

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VLN-MME: DIAGNOSING MLLMs AS LANGUAGE-GUIDED VISUAL NAVIGATION AGENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across a wide range of vision-language tasks. However, their performance as embodied agents, which requires multi-round dialogue and sequential action prediction, needs further exploration. Our work investigates this potential in the context of Vision-and-Language Navigation (VLN) by introducing a unified and extensible evaluation framework to probe MLLMs as zero-shot agents by bridging traditional navigation datasets into a standardized benchmark, named VLN-MME. We simplify the evaluation with a highly modular and accessible design. This flexibility streamlines experiments, enabling structured comparisons and component-level ablations across diverse MLLM architectures, agent designs, and navigation tasks. Crucially, enabled by our framework, we observe that enhancing our baseline agent with Chain-of-Thought (CoT) reasoning and self-reflection leads to an unexpected performance decrease. This suggests MLLMs exhibit poor context awareness in embodied navigation tasks; although they can follow instructions and structure their output, their reasoning fidelity is low. VLN-MME lays the groundwork for systematic evaluation of general-purpose MLLMs in embodied navigation settings and reveals limitations in their sequential decision-making capabilities. We believe these findings offer crucial guidance for MLLM post-training as embodied agents.

1 INTRODUCTION

The rapid advancement of Multimodal Large Language Models (MLLMs) has raised interest in deploying them as embodied agents, moving beyond static vision-language tasks to dynamic, interactive decision-making. In this context, Vision-and-Language Navigation (VLN) (Anderson et al., 2018) emerges as a crucial and challenging paradigm to evaluate the MLLM’s reasoning ability. Successfully navigating a 3D environment based on instructions requires more than pattern recognition; it fundamentally tests an agent’s spatial understanding, its ability to plan and foresee the consequences of its actions, and its use of long-term memory to ground an extended plan. When navigation involves multi-round dialogue, it further probes the model’s capacity for contextual reasoning. However, despite VLN’s potential as a comprehensive benchmark for these core agentic skills, progress in systematically evaluating MLLMs is constrained by the limitations of existing evaluation pipelines.

First, embodied navigation tasks typically run in high-fidelity simulators such as Matterport3D (Chang et al., 2017) or Habitat (Savva et al., 2019). The evaluation cost grows sharply when large models are deployed as VLN agents in multi-round settings that require frequent interaction with the environment. Second, the existing VLN benchmarks are diverse (Anderson et al., 2018; Qi et al., 2020; Ku et al., 2020), and a single dataset can contain thousands of navigation trajectories, making comprehensive evaluation with large MLLM agents a prohibitively time-consuming and computationally heavy process. Third, prior studies often focus on improving success metrics with different LLMs, and rarely offer principled error analyses, which limits comparability and obscures the true contributions of model capability versus agent design.

More critically, recent approaches to evaluating MLLMs in VLN have gaps in understanding model behavior. On one hand, some works utilize end-to-end success metrics alone and are insufficient for understanding agent behavior. On the other hand, dedicated evaluation suites like NavBench (Qiao

et al., 2025), while comparing different models and tasks, do not systematically consider the crucial impact of varying agent designs. Consequently, the community still lacks a deeper understanding of how these models perform. Specifically, there is minimal fine-grained analysis of success and failure cases, error types, or patterns in agent decision-making. To address these limitations, we developed our own modular evaluation framework, designed specifically to diagnose MLLM behavior in navigation tasks. The necessity for such a framework is highlighted by a comparison with existing benchmarks in Table 1. Without the kind of diagnostic insights our approach provides, it is difficult to assess generalization, robustness, or the alignment between visual perception and instruction-following capabilities in MLLMs. As a result, progress in the field remains largely metric-driven, with little clarity on the underlying model behavior.

Table 1: Comparison of VLN benchmarks by key evaluation capabilities: support for diverse MLLMs and agent architectures, simulation-free execution, and fast evaluation.

Benchmark	Diverse MLLM Support	Diverse Agent Support	Simulation Free	Evaluation Speed
R2R (2018)	✗	✗	✗	✗
VLNCE (2020)	✗	✗	✗	✗
NavBench (2025)	✓	✗	✗	✓
Ours	✓	✓	✓	✓

In response to these gaps, we propose the **Vision Language Navigation Multi-Model Evaluation (VLN-MME)**, a novel evaluation framework designed to address these challenges head-on. Our approach is built on a modular and simulator-free architecture that prioritizes accessibility and reproducibility. Crucially, instead of focusing on high-level success metrics, we contribute a detailed error analysis that breaks down agent performance to evaluate core capabilities. This allows for a deeper understanding of an MLLM’s proficiency in instruction following, spatial understanding, and historical sequential reasoning for long-horizon tasks.

Our contributions could be summarized as:

- We present a unified evaluation framework that enables structured, comparable assessment of different MLLMs, agents, and VLN tasks under a consistent interface.
- We introduce a simulator-free design that preserves navigational semantics while significantly reducing setup complexity and enabling broader accessibility.
- We curate and publish VLN data, environments, and configuration artifacts on public platforms to streamline benchmarking and reproducibility.
- We conduct an extensive and insightful error analysis that uncovers behavioral patterns and limitations in MLLMs’ navigation reasoning.

This work aims to establish a standardized foundation for studying MLLMs in embodied environments, pushing the field beyond leaderboard metrics toward a deeper understanding of model behavior.

2 RELATED WORKS

MLLMs as Embodied Navigation Agents The integration of Multimodal Large Language Models (MLLMs) into robotics has inspired new paradigms for Vision-and-Language Navigation (VLN). Early efforts leveraged LLMs to act as a copilot, providing high-level guidance to a specialist navigation agent (Qiao et al., 2023). More recently, work has explored using off-the-shelf MLLMs as zero-shot navigation agents through elaborate prompting (Zhou et al., 2024b), leading to more complex designs incorporating multi-agent collaboration (Long et al., 2023), topological maps (Chen et al., 2024), and self-evolving frameworks (Dong et al., 2025). Other works finetuning MLLMs on VLN data (Zhou et al., 2025; Lin et al., 2024; Pan et al., 2023; Zheng et al., 2023), adapting pre-trained video understanding models to navigation (Zhang et al., 2024b;a; Cheng et al., 2024; Zhang et al., 2025; Wei et al., 2025). However, the dynamic, iterative nature of embodied navigation makes the evaluation time-consuming and expensive. It hinders the scalable evaluation to understand agent behavior, calling for a flexible and representative evaluation pipeline.

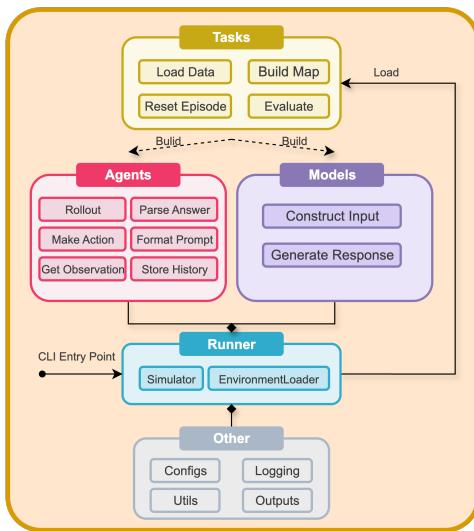
108 **Evaluating MLLMs in Vision-Language Tasks** Comprehensive evaluation benchmarks have
 109 emerged to test a wide spectrum of MLLM abilities (Chaoyou et al., 2023; Liu et al., 2024; Li
 110 et al., 2024b; Yue et al., 2024; Yu et al., 2024; Lu et al., 2023; Fei et al., 2025), from perception to
 111 cognition. However, the evaluation paradigm for these benchmarks is overwhelmingly centered on
 112 static, single-turn tasks, where a model provides a single response to a given visual-textual input.

113 Consequently, while these benchmarks can measure an MLLM’s ability to make an isolated correct
 114 judgment, they do not capture its capacity for the sustained, sequential reasoning essential for ex-
 115 ecuting a successful multi-step plan. The most similar work to us is NavBench (Qiao et al., 2025)
 116 However, its analysis is limited to a single, pre-defined agent formulation, precluding any compari-
 117 son of different agent strategies or designs. Furthermore, most evaluation frameworks (Zhou et al.,
 118 2024b; Chen et al., 2024) focus on reporting aggregate performance, lacking the detailed, episode-
 119 level error analysis necessary to diagnose precisely why an agent succeeds or fails. To the best of
 120 our knowledge, no existing work provides a unified framework for evaluating MLLMs in navigation
 121 that jointly considers a variety of agent strategies, MLLM architectures, and datasets. Our work
 122 is designed to fill this critical gap, enabling a deeper, more systematic analysis of MLLM-based
 123 navigation agents.

124 3 METHOD

125 3.1 A MODULAR FRAMEWORK FOR VLN EVALUATION

126 To enable systematic and reproducible research on MLLMs in embodied settings, we designed and
 127 implemented a modular software stack for VLN evaluation. Our architecture enforces a clean sep-
 128 aration of concerns between its primary components: the model, the agent, and the environment.
 129 This modularity empowers us to seamlessly interchange different MLLMs, implement novel agent
 130 designs, or introduce new datasets for structured comparisons and component-level ablations. The
 131 high-level architecture of our framework is illustrated in Figure 1.



154 Figure 1: A high-level structure for the
 155 benchmark, centered on the interplay be-
 156 tween **Tasks**, **Agents**, and **Models**.

157 Our framework is built upon three primary compo-
 158 nents: **Model**, **Agent**, and **Dataset**, to enable evalua-
 159 tion across both model and agent design axes. The
 160 **Model** component serves as an abstraction layer,
 161 providing a unified interface to support a wide vari-
 162 ety of MLLMs by handling model-specific API calls.
 163 The **Agent** is the core decision-making module that
 164 mediates the interaction between the MLLM and the
 165 environment. Its primary responsibility is to trans-
 166 llate the current environmental state, including visual
 167 observations and navigable options, into a structured
 168 prompt for the MLLM. Subsequently, it parses the
 169 model’s textual output to derive an executable action
 170 and interact with the environment. In VLN-MME,
 171 we distinguish agent designs by their memory mech-
 172 anism, and we implement agents that maintain a nat-
 173 ural language description of past instructions and ob-
 174 servations as our baselines. Moreover, we imple-
 175 ment enhanced variations of baselines that integrate
 176 reasoning strategies in agent design, such as chain-
 177 of-thought (CoT) prompting (Wei et al., 2022) and
 178 post-action reflection (Yao et al., 2022).

179 At each decision step, the MLLM receives a rich,
 180 multimodal prompt. The visual input is a panoramic
 181 image of the agent’s surroundings, with navigable
 182 viewpoints annotated by numerical markers. The
 183 textual component is structured to provide context progres-
 184 sively: it begins with a system prompt
 185 defining the task rules and the specific navigation instruction. For agents using a text map as mem-
 186 ory (Chen et al., 2024), the global connectivity of their discovered symbolic map is provided next.
 187 The prompt then includes the agent’s history, which differs based on the memory mechanism. For

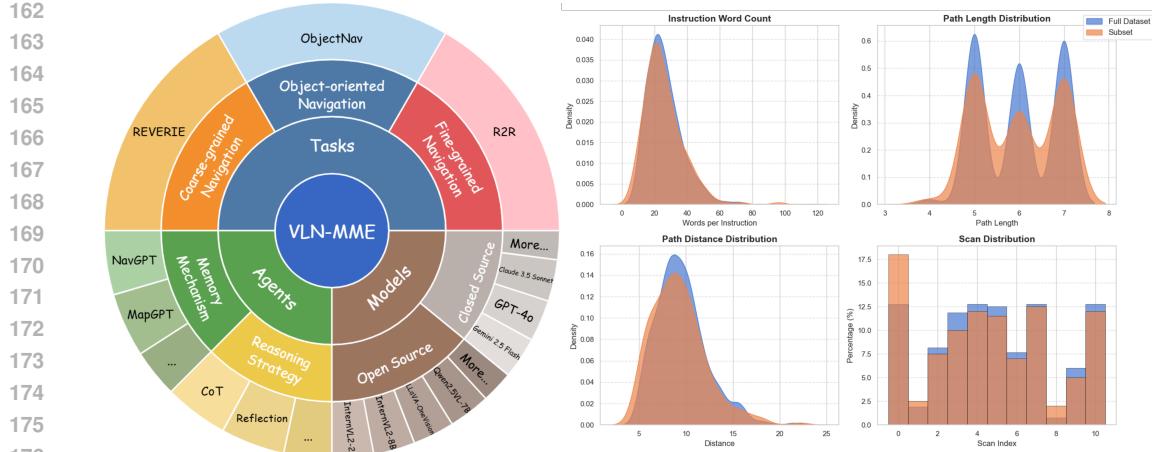


Figure 2: Overview of the VLN-MME benchmark. **(Left)** The composition of the benchmark, detailing the diverse set of **Tasks**, **Agents**, and **Models** it supports. **(Right)** A statistical comparison of our benchmark’s R2R data subset against the original R2R val_unseen split, showing similar distributions for key metrics like instruction word count and path length.

agents relying on text summarization as memory (Zhou et al., 2024b), this history consists of a simple sequence of prior actions. In contrast, for agents employing a text map, the history is more comprehensive, augmented at each step with the scene summary of the current node and lists of visited and unvisited nodes. Following the history, the agent’s current heading and elevation are specified. The prompt concludes with a structured dictionary of available actions, which organizes navigable options by their relative direction, mapping each candidate marker to its caption.

To ensure modularity and ease of extension, we employ a unified **factory pattern** for instantiating all three component types. Each component is associated with a unique string identifier in a central registry. At runtime, a dynamic loader uses this identifier to import and construct the desired class. This design enables true “plug-and-play” capability; integrating a new agent, for instance, simply requires adding its class to the agents directory and an entry to the registry, with no changes to the core evaluation logic.

The orchestration of these components is managed by a central **Runner** module, which uses an efficient configuration system for easy and reproducible experiment setup. The Runner handles the entire evaluation lifecycle. It begins by loading the pre-stored simulator-free environment, whose construction is detailed in Section 3.3. Concurrently, it dynamically loads the specified dataset and splits via the factory, as described in Section 3.2. During an episode, the Runner acts as the low-level intermediary between the agent and the environment; it services agent requests for state information, renders observations, and executes actions. Throughout this process, the Runner logs all interactions for detailed post-hoc analysis. Upon completion of all episodes, it is responsible for calculating and reporting the final evaluation metrics. This centralized design cleanly separates high-level agent logic from low-level environment management, reinforcing the framework’s modularity.

3.2 DATASET CONSTRUCTION FOR EFFICIENT EVALUATION

To address the computational challenges of evaluating large models on existing, large-scale VLN datasets and to facilitate rapid experimentation, we constructed a curated benchmark for efficient yet representative evaluation. Follow the broader definition of VLN (Zheng et al., 2023; Zhou et al., 2024a), our benchmark is composed of samples carefully drawn from the validation unseen splits of three main datasets: R2R (Anderson et al., 2018), REVERIE (Qi et al., 2020), and ObjectNav (Batra et al., 2020). The primary goal is to offer a lightweight benchmark that significantly reduces evaluation overhead while faithfully preserving the distributional characteristics of the full benchmarks. This ensures our benchmark can serve as a reliable proxy, allowing for efficient validation that aligns with previous evaluation methods.

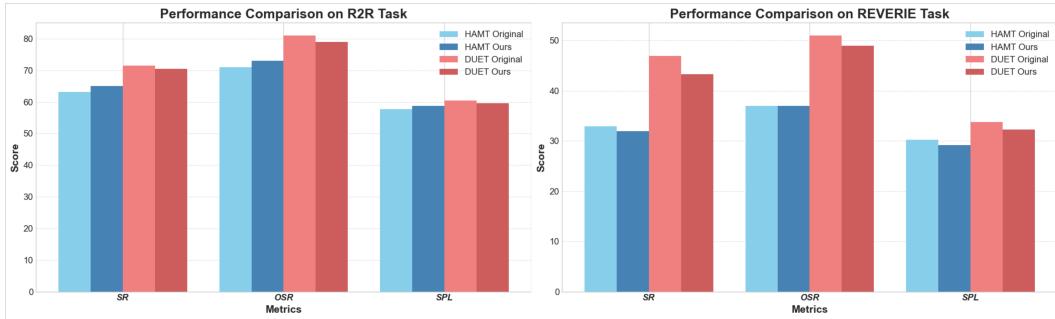


Figure 3: Comparison of model performance on full val_unseen splits vs. our curated benchmark for R2R and REVERIE.

Our construction strategy employs a task-specific stratified sampling process designed to maintain diversity across three key axes: **scene complexity**, **path difficulty**, and **linguistic richness**. For instance, when constructing the R2R portion of our benchmark from the original 783 unique trajectories, the process begins by stratifying episodes based on their Matterport3D scan ID to ensure the selection reflects the original distribution of environments. Within each scan-based group, trajectories are then binned by their path length - a proxy for navigational difficulty - and sampled proportionally from each bin. Finally, to ensure linguistic variety, one of the three available natural language instructions is selected at random for each chosen trajectory. A similar stratified methodology, adapted to the unique characteristics of each task, was applied to create the benchmark data for REVERIE. For ObjectNav, we also consider object balance, ensuring that the sampled object navigation episodes maintain a balanced distribution of objects from the previous benchmark. This meticulous process ensures that our resulting benchmark, while significantly smaller, retains a comparable distribution of these core characteristics to the original datasets, as illustrated in Figure 2.

To validate the fidelity of our constructed benchmark, we evaluated three high-performing specialist VLN agents, HAMT (Chen et al., 2021), and DUET (Chen et al., 2022), on both the full val_unseen splits and our curated benchmark for R2R and REVERIE. The results, presented in Figure 3, reveal a strong correlation in performance. Key metrics such as Success Rate (SR) and Success weighted by Path Length (SPL) on our benchmark closely track the performance on the full splits, with deviations typically within a 2-3 percentage point margin. This close alignment confirms that our stratified sampling approach successfully captures the intrinsic difficulty and diversity of the original datasets, establishing our benchmark as a reliable and efficient proxy for full-scale MLLM evaluation.

3.3 SIMULATOR-FREE ENVIRONMENT DESIGN

While powerful, relying on simulators for real-time rendering at each step introduces a significant computational bottleneck, especially when evaluating large models at scale across numerous tasks and agent designs. To address this challenge and maximize accessibility, our framework introduces a **simulator-free** mode. This is achieved by pre-rendering and storing all necessary visual observations and environmental metadata, enabling lightweight and highly scalable execution of navigation tasks.

The core of this mode is a pre-rendered panoramic observation set for each viewpoint in the environment. Instead of real-time rendering, we capture a set of four non-overlapping perspective images at each location, each with a 90° Field of View (FOV), which together form a complete 360° visual context. Crucially, all navigable directions are annotated directly onto these images using visually distinct numerical markers. These numbers reflect the ordering of navigable candidates based on their global heading angles, derived from the navigation graph. For example, neighbors are sorted by increasing global angle relative to the current orientation, and the assigned marker numbers (e.g., 1, 2, 3) follow this order.

To enhance model understanding, each marked neighbor viewpoint is also annotated with a caption generated by GPT-4o. To generate these, GPT-4o was prompted to describe the scene visible at

270 the marked location and what navigating towards it would likely reveal (e.g., “A hallway leading
 271 to a bright living room”). Additionally, each viewpoint is summarized with a GPT-4o-generated
 272 scene description, providing global context for map-based agents. All visual and semantic assets
 273 are published on open-source platforms and are managed directly by our framework, which handles
 274 automatic downloading for ease of use. This includes all environmental information such as the pre-
 275 rendered panoramic images, connectivity data between viewpoints, and precomputed graph utilities
 276 like shortest-path geodesic distances for efficient metric calculation. We provide complete task splits
 277 for all dataset in this simulator-free format to ensure immediate accessibility.

279 4 EXPERIMENTS

281 4.1 SETTINGS

283 **Evaluation Metrics.** In this work, we focus exclusively on the navigation component of both R2R
 284 and REVERIE tasks, without considering object grounding in REVERIE. We adopt a standard set of
 285 navigation metrics to evaluate agent performance: (1) *Trajectory Length* (TL), which measures the
 286 average path length in meters; (2) *Navigation Error* (NE), the average distance between the agent’s
 287 final position and the goal location; (3) *Success Rate* (SR), the percentage of episodes where the final
 288 location is within 3 meters of the target; (4) *Oracle Success Rate* (OSR), the success rate assuming an
 289 optimal stopping policy; (5) *Success weighted by Path Length* (SPL) (Jain et al., 2019), which com-
 290 bines success with path efficiency; (6) *Normalized Dynamic Time Warping* (nDTW) (Ilharco et al.,
 291 2019), which measures the trajectory similarity to the ground truth path; and (7) *Success weighted by*
 292 *normalized DTW* (SDTW), a combined metric capturing both goal-reaching and trajectory fidelity.

293 **Implementation Details** We evaluate four open-source Multimodal Large Language Models
 294 (MLLMs) in a zero-shot setting: Qwen2.5-VL-7B (Bai et al., 2025), InternVL3-2/8B (Zhu et al.,
 295 2025), LLaVA-One-Vision-7B (Li et al., 2024a). These models are integrated into eight distinct
 296 agent configurations, categorized into two primary classes: agents using text summarization as
 297 memory and agents using a text map as memory. Each class includes four variants: a baseline,
 298 one with Chain-of-Thought (CoT) prompting, one with reflection-based reasoning, and one featur-
 299 ing both CoT and reflection. To ensure efficient inference and memory management for these large
 300 models, all agents are served using the vLLM backend (Kwon et al., 2023). We assess their perfor-
 301 mance on all the tasks in our benchmark, additionally, we compare these zero-shot agents against
 302 previously finetuned Vision-Language Model (VLM) agents and finetuned MLLM agents on the
 303 R2R and REVERIE tasks, evaluating performance across both the full dataset from prior evalua-
 304 tion methods and our benchmark. All experiments are conducted on a single NVIDIA A100 GPU with
 305 40GB VRAM.

306 4.2 PERFORMANCE

308 We evaluate our zero-shot MLLM-based agents and compare their performance against prior state-
 309 of-the-art finetuned agents. Our analysis is structured around two key comparisons: first, a macro-
 310 level comparison against finetuned methods to contextualize the zero-shot paradigm, and second, a
 311 micro-level analysis of the different MLLMs, agent architectures, and reasoning strategies.

312 Our main results, detailed in Table 2 and illustrated in Figure 4, offer insights into the performance
 313 of different MLLMs, agent architectures, and reasoning techniques in a zero-shot setting. Among
 314 the evaluated MLLMs, Qwen2.5-VL-7B consistently emerges as the most capable navigation agent,
 315 as demonstrated in the 3D bar chart comparing text-summarization memory-based agent variants.
 316 It achieves the highest success rates across the majority of tasks, with InternVL3-8B also showing
 317 decent performance capabilities. For example, in the baseline NavGPT configuration on the fine-
 318 grained R2R task, Qwen2.5-VL-7B obtains a success rate of 27.5%, substantially outperforming
 319 LLaVA-OneVision (11.5%) and InternVL3-2B (13.5%).

320 Surprisingly, it is counterintuitive that the integration of advanced prompting strategies like Chain-
 321 of-Thought (CoT) and reflection does not consistently yield performance improvements and can be
 322 detrimental. For instance, on the fine-grained navigation task (Table 2), applying CoT and reflection
 323 to the Qwen-2.5-VL-7B model decreases its Success Rate (SR) by 5.5% and 2.0%, respectively.
 This is not an isolated case, as the performance degradation is a consistent trend across all evaluated

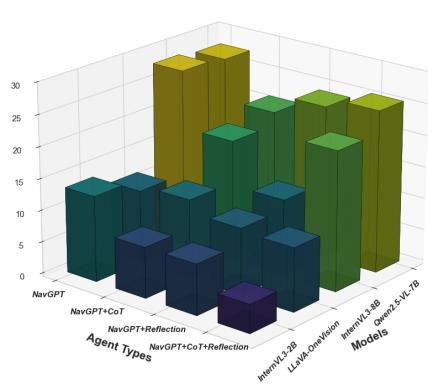
324	Agent / MLLM	Fine-Grained Navigation										Coarse-grained Navigation										Object-Oriented Navigation													
		TL	NE	SR	OSR	SPL	nDTW	SDTW	CLS	TL	NE	SR	OSR	SPL	nDTW	SDTW	CLS	TL	NE	SR	OSR	SPL	nDTW	SDTW	CLS	TL	NE	SR	OSR	SPL	nDTW	SDTW	CLS		
Text Summarization as Memory																																			
326	NavGPT																																		
327	InternVL3-2B	9.89	8.56	13.50	27.00	5.46	21.25	5.75	21.59	10.13	10.18	7.33	16.33	2.50	15.30	2.97	17.17	10.35	6.27	21.50	40.50	3.57	13.67	2.55	15.57										
328	InternVL3-8B	11.74	7.55	28.00	50.50	12.61	25.28	13.38	26.22	11.90	9.25	20.00	30.67	7.18	17.32	8.18	18.84	11.55	4.63	39.00	56.00	7.69	14.51	5.09	17.36										
329	LLaVA-OV-7B	8.04	8.40	11.50	20.50	4.94	26.34	5.70	25.53	9.85	9.35	14.67	20.00	5.19	19.27	6.09	18.39	9.52	5.93	27.50	41.00	4.51	16.54	5.11	14.71										
330	Qwen2.5-VL-7B	8.54	6.99	27.50	44.00	17.11	35.97	18.88	34.85	8.94	8.55	18.67	27.33	9.00	23.79	9.88	23.55	9.07	4.65	37.50	56.50	13.18	21.83	10.63	23.52										
331	NavGPT w/ CoT																																		
332	InternVL3-2B	6.21	8.84	8.00	14.50	4.47	26.15	4.28	27.45	4.98	9.87	5.33	9.00	3.24	23.39	3.11	25.09	6.78	5.56	25.00	41.00	6.66	25.51	5.34	23.98										
333	InternVL3-8B	9.07	7.56	19.00	35.50	10.95	29.22	10.90	29.59	7.96	9.39	15.33	22.00	9.31	24.93	9.14	26.40	6.43	5.31	34.50	43.50	12.67	27.22	10.30	27.35										
334	LLaVA-OV-7B	7.97	8.85	12.50	22.50	5.41	23.20	5.60	24.43	8.43	9.47	14.00	20.33	5.90	21.09	7.13	21.38	9.69	5.66	33.50	47.50	7.31	15.90	6.24	17.92										
335	Qwen2.5-VL-7B	9.04	7.97	21.00	37.50	11.41	30.23	11.56	31.36	8.29	9.85	15.67	24.33	8.10	24.02	8.82	25.59	6.86	5.13	33.00	44.50	13.25	28.63	12.54	28.32										
336	NavGPT w/ Reflection																																		
337	InternVL3-2B	6.50	8.94	8.00	16.00	5.20	29.91	5.00	30.13	7.20	9.41	8.50	15.00	4.80	25.49	4.60	24.93	6.43	5.56	28.00	43.00	7.83	26.53	6.14	25.28										
338	InternVL3-8B	4.54	7.99	12.00	19.00	9.53	34.25	8.89	34.44	6.82	10.20	11.00	17.33	5.97	23.58	6.04	27.79	8.35	5.02	32.50	51.00	9.12	18.79	6.68	22.14										
339	LLaVA-OV-7B	2.81	8.01	10.50	11.00	9.44	38.17	8.43	38.39	5.15	9.34	9.33	14.67	5.82	28.04	5.91	30.22	9.35	5.58	34.00	47.50	7.90	15.48	6.11	17.05										
340	Qwen2.5-VL-7B	6.93	7.17	24.00	32.50	14.95	36.51	16.44	33.59	6.96	8.76	12.00	18.00	7.97	26.88	7.97	25.78	7.55	5.06	35.50	50.50	14.67	23.33	11.04	25.23										
341	NavGPT w/ CoT & Reflection																																		
342	InternVL3-2B	7.15	9.24	4.50	15.00	1.70	22.45	2.05	23.47	7.30	9.78	9.33	15.00	4.63	22.33	5.30	24.07	6.94	6.25	24.50	37.50	7.26	21.29	6.11	21.47										
343	InternVL3-8B	7.22	7.47	22.00	32.50	15.33	36.62	16.18	35.98	8.95	9.07	17.33	28.67	10.07	24.11	10.24	27.58	9.18	5.30	32.50	51.50	8.14	18.59	5.99	21.45										
344	LLaVA-OV-7B	7.61	8.48	10.00	22.00	5.83	28.01	6.31	26.32	8.44	8.68	14.00	22.00	6.78	24.73	8.37	22.60	8.55	5.66	28.50	44.00	7.25	21.26	6.74	19.69										
345	Qwen2.5-VL-7B	7.82	7.53	25.50	38.50	17.68	34.86	17.65	34.80	7.19	9.48	11.67	18.00	7.89	27.07	7.81	28.22	7.60	5.39	36.00	47.00	13.67	26.52	11.49	26.98										
346	MapGPT																																		
347	InternVL3-2B	9.84	8.61	11.00	22.50	3.71	20.18	3.85	21.89	10.19	9.59	12.00	19.00	4.41	18.10	5.24	19.97	10.35	5.93	27.50	46.50	4.41	13.59	3.69	15.57										
348	InternVL3-8B	6.78	7.70	18.00	32.00	12.46	34.34	13.06	33.78	7.26	9.16	13.67	22.33	7.87	26.63	8.04	27.62	5.95	5.26	31.50	44.50	11.61	28.03	8.98	27.39										
349	LLaVA-OV-7B	5.96	8.79	12.00	22.50	9.66	31.15	8.64	33.11	5.82	9.07	13.33	17.33	8.77	30.01	9.09	30.77	6.55	5.34	34.00	46.50	12.33	26.74	9.38	27.22										
350	Qwen2.5-VL-7B	8.16	7.13	26.00	38.00	17.31	34.31	17.39	33.37	10.52	8.53	21.67	32.33	8.96	21.27	10.85	9.77	4.82	36.50	52.50	11.05	20.06	9.06	22.13											
351	MapGPT w/ CoT & Reflection																																		
352	InternVL3-2B	2.37	8.55	4.00	6.00	3.26	32.83	2.97	33.54	2.45	9.58	3.67	5.00	3.31	27.97	2.81	31.14	9.72	5.85	25.00	44.00	4.50	15.52	3.04	17.39										
353	InternVL3-8B	5.85	7.80	16.50	28.50	10.89	36.05	11.48	35.18	6.49	8.80	12.67	19.33	6.64	27.19	6.91	28.24	6.23	5.50	30.00	40.50	10.36	26.92	8.12	25.74										
354	LLaVA-OV-7B	8.35	8.50	10.00	20.00	5.50	26.62	5.50	23.33	8.20	9.47	11.00	19.00	6.00	25.84	6.00	25.16	9.46	6.11	15.50	33.50	2.02	15.90	2.53	15.57										
355	Qwen2.5-VL-7B	10.41	7.12	26.50	41.00	10.12	27.97	12.88	25.38	9.60	8.67	15.67	23.67	6.00	23.29	7.62	20.63	10.15	4.90	33.50	46.00	7.41	17.18	6.33	17.34										
356	Table 2: Performance Comparison of MLLM-based Agents on VLN-MME. Agents are grouped by their primary architecture type. Best performance per group is marked in bold.																																		
357	Table 3: Performance of baseline agents on the R2R and REVERIE tasks, with results compared across the previous and our benchmark.																																		
358	MLLMs and tasks. While applying CoT or reflection individually often reduces performance, their combination (CoT+Reflection) occasionally outperforms using either technique alone.																																		
359	Moreover, the choice between architectures using text summarization as memory versus those using a text map as memory does not yield a universally superior agent, with performance being highly model-dependent. As shown in Table 2, using a text map as memory provides benefits for certain																																		
360	Methods	R2R										REVERIE										Subset													
361		Val Unseen																																	

378 models on specific tasks. For example, smaller MLLMs like InternVL3-2B gain a slight boost
 379 in success rate on the Coarse-grained navigation task. However, the opposite pattern emerges for
 380 others, indicating that architectural preferences vary significantly across different MLLMs.
 381

382 We argue that the primary issue is the model’s poor context awareness when situated in an embodied
 383 navigation task. We investigate this hypothesis by analyzing the logical coherence of the model’s
 384 Chain-of-Thought reasoning and its self-reflection. This examination reveals two key, interrelated
 385 flaws. First, the model exhibits a strong tendency towards ‘local’ reasoning, where its decisions are
 386 driven almost exclusively by the immediate visual input, largely neglecting the rich context provided
 387 by its action and observation history. Second, as a direct result of this limited historical perspective,
 388 the model struggles to understand the downstream consequences of its actions, failing to adapt its
 389 strategy or recover from errors in the long-term, sequential flow of the task. A comprehensive error
 390 analysis in Section 4.3 provides further evidence to support this conclusion.

391 As shown in Table 3, a significant performance gap exists between our zero-shot MLLM agents and
 392 prior finetuned agents on both R2R and REVERIE. For instance, on the R2R Val Unseen split, the
 393 best finetuned agents like DUET achieve a Success Rate (SR) of 72%, whereas our best-performing
 394 zero-shot agent, Qwen2.5-VL-7B, reaches 18% SR. This highlights the inherent challenge of zero-
 395 shot navigation and the effectiveness of task-specific training. Nevertheless, the zero-shot agents
 396 demonstrate promising, non-trivial navigation capabilities, establishing a crucial baseline for this
 397 emerging paradigm. We also observe that the performance of prior methods on our benchmark
 398 subset is largely consistent with their results on the full validation set, further validating the repre-
 399 sentativeness of our subset for evaluation.

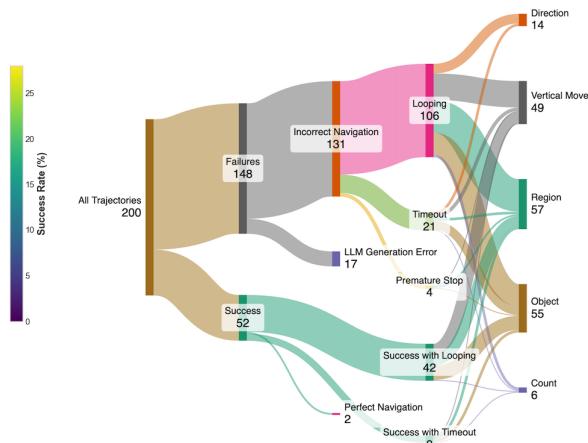
400 The results reveal clear difficulty hierarchies across navigation tasks. Object-Oriented Navigation
 401 proves most tractable, with agents consistently achieving the highest success rates (up to 39.0%).
 402 Fine-grained navigation presents moderate difficulty, while coarse-grained navigation emerges as
 403 the most challenging task, with substantially lower success rates across all models. This suggests
 404 that navigating to less precisely defined locations based on high-level instructions represents a par-
 405 ticularly difficult challenge for current zero-shot MLLMs.



423 Figure 4: Performance comparison of agents us-
 424 ing text summarization memory under different
 425 reasoning strategies across multiple backbone
 426 MLLMs.

4.3 DISCUSSION

430 As discussed in section 4.2, we reveal some counterfactual behavior when MLLMs performing
 431 embodied navigation. We further conduct an error analysis to understand their error pattern and find
 432 that they are hindered by fundamental limitations across several cognitive dimensions. Interestingly,



427 Figure 5: A high-level analysis of success and
 428 failure modes for Qwen2.5-VL-7B model using
 429 an agent with text map memory.

432 we find that the high navigation failure rate is overwhelmingly dominated by looping behaviors,
 433 shown in Figure 5. It is not a superficial issue but symptomatic of deeper challenges in instruction
 434 fidelity, spatial reasoning, historical context utilization, and the grounding of multimodal perception
 435 into action. We discuss these three interconnected aspects below.
 436

437 **Instruction Following and Reasoning Fidelity.** A primary challenge is the limited fidelity with
 438 which MLLMs adhere to complex instructions, particularly those governing their reasoning process.
 439 While the models can follow basic output formatting prompts, they struggle with more abstract meta-
 440 instructions. For instance, when prompted with Chain-of-Thought (CoT) or reflection mechanisms
 441 to explicitly “reason based on history and the map,” the agents often diverge, reverting to a reactive,
 442 myopic reasoning pattern that ignores the very context they were instructed to use. This disconnect
 443 helps explain why adding CoT and reflection did not consistently improve performance (Table 2);
 444 the models did not faithfully execute the intended reasoning strategy. This suggests a significant
 445 gap between simply conditioning a model on a prompt and instilling a robust, procedural reasoning
 446 capability. Full CoT examples can be found in the supplementary materials.
 447

448 **Spatial and Environmental Understanding.** Our fine-grained error analysis reveals that pro-
 449 found weaknesses in spatial understanding are the root cause of most navigational failures. Of
 450 131 errors analyzed, a staggering 106 were due to persistent looping, a direct consequence of the
 451 model’s inability to ground instructions in the 3D environment. This manifests in specific, recurring
 452 issues like poor region recognition (37 cases), failure to reason about verticality on stairs (30 cases),
 453 and basic directional confusion (11 cases). The fact that providing an explicit topological map failed
 454 to yield significant gains highlights a deeper problem: the agent cannot connect abstract spatial
 455 knowledge to its visual perception and actions. Furthermore, the agent critically fails at sequential
 456 decision-making, which is essential for navigation. The rampant looping behavior clearly shows
 457 that the agent does not learn from its trajectory to avoid repeating mistakes. This is not a problem
 458 of memory capacity, as the history rarely exceeds the model’s context window, but rather one of
 459 memory utilization. The model has access to its past actions but cannot ground its current decisions
 460 in that history to self-correct. In fact, the observation that simpler history formats can outperform
 461 complex ones suggests that too much historical information creates a cognitive load, confusing the
 462 agent instead of guiding it.
 463

464 **Perception-Action Grounding.** Finally, we observe a critical gap between multimodal perception
 465 and embodied action. The MLLM’s visual grounding is functional at a recognition level; for exam-
 466 ple, it can often correctly identify a “staircase” or a target “chair” in its textual reasoning trace. This
 467 indicates that the visual and language modalities are connected. However, this recognition consis-
 468 tently fails to translate into correct action. The agent sees the stairs but walks past them in a loop.
 469 It may even get very close to the goal, demonstrating it has successfully grounded the target object
 470 visually, yet fails to execute the final ‘STOP’ action. This is powerfully illustrated by our success-
 471 case analysis, where 42 of 52 successful episodes involved inefficient looping near the target before
 472 stopping. This “perception-action gap” shows that the greatest challenge for MLLMs in VLN is not
 473 just seeing and describing the world, but effectively acting within it.
 474

475 5 CONCLUSION

476 In this work, we investigate the performance of Multimodal Large Language Models (MLLMs) as
 477 zero-shot agents in Vision-and-Language Navigation (VLN). We introduce VLN-MME, a unified,
 478 modular, and simulator-free framework designed to systematically evaluate diverse MLLMs and
 479 agent architectures. Our analysis shows that current MLLMs are hindered by fundamental lim-
 480 itations in spatial reasoning and in translating perception into action, resulting in poor zero-shot
 481 performance. By enabling fine-grained error analysis, VLN-MME moves beyond simple success
 482 metrics to diagnose why agents fail, laying the groundwork for developing more capable embodied
 483 agents. We believe our analysis clearly reveals the error pattern for MLLM as a zero-shot navigation
 484 agent, and provides strong guidance for CoT reasoning data generation in VLM post-training as
 485 navigation agents.
 486

486 REPRODUCIBILITY STATEMENT
487488 We are committed to ensuring the reproducibility of our research. Our primary contribution is
489 the VLN-MME framework, a modular and simulator-free software stack designed specifically to
490 facilitate standardized and reproducible evaluation of MLLMs in VLN tasks. To this end, we will
491 make the following resources publicly available upon publication:492
493

- **Source Code:** The complete source code for our evaluation framework, including im-
494 plementations for all agent architectures, model interfaces, and evaluation scripts, will be
495 released under a permissive open-source license.
- **Data and Environment:** All curated data splits from the R2R, REVERIE, and ObjectNav
496 datasets used in our benchmark will be provided. This includes the pre-rendered panoramic
497 observations, viewpoint connectivity graphs, and generated textual annotations (scene de-
498 scriptions and captions) that enable our simulator-free approach.
- **Experimental Configurations:** The YAML configuration files for all experiments reported
500 in this paper will be included, allowing for the exact replication of our results.

501502 503 REFERENCES
504505 Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
506 Stephen Gould, and Anton van den Hengel. Vision-and-language navigation: Interpreting
507 visually-grounded navigation instructions in real environments. In *Proceedings of the IEEE Con-
508 ference on Computer Vision and Pattern Recognition*, pp. 3674–3683, 2018.509 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
510 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
511 2025.512 Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Oleksandr Maksymets, Roozbeh Mottaghi,
513 Manolis Savva, Alexander Toshev, and Erik Wijmans. ObjectNav Revisited: On Evaluation of
514 Embodied Agents Navigating to Objects. In *arXiv:2006.13171*, 2020.515 Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niebner, Manolis Savva,
516 Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor
517 environments. In *2017 International Conference on 3D Vision (3DV)*, pp. 667–676. IEEE, 2017.518 Fu Chaoyou, Chen Peixian, Shen Yunhang, Qin Yulei, Zhang Mengdan, Lin Xu, Yang Jinrui, Zheng
519 Xiawu, Li Ke, Sun Xing, et al. Mme: A comprehensive evaluation benchmark for multimodal
520 large language models. *arXiv preprint arXiv:2306.13394*, 3, 2023.521 Jiaqi Chen, Bingqian Lin, Ran Xu, Zhenhua Chai, Xiaodan Liang, and Kwan-Yee K Wong.
522 Mapgpt: Map-guided prompting for unified vision-and-language navigation. *arXiv preprint
523 arXiv:2401.07314*, 2024.524 Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, and Ivan Laptev. History aware multimodal
525 transformer for vision-and-language navigation. *Advances in Neural Information Processing Sys-
526 tems*, 34:5834–5847, 2021.527 Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, Cordelia Schmid, and Ivan Laptev. Think
528 global, act local: Dual-scale graph transformer for vision-and-language navigation. In *Pro-
529 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16537–
16547, 2022.530 An-Chieh Cheng, Yandong Ji, Zhaojing Yang, Zaitian Gongye, Xueyan Zou, Jan Kautz, Erdem
531 Bıyık, Hongxu Yin, Sifei Liu, and Xiaolong Wang. Navila: Legged robot vision-language-action
532 model for navigation. *arXiv preprint arXiv:2412.04453*, 2024.533 Xiangyu Dong, Haoran Zhao, Jiang Gao, Haozhou Li, Xiaoguang Ma, Yaoming Zhou, Fuhai Chen,
534 and Juan Liu. Se-vln: A self-evolving vision-language navigation framework based on multi-
535 modal large language models. *arXiv preprint arXiv:2507.13152*, 2025.

540 Hao Fei, Yuan Zhou, Juncheng Li, Xiangtai Li, Qingshan Xu, Bobo Li, Shengqiong Wu, Yaoting
 541 Wang, Junbao Zhou, Jiahao Meng, et al. On path to multimodal generalist: General-level and
 542 general-bench. In *Forty-second International Conference on Machine Learning*, 2025.

543

544 Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-Opazo, and Stephen Gould. A recurrent
 545 vision-and-language bert for navigation. In *Proceedings of the IEEE/CVF Conference on Com-*
 546 *puter Vision and Pattern Recognition (CVPR)*, pp. 1643–1653, June 2021.

547 Gabriel Ilharco, Vihan Jain, Alexander Ku, Eugene Ie, and Jason Baldridge. General eval-
 548 uation for instruction conditioned navigation using dynamic time warping. *arXiv preprint*
 549 *arXiv:1907.05446*, 2019.

550

551 Vihan Jain, Gabriel Magalhaes, Alexander Ku, Ashish Vaswani, Eugene Ie, and Jason Baldridge.
 552 Stay on the path: Instruction fidelity in vision-and-language navigation. In *Proceedings of the*
 553 *57th Annual Meeting of the Association for Computational Linguistics*, pp. 1862–1872, 2019.

554 Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra, and Stefan Lee. Beyond the nav-
 555 graph: Vision-and-language navigation in continuous environments. In *European Conference on*
 556 *Computer Vision*, pp. 104–120. Springer, 2020.

557

558 Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. Room-across-room:
 559 Multilingual vision-and-language navigation with dense spatiotemporal grounding. In *Proceed-*
 560 *ings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*,
 561 pp. 4392–4412, 2020.

562 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 563 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 564 serving with pagedattention. In *Proceedings of the 29th symposium on operating systems prin-*
 565 *ciples*, pp. 611–626, 2023.

566

567 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 568 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*
 569 *arXiv:2408.03326*, 2024a.

570

571 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
 572 Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In
 573 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 22195–22206, 2024b.

574

575 Bingqian Lin, Yunshuang Nie, Ziming Wei, Jiaqi Chen, Shikui Ma, Jianhua Han, Hang Xu, Xiaojun
 576 Chang, and Xiaodan Liang. Navcot: Boosting llm-based vision-and-language navigation via
 577 learning disentangled reasoning. *arXiv preprint arXiv:2403.07376*, 2024.

578

579 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 580 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 player? In *European conference on computer vision*, pp. 216–233. Springer, 2024.

581

582 Yuxing Long, Xiaoqi Li, Wenzhe Cai, and Hao Dong. Discuss before moving: Visual language
 583 navigation via multi-expert discussions. *arXiv preprint arXiv:2309.11382*, 2023.

584

585 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
 586 Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
 587 foundation models in visual contexts. *arXiv preprint arXiv:2310.02255*, 2023.

588

589 Bowen Pan, Rameswar Panda, SouYoung Jin, Rogerio Feris, Aude Oliva, Phillip Isola, and
 590 Yoon Kim. Langnav: Language as a perceptual representation for navigation. *arXiv preprint*
 591 *arXiv:2310.07889*, 2023.

592

593 Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang, William Yang Wang, Chunhua Shen, and Anton
 van den Hengel. Reverie: Remote embodied visual referring expression in real indoor environ-
 594 ments. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 595 pp. 9982–9991, 2020.

594 Yanyuan Qiao, Yuankai Qi, Zheng Yu, Jing Liu, and Qi Wu. March in chat: Interactive prompting for
 595 remote embodied referring expression. In *Proceedings of the IEEE/CVF International Conference*
 596 *on Computer Vision*, pp. 15758–15767, 2023.

597 Yanyuan Qiao, Haodong Hong, Wenqi Lyu, Dong An, Sici Zhang, Yutong Xie, Xinyu Wang, and
 598 Qi Wu. Navbench: Probing multimodal large language models for embodied navigation. *arXiv*
 599 *preprint arXiv:2506.01031*, 2025.

600 Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
 601 Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied
 602 ai research. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 603 9339–9347, 2019.

604 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
 605 Zhou. Chain of thought prompting elicits reasoning in large language models. *arXiv preprint*
 606 *arXiv:2201.11903*, 2022.

607 Meng Wei, Chenyang Wan, Xiqian Yu, Tai Wang, Yuqiang Yang, Xiaohan Mao, Chenming Zhu,
 608 Wenzhe Cai, Hanqing Wang, Yilun Chen, et al. Streamvln: Streaming vision-and-language navi-
 609 gation via slowfast context modeling. *arXiv preprint arXiv:2507.05240*, 2025.

610 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 611 React: Synergizing reasoning and acting in language models. *arXiv preprint arXiv:2210.03629*,
 612 2022.

613 Weihao Yu, Zhengyuan Yang, Lingfeng Ren, Linjie Li, Jianfeng Wang, Kevin Lin, Chung-Ching
 614 Lin, Zicheng Liu, Lijuan Wang, and Xinchao Wang. Mm-vet v2: A challenging benchmark to
 615 evaluate large multimodal models for integrated capabilities. *arXiv preprint arXiv:2408.00765*,
 616 2024.

617 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens,
 618 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 619 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF*
 620 *Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

621 Jiazhao Zhang, Kunyu Wang, Shaoan Wang, Minghan Li, Haoran Liu, Songlin Wei, Zhongyuan
 622 Wang, Zhizheng Zhang, and He Wang. Uni-navid: A video-based vision-language-action model
 623 for unifying embodied navigation tasks. *arXiv preprint arXiv:2412.06224*, 2024a.

624 Jiazhao Zhang, Kunyu Wang, Rongtao Xu, Gengze Zhou, Yicong Hong, Xiaomeng Fang, Qi Wu,
 625 Zhizheng Zhang, and Wang He. Navid: Video-based vlm plans the next step for vision-and-
 626 language navigation. *arXiv preprint arXiv:2402.15852*, 2024b.

627 L Zhang, X Hao, Q Xu, Q Zhang, X Zhang, P Wang, J Zhang, Z Wang, S Zhang, and R MapNav Xu.
 628 A novel memory representation via annotated semantic maps for vlm-based vision-and-language
 629 navigation. *arXiv preprint arXiv:2502.13451*, 2025.

630 Duo Zheng, Shijia Huang, Lin Zhao, Yiwu Zhong, and Liwei Wang. Towards learning a generalist
 631 model for embodied navigation. *arXiv preprint arXiv:2312.02010*, 2023.

632 Gengze Zhou, Yicong Hong, Zun Wang, Chongyang Zhao, Mohit Bansal, and Qi Wu. Same:
 633 Learning generic language-guided visual navigation with state-adaptive mixture of experts. *arXiv*
 634 *preprint arXiv:2412.05552*, 2024a.

635 Gengze Zhou, Yicong Hong, and Qi Wu. Navgpt: Explicit reasoning in vision-and-language naviga-
 636 tion with large language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 637 volume 38, pp. 7641–7649, 2024b.

638 Gengze Zhou, Yicong Hong, Zun Wang, Xin Eric Wang, and Qi Wu. Navgpt-2: Unleashing naviga-
 639 tional reasoning capability for large vision-language models. In *European Conference on Com-
 640 puter Vision*, pp. 260–278. Springer, 2025.

641 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 642 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
 643 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.