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ABSTRACT

Zero-shot captioners are recently proposed models that utilize common-space
vision-language representations to caption images without relying on paired image-
text data. To caption an image, they proceed by textually decoding a text-aligned
image feature, but they limit their scope to global representations and whole-image
captions. We present a unified framework for zero-shot captioning that shifts
from an image-centric to a patch-centric paradigm, enabling the captioning of
arbitrary regions without the need of region-level supervision. Instead of relying
on global image representations, we treat individual patches as atomic captioning
units and aggregate them to describe arbitrary regions, from single patches to
non-contiguous areas and entire images. We analyze the key ingredients that enable
current latent captioners to work in our novel proposed framework. Experiments
demonstrate that backbones producing meaningful, dense visual features, such as
DINO, are key to achieving state-of-the-art performance in multiple region-based
captioning tasks. Compared to other baselines and state-of-the-art competitors,
our models achieve better performance on zero-shot dense, region-set, and a
newly introduced trace captioning task, highlighting the effectiveness of patch-
wise semantic representations for scalable caption generation. Code and data at:
https://anonymous.4open.science/r/Patch-ioner-5E84/.

1 INTRODUCTION

Image captioning is one of the most representative tasks in vision-language understanding and has
reached incredible accuracy thanks to the availability of pre-trained vision-language backbones and
large paired image-text datasets. In its basic formulation, a captioning model takes a full image as
input and autonomously decides which elements must be described and up to what degree. To enable
user guidance and produce more targeted descriptions, some previous works proposed region-level
captioning methods (Johnson et al., 2016; Cornia et al., 2019), which take as an additional input a
spatial indication — e.g., bounding boxes — specifying which image regions have to be described
and, possibly, in which order.

These region-level captioning methods require expensive manually labeled data to fully supervise the
model. Indeed, each sequence or set of bounding boxes for a given image should correspond to a
manually written ground-truth caption describing those objects. This fully supervised solution does
not scale properly.

In this paper, we propose a perspective shift that enables us to perform region-level captioning with
arbitrary spatial granularity — from a single image patch up to the entire image — in a zero-shot
fashion, i.e., without requiring any form of image-level or region-level supervision. Specifically,
instead of relying on the idea that the subject of a captioning method is the image — then potentially
conditioned on a set of sub-regions — we instead build on two straightforward yet powerful ideas: i)
the simplest element that we could caption is a patch, the atomic element of an image representation
in modern architectures based on vision transformers (Dosovitskiy et al., 2021), and ii) we can
easily aggregate multiple patch representations to produce descriptions for arbitrarily large — and
also potentially not contiguous — image regions. We present a zero-shot captioning framework
implementing these ideas. Our formulation offers maximum flexibility in zero-shot captioning tasks,
producing models that effortlessly generate captions for various aggregations of image patches,
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ranging from individual patches to larger image regions, up to providing a caption for the entire
image.

Despite the powerful perspective change that defines the patch as the new captioning unit, the
problem is now entangled in a simple yet critical question: how can we craft a model able to provide
patch-level captions without relying on any direct patch-level ground truth supervision?

In the last years, large pre-trained vision-language foundation models like CLIP (Radford et al.,
2021; Jia et al., 2021; Li et al., 2023a) solved many downstream tasks in zero-shot or even training-
free configurations. In particular, contrastively learned vision-language representations enabled
impressive results in zero-shot settings in image classification (Radford et al., 2021; Zhai et al., 2022),
open-vocabulary detection (Zhou et al., 2022; Minderer et al., 2023), and segmentation (Ghiasi et al.,
2022; Liang et al., 2023), or text-image retrieval (Kordopatis-Zilos et al., 2025). Image captioning,
however, cannot directly employ CLIP machinery at inference time to generate text, given that CLIP
is inherently a discriminative — and not a generative — approach. Only recently, image captioning
models became zero-shot by decoupling image encoding — where pre-trained discriminative models
like CLIP are used to create proper image and text representations — from the actual generative
module. This is the case for models like Nukrai et al. (2022); Li et al. (2023b); Gu et al. (2023);
Zeng et al. (2024); Fei et al. (2023); Yan et al. (2025); Zeng et al. (2025); Tewel et al. (2022); Su
et al. (2022), which i) employ CLIP to leverage a shared vision-language semantic space, and ii) train
a text decoder on solely text samples to recover the text back from the CLIP textual feature. This
requires nothing more than a pre-trained contrastive model and a large set of sole text samples to craft
a powerful captioner.

In this paper, we show that our framework can generalize this core idea and that, under this formulation,
many zero-shot captioners, paired with the right components, can be easily restructured to perform
zero-shot region-based captioning. Therefore, we identify and study in detail the most critical
components of this novel zero-shot region-based captioning framework. Particularly, we focus our
attention on the pre-trained vision-language contrastive backbone, which should be able, unlike CLIP,
to create meaningful patch representations. To this aim, we largely explore DINO-based (Caron
et al., 2021; Oquab et al., 2024) variants, having better localized capabilities than CLIP. We further
expand the study of our framework, addressing multiple modality-gap mitigation strategies that help
the text decoder to be trained only on text without having access to paired image-text features, as
well as studying different patch aggregation methods.

By studying existing components and employing vision backbones able to output patch-level mean-
ingful representations like DINO, we show that we can enable many zero-shot captioners to reach
state-of-the-art or comparable results in many zero-shot captioning task variants requiring captioning
sub-parts of the entire image — dense captioning (Johnson et al., 2016), region-set captioning (Cornia
et al., 2019), up to the standard image captioning (Tewel et al., 2022) where the region to caption
extends over the entire image. To better showcase the effectiveness of our framework in extreme
patch-based captioning scenarios, we also introduce the zero-shot frace captioning task, which
requires generating a caption for a region within an image specified by a mouse trace.

To summarize, we propose the following contributions: a) we reformulate captioning by shifting
perspective from the image-to-caption approach to a patch-to-caption one, unifying local and global
tasks in one framework which does not require region-level supervision, b) we repurpose existing
models to work within this novel framework, by analyzing the role of the key components, with
a special attention to the vision backbone, c) we show the performance of these models on four
zero-shot captioning tasks that span different region granularity, from captioning few patches to the
whole image, showing the effectiveness of the proposed perspective shift proposed by our framework
despite its overall simplicity.

2 RELATED WORK

Language-aligned Dense Image Representations are crucial for our goal of captioning at patch level.
Vision-language models (VLM) like CLIP (Radford et al., 2021) introduced a powerful approach to
learning global modality representations in a shared space via contrastive learning, paving the way
to solve several downstream tasks, including captioning (Mokady et al., 2021; Cornia et al., 2024).
However, in zero-shot settings, CLIP-like representations are known to struggle with dense tasks
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Figure 1: Patch-centric framework for unified zero-shot captioning. A. Overview of our frame-
work. First, we extract language-aligned dense patch embeddings from the image using a VLM.
Given a region, we select the underlying patches and aggregate their features to obtain a region
representation. Finally, we obtain the region caption by applying a zero-shot text decoder, that is
a) conditioned on the latent region representation, b) trained on text-only data, and c) equipped
with a mechanism to handle the modality gap present in vision-language common spaces. This
enables regional captioning without requiring region-level supervision. B. By aggregating patch-level
features from arbitrary image regions, we can flexibly handle multiple captioning tasks across spatial
granularities in a unique model.

due to misalignment between local visual patches and fine-grained semantics (Zhong et al., 2022;
Ranasinghe et al., 2023; Bica et al., 2024). On the other hand, visual-only self-supervised models
(SSM) like DINO (Caron et al., 2021; Oquab et al., 2024) excel in local semantic modeling but lack
a bridge with language. Recent works like SILC (Naeem et al., 2024) and DINO.txt (Jose et al.,
2024) attempt to get the best of both worlds by combining DINO- and CLIP-like training objectives,
aiming to obtain language-aligned dense representations. INViTE (Chen et al., 2024) modifies CLIP’s
visual encoder by zeroing the attention weights from each patch to all the others in the last layers,
leading to more semantic patch features. DenseCLIP (Rao et al., 2022) and RegionCLIP (Zhong et al.,
2022) extend CLIP with additional region-level supervision. RegionCLIP leverages a region-proposal
network to construct region-text pairs from image-text datasets, while DenseCLIP introduces a
pixel-to-text matching loss to strengthen the alignment between local regions and textual concepts.
Other methods instead exploit already existing VLMs and SSMs to get the same properties with
minimal or no training: Talk2DINO (Barsellotti et al., 2024) connects language to the DINOv2 space
by mapping CLIP textual representations to DINOv2 patches. ProxyCLIP (Lan et al., 2024) instead
leverages DINO’s attention maps to improve the local properties of the CLIP visual embeddings of
patches.

Zero-shot Image Captioning methods rely mostly on global CLIP representations to guide text
generation. Early-guided decoding methods take CLIP visual features as input and introduce
adaptation techniques to reduce the visual-textual modality gap (Liang et al., 2022). DeCap (Li et al.,
2023b) projects CLIP visual features into a more text-aligned space using a memory of texts as basis,
while CapDec (Nukrai et al., 2022) and CLOSE (Gu et al., 2023) inject noise during text-only training
to enable decoding also from the CLIP visual space. To improve the generation ViECap (Fei et al.,
2023), MeaCap (Zeng et al., 2024), MERCap (Zeng et al., 2025) and EntroCap (Yan et al., 2025)
leverage external knowledge to condition the decoding together with the CLIP image representation.
Late-guided decoding methods instead use CLIP as a scoring or optimization signal rather than direct
input. ZeroCap (Tewel et al., 2022) leverages CLIP gradients to steer the cached context during
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text generation, while MAGIC (Su et al., 2022) optimizes token selection based on CLIP similarity
scores. However, all the above approaches rely on global representations, which are not well-suited
for capturing localized semantic details, making them suboptimal for patch-level or region-level
captioning in zero-shot settings.

Region-level Captioning comprises several tasks in which models are asked to produce natural
language descriptions based on sub-parts of an image. They pose additional challenges as naively
captioning the cropped regions or feature maps often induces a loss of the global context of the
image and, thus, misinterpretation of the region. For this reason, zero-shot solutions to this family of
problems are still underexplored. For controllable captioning (Cornia et al., 2019) — the generation
of an image caption controlled by a set or sequence of regions — and dense captioning (Johnson
et al., 2016) — the localization and captioning of salient regions of an image — state-of-the-art
solutions like CAG-Net (Yin et al., 2019), GRiT (Wu et al., 2024), ControlCap (Zhao et al., 2024),
and FlexCap (Dwibedi et al., 2025) provide good performance but need supervision with ground-truth
boxes. Recent works (Guo et al., 2024), (Hua et al., 2025) moved towards the direction of arbitrary
regions captioning exploiting region-level supervision, and the Localized Narratives dataset Pont-
Tuset et al. (2020a) — comprising images, timed captions, and timed mouse tracks — provide the
ingredients for evaluating captioning also at track- or patch-level. We propose a unique framework to
tackle captioning at various granularities, from image- to patch-level, in a zero-shot setting.

3 A PATCH-CENTRIC FRAMEWORK

3.1 MOTIVATION AND FORMULATION

Learned region fusion requires regional data. Traditional regional captioning (Johnson et al.,
2016; Dwibedi et al., 2025; Zhao et al., 2024) follows an early injection of region specification
in the model. Formally, given an image [ and a region R, the region caption ¢ is modeled as
t = D(I, R). Such models require region-caption annotations and often use dedicated models or
losses per captioning task or granularity. A step forward can be moved by introducing a formulation
which disentangles image encoding and postpones region specification, defining ¢t = D(¢(I), R),
where ¢ (I) provides a visual representation of the image independent of the region R, and D
performs late region selection and text decoding. In order to avoid training the whole pipeline using
region-level labels, we further decompose the decoder module D(+) into two distinct modules: a
parameter-free fixed aggregation aggp of patch-level representations, and an actual text decoder
¢(+) not directly conditioned on regions R, so that t = ¢(aggr(¢(I), R)). We will detail these two
factorized components in the following paragraphs.

Parameter-free patch aggregation. Let I € R >*"W >3 be an image split into non-overlapping
patches of size P x P. Each patch is encoded with a vision backbone 1,,, yielding a dense grid of
patch-level embeddings V = 1, (I) = {v;} € R7*#*P where v; € RP. Assuming that t,,(I)
extracts this spatial grid of patch embeddings, a region definition R selects a subset of patch features
that we aggregate to obtain the region embedding vy = agg (1, (I)). We describe this aggregation
asvg = Zie s w;Vv;, where S is the set of indices of patches that underlie the region, and w; are
aggregation weights. While several aggregation functions can be considered (e.g., uniform, gaussian,
attention-based), we found that the specific choice has limited impact in regional captioning (see
SM§8) and report results with mean aggregation (w; = 1/s|). Using a set operator as aggregation
gives us the flexibility to aggregate arbitrary sets of patches, and thus, define regions as boxes, masks,
traces, single patches, or full-image grids. Empirically, we also find that not all ¢, are suitable to
extracting patch-level meaningful visual representations; transformer architectures pretrained with
dense local contrastive objectives (such as DINO) are significantly more robust at the patch level, as
validated in §4.2.

Zero-shot decoding. We train a text decoder ¢ : RP — 7T using a prefix language modeling
approach, where the decoder reconstructs a caption ¢ € T from its text embedding ¢ (¢). If ¢,(¢) is
aligned to the visual encoder v, (I), we could directly decode the visual embeddings using a text-only
decoder trained on text-only data. In such a case, we can finally decode the region representation
into a natural language caption t = ¢(v ). However, the assumption that ¢(-) can digest features
from ,,(I) while being trained to reconstruct features from (t) is often too optimistic due to the
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prominent modality gap (Liang et al., 2022). In fact, text and image representations, despite being in
the same multimodal space, occupy different, separated subspaces. To obtain a decoder applicable to
visual embeddings, we experimented with two mitigation strategies for this gap. The first strategy,
following Li et al. (2023b), introduces a projection step at inference that maps visual features into
the text subspace using a memory of text embeddings. The second, inspired by Gu et al. (2023) and
Nukrai et al. (2022), trains the decoder under input perturbations, encouraging robustness so that
it can directly process visual embeddings. We analyze the effects of the modality gap mitigation
strategies in SM§9.

Overall, our formulation offers three main advantages: a) it is zero-shot by design, in the sense that it
only requires image-level textual descriptions to be trained and does not require paired image-text
samples to train the text decoder, b) any region (e.g., whole image, box, mask, free-form trace, single
point) is addressed identically, supporting a modular, general-purpose regional captioning pipeline,
and c) our method requires only a single forward pass of the vision backbone to extract patch features
for an entire image, which can then be reused to caption multiple regions without rerunning the full
pipeline for each one.

3.2 FROM PATCHES TO REGIONS

Building on patch-level zero-shot captioning, our framework can generate captions for arbitrary
regions of an image. A region is defined as a set of patches, and its representation is obtained by
averaging the embeddings of its constituent patches. This simple formulation unifies several existing
region-level captioning tasks, which differ only in how the relevant patches are selected, allowing
us to address them without task-specific modifications. In the following, we describe the tasks
considered in our evaluation and their induced patch selections.

Image Captioning involves generating a single caption that describes the entire image. To achieve
this, we derive a global representation v; = avg,(v;) by aggregating the feature embeddings of all
patches {v;} within the image I.

Dense Captioning requires locating salient regions in an image and generating their descriptions.
Following defined evaluation protocols (Johnson et al., 2016), we focus on captioning already defined
boxes, effectively removing the localization subtask, which can be tackled using additional region-
proposal models. Given a bounding box B and the set Sp of indexes of patches that intersect with B,
we obtain the representation of the region vp = avg;c g, (Vi)

Region-set Captioning consists of generating a single caption for multiple regions within an image,
where each region is specified by a distinct bounding box. Given an image I and a set of bounding
boxes B = {Bi, Bs,..., Bk}, we define Sp, as the set of patches that intersect with the k-th
bounding box in ‘B. To represent the entire set of regions, we aggregate the feature embeddings from
all selected patches across all bounding boxes, which results in a combined region-level representation
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Note that if a patch appears in more than one box, it is weighted more in the average.

Trace Captioning. To demonstrate the flexibility of our approach, we introduce Trace Captioning,
a novel task in which the region of interest is specified by a mouse trace T = {p1,...,pr} with
L points. Each point p; is mapped to the corresponding patch index ¢;, yielding the sequence
St = [i1,...,11]. The trace-level representation is then obtained by averaging the embeddings of
the selected patches

1
vV =
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L
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Unlike box-based settings, this formulation allows for free-form, user-specified regions and thus
enables interactive and fine-grained localized descriptions, expanding the scope of region-level
captioning.
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4 EXPERIMENTS

In this section, we first quantitatively assess the role of the backbone in our novel framework (§4.2).
Then, we measure the performance of our new formulation over state-of-the-art zero-shot captioning
methods, evaluating them region-specific zero-shot tasks (§4.3). Other interesting yet less influential
studies — like the role of the modality-gap mitigation strategy and the patch aggregation operator
aggp(+) — are available in SM §8 and §9.

To create a common ground, we first introduce the employed datasets and metrics in the following
section.

4.1 DATASETS AND METRICS

Trace Captioning. We build a benchmark for Trace Captioning exploiting Localized Narra-
tives (Pont-Tuset et al., 2020b) — a dataset in which annotators vocally described objects in images
while moving the mouse pointer over the described object. The dataset provides temporal annotated
voice transcriptions and mouse traces for the images of many standard captioning datasets. We took
the labeled COCO (Lin et al., 2014; Chen et al., 2015) with splits defined in Karpathy & Fei-Fei
(2015) and Flickr30K!(Young et al., 2014) test subsets to build the trace captioning evaluation
datasets. We split long traces and transcriptions for each image into sentences, and we discard the
parts of the traces that are not temporally located between the start and the end of each sentence. We
discarded noisy sentences — such as the ones describing image properties (The image is blurred, the
image is edited, ...) and rewrote each sentence removing uncertainties typical of voice descriptions
in a more concise and caption-like style through a few-shots prompted LLM (LLama 3 Dubey et al.
(2024)). After annotation cleaning, 51 COCO images resulted without clean sentences and were
discarded. Each sub-trace and relative sentence comprise an independent sample, that is, we ignore
the temporal information of consecutive sentences and focus on evaluating the description of each
sub-trace only. Samples and additional details are available in §10.

Dense Captioning. We assess the performance on dense captioning tasks following the evaluation
procedure of Johnson et al. (2016), omitting the bounding box proposal and evaluating only the
bounding box captioning task, using ground-truth boxes as input for the models. In addition to
standard caption metrics, for this task, we also report the mAP as originally defined by Johnson
et al. (2016). We use the Visual Genome (VG) v1.2 (Johnson et al., 2016; Krishna et al., 2017)
and VG-COCO test splits (Li et al., 2019). The former comprises 5000 images from VG, while the
latter contains 2476 images present in both VG and COCO. Both contain multiple bounding box
annotations per image with descriptions.

Region-Set Captioning We follow the evaluation protocol of Cornia et al. (2019) that originally
introduced region-set captioning. We use the Flickr30K Entities (Plummer et al., 2015) and the COCO
Entities (Cornia et al., 2019) datasets. Each record comprises an image, a set of bounding boxes of
variable length, and a ground-truth controlled caption. We evaluate on the test splits, comprising of
images in the Karpathy & Fei-Fei (2015) test splits, that consist of 3569 and 1000 images for COCO
and Flickr30k versions, respectively.

Image Captioning We follow the standard evaluation pipeline for zero-shot image captioning,
generating captions for the 5000 images in Karpathy’s COCO test split. We compare with these
state-of-the-art models: DeCap (Li et al., 2023b), CLOSE (Gu et al., 2023), ZeroCap (Tewel et al.,
2022), MAGIC (Su et al., 2022), ViECap (Fei et al., 2023), CapDec (Nukrai et al., 2022), EntroCap
(Yan et al., 2025), MeaCap2 (Zeng et al., 2024), and MERCap (Zeng et al., 2025). For DeCap,
ViECap, and MeaCap, we also report the best results reproduced by us.

Metrics. All datasets used in our evaluation provide a ground-truth caption for each annotation. We
therefore adopt standard captioning metrics to assess the similarity between generated and reference

"Licenses for COCO and Visual Genome are CC-BY 4.0. Flickr30k images are under the terms of Flickr’s
user agreement.

*We picked the MeaCaprn.1 s, which uses a GPT-2 decoder and achieves the highest scores in the zero-shot
captioning task.
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Captioning Task: Trace Dense Region-Set Image
(Dataset) (COCO) (VGvl.2) (COCO Entities) (COCO)
Encoder Backbone C P C P C P C P CLIP-S
CLIP CLIP B/16 109 750 109 742 416 78.8 42.1 84.0 66.2
DenseCLIP  CLIP B/16 186 753 199 752 51.0 77.6 28.0 77.0 57.3
INViTE CLIP B/16 13.8 764 168 773 433 78.9 213 79.1 60.6
ProxyCLIP  DINO B/8 + CLIP B/16 16.7 757 157 760 412 78.4 28.7 79.0 61.7
ProxyCLIP DINOv2 B/14 + CLIPB/16 165 757 155 76.0 40.6 78.5 274 178.6 61.0
DINO.txt DINOv2 B/14 232 788 234 785 918 86.3 678 872  70.8
Talk2DINO DINOv2 B/14 279 787 319 788 109.1 87.5 69.2 874 72.8

Table 1: Vision-Language Backbones. CIDEr (C) and RefPAC-S (P) across four captioning tasks.

captions. In particular, we focus on CIDEr (C) (Vedantam et al., 2015), which captures syntactic
overlap, and RefPAC Score (P) (Sarto et al., 2023), a more recent metric that quantifies semantic
similarity independently of caption phrasing. For completeness, results with other traditionally used
metrics — BLEU@4 (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005), ROUGE-L (Lin,
2004), and SPICE (Anderson et al., 2016) — are reported in supplementary materials, as they follow
the same trends. For the image captioning task, we additionally report CLIP-Score (Hessel et al.,
2021), which measures the alignment between an image and its generated caption in the joint CLIP
vision—language space. This metric is not applicable to region-set, trace, or dense captioning tasks,
where captions describe local regions rather than the entire image.

4.2 BACKBONE SELECTION

The choice of the visual backbone is crucial for our patch-centric framework, as the quality and
semantic richness of the patch features directly impact the captioning performance. We tested several
state-of-the-art vision-language models pre-trained without region-level supervision and evaluated
their effectiveness within the framework. We tested vanilla CLIP (Radford et al., 2021), three CLIP
adaptations for dense tasks — DenseCLIP (Rao et al., 2022), INVIiTE (Chen et al., 2024), and
ProxyCLIP (Lan et al., 2024) —, and two methods with visual encoders based on DINOv2 (Oquab
et al., 2023) — DINO.txt (Jose et al., 2025) and Talk2DINO (Barsellotti et al., 2024).

Patches are aggregated as described in §3.2, while for the zero-shot decoder, we align with the
setting of Li et al. (2023b), and use a prefix GPT-2 style decoder (SM§6 reports implementation
details), with a memory-based latent projection approach as mitigation strategy for handling the
modality gap. Specifically, before decoding, the region representation v is projected into the text
embedding space as a similarity-weighted linear combination of memory elements, vy = M «
with o = softmax(2M "v), where M = [my, ..., my] stores the text embeddings m; = 1 (t;)
and 7 > 0 controls the sharpness of the weighting distribution. This choice enables us to be directly
comparable with other works using the same architecture in the all the following experiments, besides
also performing the best among the tested zero-shot decoder methods (see SM§9). In SM§8, we also
study how the choice of the memory bank M affects the captioning performance, providing an upper
bound to metrics.

Table 1 shows that backbone effectiveness in our framework is closely tied to capturing fine-grained
local semantics. Standard CLIP performs poorly, indicating that its patch tokens lack the spatial detail
needed for our tasks (Mukhoti et al., 2023; Ranasinghe et al., 2023; Bica et al., 2024). Backbones
that strengthen CLIP local representations, such as INViTE and DenseCLIP, achieve stronger results,
supporting our hypothesis. The best performance comes from DINOv2-based models, including
DINO.txt and Talk2DINO, with the latter emerging as the most effective encoder. This underscores
the importance of semantically rich patch-level features for high-quality region-level captions. For
this reason, we show results using Talk2DINO as the default backbone in subsequent experiments.

4.3 COMPARISON WITH SOTA

Despite significant advances in zero-shot image captioning, we are unaware of any prior methods
specifically tailored for zero-shot regional captioning tasks. Existing zero-shot captioners are usually
evaluated only at the level of whole images, without any mechanisms to natively attend to arbitrary
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regions. To rigorously quantify the benefit of our approach, in Table 2, we compare against both
state-of-the-art zero-shot image captioners and adapted baselines: (i) state-of-the-art whole-image
zero-shot captioners in their standard setting or applied to region crops, simulating regional captioning
by isolating local content, and (ii) region-supervised encoders, thus outside our no-region-label setting,
that leverage mask-based (AlphaCLIP, Sun et al. (2024)) or crop-based (RegionCLIP, Zhong et al.
(2022)) attention coupled with the same zero-shot decoder, allowing them to attend to specific regions.
This design ensures that our evaluation covers the strongest available baselines for both image-level
and region-level zero-shot captioning. Note that we do not compare with large multimodal models
tackling regional understanding and captioning, such as Guo et al. (2024); Hua et al. (2025), as they
are outside of our assumptions on the available supervision by training on region-level data.

In addition to our strongest model (i.e., Talk2DINO with the memory-based mitigation strategy), we
also report other combinations that express existing zero-shot captioning approaches (CLOSE (Gu
et al., 2023), CapDec (Nukrai et al., 2022), VieCap (Fei et al., 2023), and MeaCap (Zeng et al., 2024))
but replacing the original CLIP backbone. Specifically, CLOSE and CapDec can be expressed by
choosing the noise-injection mitigation strategy and using the standard decoder pipeline described in
§4.2. The same applies to ViECap and MeaCap, although with the addition of extra knowledge in
the text decoding step: ViECap uses external entity-aware prompts, while MeaCap leverages also
structured concept retrieval from a knowledge base.

We use two datasets for each task — a COCO-derived dataset and an additional dataset such as Visual
Genome (Krishna et al., 2017) or Flickr30k (Young et al., 2014). Figure 6 shows qualitative results.

Patch-centric captioning excels in local, fine-grained tasks. In the trace and dense captioning
tasks, which emphasize local visual content, our patch-centric framework significantly outperforms
all baselines across metrics. For trace captioning (Table 2, first group), our patch-based formulation
outperforms whole-image captioners and crop-based adaptations. Models relying on global CLS
representations fail to capture the precise objects and attributes under the trace. Even AlphaCLIP,
that is a region-supervised backbone that can be naturally applied to traces, lags behind, underlying
intrinsic limitations of the pretrained CLIP backbone. Dense captioning shows a similar trend
(Table 2, second group), with our models outperforming baselines. For this task, we report crop-based
adaptations for DeCap, ViECap, and MeaCap, as they provide a stronger baseline with respect to
the same models applied to the global CLS (see Table 4 in SM). Although isolating regional content,
these models discard broader contextual cues that are crucial for coherent dense descriptions.

Patch aggregation extends seamlessy to context-aware captioning. On region-set captioning
(Table 2, third group), our models once again achieves state-of-the-art results, outperforming both
zero-shot baselines and region-supervised models. Note that the region-set captioning task tends
to align more closely with image-level captioning rather than strictly focusing on localized regions
(see Figure 6 and Figure 7 in SM), as regions are intended to control an image-level caption®. Thus,
global models also tend to perform well on those tasks, showing a narrower gap with respect to our
new state of the art. By aggregating patch embeddings from arbitrary and possibly disjoint sets of
regions, the model produces coherent and contextually rich captions that align with the collective
semantics of the chosen areas. In contrast, whole-image methods, including ViECap and DeCap,
cannot naturally incorporate regional cues, limiting their effectiveness in this setting. Importantly,
our patch-based aggregation even surpasses AlphaCLIP, which relies on explicit mask supervision.

Patch-centric models deliver comparable performance on whole-image captioning. In whole-
image captioning (Table 2, fourth group), our results remain competitive with the strongest zero-shot
captioners but are slightly behind dedicated image-centric architectures such as MERCap (Zeng
et al., 2025) and EntroCap (Yan et al., 2025). For this task, we report the performance of our models
using an attention-based weighting, when helpful, as it usually performs marginally better than the
standard average patch aggregation and thus represents the best available model for this task and
reaches the smaller gap with state-of-the-art models (see SM§8). Notably, adding structured external
knowledge or filtered retrieval (as in ViECap or MeaCap) on noise-based decoders improves fluency
and informativeness, suggesting such modules are complementary than substitutes for strong regional
semantics. However, they compare similarly to the model using the memory-based decoder.

3This is expected since the ground-truth captions in the COCO Entities dataset originate from the image-level
annotations of COCO, as stated by Cornia et al. (2019).
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Trace Captioning Dense Captioning Region-Set Captioning Image Captioning
COCO  Flickr30k VGv12 VG-COCO  COCO Entities Flickr30k Entities COCO Flickr30k
Model C P C P mAP C P mAP C P C P [§ P C P CLIPS C P CLPS
Whole-image Zero-shot Capfioners
ZeroCap (Tewel et al., 2022) cveri22 = - I = B = - - - = = - - 146 - = -
MAGIC (Su et 22) anxiv22 - - . - - - - - - - - - - 493 - - 115
CLOSE (Gu et 1covas = - [ - - - - - - - - - - 81.2 - -
CapDec (Nukrai et al., 2022) pip22 = - [ - - - - - - = - - - 918 - - 357
EntroCap (Yan et al., 2025) Ngucomras R - - - - - - - = - - 943 - = 41.5
MERCap (Zeng et al., 2025) aaaras 96.0 - 45.6

2023) 1ccvias 243 744 120 68.8 14.90° 26.4° 74.3° 15.2° 26.6° 74.3° 1027 850 31.8 74.9 89.7 885 756 29.8 80.6 70.5
MeaCap' (Zen al., 2024 22.5 744 12.6 69.8 15.01° 28.6° 75.1° 16.0° 28.9° 75.1° 979 852 386 76.4 86.0 886 778 40.1 828 739
DeCap' (Li et al., 2023b) jcrr23 20.5 753 11.2 71.0 17.75° 24.6° 77.8° 17.8° 24.9° 77.7° 95.1 874 39.4 78.8 874 906 793 400 848 763
With Region-level Supervision

VIiECap' (Fei e

RegionCLIP (Zhong et al., 2022) cyprz2 + Mem. (~DeCap) - - - - 1585 217 767 1601 210 754 - - - - 934 912 775 388 845 736
AlphaCLIP (Sun et al,, 2024) cypros + Mem. (=~ DeCap) 213 754 118 71.0 1463 19.1 739 1482 194 738 951 874 395 788 897 9Ll 782 409 854 750
Patch-based (Our Framework)

T2D + Mem. (=~ DeCap) 27.9 78.7 18.8 77.0 21.31 319 78.8 21.53 323 787 109.1 875 44.1 79.1 88.59 9020 76.0° 39.3% 8420 71.8%
T2D + Noise (=~ CLOSE, CapDec) 293 78.1 193 756 2026 263 77.0 2033 264 769 97.5 856 37.1 765 655 862 709 278 808 67.0
T2D + Noise + External knowledge (= ViECap) 282 782 185 762 1843 303 77.8 1843 307 777 109.3 867 378 77.8 88.50 89.20 7370 34.1° 82.8° 69.9¢
T2D + Noise + Filtered knowledge (=~ MeaCap) 274 78.8 203 773 18.66 319 789 1943 323 787 1044 869 423 786  83.0° 89.6° 74.8% 30.40 8440 7140

- reproduced by us. °: Model applied to image crops. 0 attention-based weighting.

Table 2: Comparison of our patch-centric framework, using Talk2DINO (T2D), with state-of-
the-art zero-shot captioning methods on trace, dense, region-set, and image captioning tasks. Our
approach consistently outperforms whole-image and region-supervised baselines in local, fine-grained
captioning tasks, while achieving competitive results on whole-image captioning. The table reports
CIDEr (C), RefPAC (P), mean average precision (mAP) for dense captioning, and CLIP-Score (CLIP-
S) when applicable; best and second-best results are highlighted in bold and underline, respectively.

Trace Image

: a bench sits on the beach next to
an. ZeroCap: a beachfront bench.

DeCap: a cat s sleeping on a cluttered desk. DeCap: a giraffe in a zoo with a city in the DeCap: a woman squatting on a bench with DeCap: a baseball player at bat getting DeCz
background. a cat. ready to hit the ball, th

Ours (T: DeCap p: A wooden bench sitting on top
Mem.): a plant in a vase sitting on a table. Ours (Talk2DINO + Mem.): a view of a (Crop): a a close up of a person stand- Ours (Talk2DINO + Mem.): of a sandy beach. Ours (Talk2DINO +
city with a sky in the background. GT: A ing by a person holding a phone. Ours a baseball player is swinging his bat as a Mem.): a bench sitting on the beach next to
sky. (Talk2DINO + Mem.): a black cat is sitting crowd watches. GT: a man swinging a base- the ocean. GT: A wooden bench sitting on
on a black bench. GT: black cat sitting on a ball bat as another looks on. abeach.

bench.

Figure 2: Qualitative results from finer (left) to coarser (right) tasks. Note the discrepancy of
predicted and ground-truth captions when an image-level (DeCap, DeCap (Crop)) or a CLIP-based
regional (CLIP + Mem.) captioner is applied, with respect to our Talk2ZDINO-based model.

5 CONCLUSIONS

We introduced a novel zero-shot captioning framework that shifts from an image-centric to a patch-
centric approach, enabling caption generation for individual patches and arbitrary aggregations
without any region or even image supervision. We rely on the strong spatial awareness of DINOv2,
whose local image patches have been effectively bridged with the text modality. Thanks to the
disentangled training of the decoder network, this flexible and scalable method sets the new state of
the art on various regional captioning tasks, including dense and region-based captioning, as well as
our newly proposed trace captioning.

Despite its simplicity, results show that our patch-centric approach can effectively bridge the gap
between local and global understanding in image captioning, providing a unified framework for multi-
granularity captioning tasks in a zero-shot setting. Moreover, our models require a single backbone
forward pass to caption multiple regions, facilitating practical viability in interactive applications.

Limitations and Future Work. Despite strong zero-shot performance, our model still lags behind
fully supervised, task-specific approaches. The contextual scope of each patch is fixed by the
backbone and is not adjusted to meet the user intents. On top of that, the modality jump introduces
noise that can cause hallucinations. Future work could incorporate weak supervision, e.g., image-level
captioning loss, to improve patch-level semantics in contrastively-learned representations, or refine
the patch-to-text projection to further reduce the modality gap in zero-shot settings.
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SUPPLEMENTARY MATERIAL

6 IMPLEMENTATION DETAILS

For the training of the textual decoder of the memory-based configuration ¢, we adopt a prefix
GPT2-style decoder-only Transformer with 4 attention heads and 4 layers, following the architecture
used by Li et al. (2023b). We train the model on captions from the COCO training set, which also
serves as the memory bank M for the projection mechanism, comprising approximately 500k texts.
We set the hyperparameters of the projection mechanism as in DeCap (7 = 0.01), and use the AdamW
optimizer with a weight decay of 0.01. Training proceeds for 10 epochs with a learning rate of 10 5
and a batch size of 64. A comprehensive overview of the framework operating in the DeCap setting
(with the projection mechanism as modality gap mitigation strategy) is provided in Figure 3.

For the external knowledge-based captioning models we performed a training of 15 epochs with a
batch size of 80 captions on the same GPT2-style textual decoder using a learning rate of 2 x 10~°
and a gaussian noise variance of 16 x 10~2 to replicate the experimental settings of Fei et al. (2023)
and Zeng et al. (2024).

All experiments were conducted on a single NVIDIA H100 GPU with 80GB of HBM3 memory.
Training took approximately 25 minutes per epoch.

7 BACKBONE DETAILS

We briefly summarize here the characteristics of the vision-language models we tested in our frame-
work.

e CLIP (Radford et al., 2021): A foundational model that learns a shared embedding space for
images and text through contrastive learning. While being the most used model for global
image-text alignment, its patch tokens are known to lack strong spatial and fine-grained
semantic information. The input resolution of its training is 224 pixel.

* DenseCLIP (Rao et al., 2022): A fine-tuned version of CLIP that incorporates a pixel-text
matching loss to enhance the model’s ability to understand local regions. The official
implementation input resolution is 640 pixel for the ViT-B/16 version.

* INVIiTE (Chen et al., 2024): This method modifies CLIP’s vision transformer to bring patch
tokens in the text space by disabling the self-attention mechanism. It employs the same
visual encoder of CLIP, trained at 224 pixel input resolution.

* ProxyCLIP (Lan et al., 2024): A model that leverages the local understanding of a DINO
backbone to improve CLIP’s patch-level representations. It achieves this by replacing the
attention maps in CLIP’s final layer with DINO’s attention maps, effectively transferring
DINO’s fine-grained spatial awareness to the CLIP embedding space. The DINO ViT-B/8
version was tested with images at 296 pixel resolution, while the DINOv2 ViT-B/14 at 518
pixel.

* DINO.txt (Jose et al., 2025): This model builds upon a frozen DINOv2 backbone, adding
learnable transformer blocks on top. It is then trained with a contrastive objective against
a text encoder to align both global and patch-level representations with language. The
DINOV2 backbone was trained at the resolution of 518 pixel.

» Talk2DINO (Barsellotti et al., 2024): This model creates a bridge between the CLIP and
DINOvV2 embedding spaces. It trains a projection to map CLIP text embeddings into the
DINOV2 patch space, using DINOv2’s highly meaningful attention maps to identify and
align with the most relevant patches during training. The DINOv2 backbone was trained at
the resolution of 518 pixel.

8 ADDITIONAL RESULTS: AGGREGATION STRATEGIES, INPUT RESOLUTION,
TEXT COLLECTION

We tested several patch aggregation strategies and input resolutions for our model and the other
baselines.
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Figure 3: Patch-level Captioning. Given an input image, we first extract dense patch-level repre-
sentations using a vision transformer backbone. For a selected patch, we apply the projection-based
mechanism introduced by Li et al. (2023b) to mitigate the modality gap and align its representation
with the text embedding space. Finally, the transformed embedding is fed into a text decoder trained
on a text-only corpus, generating a zero-shot caption for the patch.

Patch Aggregation. In cases where we are not captioning a single patch, we test different aggrega-
tion functions for merging the v; in a selected set .S of visual patches:

a) uniform, the average box patch representations;

b) gaussian, for rectangular configurations of contiguous patches — i.e., either the full image
or a bounding box; we consider a weighted average of patches representations where central
patches weigh more; specifically, we assign to each patch (a, b) coordinates in a uniform
square grid [—1, 1]? (i.e., the top-left and bottom-right patches have (—1,—1) and (1,1)

(a®+0%)

coordinates, respectively), and a weight of e~ in the average, and

c) attention, a weighted average of box patches representations, with patch weights defined as
the average attention map of the last layer of v,.

Input Resolution. For patch-based captioning, we followed Talk2DINO Barsellotti et al. (2024)
and used an input image resolution of 518x518, obtaining 37 14x14 patches per side when using the
Talk2DINO backbone. The original DeCap Li et al. (2023b), ViECap Fei et al. (2023), MeaCap Zeng
et al. (2024) implementations uses the CLIP B/32 backbone with 224x224 input images with 7
patches per side. We also tested with the CLIP B/16 backbone, resulting in 14 patches per side at
224x224 resolution, and with 592x592 input image size, to obtain the same number of patches as in
our framework (37 per side).

We report results of these additional configurations for all baselines: DeCap, ViECap, and MeaCap.
While the main paper reports only the best configuration per task and model, in this section, we report
and discuss the results of all the tested configurations. We perform these tests on COCO-derived
datasets and on VG v1.2 for dense captioning. We highlight the rows in the tables corresponding to
the configurations reported in the main paper.

Trace Captioning. Table 3 reports trace captioning results. We did not apply the gaussian weighting
scheme for this task, as the sparse discontinuous traces often do not identify a rectangular region
needed to apply this scheme. We notice that a) the simple average of the trace patches provides
the best performance in our framework b) as expected, using the CLIP B16 backbone, that extracts
finer patches, improves over the standard CLIP B32 backbone used in the baseline methods, and c)
resolutions higher than 224 only marginally improve performance for baselines in this task.

Dense Captioning. Table 4 reports the results of the dense captioning task. For our framework,
changing the weighting strategy does not cause significant performance changes. The best baselines
are the ones Region-based, which consist of applying the captioners to the CLS tokens of image crops
specified by the bounding boxes (e.g., DeCap @224 Crop). The difference between the CLIP B/16
and B/32 versions is usually small or negligible.

Region-Set Captioning. Table 5 shows the results in the region-set captioning task on COCO
Entities. The gap between zero-shot image captioners and our framework’s captioners narrows in
this task due to the more global nature of it, which requires the model to produce a caption for the
whole image while focusing on certain regions. Also in this task, the choice of weighting strategy
only marginally affects the performance of the models in our framework.
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Model # Patches  Backbone Input  Weighting B M R C S P
Image-based

DeCap@224 7 CLIP B32 CLS - 21 97 217 211 88 752
DeCap@224 14 CLIP B16 CLS - 22 98 218 213 87 754
DeCap@592 37 CLIP B16 CLS - 20 96 215 205 87 753
VIiECap @224 7 CLIP B32 CLS - 25 98 224 248 93 741
ViECap @224 14 CLIP B16 CLS - 25 99 223 247 95 745
ViECap @592 37 CLIP B16 CLS - 23 96 221 243 95 744
MeaCap @224 7 CLIP B32 CLS - 23 94 215 231 89 742
MeaCap @224 14 CLIP B16 CLS - 23 93 208 234 9.0 746
MeaCap @592 37 CLIP B16 CLS - 22 91 203 225 9.0 744

Patch-based (Our Framework)
T2D + Mem. (~ DeCap) @518 37 DINOv2 B14 Patches  uniform 2.5 10.7 232 279 12.6 78.7
T2D + Mem. (~ DeCap) @518 37 DINOv2 B14 Patches attention 2.4 104 22.7 276 120 78.1

Table 3: Trace Captioning results on COCO test set.

Model # Patches  Backbone Input  Weighting mAP M B R C S P
Image-based
DeCap@224 7 CLIP B32 CLS - 0.15 840 094 1561 1938 938 73.71
DeCap @224 14 CLIP B16 CLS - 0.14 848 095 1570 19.11 9.40 73.94
DeCap @592 37 CLIP B16 CLS - 0.15 837 092 1567 1853 926 7391

" ViECap@224 ~ 7 7~ CLIPB32 ~~ CLS - - 013 825 1.02 16.06 2418 9.97 7303
ViECap@224 14 CLIP B16 CLS - 0.14 830 101 1586 2381 991 7349
ViECap@592 37 CLIP B16 CLS - 0.14 817 100 1586 2326 9.82 7335

" MeaCap@224 ~ 7 7~ CLIPB32 ~ CLS - - 013 804 098 1540 23227 966 7297
MeaCap @224 14 CLIP B16 CLS - 0.13 801 1.03 1515 2337 949 7355
MeaCap @592 37 CLIP B16 CLS - 0.13 786 099 1513 2277 943 73.50
Region-based
DeCap@224 Crop 7 CLIP B32 CLS - 0.17 10.03 135 1820 23.61 1090 77.09
DeCap @224 Crop 14 CLIP B16 CLS - 0.18 1033 1.40 1844 2456 1128 77.76
DeCap@592 Crop 37 CLIP B16 CLS - 0.14 830 105 1639 1720 7.78 7547
ViECap @224 Crop 7 CLIP B32 CLS - 0.15 932 142 1779 2640 10.07 7434
VIiECap @224 Crop 14 CLIP B16 CLS - 0.16 959 146 18.03 27.13 1043 75.62
ViECap @592 Crop 37 CLIP B16 CLS - 0.12 783 1.14 1602 2020 744 7326

" MeaCap@224 Crop 7~ CLIPB32 ~~ CLS - - 0I5 964 146 1800 28.62° 1098 75.08
MeaCap @224 Crop 14 CLIP B16 CLS - 0.16 10.03 157 1845 30.53 11.51 76.35
MeaCap@592 Crop 37 CLIP B16 CLS - 012 793 119 16.17 2132 786 73.69

Patch-based (Our Framework)

T2D + Mem. (~ DeCap) @518 37 DINOv2 B14 Patches  uniform 021 10.63 136 1859 3194 15.03 78.82
T2D + Mem. (~ DeCap) @518 37 DINOv2 B14 Patches  gaussian 0.22 1082 143 18.82 3280 1548 79.14
T2D + Mem. (~ DeCap) @518 37 DINOv2 Bl4 Patches attention 021 10.31 1.27 18.17 30.58 14.72 78.69

Table 4: Dense Captioning results on VG v1.2 test set.

Model #Patches Backbone Input ~ Weighting B M R C S P
Image-based

DeCap@224 7 CLIP B32 CLS - 10.1 19.0 38.0 944 264 869
DeCap @224 14 CLIP B16 CLS - 10.0 194 383 951 268 874
DeCap@592 37 CLIP B16 CLS - 9.6 18.6 375 914 259 86.7
ViECap @224 7 CLIP B32 CLS - 112 182 389 1027 27.0 850
ViECap @224 14 CLIP B16 CLS - 11.3 183 38.6 1022 269 854
ViECap @592 37 CLIP B16 CLS - 10.8 17.8 379 992 265 850

" MeaCap@224 7 = CLIPB32 ~ CLS =~ - 104 177 370 979 259 852

MeaCap@224 14 CLIP B16 CLS - 10.1 175 355 965 257 854
MeaCap @592 37 CLIP B16 CLS - 93 169 346 91.1 255 850
Patch-based (Our Framework)

T2D + Mem. (~ DeCap) @518 37 DINOv2 B14 CLS - 9.1 169 350 894 254 855

T2D + Mem. (~ DeCap) @518 37 DINOV2B14 Parches uniform 115 193 388 109.1 294 87.5
T2D + Mem. (~ DeCap) @518 37 DINOv2 B14 Patches  gaussian 11.6 19.6 39.3 111.6 30.1 87.7
T2D + Mem. (~ DeCap) @518 37 DINOv2 B14 Patches attention 11.0 19.0 383 107.0 29.3 874

Table 5: Region-Set Captioning results for COCO Entities test set.
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Model # Patches  Backbone Input Weighting B M R C S P
Image-based
DeCap@224 7 CLIP B32 CLS - 2346 25.12 50.06 8740 19.14 90.58
DeCap@224 14 CLIP B16 CLS - 23.89 2551 5034 89.64 19.52 91.05
DeCap@592 37 CLIP B16 CLS - 2243 24.64 4925 8457 18.66 90.36

" ViECap @224~~~ 7~ CLIPB32 ~ CLS - 26.70 2399 50.85 89.67 17.54 8845
ViECap @224 14 CLIP B16 CLS - 263 240 503 895 17.6  88.8
ViECap @592 37 CLIP B16 CLS - 25.60 2338 4952 86.84 17.08 88.33

" MeaCap@224 ~ 7~ CLIPB32 ~ CLS - - 2457 2312 4768 86.66 1727 8876
MeaCap@224 14 CLIP B16 CLS - 236 227 455 851 173 89.0
MeaCap @592 37 CLIP B16 CLS - 22.01 21.87 4472 80.84 16.69 88.41
Patch-based (Our Framework)
T2D + Mem. (~ DeCap) @518 37 DINOv2 B14 Patches central patch 15.68 18.46 40.84 5553 12.66 84.26
T2D + Mem. (~ DeCap) @518 37 DINOv2 B14  Patches uniform 19.52 2149 4488 69.19 1559 87.36
T2D + Mem. (~ DeCap) @518 37 DINOv2 B14  Patches gaussian 21.17 22,62 46.62 76.79 16.73 88.36
T2D + Mem. (~ DeCap) @518 37 DINOv2 B14  Patches attention 23.64 2393 4854 8846 1821 90.21

T2D + Mem. (~ DeCap) @518 GT Memory 37 DINOv2 B14 CLS - 23.58 23.54 4771 8567 17.86 89.53
T2D + Mem. (~ DeCap) @518 GT Memory 37 DINOv2 B14  Patches attention 25.66 2477 49.83 93.87 19.09 90.70

Table 6: Image Captioning results on COCO test set.

Image Captioning. In Table 6, we report the results of standard zero-shot image captioning. In
addition to the already described weighting schemes, we test one additional configuration for our
framework that is central patch, where the decoding is applied to the central patch of the image.
We can observe that the most effective strategy for the image captioning task is attention. This is
coherent with results from Barsellotti et al. (2024), where they suggest the attention-weighted patch
means to use Talk2DINO for global tasks such as image-text retrieval.

Memory Bank. Considering that in the memory-based model of our framework (that is similar to
Li et al. (2023b)) we tackle the modality gap through a projection based on a collection of texts, we
tested how much the selection of the texts in the memory bank influences performance. In Table 6,
we also report the results obtained by that model when in its memory bank there are also ground-truth
captions of the test set (rows marked with GT Memory). This provides a sort of upper bound to
performance when varying the text collection used as memory. We observe that in this configuration,
the performance only slightly improves (+0.5%), indicating that the model is robust to the choice of
the memory bank.

9 MODALITY GAP: PROJECTION TO TEXTUAL SPACE VS TRAINING WITH
NOISE

In this section, we quantitatively assess the performance of two state-of-the-art solutions to overcome
the modality gap. In particular, we compared the configuration based on a memory bank of texts —
the one introduced in §3 — with an alternative solution based on noise injection during the decoder
training. Additionally, we include in our comparison a baseline with no modality gap mitigation (no
mitig.), to highlight the benefits brought by each strategy.

Training with Noise. Various works Gu et al. (2023); Nukrai et al. (2022) proposed zero-shot
image captioning solutions based on noise injection during the training of the text decoder. Through
this strategy, the trained decoders are more effective in understanding semantic representations, even
when those are not coming from the text modality. To implement this strategy in our framework,
we trained the textual decoder on the same collection of captions as for the memory bank-based
configuration. We adopted Talk2DINO Barsellotti et al. (2024) textual space for the decoder input
space, which is aligned to DINOv2 Oquab et al. (2023) with registers Jose et al. (2024). Following
the setting of Gu et al. (2023), we added Gaussian noise with o2 = 0.08 to the textual embeddings
while leaving the other parameters unchanged (as defined in §6). In the next paragraphs, we report
and compare the results for each task of Talk2DINO within our framework with the memory bank
(Memory) and with the training with noise (N oise).

In Table 7, we compare the two modality gap mitigation strategies across multiple captioning tasks,
and also report the performance of a baseline without any mitigation (no mitig.). The baseline
consistently underperforms compared to both the Memory and N oise configurations, indicating that,
like other contrastively learned image-text encoders Liang et al. (2022), Talk2DINO is also affected
by the modality gap. These results highlight the importance of explicitly addressing this gap to
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Table 7: Mitigation of Modality Gap. Comparison of Memory-based Projection (Memory) vs
Noise-trained Decoder (N oise) across tasks.

Trace Captioning (COCO) Dense Captioning (VG v1.2) Region-Set Captioning (COCO Entities) Image Captioning (COCO)
Mitigaion B M R C S P mAP M B R C S P B M R C S P B M R C S P CLIPS
nomitig. 1.2 9.1 183 147 85 751 0.18 9.7 0.7 159 17.8 10.2 752 5.0 15.0 294 59.4 21.1 822 9.9 17.7 36.8 43.7 12.3 822 69.6

Noise 3.0 11.5 24.7 29.3 123 78.1 020 104 1.2 17.8 263 12.6 77.0 10.5 184 372 97.5 267 856 19.6 21.5 454 65.5 155 862 709
Memory 2.5 10.7 232 279 12.6 78.7 0.21 10.6 1.4 18.6 31.9 150 78.8 11.5 19.3 38.8 109.1 29.4 875 19.5 21.5 449 69.2 156 87.4 728

achieve strong captioning performance. For Trace Captioning, the Memory method is slightly more
effective in the semantic metric RefPAC-S, while the N oise variant achieves marginally better scores
in CIDEr, ROUGE-L, METEOR, and BLEU @4, with a minimal gap between the two approaches. In
Dense Captioning, the Memory model consistently outperforms the N oise model across all metrics.
Similarly, for Region-Set Captioning, both methods achieve strong results, but the Memory method
shows a clearer advantage, particularly in tasks closer to the patch level. Finally, in Image Captioning,
the performance gap between the two architectures narrows, especially on the Flickr30k test split.
In this scenario, the Memory method performs significantly better when applied to the CLS token,
whereas patch aggregation produces comparable results. However, the metrics reveal conflicting
trends across different datasets.

Chosen Strategy. Based on the observed results, we selected the projection-based approach
(Memory) as the primary strategy for overcoming the modality gap in our framework. While
the noise injection method (N oise) yielded competitive performance across multiple tasks, the
Memory method demonstrated superior performance in dense captioning and region-set captioning,
as well as a clear advantage when applied to the CLS token in image captioning. Given these trends,
and considering the stability of the projection-based approach across different evaluation settings, we
adopted Memory as the default configuration for our framework.

10 TRACE CAPTIONING BENCHMARK GENERATION

We construct our Trace Captioning dataset from the Localized Narratives dataset Pont-Tuset et al.
(2020a). This dataset consists of mouse traces and their corresponding speech transcriptions, where
annotators describe objects in images while moving the mouse pointer over them.

The initial dataset samples include timestamped mouse traces and are composed of multiple sentences
that thoroughly describe the trace, with the generated descriptions following the order of the mouse
movement. However, our task does not require strict temporal coherence. Instead, we aim to generate
a single, concise caption that describes the specific area covered by the localized trace, rather than a
multi-sentence description.

To achieve this, we split the descriptions into individual sentences and align the traces accordingly.
We then refine the traces by removing intermediate periods caused by transitions between sentences,
which often occur when the annotator moves to a different region of the image. Specifically, we trim
each trace by removing the first and last 15% of points, eliminating these transitional segments.

Furthermore, we refine the captions by prompting the Llama3 8B model to rephrase the sentences,
removing vague or subjective phrases such as "there is," "we can see," or "on the left of the image,"
and replacing them with concise, objective descriptions that refer specifically to the region covered
by the trace. This rephrasing is crucial to ensure that each caption adheres to the standard format of
image-captioning datasets and focuses only on the precise part of the image that the trace corresponds
to. The LLM also helps identify and remove irrelevant sentences (e.g., "the image is blurred,"
"the image is edited"), which are then discarded along with their associated traces from the final
benchmark.

Figure 4 shows the full prompt used to guide the Llama model in refining and cleaning the descriptions.
Figure 5 illustrates how the initial narrative samples are transformed into final trace captioning samples
through the process of trace splitting and caption rephrasing.
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11 MORE QUALITATIVE RESULTS

Additional qualitative results are shown in Figures 6 and 7. Note that the first rows of Figures 6 and 7
contain also qualitative results for single patch captioning, for which we do not have annotated data
to report quantitative results.

As can be noticed in Figures 6 and 7, the Region-Set Captioning task tends to align more closely with
image-level captioning rather than strictly focusing on localized regions. This is expected since the
ground-truth captions in the COCO Entities dataset originate from the image-level annotations of
COCO, as stated in Cornia et al. (2019).
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I have image descriptions derived from spoken narratives. These need to be
— rewritten as concise, stand-alone captions in the style of the image-caption
— datasets. Follow these rules:

- Remove unnecessary narrative phrases like "we can see," "there is," "in this

— 1image, " etc.

— Ensure the caption is standalone and descriptive.

- Use simple, objective language that highlights key elements.

- Keep it concise-—-just a single phrase.

- Follow the classical style of caption datasets.

- If the description is vague, subjective, or does not describe a concrete visual
— element (e.g., "The image is taken indoor," "This image is blurred"), return
— “<INVALID>".

- Wrap the output in “{}° and add nothing else.

### xxExamples:xx
— *xxInput:+xx "We can see a young elephant stands which is near the water in a
— wooded area."

**xOutput:++ {A young elephant stands near the water in a wooded area.}

— *xxInput:xx "In this image I can see some young children kicking a soccer ball
— in a field."
**xOutput:+* {A group of young children kicking a soccer ball around a field.}

— *xxInput:+x "In the left of the image, we see a pole that has two green street
— signs on it."
**xOutput:+* {A pole has two green street signs on it.}

— *xxInput:+x "We can see two surfboards which are stuck in the sand along the
— seashore."
**xOutput :x* {Two surfboards stuck in the sand along the seashore.}

— *xxInput:+xx "This image consists of a man which rides a wakeboard behind a
— boat."
**xOutput:+* {A man rides a wakeboard behind a boat.}

— *xxInput:xx "In the background, there are a bunch of sticky notes and a pair of
— scissors."
**xOutput:+* {A bunch of sticky notes and a pair of scissors.}

- *xxInput:+x "It looks like a sepia-toned photograph of a motorcycle underneath
< the shadow of a
tree."
*xOutput:+* {A sepia-toned photograph of a motorcycle underneath the shadow of
— a tree.}

— *xxInput:+xx "There is a sky"
**xOutput:xx {A sky.}

— x*xInput:x*x "She is smiling."
**xOutput:x* {A smiling girl.}

— *xxInput:xx "The image is taken indoor."
**Output :xx {<INVALID>}

— *xInput:+xx "This image is edited."
*xOutput:x* {<INVALID>}

- xxInput:x*x "The image is blurred."
**xOutput :x* {<INVALID>}

— *xxInput:xx "I think he is about to jump."
**Output :xx {<INVALID>}

Now, rewrite the following captions accordingly. Wrap each in “{}° and add
— nothing else:
<INPUT CAPTION>

Figure 4: LLM Prompt for:7rephrasing trace captions.
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(a) Localized Narrative (b) Track 1 (c) Track 2 (d) Track 3

o 5 3 e 5
In this picture | can observe adog  Original: In this picture | can Original: | can observe water and Original: The background is
running on the land. | can observe  observe a dog running on the grass on the ground. blurred.
water and grass on the ground. land. Processed: Water and grass on Processed: <INVALID>

The background is blurred. Processed: A dog runs on the the ground.
land.

0 o' G | o o 1 - R
In this image there is a person Original: In this image there is a Original: At the bottom of the Original: The background of the
wearing a helmet is on a vehicle. person wearing a helmet is on a image there are side mirrors. image is blurred.
At the bottom of the image there vehicle. Processed: Side mirrors. Processed: <INVALID>

are side mirrors. The background Processed: A person wearing a
of the image is blurred. helmet rides a vehicle.

This image is taken outdoors. In Original: This image is taken Original: In this image we can Original: In the middle of the

this image we can see the green outdoors. see the green grass on the image we can see there are two
grass on the ground. In the middle ~ Processed: <INVALID> ground. dogs.

of the image we can see there are Processed: Green grass on the Processed: Two dogs.

two dogs. ground.

Figure 5: Narrative vs. Trace Samples. The first column displays sample images from the Localized
Narrative dataset Pont-Tuset et al. (2020b). The remaining three columns show the corresponding
mouse traces, along with the captions generated by the LLM. Captions marked with <INVALID>
are removed from the dataset.
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DeCap acat is sleeping on a cluttered desk. a cat is sleeping on a cluttered desk. atennis player is playing tennis on the court a few people are skiing on a snowy moun-

for a serve. tain.
Ours (CLIP + Mem.) a cat is sitting on the bed and it’s contents. a cat is sitting at a table with a full laptop . a couple of people are in the middle of a a few people are skiing in a snowy moun-
tennis court. tain.
Ours (Talk2DINO + Mem.) a plant in a vase sitting on a table. office supplies , pens , toys , and other items a street light in front of a large building. a cloudy sky is seen in this cloudy day.

on desk.

TRACE

GT Two glraffes rocks, and a fence. sky. Aflag. S AR

A
DeCnp a glraffe in a zoo with a city in the back- a giraffe in a zoo with a city in the back- a man on a skateboard who is holding onto a park filled with people sitting on benches
ound. ground. a skateboard. near trees.
Ours (CLIP + Mem.) (he{e are some people that are in a lot by a_there are some people that are out by a lot there are some people that are in the water there are several traffic lights out in the
of trees. with a couple of them. wild,
Ours (Talk2DlN0+Mem.) two giraffes standing in a fenced area. @ view of a city with a sky in the back- a flag is flying high in the air. a large group of people walking on a side-
ground. walk.

GT light shining through the trees. bench sitting in the woods. a clock at a train station. black cat sitting on a bench.
DeCap abenchsits in the middle of a wooded area. a bench sits in the middle of a wooded area. a train traveling along the platform of a a woman squatting on a bench with a cat.
public train.
DeCap (Crop) a person in a tree is standing in the wild a bench sitting in the middle of a wooded a black cat is leaning on a black cat. aaclose up of a person standing by a person
near trees. area. holding a phone.
Ours (CLIP + Mem.) a bear is in the woods among the trees.  there are many trees that are standing in the a train is on the tracks and going by. there is a person that is out on the kitchen.
woods.
Ours (Talk2DINO + Mem.) sun shining through the trees at sunset. a park bench sitting in the middle of a aclock on a train station platform above a a black cat is sitting on a black bench.
wooded area. train.
[
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L

CIyaEIREy AR R A EAp g GR A beE R clA e S ool e s A Pl e AT A peeorsainig A Fiak nEar A1Fre by A A Swimging  baseballl BEYas Ambiies

drant. looks on.
DeCap a man sitting on a bench while holding a a man sitting on a bench while holding a a man on a skateboard doing a trick. a baseball player at bat getting ready to hit
loor. door. the ball.
Ours (CLIP + Mem.) a bathroom has a blue floor and it is very a bathroom has a blue toilet and the walls. there are many cars driving down the street some baseball players are on the field play-
clean. corner. ing baseball.
Ours (Talk2DINO + Mem.) a man in a hat sitting on a bench. a man sits on a wooden bench with a bag a fire hydrant on a sidewalk next to a street a baseball player is swinging his bat as a
on his back. pole. crowd watches.

GT A black cat rubbing against a bottle of A man in a wetsuit rides a wave. A wooden bench sitting on a beach. A wooden table with a plate of cake and

wine. coffee.
DeCap ablack cat standing next to a bottle of wine a man on a surf board riding a wave in the a bench sits on the beach next to the ocean a slice of cake on a plate with a cup of cake

glasses water
ZeroCap a Wine dro Pet Cat. a man surfing in the area 0. a beachfront bench. a sunny cake with tea.
CLOSE a cat sitting on the counter of a green bot- a man on a surf board riding a wave in the a wooden bench sitting in the sand near the and a cake is sitting on a white plate.
te. ocean. ocean.

Ours (Talk2DINO + Mem.) a black cat sitting on a chair next to a bottle a man on a surfboard riding a wave. a bench sitting on the beach next to the a piece of cake on a plate with a cup of

of wine. ocean. coffee.

Figure 6: Qualitative results. We report four predictions of our model and compare baselines
from the finer (top) to the coarser (bottom) task. For trace captioning examples, the trace time is
color-coded from start (red) to end (yellow). DeCap = DeCap applied on the whole image. DeCap
(Crop) = DeCap applied on cropped box. ZeroCap = ZeroCap Tewel et al. (2022) applied to the
whole image. CLOSE = CLOSE Gu et al. (2023) applied to the whole image. Ours (CLIP + Mem.)
= Our patch-based framework using CLIP as backbone and the projection as modality gap mitigation
strategy. Ours (Talk2DINO + Mem.) = Our patch-based framework using Talk2DINO as backbone
and the projection as modality gap mitigation strategy. GT = ground-truth caption.
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DeCap 2 group of people in a kitchen are cooking 4 table with a cup of coffee and plates of a small bed s curled up in a cluttered room. a police car is parked on the side of a sreet.
food. silverware.

Ours (CLIP + Mem.) a couple of people that are standing around a bunch of people are sitting at the table aa baby is in a bedroom with a white sink there are a few street signs in the middle of
each other. together. and toilet. the neighborhood.
Ours (Talk2DINO + Mem.) a forest with trees in the background.  a cup of coffee with a spoon sitting on a a dog laying on a rug in a living room.  a fence that is next to a road.

plate.

w
O
<<
=
GT Clouds and the sun in the sky. A person wearing a cap. A Christmas tree decorated with balls and Few people on a boat.
toys.
DeCap a couple of people are sitting on a bench a woman at a table putting food ina pot.  two people posing with a man and woman a man on a boat in a body of water with
looking at the ocean. having a glass of wine. other boats.
Ours (CLIP + Mem.) a couple of people are on a boat by the a couple of people are in a kitchen making there are two people in a kitchen with ared there are some people in the water by a boat.
ocean. food. sweater.
Ours (Talk2DINO + Mem.) a sunset in the distance in the sun a person wearing a hat looking at some- the christmas tree is decorated for christ- a boat with many people on it
thing in the background mas

GT a white ceiling fan hanging in the kitchen. a plane flying in the sky. two sandwiches on a plate. potted plant on the ledge.

DeCap  akitchen with a large refrigerator , cabinets a building is flying under a traffic light in a sandwich and a plate of soup on a table. a bird that is perched on a small bird.
and stove. the air near a building.
DeCap (Crop) a bathroom sink with a variety of toilet a large airplane is in flight on the airport. a sandw:ch on a plate containing a sand- aa close up of a person standing by a person
above the wall. holding a phone.

Ours (CLIP + Mem. ) akitchen has a lot of fridge and a stove in a lot of a building is outside of a yellow car. (he couple of food are in the kitchen with a_there is a man that is about to take a trick.

Ours (TAIk2DINO + Mem) & ceiling fan is hanging in the kitchen. there is a plane fiying high in the sky.

meal
a plate topped with two sandwiches on a a potted plant sitting on a ledge.
ble.

'_
g
N &
P4
o
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w
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GT Dogs near the edge of water . A soccer player is running while kicking a A brown-haired woman is pushing a baby The child lays on the hardwood floor .
ball . stroller .
DeCap  adog and his dogs are wading in the muddy a soccer player in the soccer uniform tries a man and a child walking in the street a young boy sitting on the floor in a room.
water. to kick the ball. while holding a stroller.
Ours (CLIP + Mem.) there are many things that are out in the there are some people on a baseball field there are some cars and a man about to go_the Kitchen is very clean and has an open
water. playing a game. down the street. door,
Ours (Talk2DINO + Mem.) two dogs near one another near water. a soccer player getting ready to kick the a woman pushing a stroller with a child a young child is laying on the floor.

ball. inside.

IMAGE

GT Four birds are chasing another bird which Brown-haired girl wearing a green tank top, A woman with blond-hair is sitting in a A young girl in a blue shirt is in a bowling

has a piece of food in its mouth. talking on a cellphone. booth with a drink working on her laptop. ~alley, and is casting her ball down a lane.
DeCap a flock of birds flying over the water.  a woman talking on a cell phone while on a woman sitting at a table using a laptop. a young girl playing a bowling game on wii.
a street.
ZeroCap a gull mating. a man in the back of a pickup truck with a reader’s writing on a laptop on desk- a view hitting the deck pin at the end of the
blood on the back. mounted computer. row stretch.
CLOSE  a group of birds flying over a body of wa- a woman looking at her cell phone while a woman sitting at a table with a laptop and on a person on a skateboard doing a trick.
standing in a street. adrink.
Ours (Talk2DINO + Mem.) a flock of birds flying in the sky. a woman talking on a cell phone in a mar- a woman sitting at a cafe using her laptop. a woman playing a bowling game on the
ket. bowling.

Figure 7: Qualitative results. We report four predictions of our model and compare baselines
from the finer (top) to the coarser (bottom) task. For trace captioning examples, the trace time is
color-coded from start (red) to end (yellow). DeCap = DeCap applied on the whole image. DeCap
(Crop) = DeCap applied on cropped box. ZeroCap = ZeroCap Tewel et al. (2022) applied to the
whole image. CLOSE = CLOSE Gu et al. (2023) applied to the whole image. Ours (CLIP + Mem.)
= Our patch-based framework using CLIP as backbone and the projection as modality gap mitigation
strategy. Ours (Talk2DINO + Mem.) = Our patch-based framework using Talk2DINO as backbone
and the projection as modality gap mitigation strategy. GT = ground-truth caption.

10



	Introduction
	Related Work
	A Patch-centric Framework
	Motivation and Formulation
	From Patches to Regions

	Experiments
	Datasets and Metrics
	Backbone Selection
	Comparison with SOTA

	Conclusions
	Implementation Details
	Backbone Details
	Additional Results: Aggregation Strategies, Input Resolution, Text Collection
	Modality Gap: Projection to Textual Space vs Training with Noise
	Trace Captioning Benchmark Generation
	More Qualitative Results

