boldsymbol{\theta}^t\|^2 \\ 1208 \quad 1209 \quad = J(\boldsymbol{\theta}^t) + \eta_t \langle \nabla J(\boldsymbol{\theta}^t), g_t \rangle - \frac{L\eta_t^2}{2} \|g_t\|^2. \quad (68)$$

1210 Taking expectations over the mini-batch sampling at iteration t , we obtain

$$1211 \quad 1212 \quad 1213 \quad \mathbb{E}[J(\boldsymbol{\theta}^{t+1})] \geq \mathbb{E}[J(\boldsymbol{\theta}^t)] + \eta_t \mathbb{E}[\|\nabla J(\boldsymbol{\theta}^t)\|^2] - \frac{L\eta_t^2}{2} \mathbb{E}[\|g_t\|^2]. \quad (69)$$

1214 By the boundedness assumptions on ∇J_i and w_i ,

$$1215 \quad 1216 \quad 1217 \quad \|g_t\| \leq \frac{1}{|\mathcal{B}_t|} \sum_{\tau_i \in \mathcal{B}_t} |w_i(\boldsymbol{\theta}^t)| \|\nabla J_i(\boldsymbol{\theta}^t)\| \leq w_{\max} \sigma, \quad (70)$$

1218 so $\mathbb{E}[\|g_t\|^2] \leq w_{\max}^2 \sigma^2$ and thus

$$1219 \quad 1220 \quad 1221 \quad \mathbb{E}[\|\nabla J(\boldsymbol{\theta}^t)\|^2] \leq \frac{\mathbb{E}[J(\boldsymbol{\theta}^{t+1})] - \mathbb{E}[J(\boldsymbol{\theta}^t)]}{\eta_t} + \frac{L\eta_t w_{\max}^2 \sigma^2}{2}. \quad (71)$$

1222 Summing over $t = 0, \dots, T-1$ and using $\eta_t = \eta = c/\sqrt{T}$, we obtain

$$1223 \quad 1224 \quad 1225 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla J(\boldsymbol{\theta}^t)\|^2] \leq \frac{J(\boldsymbol{\theta}^*) - J(\boldsymbol{\theta}^0)}{T\eta} + \frac{L\eta w_{\max}^2 \sigma^2}{2} \\ 1226 \quad 1227 \quad = \frac{1}{\sqrt{T}} \left(\frac{J(\boldsymbol{\theta}^*) - J(\boldsymbol{\theta}^0)}{c} + \frac{Lc w_{\max}^2 \sigma^2}{2} \right). \quad (72)$$

1228 Choosing $c = \sqrt{2(J(\boldsymbol{\theta}^*) - J(\boldsymbol{\theta}^0))/(Lw_{\max}^2 \sigma^2)}$ minimizes the right-hand side and yields the
1229 desired bound. Finally, $\min_t x_t \leq \frac{1}{T} \sum_t x_t$ for any nonnegative sequence, which gives the stated
1230 result. \square

1231 **Remark.** This result depends only on the fact that EEPO’s two-stage rollouts are properly
1232 reweighted by the corresponding importance ratios $\pi_{\boldsymbol{\theta}}(\tau)/\pi_{\text{roll}}^{(t)}(\tau)$. The unlearning step changes
1233 the rollout distribution $\pi_{\text{roll}}^{(t)}$ (and hence the distribution of trajectories), but it does not change the
1234 form of the policy update in Eq. 64. Therefore, under the same mild assumptions as standard
1235 importance-weighted policy gradient, EEPO achieves the usual $O(1/\sqrt{T})$ convergence rate to a
1236 stationary point; the sample-then-forget mechanism affects which trajectories are seen, but not the
1237 optimization stability of the policy.

1242 **H THE USE OF LARGE LANGUAGE MODELS**
12431244 In preparing this manuscript, we used a large language model (LLM) solely for polishing the writing
1245 style and improving the clarity of the manuscript. The LLM was not used for generating research
1246 ideas, designing experiments, conducting analyses, or deriving results. All scientific contributions,
1247 including the conceptualization, methodology, experiments, and conclusions, were developed entirely
1248 by the authors.
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295