Published as a conference paper at ICLR 2026

DEPTHLM: METRIC DEPTH FROM VISION LANGUAGE
MODELS

Zhipeng Cai'*, Ching-Feng Yeh'!, Xu Hu', Zhuang Liu?, Gregory P. Meyer', Xinjie Lei',
Changsheng Zhao', Shang-Wen Li', Vikas Chandra', Yangyang Shi'

'Meta, 2Princeton University

* Project lead & corresponding author (czptc2h @ gmail.com)

Question: How far is this

o
point from the camera? g Z;:z:;t;
« Ground Truth: 15.45m £ Unidepth
Sedsulisan 2 o
+ Ours: 14.37Tm E Metric3DV2 0.809

UnidepthV2
Qwen2.5-VL (72B) 0.226
Seed1.5-VL [[0.263

0.908

Q.“elry each 2 Gemini2.5-Pro [E 0.357
pixe =
independently > GPT-5 0368
Ours (3B) | 0839
0! 0 02 04 06 08 1
Input o1 (M
(b) Point clouds generated by DepthLM. (c) Accuracy 61(1) over 4 datasets (Nuscenes,

ETH3D, sunRGBD, ibims1).

Figure 1: We propose DepthLLM, a simple and effective method that turns VLMs into strong
pixel-level metric depth estimators. The latest VLMs, including GPT-5, still struggle in under-
standing 3D from 2D inputs. Our model is the first VLM that has comparable accuracy to advanced
metric depth models, and can generate point clouds with accurate metric scales.

ABSTRACT

Vision language models (VLMs) can flexibly address various vision tasks through
text interactions. Although successful in semantic understanding, state-of-the-art
VLMs including GPT-5 still struggle in understanding 3D from 2D inputs. On
the other hand, expert pure vision models achieve super-human accuracy in met-
ric depth estimation, a key 3D understanding task. However, they require task-
specific architectures and losses. Such difference motivates us to ask: Can VLMs
reach expert-level accuracy without architecture or loss change? We take per-
pixel metric depth estimation as the representative task and show that the answer
is yes! Surprisingly, comprehensive analysis shows that text-based supervised-
finetuning with sparse labels is sufficient for VLMs to unlock strong 3D under-
standing, no dense prediction head or complex regression/regularization loss is
needed. The bottleneck lies in pixel reference and cross-dataset camera ambigu-
ity, which we address through visual prompting and intrinsic-conditioned augmen-
tation. With much smaller models, our method DepthLM surpasses the accuracy
of most advanced VLMs by over 2x, making VLMs for the first time comparable
with pure vision models. The simplicity of DepthLM also enables a single VLM
to cover various 3D tasks beyond metric depth. Code and model are available at
https://github.com/facebookresearch/DepthlLM Officiall
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1 INTRODUCTION

Understanding 3D from 2D inputs lies at the core of many applications, such as self-driving and
robotics. Pure vision models (Hu et al.||2024; Bochkovskii et al., [2024)) achieve super-human accu-
racy through task-specific architectures and complex training losses, which often require drastically
different design for different tasks. Vision language models (VLMs) (Liu et al.,2023) connect visual
inputs with language models, making it possible for a unified model to flexibly handle diverse vision
tasks through language interactions. However, Fig. [I|shows that even the most advanced VLM still
struggle with basic 3D understanding, under-performing pure vision models by a large margin.

In this work, we use the classic 3D understanding task, pixel-level metric depth estimation, as the
representative and conduct comprehensive analysis on different aspects of VLMs. Surprisingly, we
show that the poor 3D understanding of VLMs is not due to the lack of dense prediction head or
complex regression/regularization losses. We propose DepthlLM, a simple yet effective method that
can turn VLMs into strong metric depth estimators without loss or architecture change.

At the core of DepthLM are 1) visual prompting, where we render markers on images rather than
putting coordinates in text prompts, so that VLMs can accurately understand pixel locations, 2)
intrinsic-conditioned augmentation, where we unify the focal length of different images to resolve
camera ambiguity and enable zero-shot generalization, 3) sparsely labeled images with text-based
supervised fine-tuning (SFT) (Wei et al.,2021)), where we can use 1 labeled pixel per training image
to enable strong 3D understanding. We also investigate reinforcement learning (RL) (Kaelbling
et al., |1996) for model training. Interestingly, both SFT and RL can learn 3D understanding, while
SFT is more efficient. We curate public datasets into a VLM benchmark suite, DepthLMBench, to
train VLMs and directly compare with pure vision models in 3D understanding.

With a 3B model, DepthLM outperforms most advanced and much larger VLMs including GPT-
5 (Singh et al., [2025)), achieving over 2x accuracy (67 (Ranftl et al.l [2020)) improvement across 4
indoor and outdoor datasets (Fig. [Ic). DepthLM also outperforms DepthPro (Bochkovskii et al.|
2024) and Metric3Dv2 (Hu et all 2024), demonstrating for the first time that VLMs can match
the accuracy of advanced pure vision models, and generate a high quality point cloud of an image
with an accurate metric scale (Fig. [Ib). Importantly, all these results are achieved with standard
VLMs and text interactions, no dense prediction head or extra module is needed. The simplicity of
DepthLLM also makes it more flexible and scalable than expert pure vision models. With the same
framework, DepthLM naturally allows us to train a unified VLM, achieving high accuracy on diverse
and complex 3D tasks involving reasoning, multi-point and multi-image understanding.

2 RELATED WORK

Metric Depth Estimation. Metric depth estimation is a classic 3D understanding task that predicts
the depth of a pixel in meters. ZoeDepth (Bhat et al., [2023) and Metric3D series (Yin et al., 2023;
Hu et all [2024) pioneered the efforts of zero-shot metric depth estimation. ZoeDepth trained two
prediction heads for indoor and outdoor scenes respectively, and used a router to automatically
decide which head to use given the input. Metric3D leveraged the camera intrinsics information to
normalize either the input images or the output labels so that the model could effectively learn a
unified metric scale of the world even when mixing with data from different types of cameras. To
remove the need of camera intrinsics, recent works (Bochkovskii et al., [2024; [Piccinelli et al., 2024}
2025; Wang et al.| 2025; [Zeng et al., [2024) designed specific architectures or leverage language
priors to predict the intrinsics of the input directly. This work shows that handling camera ambiguity
is also essential in VLMs. Through comprehensive analysis, we find that augmenting inputs is more
effective for VLMs than other approaches.

VLMs for 3D understanding. Spatial VLM (Chen et al., 2024)) pioneered the work of 3D under-
standing with VLMs. It turned the output of pure vision models into text prompts for training.
SpatialRGPT (Cheng et al., 2024) extended this idea where besides using templates to generate the
prompts, it leveraged text-based LLMs to generate complex reasoning questions. However, knowl-
edge distillation from a complex pipeline with various pure vision models will accumulate errors
in training data. Focusing on object-level tasks also makes these VLMs hard to compare with pure
vision models, making it unclear on how far existing VLMs are from advanced pure vision models.
SpatialBot (Cai et al.,|2024) leverages the depth map derived from pure vision models (Bhat et al.,
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2023) to enable pixel-level 3D understanding. Such setting not only requires extra modules in the
architecture, but also limits the tasks it can handle. Without involving more expert vision models,
it struggles in more complex multi-image tasks such as camera pose estimation. Recent works (Xu
et al., 2025} |Guo et al.|[2025)) also studied pixel-level metric depth estimation with VLMs. However,
they did not release models or investigate the cause of the performance gap between VLMs and pure
vision models. As a result, their accuracy was still distant from pure vision models.

3 DEPTHLM

To understand why VLMs are behind pure vision models on 3D understanding, we first conduct
comprehensive analysis on major VLM components except the architecture that we do not change.
They include prompt design (Sec. [3.1)), training losses (Sec. and mix-data training (Sec. [3.2).
Then we propose our final method inspired by the analysis findings (Sec. [3.4).

DepthLMBench. We curate a mixture of public datasets widely used in pure vision models into
DepthLMBench, a new benchmark suite to enable the training of VLMs for 3D understanding and
directly compare with pure vision models during evaluation. For both training and evaluation data,
we convert the numerical 3D labels into text with template based approaches in Sec.

For training, we mix 7 widely used datasets in pure vision models with indoor and outdoor scenes.
For outdoor scenes, we use Argoverse2 (Wilson et all 2023), Waymo (Mei et al) 2022), and
NuScenes (Caesar et al., [2020). For indoor scenes, we use ScanNet++ (Yeshwanth et al.l [2023)),
Taskonomy (Zamir et al., 2018), HM3d (Ramakrishnan et al.,|2021)) and Matterport3d (Chang et al.,
2017). This results in around 16M training images (see Appendix [A.2]for details). Pure vision mod-
els (Bochkovskii et al.| [2024; Piccinelli et al., [2025) often mix > 20 datasets for training, including
a large portion of synthetic data. Empirically, low quality and synthetic data do not benefit VLM
training without cleaning, hence we only use the high quality datasets above for simplicity.

For evaluation, we mix 8 datasets including both indoor and outdoor scenes non-overlapping with
the training data, which allows us to thoroughly evaluate the performance of VLMs on metric depth
estimation. There are 3 outdoor datasets: Argoverse2, DDAD (Guizilini et al.| [2020), NuScenes;
4 indoor datasets: ScanNet++, sunRGBD (Song et al., 2015), iBims1 (Koch et al., 2018) and
NYUv2 (Silberman et al.l 2012); and 1 dataset ETH3D (Schops et al.,|2017) with both indoor and
outdoor scenes. Since existing evaluation datasets with accurate labels are limited, we still include
data from Argoverse2, Nuscenes and Scannet++ to ensure scene diversity, and reserve around 10
scenes per dataset that are non-overlapping with the training data for evaluation.

Analysis Setup. Unless otherwise stated, we finetune DepthLM on the pre-trained 3B model of (Bai
et al., 2025)) using text-based supervised fine-tuning (SFT) for analysis. See Sec. [4] for implemen-
tation details. We follow the standard in pure vision models (Bochkovskii et al., [2024) and use d;
to evaluate the prediction accuracy, i.e., ratio of the outputs that are within 25% difference to the
ground-truth (GT). We evaluate on each dataset for 8,192 random samples, which provides stable
statistics, i,e, increasing this number introduces negligible difference.

3.1 PROMPT DESIGN

We start our analysis from the simplest setup where the training and evaluation data are from the
same dataset to remove issues from mix-data training.

Text or marker-based pixel reference? VLMs have no pre-defined grid-shaped output domain as
pure vision models. How to prompt them to understand fine-grained pixel locations is an important
question, since slight error could make the model output depth on a completely different object,
leading to severe errors. Existing VLMs (Cai et al. 2024} |Guo et al., 2025)) often refer to a pixel
using its coordinate (X, Y) in text. However, our initial experiments show that VLMs struggle to
map text-based coordinates to the pixel locations, even when trained with them. We find that visual
prompting is an effective solution to this issue.

For visual prompting, we render markers pointing to the query pixel directly on the input image,
and ask: “How many meters is this point from the camera?”. See Appendix [A.]for the rendered
markers. During training, we set the answer to “The point is around X meters away from the cam-
era.”, where X is treated as normal text and is rounded to two decimal places, which prevents long
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floating point values and is sufficient for typical 3D understanding tasks. Empirically, VLMs are not
sensitive to the prompt we use. We do not ask for the principal (forward-backward) axis distance
as in pure vision models (Bhat et al.l 2023) since euclidean distance is more common in language
interactions and the two values can convert to each other using camera intrinsics. Sec.[3.4]shows the
prompt that can enable VLMs to predict principal axis distance.

As shown in Fig.[2] text-based pixel reference (similar to (Guo

et al., [2025), see Appendix [A.T) degrades the model accuracy BScanNet++ B Argoverse2

on both indoor and outdoor data. The gap is especially large Courdinatos infoxt Eglsgg
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scenes, leading to more boundary regions. Meanwhile, the ac- Marker (square) [ 0OTE
curacy remains similar with different marker shapes, showing arr (arow) [0
the robustness of visual prompting. Interestingly, Sec. ff]shows —_
that even for VLMs trained with text-based coordinates, apply- O O ey %fa) 07 075
ing visual prompting still benefits the accuracy. In summary

Finding 1. VLMs understand marker-based pixel reference Figure 2: Pixel reference.

much better than text-based one.

3.2 Loss

SFT or RL? Given the advancement of reasoning, reinforcement learning (RL) especially
GRPO (Shao et al., [2024) has become a popular alternative of SFT. To scale up training, it is
important to understand which method is more suitable for 3D understanding. GRPO leverages
format-based rewards for LLM training. Since metric depth estimation, as many 3D understanding
tasks, returns numbers as the answer, we can use regression-based metrics as the reward. We apply
the GRPO style prompt and ask: “How far is this point from the camera? Output the thinking pro-
cess in <think> </think> and final answer (the meter number only, without the unit) in <answer>
</answer> tags.”. We extract X from templates to compute the reward. Empirically, the model
shares similar reasoning traces for all inputs after GRPO training. An example answer is: “<think>
The point is located about X meters from the camera. </think>, <answer> X </answer>".

As shown in Fig. GRPO is not very sensitive to the reward function, we experiment with 1) d1,
2) negative AbsRel, i.e., the negative value of absolute relative difference (Ranftl et al., [2020), 3)
the negative Lo loss, and 4) the negative £1 loss. All metrics have reasonable accuracy. Overall, the
negative £ loss is a simple and effective reward. With this reward, we tuned other GRPO hyper-
parameters (see Appendix[A.4), and compare GRPO with SFT. As shown in Fig. [3b] given the same
number of training samples, SFT and GRPO perform similarly well. However, GRPO requires much
heavier per-sample compute than SFT (8-16 times slower in practice). Therefore, we conclude that

Finding 2. Though both SFT and RL can achieve reasonable accuracy, SFT is more efficient to
scale up VLM training for 3D understanding.
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(a) Effect of GRPO rewards (8K training samples). (b) Accuracy vs training data size.

Figure 3: SFT vs GRPO. (a) Negative £, (NegL1) is the best GRPO reward while most common
metrics have reasonable accuracy. (b) While SFT and GRPO achieve similar accuracy given the
same train dataset size, SFT has much higher per-sample efficiency. We use Argoverse2 dataset for
experiments, see Appendix [E] for cross dataset evaluation, which shows the same trend.
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Figure 4: Mix data training analysis. For (a) and (b), we train on 500K samples on the mixed
datasets of DepthLMBench, and report the average accuracy across all evaluation datasets.

3.3 MIiX-DATA TRAINING

How to handle camera ambiguity in VLMs? An important problem in metric depth mix-data
training is camera ambiguity, where different images can be captured by different cameras. Simi-
larly looking images from different cameras can have drastically different scale. Directly mix such
data for training is sufficient for relative depth (Ranftl et al., 2020). However, it makes the model
struggle to learn a generalizable world scale, failing on metric depth estimation (Yin et al. [2023).
Different strategies have been proposed to handle camera ambiguity in pure vision models (Bhat;
et al., 2023 |Y1in et al., [2023; Bochkovskii et al.l [2024). For VLMs, Seed1.5-VL (Guo et al., |2025)
put camera intrinsics into text prompts. However, what is the most effective approach for VLMs
remains unclear.

To answer this question, we compare four popular approaches: 1) Direct training with images of
varied focal lengths, hoping VLMs can implicitly learn to distinguish different cameras. 2) Adding
camera intrinsics explicitly into the text prompt as in Seed1.5-VL. 3) Predicting camera intrinsics
by letting the model output the camera ray direction before metric depth, similar to (Bochkovskii
et al.,|2024; Piccinelli et al.| [2025)). 4) Unifying the focal length through intrinsic-conditioned image
augmentation, similar to (Yin et al., 2023) (See Sec. for details). See Appendix for the
prompts of 2) and 3). As shown in Fig. 4a] unifying the focal length doubles the accuracy of other
approaches. Moreover, adding intrinsics explicitly in text or predicting camera intrinsics do not have
higher accuracy than direct mix data training. This result shows that

Finding 3. Without architecture change, VLMs struggle to distinguish different cameras, unifying
the focal length by intrinsic-conditioned augmentations can effectively resolve camera ambiguity.

Best unified focal length. In intrinsic-conditioned augmentation, we have to decide the value of the
unified focal length. As shown in Fig.[b] increasing the unified focal length, which increases image
sizes, benefits the accuracy until 1,000 pixels. Meanwhile, the accuracy changes <3% across a wide
range of values, showing the stability of augmentation-based approach.

How many labeled pixels we need per image? Pure vision models are trained on millions of
densely labeled images, where each image typically involve tens of thousands of labeled pixels.
Each VLM training sample only has sparsely labeled pixels by design. How many labeled pixels
do VLMs need to see per image in order to catch up with pure vision models is an interesting and
unexplored question. Fig. 4c| shows the accuracy of DepthLM with different number of training
samples. Before the dashed line (16M images), the model only sees 1 labeled pixel per training
image, which already achieves over 0.8 §; and as shown later in Sec.[d] already matches the accuracy
of pure vision models. Appendix ?? provides further analysis showing that increasing the number of
images is more effective than increasing the number of labeled points for DepthLM. This somewhat
surprising result shows that

Finding 4. VLMs can learn 3D understanding from as sparse as 1 labeled pixel per training image.
Image diversity is more important than label density for VLM training.

Increasing the number of images vs increasing label density. As mentioned in Finding [
DepthLLM benefits more from having more images than having denser labels. To further demon-
strate this point, we conduct an experiment using the Argoverse2 dataset by training the model with
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Figure 5: Increase number of images vs increase label density. Given the same training dataset
size (80K samples), increasing label density while proportionally decreasing the number of images
hurts the performance of DepthLM.
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the same number of samples, i.e., question-answer pairs, but vary the label density. Specifically, we
train the model on 80K argoverse samples, with 3 label density levels: 1) 1 point per image, i.e., SOK
different images with 1 labeled point per image seen during training. 2) 10 points per image, i.e.,
8K different images with 10 labeled points per image seen during training. 3) 100 points per image,
i.e., 800 different images with 100 labeled points per image seen during training. The evaluation is
done on our Argoverse2 evaluation split.

As shown in Fig.[f] increasing the label density, which reduces the number of images, significantly
reduces the accuracy. The accuracy difference was larger on 10 — 100 points change than on 1 —
10 points change.

3.4 FINAL METHOD

The findings from analysis inspire us to propose the complete method of DepthLM. Fig. [] shows
the method overview.

Pixel reference. Based on Finding (1} instead of putting pixel coordinates into the text prompt as
in previous VLMs (Cai et al., 2024; |Guo et al., [2025), we render visual markers, i.e., small arrows
pointing to the pixels, directly on the image to enable accurate pixel location understanding for
VLMs. After rendering the visual marker, we can use text prompts to enable various tasks.

Architecture and training. We finetune our models from pretrained VLMs without architecture
change. Based on Finding [2] we apply standard SFT with the next token prediction paradigm and
the cross-entropy loss on the text tokens. As suggested by Finding[d} no regression or regularization
loss used in pure vision models is needed.

Resolve camera ambiguity. Based on Finding 3] we resize the input image before rendering mark-
ers to unify its focal length. For simplicity, we assume the input image is undistorted and fol-
lows the pinhole camera model (Hartley & Zisserman, 2003). We resize the original input image
T € RW*Hx3 into 7/ € RW'*H' >3 where W' = J}—:W and H' = ’}—;‘H fr and f, are the focal
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length parameters (in pixels) of Z, and f,, = 1000 is the pre-defined unified focal length. Pure
vision models (Yin et al.}[2023} |Hu et al., [2024) also crop Z to a fixed size to have unified principle
points. As discussed in (Bochkovskii et al [2024)), such strategy makes the model sensitive to the
image size, requiring different croping sizes for different evaluation datasets to achieve the reported
numbers. In DepthLM, we found that as long as the focal length is unified, we can vary the training
image size using random crop so that during evaluation no cropping is needed.

Beyond metric depth — single VLM for flexible 3D understanding. We use metric depth esti-
mation to verify that VLMs can achieve comparable accuracy as pure vision models. However, the
value of DepthLM is beyond metric depth. Since no task-specific architecture or loss is needed, we
can apply the same DepthLM framework to train a unified model on various 3D understanding tasks.

As a concept proof, we expand DepthLM to five other representative tasks. They involve 1) prin-
cipal axis distance, which estimates the distance in the forward-backward direction rather than the
euclidean distance, and is the metric depth that pure vision models actually predict, 2) speed, which
estimates the speed needed to reach a point in a limited time, 3) time, which estimates the time
needed to reach a point given speed, 4) two point distance, and 5) metric scale camera pose, which
estimates the distance that the camera has moved between two images. Fig.[/| visualizes task exam-
ples and the outputs of GPT-5 and DepthLM. These tasks cover single image single point questions,
reasoning questions that require simultaneous 3D and math understanding, single image multi-point
questions, and multi-image questions.

4 RESULTS

Implementation. To simplify experiments and avoid the need of cropping after unifying the focal
length, we use VLMs that can accept images without resizing to a fixed shape. We choose the 3B
and 7B models of as the default VLM architecture. To demonstrate the general
applicability of DepthLLM, we also experiment with the 12B model of (Agrawal et al,[2024)), which
has a significantly different architecture. We train models with PyTorch on 23M-60M samples
from DepthLMBench, i.e., 2-4 labeled pixels per image, with 128 H100 GPUs for about 2-4 days
depending on the model. We sample equally from each dataset during training except that the weight
of Matterport3d is reduced to 0.1 of other datasets since the number of scenes is smaller. During
training, we randomly crop the images after normalizing the focal length, with width sampled from
1,000 to 1,400 pixels, and height from 700 to 1,200 pixels. During evaluation, we do not use
cropping. See appendix [A-6|for detailed hyper-parameters of individual models.

Main result. Table [I] and 2] compare DepthLM with existing VLMs and pure vision models re-
spectively. Most VLMs perform not much better than the naive baseline with constant outputs,
especially on the indoor data. Even GPT-5 and Gemini-2.5-Pro (Comanici et all, 2025) have be-
low 0.4 41, which is much worse than the worst performing pure vision model as shown in Fig.
Spatial-VLMs like SpaceLLLaVA (github contributors} [2024) (third-party implementation of
2024)) and Spatial-RGPT (Cheng et al., [2024) perform not better than generalist VLMs,
though they have been trained for object level 3D understanding. This is not only because they lack

Speed: How many meters Time: How many seconds
Principal axis @ persecondshouldwemove @ dowe need to reach this Two point
distance: How far is M i order to reach this point in point if we move towards it ° distance: How far
& this point from the exactly 4.0 seconds? with the speed of 6.0m/s? & are these 2 points Metric Scale Camera
camera in the forward from each other? @ Pose: How many meters
backward direction? « Ground Truth: 1.76m/s « Ground Truth: 7.75s & has the camera moved
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Figure 7: Scaling DepthLM to more complex 3D tasks.
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Table 1: VLM result. We tune the prompt for VLMs that are not trained directly on our task
to maximize their performance. State-of-the-art VLMs including GPT-5 have only below 0.4 §;.
DepthLLM, though orders of magnitudes smaller, achieves an over 2x improvement.

Out Out+In In
Argoverse2 DDAD NuScenes ETH3D ScanNet++ sunRGBD iBimsl NYUv2 Average

Naive Prediction with Constant Answers

61(1) of different methods

ALWAYS OUTPUT 2.0M 0.006  0.010 0.010 0.106 0.305 0.384 0.280 0.383 0.186
VLMs
QWEN2.5-VL (3B) 0.133 0.083 0.090 0.087 0.120 0.134 0.080 0.128 0.106
QWEN2.5-VL (7B) 0.077 0.120 0.070 0.126 0.135 0.089 0.160 0.168 0.118
QWEN2.5-VL (72B) 0.119  0.140 0.186 0.220 0.272 0.276 0.212 0.324 0.219
MoLmo (7B-D) 0.200  0.132 0.200 0.126 0.244 0.299 0.200 0.225 0.203
PIXTRAL (12B) 0.157 0.132 0.118 0.141 0.318 0.308 0.270 0.145 0.199
GEMINI-2.5-PRO 0280  0.252 0.365 0.328 0.380 0.270 0.466 0.394 0.342
GPT-03 0.208 0.283 0.309 0.305 0.375 0.426 0.375 0.470 0.344
GPT-5 0.218 0.302 0.382 0.313 0.428 0.471 0.307 0.540 0.370
Spatial VLMs
SPACELLAVA (13B) 0.100  0.067 0.083 0.090 0.269 0.233 0.208 0.178 0.154
SPATIALRGPT (8B) 0.055 0.046 0.100 0.220 0.346 0.369 0.240 0.265 0.205
VLMs Trained on Metric Depth Estimation
SEED1.5-VL (OFFICIAL SETUP) 0.009  0.012 0.013 0.219 0.495 0.321 0.459 0.412 0.243
SEED1.5-VL (OUR PROMPT) 0.040  0.074 0.028 0.309 0.593 0.689 0.627 0.841 0.400
OURS (3B) 0.808 0.724 0.870 0.745 0.838 0.850 0.890 0.868 0.824
OURS (7B) 0.833  0.747 0.865 0.718 0.850 0.859 0.920 0.915 0.838
OURS - PIXTRAL (12B) 0.734  0.670 0.819 0.653 0.834 0.786 0.870 0.799 0.771

Table 2: Comparison with pure vision models. For pure vision models, we use the numbers
reported in (Piccinelli et al., [2025), and (Bochkovskii et al., [2024)) if some numbers do not exist
in (Piccinelli et al., 2025). “-” means no result reported in previous papers. The last column reports
the relative accuracy improvement of pure vision models over our model, i.e., (6Y — §9urs) /69urs,
Our model is the first VLM that has comparable accuracy to pure vision models.

. Out Out+In In
91(1) of different methods " pyry 1y "\ Ccenes ETH3D  sunRGBD  ibims]  vs Ours (1)
ZOEDEPTH 0.272 0.283 0.350 0.867  0.580 -42.8%
DEPTHANYTHING - 0.354 0.093 0.850 0.714 -40.3%
DEPTHANYTHINGV2 - 0.171 0.363 0.724 - -48.5%
METRIC3D - 0.723 0.456 0.154  0.797 -36.6%
UNIDEPTH 0.858 0.846 0.185 0943  0.157 -27.3%
DEPTH PRO 0.299 0.566 0.397 0.831  0.823 -29.1%
METRIC3DV2 - 0.841 0.900 0.812  0.684 -3.8%
UNIDEPTHV2 0.882 0.870 0.852 0.964  0.945 +9.2%
OURS (7B) 0.747 0.865 0.718 0.859  0.920 -

pixel-level training data, but also because they do not consider camera ambiguity. Seed1.5-VL is the
only model that has been trained on the same task as DepthLM, however, its accuracy especially on
outdoor data, is still much worse than pure vision models.

Interestingly, instead of using the official setup from its open-source implementation, Seed1.5-VL
performs much better when we replace their text-based pixel coordinates with our marker-based
pixel reference, i.e., Seed1.5-VL (our prompt), supporting the generalization of our findings. But
even with our strategy, It still has only 0.4 §;, and has very low accuracy on outdoor data. In contrast,
DepthLLM has over 0.83 d; which surpasses the accuracy of Depth Pro and Metric3Dv2. This is the
first time that a VLM can match the accuracy of expert metric depth models on both indoor and
outdoor data. More importantly, DepthLM can be flexibly extended to handle various tasks beyond
metric depth estimation, with the same architecture and training framework.

In terms of the model size, our 3B model is orders of magnitudes smaller than baseline VLMs
like Qwen2.5-VL (72B) and Seed1.5-VL (20B Active MoE Parameters), but still improves their
01 by over 2x. If comparing to the base Qwen2.5-VL 3B model, the improvement is about 8x.
Our 7B model has slightly higher accuracy than the 3B model, reaching over 0.9 §; on ibims1 and
NYUV2. This result shows that larger model sizes help, but they are not necessary for VLMs to have
accurate 3D understanding. Meanwhile, our 12B model finetuned from (Agrawal et al.,|2024) also
has reasonable accuracy, though slightly lower than using the default architecture. This shows the
cross-architecture applicability of DepthLM, and the base model performance matters for DepthLM.
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Figure 8: Visualization. The scale of DepthLLM is close to GT from small indoor scenes to large out-
door scenes. Pure vision models produce smooth points, which is advantageous on non-boundary re-
gions. However, they also have over-smoothing effect on the (marked) boundary regions, leading to
flying points between two distinct objects. Interestingly, DepthLM naturally avoids over-smoothing
without enforcement during training or any post-processing.

Visualization. Interestingly, though only trained for single point prediction, DepthL.M can already
generate high quality point clouds simply by querying each pixel independently, without dense pre-
diction head. Fig.[8]visualizes the point clouds generated by pure vision models and DepthLM (7B).
We query on 10K pixels uniformly spanned on each image. The point cloud scale of DepthLM is
stable and reasonably close to GT across small indoor scenes and large outdoor scenes. Some pure
vision models have severe errors in the scene scale, such as Depth Pro on (b, e, ), Unidepth on (c),
and Metric3D on (a, b, ¢, d, f).

Another interesting observation is that pure vision models and DepthLM have different detail pat-
terns. Specifically, pure vision models generate point clouds with smooth surfaces, however, they
also over-smooth the boundary regions as marked in each image, which causes flying points and
thin objects merged into other objects (the road lights in (e) and (f)). Interestingly, without any
post-processing or loss for regularization, DepthLM naturally avoids flying points, showing clear
boundaries between different objects, with slightly higher noise in the smooth regions. Such prop-
erty is beneficial for tasks that require accurate boundary separation, e.g., judging whether a robot
can safely move between 2 objects. It also shows that our visual prompting effectively enables
accurate pixel location understanding in VLMs, since otherwise the boundaries would not be clear.

Other Tasks. To demonstrate the multi-task flexibility of DepthLM, we finetune a unified model on
the tasks proposed in Sec. [3.4]together with the metric depth task using our 7b model. The training
is done by equally sampling from each task. For simplicity, we only show the average number of
each task across multiple datasets. Please refer to Appendix [A7] for results on each dataset. The
hyper-parameters are the same as in the main experiments, except that we train for 40M samples.
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Table 3: Multi-task result. Since not all datasets have pose labels, we train the pose task on
Argoverse2 and evaluate on Argoverse2 and Nuscenes.

. Single image single point Reasoning Multi-point  Multi-image
91(1) on different tasks Distance  Principal axis distance Speed Time Two point distance Pose  Average
ALWAYS OUTPUT 2.0 0.186 0.172  0.087 0.094 0.119 0.189 0.141
QWEN2.5-VL (7B) 0.118 0.085 0.136  0.087 0.066 0.048 0.09
SPACELLAVA (13B) 0.154 0.163 0.116 0.122 0.157 0.047 0.127
SPATIALRGPT (8B) 0.205 0.132  0.167 0.122 0.143 0.195 0.161
SEED1.5-VL (our prompt) 0.400 0.174  0.223 0.119 0.101 0.000 0.170
Gemini-2.5-Pro 0.342 0.209 0.213 0.209 0.140 0.025 0.189
GPT-5 0.370 0.241  0.199 0.181 0.150 0.120 0.210
OURS (7B) 0.828 0.831 0.817 0.816 0.657 0.876 0.804

As shown in Table E} without our training, the Qwen2.5-VL (7B) model fails on all tasks, having
<0.1 67 on average. Advanced proprietary models including GPT-5 also struggle on more complex
3D tasks. As shown in Fig. [/} GPT-5 can return Om in camera pose estimation when the camera
actually moves over Sm. Such catastrophic failure is within expectation since these baselines cannot
understand the metric scale even in the basic depth estimation task. DepthLM achieves more than
0.8 41, outperforming the baselines by over 3.8x. Note that the gap between baselines and our
model is much larger than in Table [T} showing that VLMs have a larger room to be improved on
complex 3D tasks, and the effectiveness of DepthLM. This result also demonstrates the flexibility
of DepthLM over expert models, where it can cover diverse tasks with a unified architecture and
training framework.

5 CONCLUSION

We propose DepthLM, a simple and effective framework that can make VLMs strong pixel-level
metric depth estimators. Through comprehensive analysis, we show that VLMs under-perform pure
vision models in 3D understanding not because they lack extra modules like dense prediction heads
or complex training losses. The key problem lies in pixel reference and camera ambiguity, which
we effectively address with the proposed visual prompting and intrinsic-conditioned augmentation
approaches. These strategies allow for the first time to use text-based SFT with standard VLMs to
match the accuracy of expert pure vision models, and expand the same framework to cover various
tasks with a unified model. In terms of limitations, we focus on the simplest and most important
design of VLMs. We believe more fine-grained strategies can be investigated in the future to even
make VLMs surpass the accuracy of pure vision models. For example, design data filtering pipelines
to add more datasets. And training with diverse and complementary tasks to enhance generalization.
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A APPENDIX

A.1 EXAMPLES OF RENDERED MARKERS AND TEXT-BASED PIXEL REFERENCE

Figure 9: Actual markers rendered by our method. We show here 3 different types of markers
used in the experiment of Fig. El

Fig. 0] shows the actual markers rendered in the experiment of Sec.[3.1] Empirically, a marker of
roughly 5 pixels wide is enough for VLMs to recognize it. We also tried different markers and sizes
when evaluating baseline VLMs to maximize their accuracy.

For text-based pixel reference experimented in Sec. [3.1] we simply ask: “Given this image of size
(width = W, height = H), how far is the pixel at (X, Y) from the camera?”

A.2 STATISTICS OF DEPTHLMBENCH

Table 4: Statistics of different training datasets. We report <images available in the dataset>
/ <images used for our training>.

Dataset Argoverse2 Waymo Nuscenes ScanNet++ Taskonomy  HM3d Matterport3d
Number of images 3.5M/IM 1IM/700K  200K/200K 10M/1IM 4M/AM OM/9M  190K/190K

Table @] shows the number of images for each training dataset in DepthLMBench. Datasets like
Argoverse2 and ScanNet++ contain highly similar video frames, which do not help to improve the
performance. Hence, we only use a subset of the frames for training.

A.3 CROSS-DATASET EVALUATION FOR SFT vS GRPO EXPERIMENTS
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Figure 10: SFT vs GRPO with cross dataset evaluation. We show the result when we train on
Argoverse2 and evaluate on NuScenes. The trend is similar as in Fig. @

As mentioned in Sec.[3.2} SFT and GRPO have similar accuracy when trained on the same number of
samples. Here, we show the same experiment with cross-dataset evaluation to verify whether GRPO
can bring any benefit in the zero-shot scenario. We train the model on Argoverse2 and evaluate on
NuScenes. As shown in Fig. [I0} the trend of cross-dataset evaluation is similar to the evaluation on
the same dataset.
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A.4 GRPO HYPER-PARAMETERS

Table 5: Hyper-parameters of different experiments.

Experiment 3b SFT 7b SFT 12b SFT 3b GRPO
Number of training samples 35M 60M 23M -
Learning rate 5.2e-5 1.0e-4 5.6e-5 1.0e-5
Learning rate schedule Cosine with linear warmup  Cosine with linear warmup  Cosine with linear warmup Constant
‘Warmup ratio 0.1 0.1 0.1 -
Batch size 1280 1280 384 32
FSDP Yes Yes Yes No
Gradient clipping 0.1 0.5 1.0 1.0
Gradient checkpointing Yes Yes Yes Yes
Bfloat16 Yes Yes Yes Yes
Flash Attention 2 Yes Yes Yes Yes
Unified Focal Length 1000 pixels 1000 pixels 750 pixels 1000 pixels

For GRPO experiments, we use the group size of 8 with format reward, and set 5 = 0 during training,
where [ is the weight in the GRPO loss terms to control the similarity between the outputs of the
trained and the original models. Empirically changing the group size and learning rate schedules
do not affect the performance significantly, but having non-zero g tends to make the model underfit
the metric depth task, leading to much lower accuracy and long but unnecessary reasoning traces.
We apply format reward in GRPO, which did not improve accuracy but can make the model follow
the output template. Other standard hyper-parameters are shown in the last column of Table [5] To
make SFT hyper-parameters as close as possible to GRPO, we reduce the batch size to 32 during
the experiment of SFT vs GRPO and reduce the learning rate correspondingly following the square
root scaling rule (Li et al.| 2024)).

A.5 PROMPTS FOR CAMERA AMBIGUITY ANALYSIS

As mentioned in Sec. we compare different approaches for handling camera ambiguity to study
what the best approach is for VLMs. To add camera intrinsics information explicitly into the text
prompt, we follow the similar format of Seed1.5-VL, and ask: “Given this image of size (width =
W, height = H), where the camera intrinsics are (fx = A, fy = B, cx = C, ¢y = D) and the images
are without distortions, how many meters is this point away from the camera?”. To let the model
predict camera intrinsics explicitly, we add in the answer of each sample the camera ray direction
before the actual metric depth, so that the model can condition on the predicted intrinsics to decide
the metric depth more accurately. Specifically, we set the answer to “The point is around X degrees
to the right/left, Y degrees above/below and Z meters away from the camera.” We do not predict the
camera intrinsics (fx, fy, cx, cy) directly since even adding the exact values of them into the input
prompt do not help.

A.6 HYPER-PARAMETERS FOR DEPTHLM TRAINING

See Table [5] for the hyper-parameters of the models trained by SFT. For the 12B model
from (Agrawal et al.| 2024), we set the unified focal length to 750 pixels due to memory limits.

A.7 DEPTHLM MULTI-TASK PERFORMANCE ON EACH DATASET
We report in Table [6|the multi-task performance of DepthLM on individual datasets.

Table 6: MultiTask performance on individual datasets.

Method Out Out+In In .

Argo DDAD Nuscenes ETH3D ScanNet++ sunRGBD ibimsl NYUv2 Avg d;(1)
DISTANCE 0.809 0.728 0.850 0.708 0.856 0.843  0.950 0.876 0.828
PRINCIPAL AXIS DISTANCE  0.809  0.683 0.850 0.744 0.846 0.856  0.960 0.896 0.831
SPEED 0.801 0.722 0.843 0.721 0.844 0.819 0935 0.854 0.817
TIME 0.799  0.722 0.843 0.722 0.842 0.817  0.936 0.846 0.816
TWO POINT DISTANCE 0.651 0.423 0.670 0.479 0.784 0.727  0.760 0.759 0.657
POSE 0.989 - 0.762 - - - - - 0.876
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