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ABSTRACT

Recently, numerous preference optimization algorithms have been introduced as
extensions to the Direct Preference Optimization (DPO) family. While these meth-
ods have successfully aligned models with human preferences, there is a lack of
understanding regarding the contributions of their additional components. More-
over, fair and consistent comparisons are scarce, making it difficult to discern
which components genuinely enhance downstream performance. In this work, we
propose RAINBOWPO, a unified framework that demystifies the effectiveness of
existing DPO methods by categorizing their key components into seven broad di-
rections. We integrate these components into a single cohesive objective, enhanc-
ing the performance of each individual element. Through extensive experiments,
we demonstrate that RAINBOWPO outperforms existing DPO variants. Addition-
ally, we provide insights to guide researchers in developing new DPO methods
and assist practitioners in their implementations.

1 INTRODUCTION

Reinforcement Learning with Human Feedback (RLHF) (Ouyang et al., 2022; Stiennon et al., 2020;
Ziegler et al., 2019) has significantly contributed to the success of recently released Large Language
Models (LLMs) such as InstructGPT (Ouyang et al., 2022), ChatGPT, and GPT4 (Achiam et al.,
2023). However, RLHF is a complex and resource intensive process and requires training a reward
model. An alternative to RLHF is Direct Preference Optimization (DPO) (Rafailov et al., 2023)
that directly optimizes policies from pairwise preferences by minimizing a supervised learning loss
objective, which is viewed as the maximum likelihood estimate for the reward model in RLHF.
This approach allows DPO and other DPO variants to bypass the use of RL, resulting in faster
speed of end-to-end training and better resource efficiency, while achieving comparable or superior
performance to RLHF in downstream tasks such as summarization (Rafailov et al., 2023).

DPO and its success during training foundation models like Llama series (Dubey et al., 2024; Tou-
vron et al., 2023), Mistral (Jiang et al., 2023a), has garnered significant research attention in the
LLM alignment space (Winata et al., 2024; Wang et al., 2024b), leading to the development of var-
ious extensions. These include variants beyond pairwise ranking, such as Kahneman & Tversky
Optimization (KTO, Ethayarajh et al. (2023)), unified perspectives on loss parameterization, such as
Identity Preference Optimization (IPO, Azar et al. (2024)) and Generalized Preference Optimization
(GPO, Tang et al. (2024)), distribution correction methods like Rejection Sampling Optimization
(RSO, Liu et al. (2023)), and reference model-free alternatives, such as Contrastive Preference Opti-
mization (CPO, Xu et al. (2024)), Odds Ratio Preference Optimization (ORPO, Hong et al. (2024)),
and Simple Preference Optimization (SimPO, Meng et al. (2024)). Each of these DPO variants
claims to outperform the original DPO in downstream task evaluations by introducing specific addi-
tional components, or mathematically modifying the loss objective. In the rest of the paper, we will
refer to all DPO variants collectively as XPOS for simplicity.

Comparing these XPOS proposed in the literature is not always straightforward due to differences
in the base model size and architecture, the alignment datasets, the experimental setup as well as the
evaluation metrics. Subsequently, it becomes difficult to assess the effectiveness and choose among
different XPO methods given a problem. A brute force comparison across all existing methods
is prohibitively expensive and inefficient. Therefore, it is crucial that we study the performance
characteristics of each proposed method in the literature by evaluating the XPOS’ performances
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under at least one convincing and representative setup. Further, despite the success of the XPO
family, a fundamental question remains unexplored:

What are the components proposed in XPOS that actually improve the performance over DPO?

Surprisingly, there is still a lack of comprehensive work studying the progress in the literature and
summarizing the core practical components of these methods that lead to improvement over DPO.
To demystify the reasons for their effectiveness, we hypothesize that the main benefits of these
methods stem from the combination of several mathematically orthogonal effective components. In
this paper, we validate our hypothesis by decomposing the XPOS and identifying these orthogonal
components upon DPO. We further assess their effectiveness through downstream task evaluations,
ruling out the components that do not contribute to performance improvements. Given these orthog-
onal identified beneficial components for preference optimization, a natural question arises:

Can these individual components complement each other and be effectively combined?

Our question is largely motivated by the previous study RAINBOW (Hessel et al., 2018) that explored
improvements over Deep Q-Networks algorithm (DQN) (Mnih et al., 2015) in traditional Reinforce-
ment Learning (RL). The summarization and comparsion in Hessel et al. (2018) greatly enhances the
understanding for improving DQN, and the resulting algorithm Rainbow, still serves as a benchmark
(Raffin et al., 2021). However, such a study for RLHF is still underexplored. This shows a gap in
the literature, that elicits an answer to the question of combining different XPO extensions evaluated
in a comprehensive setting. To bridge this gap, we propose RAINBOWPO, a unified framework that
integrates existing XPOS’ components, and deploys useful and essential components in a principled
manner to achieve better performance. To conclude, our contributions in this paper are as follows:

(1) We conduct a comprehensive study on more than 10 offline representative variants of DPOs
(XPOS) from a practical aspect by analyzing their loss functions for optimization. We conclude
several mathematically orthogonal directions along which these methods propose to optimize
over the original DPO loss, analyze the usefulness of each method theoretically and empirically,
and provide comparisons under the same representative setup.

(2) We identify and summarize 7 broad components across all DPO extensions: length normal-
ization, link function, margin / home advantage, reference policy, contextual scaling, rejection
sampling optimization (RSO), and supervised fine-tuning (SFT) loss, and justify that four of
them are effective through extensive hyper-parameters search, model training and evaluations.
Additionally, we also propose a better way of formulating the reference policy by mixing the
SFT policy with a margin (see details in the reference policy of Section 3.1), and demonstrate
the advantage of this approach over using just SFT policy (in DPO) or just margin (in SimPO).

(3) Finally, we propose RAINBOWPO,1 a DPO variant that combines three essential and orthog-
onal components from existing XPOS. Combining other adjustment on optimization hyper-
parameters, we show that our algorithms perform the best among all open-sourced algorithms
when tuning Llama3-8B-Instruct. In the widely adopted LLM benchmark Alpaca-Eval2 2,
RAINBOWPO improves Llama3-8B-Instruct from 22.92% to 51.66% for Length Controlled
Win Rate (LC WR), with just access to a reward model to form the offline preference dataset
and no further online sampling. We also perform an ablation study and show that all adopted
elements in RAINBOWPO are indeed necessary to achieve the best result.

Related Work. Below we provide a (non-exhaustive) list of other relevant references to this work.

Compared to human feedback in original RLHF, existing works have improved the scalability by
utilizing AI feedback (Bai et al., 2022; Lee et al., 2023). For such need of constructing better
AI feedback, recent works also proposed various reward models for formulating better preference
datasets, like PairRM (Jiang et al., 2023b), ArmoRM (Wang et al., 2024a), RRM (Liu et al., 2024a),
and RM benchmarks like Reward Bench (Lambert et al., 2024).

We also find works that target at understanding DPO methods related to our work. Liu et al. (2024b)
studies the effect of reference policy in the preference optimization; Saeidi et al. (2024) compare the
performance of DPO, IPO, CPO, KTO for tuning Mistral 7B (Jiang et al., 2023a) based models, and
mainly studied the roles of SFT stage for alignment methods.

1The trained RainbowPO will be released upon acceptance. The code will be released publicly.
2https://github.com/tatsu-lab/alpaca_eval.
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The rest of the paper is organized as follows. We provide backgrounds on RLHF and DPO in
Section 2. In Section 3, we summarize the current directions in existing XPOS and the development
of RAINBOWPO, followed by detailed experimental results in Section 4. Finally, we present our
conclusion in Section 5.

2 PRELIMINARIES AND MOTIVATION

In this section, we first briefly introduce RLHF and DPO as the foundation method, and then discuss
on extensions of DPO (XPOS) to understand what are the components proposed in the literature.

RLHF starts with fine-tuning a pre-trained large language model by supervised learning on high-
quality data for some downstream tasks of interest (e.g., dialogue, summarization, etc.), to acquire
a model πSFT. This step is referred to as the SFT phase. For instance, for training Instruct-
GPT (Ouyang et al., 2022), GPT-3 (Brown et al., 2020) is first fine-tuned on the given input prompt
distribution. The second stage of RLHF is known as reward modeling, i.e., researchers collect pref-
erences D = (x, yw, yl) on the generations of fine-tuned model πSFT, and learns a reward model
r∗(x, y) that could represent the quality or the rating of generation y with respect to prompt x. The
final step is policy optimization on πSFT = πref , by maximizing a regularized reward to obtain the
optimal policy model π∗ through reinforcement learning:

max
θ

Ex∼D
[
Ey∼πθ(y|x) [r

∗(x, y)]− βKL (πθ(· | x)∥πref(· | x))
]
, (1)

in which β > 0 denotes the regularization constant. For ease of reference, we prvide more detailed
description of RLHF in Appendix A.1, and we also add a table of notations in Table 7 in Appendix B.

2.1 DIRECT PREFERENCE OPTIMIZATION (DPO)

One disadvantage of RLHF is that the RL step often requires substantial computational effort (e.g., to
carry out PPO). The idea of DPO is to combine the reward model and RL in RLHF into a single ob-
jective, bypassing the computation in the RL step. Given the same preference pairs D = (x, yw, yl)
utilized for reward modeling in RLHF, the DPO objective yields:

min
θ

LDPO (πθ;πref) := −E(x,yw,yl)∼D

[
log σ

(
β log

πθ (yw | x)
πref (yw | x)

− β log
πθ (yl | x)
πref (yl | x)

)]
, (2)

where σ(·) is the sigmoid function and β is a regularization parameter similar to the one in RLHF.
DPO thus yields a supervised learning problem, and requires much less computation than the RL
based RLHF. The objective in Equation 2 can be understood as maximizing the likelihood difference
between the preference pairs under the policy, encouraging the model to more likely generate the
preferred answers than non-preferred. We refer more details of DPO derivation in Appendix A.2.

2.2 MOTIVATION: REVISITING XPOS

Since DPO is proposed, there is huge interest in developing and improving DPO, leading to nu-
merous XPOS. Different XPOS can be motivated by theoretical concerns like relaxing or extending
preference distribution assumptions in IPO and Mallows DPO, human aware loss function in KTO,
or from practical aspects like reference model-free alternatives, like CPO, ORPO and SimPO. We
provide an non-exhaustive list in Table 8 in Appendix B for the ease of revisiting and comparison.

Despite their differing motivations, XPOS share a primary objective to optimize. We thus take the
loss objectives as the first class citizen, and mathematically understand the parts that are commonly
adopted or differ in XPOS. Before going into detailed categorization, we want to first argue that, in
existing preference optimization literature, there is a lack of comprehensive studies on revisiting and
examining DPO variants in their mathmatical objectives. As a consequence, some papers may have
implicitly proposed some designs for improvement and even didn’t highlight it. As a motivating
example, we revisit ORPO objective, which proposes to maximize an odd ratio difference (for an
event A with probability p, the odds ratio is defined as p/(1 − p)) between the winning and losing
answers:

LORPO (πθ) = −E[log pθ(yw|x)︸ ︷︷ ︸
LSFT(πθ)

+λ log σ

(
log

pθ(yw|x)
1− pθ(yw|x)

− log
pθ(yl|x)

1− pθ(yl|x)

)
︸ ︷︷ ︸

λ·LPO(πθ)

], (3)
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in which the expectation is for (x, yw, yl) ∼ D, and pθ(y|x) = exp
(

1
|y| log πθ(y|x)

)
. Rewriting

terms in LPO (πθ), we could derive a upper bound as (see proof in Appendix D.1):

LPO (πθ) ≤ − log σ(
1

1− pθ(yl|x)

(
1

|yw|
log πθ(yw|x)−

1

|yl|
log πθ(yl|x)

)
︸ ︷︷ ︸

∆θ

) := L̄PO (πθ) , (4)

if assuming ∆θ > 0 for all x. The upper bound L̄PO is sharp, as L̄PO − LPO = O(∆θ)
2; thus

minimizing ORPO loss could be understood as reference-model free DPO with length normalization
(namely 1/|yw| and 1/|yl|, see more detailed explanation in Section 3) and a contextual dependent
β(x) = 1/(1− pθ(yl|x)). Length normalization is one of the key ideas adopted in SimPO:

LSimPO (πθ; γ) := −E(x,yw,yl)∼D

[
log σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− γ

)]
, (5)

which is evident in SimPO objective, though proposed after ORPO. This connection is however
unaware by the literature. This thus calls for a comprehensive analysis of the contributed elements
in different XPOS so far, as many methods may overlap in contributed directions without awareness,
and bringing this out right away could possibly prevent repetitive work or efforts in the future.

Following similar analysis of different representative XPO methods for pairwise preferences, includ-
ing DPO (Rafailov et al., 2023), IPO (Azar et al., 2024), CPO (Xu et al., 2024), GPO (Tang et al.,
2024), RSO (Liu et al., 2023), ODPO (Amini et al., 2024), ORPO (Hong et al., 2024), Mallows-
DPO (Chen et al., 2024a), SimPO (Meng et al., 2024), we come up with seven broad categories,
which is able to explain most popular DPO variants in the literature, as in Table 1, This provides a
straightforward illustration of the main ideas and connections of existing methods. The meanings
and details of the categories are elaborated in Section 3.

Method Length Norm. Link Func. Home Adv. Ref. Policy Contextual Scaling RS SFT Loss
DPO × logistic × SFT × × ×
SLiC-HF × hinge × SFT × × ✓
IPO × square × SFT × × ×
CPO × logistic × Free × × ✓
RSO × logistic / hinge × SFT × ✓ ×
ODPO × logistic ✓ SFT × × ×
ORPO ✓ logistic × Free implicitly × ✓
WPO × logistic × SFT ✓ × ×
Mallows-DPO × logistic × SFT ✓ × ×
SimPO ✓ logistic ✓ Free × × ×
RainbowPO ✓ logistic × mixing ✓ × ×

Table 1: Mapping of XPOS with mathematically orthogonal components (see more details in Ap-
pendix C) and validation results of their effectiveness by the downstream task evaluations.

3 RAINBOWPO: A UNIFIED FRAMEWORK

3.1 COMPONENT DESCRIPTIONS

We first explain in detail about the components we categorized, after which we propose a generic
framework, which we name as RainbowPO, to combine these components.

Length Normalization. The literature has noticed a verbosity issue of DPO aligned models, as the
aligned model may generate answers significantly longer than both preferred and rejected answers
(Park et al., 2024). This also could lead to an inflated win wate when evaluating model performance,
as LLM-as-a-judge can be susceptible to length bias: Wang et al. (2023) has noticed that when
evaluating 13B parameter models in head-to-head comparisons with the Davinci-003 model, win
rates have a strong correlation (0.96) with the average number of unique tokens in the model’s
response. To address this issue, one promising direction noticed in the literature is to incorporate
explicit length penalties, like in R-DPO (Park et al., 2024) and SimPO (Meng et al., 2024):

rLR
θ (x, y) = rθ(x, y)− α|y|, and rLN

θ (x, y) =
1

|y|
rθ(x, y), (6)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

in which rθ(x, y) = log πθ(y|x)
πref(y|x) is the implicit reward model (Rafailov et al., 2023). From an

optimization perspective, maximization with respect to rLN
θ (x, y) is equivalent to rLR

θ (x, y) with a
specific α (might be prompt x dependent). Directly applied to DPO, the resulting objective yields:

LLN−DPO (πθ;πref) := − E
(x,yw,yl)∼D

log σ

(
β

|yw|
log

πθ (yw | x)
πref (yw | x)

− β

|yl|
log

πθ (yl | x)
πref (yl | x)

)
. (7)

Why length normalization could help prevent the verbosity issues can be explained through exam-
ining the gradient of the loss respectively: ∇θLLN−DPO (πθ;πref) =

−βE
[
σ
(
rLN
θ (x, yl)− rLN

θ (x, yw)
)( 1

|yw|
∇θ log πθ (yw | x)− 1

|yl|
∇θ log πθ (yl | x)

)]
, (8)

thus the gradient of length normalized DPO can be understood as taking a discount factor 1
|yw| of

the length for longer sequence. We also empirically justify the effectiveness of length normalization
by comparing to the vanilla DPO trained models, and witness the consistent smaller average length,
independent of the regularization constant β. See results of average length in Section 4.

Link Function. SLiC-HF (Zhao et al., 2023) and GPO (Tang et al., 2024) both realized that the
DPO objective could be understood as taking f (we refer this as link function) as − log σ(·) in:

LGPO = E
(x,yw,yl)∼D

[
f

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
, (9)

thus unifying DPO, IPO, SLiC (without SFT loss) as instances of taking f as logistic − log σ(·),
square (x− 1/2)2 or hinge function max(0, δ − x) for some margin δ > 0 (see more details in Ap-
pendix C), separately. For identifying the best link function, we did an exclusive parameter search
for DPO and IPO separately, however we found DPO, i.e. adopting − log σ(·) as the link func-
tion, empirically performs better than IPO evaluated by AlpacaEval2, despite the weaker theoretical
assumption of preferences in IPO. Thus we stick to the link function to be − log σ(·) in this paper.

Home Advantage / Margin. In SliC, IPO, ORPO, SimPO, there exists a term which also targets at
encouraging the difference between the reward model difference. It is also referred in SimPO as the
term of home advantage γ (the terminology comes from an extension of the vanilla Bradley-Terry
Model): logit(Prob(i beats j)) = ri − rj − γ. Thus the likelihood could be written as:

p∗ (y1 ≻ y2 | x) = σ (r∗ (x, y1)− r∗ (x, y2)− γ) , (10)

which takes the losing prompt in a home advantage when γ > 0. SimPO shows the effectiveness
of this margin under the reference-free setup; however, when we adopt the margin for vanilla DPO
(i.e. with the reference policy) with the optimal β, we do not witness an increase of the performance
when adjusting the margin, either further adopting DPO with length normalization or not. In Figure
1a, the performance steadily decreases when increasing the margin γ in DPO, i.e. we optimize:

LDPO+ (πθ;πref , γ) := −E(x,yw,yl)∼D

[
log σ

(
β log

πθ (yw | x)
πref (yw | x)

− β log
πθ (yl | x)
πref (yl | x)

− γ

)]
,

(11)
This questions the true explanation about the effectiveness of the margin term in SimPO. We provide
the answer as understanding margin as a reference policy right in the next paragraph.

Reference Policy. DPO takes the SFT policy as the reference policy motivated by the standard
RLHF pipeline. However, recently proposed methods like CPO, ORPO, and SimPO (Xu et al.,
2024; Hong et al., 2024; Meng et al., 2024) all suggested a reference-free objective could yield
the same or even better performance. CPO and ORPO further utilized an extra SFT loss to force
regularization, while for SimPO, such regularization is not enforced. Given our prior examination
that home advantage can hardly improve over DPO, we argue that the margin term in SimPO loss
Eq. 5 should be understood as a term for “reference policy” instead of the “home advantage”.

Concretely, we could hypothesize that there exists a “good policy” πγ such that, for each prompt
and preference pairs in the dataset, the normalized log likelihood ratio of preferred response to non-
preferred response is a positive constant, which we denote as πγ . We assume that πγ’s normalized

5
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implicit reward model is perfect at in-distribution pairwise classification and yields πγ(yw|x)1/|yw|

πγ(yl|x)1/|yl|
=

exp(γ) for any x. If so, the loss of SimPO (defined as in Equation 5) could be rewritten as:

LSimPO (πθ; γ) ≡ − E
(x,yw,yl)∼D

log σ

(
β

|yw|
log

πθ (yw | x)
πγ (yw | x)

− β

|yl|
log

πθ (yl | x)
πγ (yl | x)

)
. (12)

This transformation motivates us to further propose a new mechanism which we call as mixing
(reference) policy. If taking πsft as the reference policy is too conservative (not strong enough),
and taking πγ policy can help improve the performance but totally neglects the original SFT model
implicit preference information, can we benefit from a mixing of these two policies? The answer is
YES. Consider a exponential mixing of likelihood of reference policy πγ and πref (we use πα,γ to
denote the relevance of the resulting reference policy to both α and γ) with α ∈ [0, 1], defined as:

πα,γ(y | x) ∝ παref(y | x) · π1−α
γ (y | x). (13)

Then if we use πα,γ as the reference policy in (7), we yield LLN-DPO(πθ;πα,γ) with a practical form:

− E
(x,yw,yl)∼D

log σ

(
β log

πθ (yw | x)1/|yw|

πθ (yl | x)1/|yl|
− αβ log

πref (yw | x)1/|yw|

πref (yl | x)1/|yl|
− (1− α)γ

)
. (14)

Notice that LLN-DPO(πθ;πα,γ) = LLN-DPO(πθ;π0,γ) = LSimPO(πθ; γ), thus SimPO is an instance of
mixing policy by taking α = 0; LLN-DPO(πθ;π1,γ) = LLN-DPO(πθ), thus α = 1 corresponds to DPO
applied with length normalization as in Equation 7. For finding a good πα,γ , we first take α = 0 and
tune the best γ, which is similar to SimPO; we then afterwards tune α using obtained γ.

According to our experiment results, we indeed find that there exists α ∈ (0, 1) that performs better
than both sides (i.e. α = 0 or α = 1), see Figure 1b. Recent work (Liu et al., 2024b) analyze the
role of reference model, and argue that stronger reference model could benefit DPO; our finding is
consistent, as we further explicitly design a choice of better reference model for better performance.

Rejection Sampling. Since the proposal of DPO, there is controversy on the exact equivalence of
DPO and RLHF. RSO (Liu et al., 2023), further pointed out that the data should be generated from
the optimal policy if treating DPO objective as maximum likelihood estimation. Thus RSO adopts
a statistical rejection sampling for sampling preference dataset D generated by the optimal policy to
mitigate this distribution difference in DPO.

Algorithm 1 RS+ for preferences formulation.
For each prompt x, start with an empty set Y ← {}.
Generate N ≫ M answers yi ∼ πsft(y | x), for
i ≤ N as candidates.
Compute each yi’s percentile Pi(x) based on
r(x, yi) over the whole N answers for prompt x.
Initialize counting number j = 0.
while |Y| < M do

j = j + 1 and generate u ∼ U [0, 1]
if u ≤ exp((Pi − 1)/τ) then

Accept yi and add it to Y .
else

Reject yi.
end if

end while
Let yw = argmaxy∈Y r(x, y)
Let yl = argminy∈Y r(x, y)

To address the intrinstic different variance
schedules of reward model for different
prompts, and stablize the process for formu-
lating the preference dataset, we also adopt a
modified version of RSO by computing the per-
centile reward (or the ranking reward) in the
whole generation set instead of utilizing the
true reward, which we found that can stabilize
the generation and yield better results when fur-
ther applied with DPO, as in Algorithm 1. Sim-
ilar to in RSO (Liu et al., 2023), we search
the best temperature hyper-parameter for RSO
through the downstream task performance as
the validation metric, which we detail in Figure
1c. We then use the empirically best performed
temperature constant τ to formulate the prefer-
ence dataset as DRS.

Contextual Scaling. Existing work also considered the contextual difference: some preference
pairs might be of higher uncertainty or have more dispersion. In this paper, we adopt the idea
of Mallows-DPO in Chen et al. (2024a) by introducing a contextual scaling factor ϕ(x) on the
likelihood difference, which yields:

LMallows-DPO(πθ;πref) = − E
(x,yw,yl)∼D

log σ

(
ϕ(x)

[
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

])
, (15)
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if adding this factor to DPO objective. The scaling factor is motivated by the Mallows ranking model
which has a natural carrier of dispersion index. In Mallows-DPO, ϕ(x) corresponds to a normalized
predictive entropy of the preference pair (x, yw, yl):

ϕ(x) = − log

(∑N−1
i=1

[
Hπref

(Yi+1 | Yi = ywi ) +Hπref

(
Yi+1 | Yi = yli

)]
2 log n

)
. (16)

SFT Loss. SFT loss is straightforward by adding extra SFT loss term on the winning answer,
or a reference answer (for regularization, which appears for reference-free methods like CPO and
ORPO). For example, if adding SFT for DPO with preferred/winning answers, we yield:

LSFT (πθ;λ) := −E
[
log σ

(
β log

πθ (yw | x)
πref (yw | x)

− β log
πθ (yl | x)
πref (yl | x)

)
+ λ log(πθ (yw | x))

]
,

(17)
However, we find that adding SFT loss could largely degrade the performance, as in Section 4.

3.2 UNIFIED FORMULATION: RAINBOW

Combining the advances proposed above, we propose a following preference optimization objective,
for which we refer our method as RAINBOWPO:

LRAINBOWPO (πθ;πref) := − E
(x,yw,yl)∼D∗

f

[
ϕ(x)

(
β

|yw|η
log

πθ (yw | x)
πα,γ (yw | x)

− β

|yl|η
log

πθ (yl | x)
πα,γ (yl | x)

)]
,

(18)
in which η ∈ {0, 1}, and πα,γ is as defined in Equation (13). The preference dataset D∗ can be DRS,
which means that the preference dataset is formulated by by rejection sampling from the original
dataset’s prompts as mentioned in Algorithm 1, if we have access to a reward model’s true value.
If the reward model is black-box oracle, namely we cannot access the true reward value, we will
always utilize the usual formulation way of preference dataset D, detailed in the experiment section.

Hyper-parameters. Like all other XPOS, to achieve the best performance, RainbowPO can intro-
duce an extensive amount of hyper-parameter search for the best performing f , α, β, γ and whether
η = 1. For efficient hyper-parameter search, we conducted a greedy search method with the help
of our framework and decomposition of effective elements: we search for the best hyper-parameters
for those that affects the performance in the most when we gradually add designs to the preference
optimization methods. For example, when adding length normalization to the methods, we only
search for the best hyper-parameter for the regularization parameter β, and will fix the learning rate
and all the training args, which prevents the parameter searching space from exploding.

4 EXPERIMENTS

To evaluate the performance of the XPOS algorithms, we conducted extensive experiments on train-
ing models with various XPOS configurations and compared their instruction-following capabilities.

Experimental Setup. We choose Llama3-8B-Instruct3 as our model base to fine tune, mainly
because that aligning this widely adopted and flagship instruct model is of great interest to the
whole community and meets the standard as a representative setup for alignment. It can also help
mitigate the uncertainty from probably not perfectly supervised fine-tuned models.

For evaluation metric, we use widely adopted benchmark AlpacaEval2, which is composed of 805
questions and evaluate the instruction following capability of the model. AlpacaEval2 evaluates
models with the win rates (WR) of model generations against the reference/base answers generated
by GPT4-turbo. The comparisons are by default annotated by a GPT4-turbo and the resulting
WR has a 68.5% consistency with human evaluation, according to official AlpacaEval2 website.
Length Controlled (LC) Win Rate (WR) is a debiased version of the WR that control for the length
of the outputs and increase the WR’s correlation to Chat Arena4, while significantly decreasing the
length gameability of the annotator. To cross validate the effectiveness of the model and mitigate

3https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
4https://lmarena.ai/
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possible bias of GPT4, we also adopt Llama3-70B instruct as the judge, which is reported to have
a 67.5% win rate consistency to humans (close to the performance of GPT4). We include more
detailed background information of AlpacaEval2 in Appendix E.1.

For formulating the preference dataset D, we follow the standard RLHF pipeline by directly generat-
ing answers from the model (which is thus an on-policy dataset, but the algorithm is still offline) and
get AI feedbacks as in SimPO (Meng et al., 2024): we generate 5 answers from Llama3-8B-Instruct
for each prompt in UltraFeedback (Cui et al., 2023), rank them with scores evaluated by ArmoRM
(Wang et al., 2024a), and choose the best/worst one as winning/losing answer to form the preference
pairs. For training, we adopted the popular library Transformer Reinforcement Learning (TRL5),
which already implemented most aforementioned XPOS algorithms and make everything under the
same backend and easy to reproduce. If not specified, we train the model with 3 training epochs,
which typically yields better performance for each XPOS according to our replication.

4.1 EFFECTIVENESS OF DIFFERENT COMPONENTS

Individual Components Results. We first study the effectiveness of adding individual compo-
nents. We use + to denote that only the component(s) after is added to DPO baseline as in Table
2. From the results, we could notice that some components may not provide firm improvement over
the baseline, no matter being added individually or combined. For example, for home advantage, we
tune different values under the best performed β for DPO, and also always witness a degradation in
performances, see Figure 1a. For link function, we examine the square loss in IPO and did not see
performance gain over the DPO baseline. Other components (LN, Mixing reference policy, CS) in-
deed help improve the metric even added individually. Compared to SimPO, using mixing reference
policy yields also better results as in Figure 1b. The average WR gain is reported in the last column.

Models AlpacaEval2 (GPT4) AlpacaEval2 (Llama3-70B)
LC WR (%) ∆ (%) WR (%) ∆ (%) LC WR (%) ∆ (%) WR (%) ∆ (%) Avg. ∆ (%)

Base model 41.88 - 42.29 - 57.78 - 57.96 - -
+ Length Norm. (LN) 44.27 2.39 42.37 0.08 61.37 3.59 58.94 0.98 + 1.76
+ Ref. Policy Mixing (Mix) 40.18 -1.7 41.25 -1.04 60.67 2.89 57.95 -0.01 + 0.04
+ Contextual Scaling (CS) 41.14 -0.74 41.44 -0.85 60.06 2.28 57.90 -0.06 + 0.16
+ Link Function (LF) 39.53 -2.35 39.07 -3.22 58.13 0.35 56.34 -1.62 - 1.21
+ Home Advantage (HA) 41.70 -0.18 39.85 -2.44 59.01 1.23 56.41 -1.55 - 0.74
+ Rejection Sampling (RSO) 42.87 0.99 42.50 0.21 58.86 1.08 56.02 -1.94 + 0.09

Base model + LN 44.27 - 42.37 - 61.37 - 58.94 - -
+ LN + Mix 47.45 3.18 45.89 3.52 61.91 0.54 58.07 -0.87 + 1.59
+ LN + CS 45.92 1.65 42.36 -0.01 61.88 0.51 58.20 -0.74 + 0.35
+ LN + HA 42.77 -1.50 41.38 -0.99 60.99 -0.38 59.78 0.84 - 0.51
+ LN + RS 43.22 -1.05 41.96 -0.41 61.03 -0.34 57.02 -1.92 - 0.93
+ LN + SFT Loss 39.90 -4.37 38.66 -3.71 60.42 -0.95 58.94 0.00 - 2.26

Table 2: Model performance results on each component after model training for 3 epochs.
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Figure 1: Investigation on the dynamics of changing home advantage, reference policy mixing and
different temperature in RSO.

5https://huggingface.co/docs/trl/index
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Components Combination Results. Given the effectiveness of length normalization, we further
test the combination of LN and other components. We do find that mixing policy could help improve
the performance much more remarkablly when combined with LN-DPO than just DPO: it provides
a 1.6% win rate extra gain compared to only 0.04% on DPO. However, we found that the RSO can
improve DPO, but will yield worse performance when applied with length normalization. Thus, we
do find that despite that these elements are apparently mathematically orthogonal, they are not em-
pirically independent. Given the positive results and effectiveness of length normalization, mixing
reference policy and contextual scaling, we propose RainbowPO, as the combination of these three
elements. We then examine the effectiveness of our method and each elements by gradually com-
bining the elements one by one and greedy search of the best hyper-parameters. We finally achieve a
51.66% win rate for AlpacaEval2, surpassing the GPT4-1106 preview (see details in Appendix E.2).

Models AlpacaEval2 (GPT4) AlpacaEval2 (Llama3-70B)
RainbowPO LC WR (%) σ WR (%) σ LC WR (%) WR (%) avg length (↓)

Base model 41.88 0.77 42.29 1.46 57.78 57.96 2,169
⊕ Length Norm. 44.27 0.75 42.37 1.45 61.37 58.94 1,942
⊕ Ref. Policy Mixing 47.45 0.70 45.89 1.49 61.91 58.07 1890
⊕ Warm-up Adjustment 48.52 0.80 45.88 1.45 63.37 59.95 1,919
⊕ Contextual Scaling 51.66 0.78 47.92 1.49 63.94 59.69 1,878

Table 3: Evaluation of RAINBOWPO by adding new components consecutively.

Ablations on RainbowPO. We also conduct an ablation study of our proposed RAINBOWPO
algorithm. All components of our proposed in our algorithm is useful, as in Table 4, for which we
use ⊕ to denote that the methods are based on composition of the method on previous line and new
elements in Table 4. We notice that adding length normalization is indeed important and of the most
critical importance among the components for RainbowPO. We also include ablations on training
epochs in Appendix E.3, which showcases that 3 epochs yield the sweet spot.

Models AlpacaEval2 (GPT4) AlpacaEval2 (Llama3-70B)
LC WR (%) σ WR (%) σ LC WR (%) WR (%) avg length (↓)

RainbowPO 51.66 0.78 47.92 1.49 63.94 59.69 1,878
− Ref. Policy Mixing 50.52 0.78 47.49 1.46 64.64 60.43 1,886
− Contextual Scaling 48.52 0.80 45.88 1.45 63.37 59.95 1,919
− Length Normalization 45.68 0.78 42.43 1.47 57.43 58.01 2108

Table 4: Ablation study of the newly proposed elements in RAINBOWPO.

4.2 COMPARISON WITH BASELINE METHODS

Table 6 shows the comparison between RainbowPO with the baselines. For a fair comparsion, we
first compare RainbowPO with the baselines in one training epoch, shown in Table 5. RainbowPO
performs the best, beating SimPO while achieving lower average length.

Models AlpacaEval2 (GPT4) AlpacaEval2 (Llama3-70B)
LC WR (%) WR (%) σ LC WR (%) WR (%) avg length (↓)

DPO (Rafailov et al., 2023) 37.95 37.36 1.42 55.46 54.03 1,989
IPO (Azar et al., 2024) 34.80 34.52 1.40 52.67 50.93 1,956
KTO (Ethayarajh et al., 2023) 35.61 33.19 1.38 55.94 51.74 1,876
CPO (Xu et al., 2024) 31.89 34.92 1.38 53.33 54.84 2,155
ORPO (Hong et al., 2024) 22.91 22.59 1.24 48.41 45.90 1,914
SimPO (Meng et al., 2024) 47.96 41.17 1.44 61.94 54.22 1,730

RainbowPO (1 epoch) 48.08 42.53 1.43 61.36 54.60 1,683

Table 5: Methods comparison under one training epoch.

When we increased the training epoch to 3, interestingly, we also noticed that the same phenomenon
as what (Meng et al., 2024) reported: SimPO rarely benefits from more epochs of training. However,
RainbowPO and DPO both gets an increase in the winning rate after another two epochs of training,
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making the RainbowPO get a 51.66% win rate against GPT4 under GPT4 as a judge. This advantage
not only benefits the final performance, but also might play larger impact when the alignment dataset
is small or expensive to collect and will be beneficial to reuse, which is quite common in reality.

Models AlpacaEval2 (GPT4) AlpacaEval2 (Llama3-70B)
LC WR (%) WR (%) σ LC WR (%) WR (%) avg length (↓)

DPO∗ (Rafailov et al., 2023) 43.65 43.94 1.46 60.13 58.20 2,284
SimPO∗ (Meng et al., 2024) 48.40 44.57 1.47 60.90 56.46 1,843
RainbowPO (3 epochs) 51.66 47.92 1.49 63.94 59.69 1,878

Table 6: Methods comparison under three training epochs. ∗Hyper-parameters are further adjusted
for the best performance.

4.3 LIMITATIONS AND FUTURE WORK

Broader tasks. In this paper, we focus our evaluation on models trained with LLama3-8B In-
struct as the base model. Exploring other models of varying sizes, such as Gemma (Team et al.,
2024) or Mistral (Jiang et al., 2023a), could possibly enhance the generalizability of our findings.
It will also be beneficial if we could repeat the pipelines and compare the algorithms’ performance
on other LLM evaluation metrics, like arena-hard or MT-bench, though MT-bench is known to be
less tinguishable for RLHF algorithms. Other directions include benchmarking the effectiveness of
alignment algorithms on improving other capabilities of LLM other than instruction following, like
reasoning (Xiong et al., 2024b) or COT (Choi et al., 2024). However, due to constraints in com-
puting resources and time, we defer this investigation to future work. Nevertheless, we believe that
our work provides a unified and comprehensive framework for helping to find the best preference
optimization algorithms, and further pushing the boundary of offline RLHF for LLMs.

Ideas from other XPOS. We were not able to explore other aspects of existing DPO variants in
detail, and there might be still promising candidates in further improving the preference of Rain-
bowPO. Some methods that propose to update the reference policy dynamically: sDPO (Kim et al.,
2024), TR-DPO (Gorbatovski et al., 2024); or learning from noisy preferences Chowdhury et al.
(2024). Additionally, we also recognize the recent literature in pursuing online methods, such as
online DPO (Guo et al., 2024) or iterative DPO (Yuan et al., 2024; Xiong et al., 2024a), which
provide valuable insights on possibly further improving the downstream task performance: we will
pursue them in future research. Other extensions beyond RLHF include, Nash Learning from human
feedback (Munos et al., 2023), and self-play preference optimization (Chen et al., 2024b).

Demystifying observations. We also made some interesting observations in the paper, which we
fail to find proper mathematical explanations and may boost further research. For example, the
RainbowPO objective could benefit much more than SimPO when increasing the training epochs,
but reasons for such phenomenons are still unknown. In addition, we found some mathematically
orthogonal components are actually not empirically independent, for example, RSO can improve
DPO, but can not be readily combined with other components like length normalization. It is also
interesting to see the some combination of components reach effects “1 + 1 > 2”; it will be inter-
esting to understand the deeper underlying reasons and could potentially lead to better algorithms.

5 CONCLUSION

In this paper, we propose RAINBOWPO, a comprehensive framework that demystifies and enhances
existing DPO methods through the integration of key components into a unified objective. Our find-
ings highlight the effectiveness of length normalization, reference policy mixing, and contextual
scaling. However, the selective application of rejection sampling and home advantage is not pro-
viding incremental improvements when paired with the other methods. By demonstrating that these
enhancements can coexist within a single algorithm to achieve state-of-the-art performance, we pave
the way for future research and practical applications. We aim for this work to serve as a founda-
tion for refining DPO methodologies and to inspire further exploration of untested components for
integrated agents.
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A BACKGROUND ON RLHF AND RL

A.1 RLHF

RLHF (Ouyang et al., 2022; Stiennon et al., 2020; Ziegler et al., 2019). On top of πSFT, RLHF is
proposed to serve as the next step to conduct further fine-tuning to generate high-quality outputs as
judged by humans. Given a generative model π, the model π is prompted with prompts x to produce
pairs of answers (or, “completions”), {y1, y2} ∼ π(y | x), which are then presented to human la-
belers who express preferences for one completion over the other. Denote by yw ≻ yl | x, meaning
that yw ∈ {y1, y2} is preferred over yl ∈ {y1, y2}. The preferences are assumed to be generated by
some latent reward model r∗(x, y), which we do not have access to. Based on the collected prefer-
ence data {x(i), y

(i)
w , y

(i
l )}Ni=1, RLHF consists of first learning a reward model r(x, y), followed by

learning a policy πr(y | x) in which the prompt x is the state, and the completion y is the action.

(a) Reward Model. To capture the underlying human preferences, RLHF assumes the Bradley-Terry
model (Bradley & Terry, 1952) that stipulates the pairwise preference distribution:

p∗ (y1 ≻ y2 | x) := exp (r∗ (x, y1))

exp (r∗ (x, y1)) + exp (r∗ (x, y2))
= σ (r∗ (x, y1)− r∗ (x, y2)) , (19)

where σ(·) is the sigmoid function. Given access to a static dataset of comparisons D =

{x(i), y
(i)
w , y

(i)
l }i=1,...,N , RLHF seeks to approximate the latent reward r∗(x, y) by a family of func-

tions {rψ(x, y)}ψ , and estimate the parameters by minimizing the (negative) log-likelihood loss
minψ L (rψ,D) := −E(x,yw,yl)∼D [log σ (rψ (x, yw)− rψ (x, yl))]. Denote by rψ∗(x, y) the solu-
tion to this problem.

(b) RL. The learned reward function rψ∗(x, y) is then used to provide feedback to the language
model. More precisely, the following KL-regularized RL problem is considered:

max
π

Ex∼D
[
Ey∼π(y|x) [rψ∗(x, y)]− βKL (π(· | x)∥πref(· | x))

]
(20)

where β > 0 is a hyper-parameter controlling the deviation from the reference policy πref = πSFT.
The regularization is important as it prevents deviating too far from the SFT model that is trained
to conform to the true preference, while maintaining the generation diversity to avoid mode-
collapsing to a single high-reward answer. In view of Equation 20, RLHF uses the reward function
r(x, y) = rψ(x, y) − β (log π(y | x)− log πref (y | x)), and solves the RL problem by proximal
policy optimization (PPO) (Schulman et al., 2017).

A.2 DPO

One disadvantage of RLHF is that the RL step often requires substantial computational effort (e.g.,
to carry out PPO). The idea of DPO is to combine the reward model and RL in RLHF into a single
objective, bypassing the computation in the RL step. The key realization is that given a reward
function r(x, y), the RL problem in Equation 20 has a closed-form solution πr(y | x) = 1

Z(x)πref (y |

x) exp
(

1
β r(x, y)

)
, where Z(x) =

∑
y πref (y | x) exp

(
1
β r(x, y)

)
. Rewrite the above as r(x, y) =

β log πr(y|x)
πref (y|x) + β logZ(x). Through this change of variables, the latent reward r∗(x, y) can be

expressed in terms of the optimal policy π∗(y | x), the reference policy πref (y | x) and a constant
Z∗(x). Substituting this r∗ expression into Equation 19 yields:

p∗ (y1 ≻ y2 | x) = σ

(
β log

π∗ (y1 | x)
πref (y1 | x)

− β log
π∗ (y2 | x)
πref (y2 | x)

)
, (21)

where Z∗(x) cancels out. the preference distribution only depends on π∗(y | x) and πref (y | x).
The expression in Equation 21 motivates the DPO objective:

min
θ

LDPO (πθ;πref) := −E(x,yw,yl)∼D

[
log σ

(
β log

πθ (yw | x)
πref (yw | x)

− β log
πθ (yl | x)
πref (yl | x)

)]
,

(22)
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B MISCELLANEOUS

Table 7 lists the common notations used in this paper. The table serves as a quick reference guide
for understanding the mathematical expressions and technical terms used throughout the paper.

Name Notation Description
Input Sequence x Input sequence that is passed to the model.
Output Sequence y Expected label or output of the model.

Dispreferred Response yl Negative samples for reward model training.
Preferred Response yw Positive samples for reward model training.

Optimal Policy Model π∗ Optimal policy model.
Policy Model πθ Generative model that takes the input prompt and

returns a sequence of output or probability distribution.
Reference Policy Model πref Generative model that is used as a reference to

ensure the policy model is not deviated significantly.

Preference Dataset D Dataset with a set of preferred and dispreferred responses.
Preference Dataset by RSO DRSO Dataset with a set of preferred and dispreferred responses

sampled by Rejection Sampling.

Loss Function L Loss function.
Regularization Hyper-parameter β Regularization Hyper-parameter for preference tuning.
Mixing Hyper-parameter α Our proposed mixing coefficient for better reference policy.
Reward r Reward score.
Target Reward Margin γ The margin separating the winning and losing responses.

Table 7: Table of Terminology and Notation.
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C MATHEMATICAL EXPLANATION OF DIFFERENT XPOS

Here we first list popular XPOS variants in the literature as in Meng et al. (2024) and Winata et al.
(2024).

Method Objective

DPO − log σ
(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
IPO

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x) −

1
2

)2
f -DPO − log σ

(
βf ′

(
πθ(yw|x)
πref (yw|x)

)
− βf ′

(
πθ(yl|x)
πref (yl|x)

))
KTO −λwσ

(
β log πθ(yw|x)

πref(yw|x) − zref

)
− λlσ

(
zref − β log πθ(yl|x)

πref(yl|x)

)
,

where zref = E(x,y)∼D [βKL (πθ(y|x)||πref(y|x))]

ODPO − log σ
(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x) −∆r(x)

)
Mallows-DPO − log σ

(
ϕ(x)

[
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

])
R-DPO − log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x) − (α|yw| − α|yl|)

)
CPO − log pθ(yw|x)− log σ (β log πθ(yw|x)− β log πθ(yl|x))

ORPO − log pθ(yw|x)− λ log σ
(
log pθ(yw|x)

1−pθ(yw|x) − log pθ(yl|x)
1−pθ(yl|x)

)
,

where pθ(y|x) = exp
(

1
|y| log πθ(y|x)

)
SimPO − log σ

(
β

|yw| log πθ(yw|x)−
β
|yl| log πθ(yl|x)− γ

)
Table 8: Various preference optimization DPO objectives. The table is inspired from Meng et al.
(2024) and Winata et al. (2024).

Next we include the categorization of different methods, which appeared earlier in Table 9, and
explain detailedly the reasons after.

Method Length Norm. Link Func. Home Adv. Ref. Policy Contextual Scaling RS SFT Loss
DPO × logistic × SFT × × ×
SLiC-HF × hinge × SFT × × ✓
IPO × square × SFT × × ×
CPO × logistic × Free × × ✓
RSO × logistic / hinge × SFT × ✓ ×
ODPO × logistic ✓ SFT × × ×
ORPO ✓ logistic × Free implicitly × ✓
WPO × logistic × SFT ✓ × ×
Mallows-DPO × logistic × SFT ✓ × ×
SimPO ✓ logistic ✓ Free × × ×
RainbowPO ✓ logistic × mixing ✓ × ×

Table 9: Mapping of XPOS with mathematically orthogonal components and validation results of
their effectiveness by the downstream task evaluations.

C.1 DIRECT PREFERENCE OPTIMIZATION (DPO)

The loss of DPO (Rafailov et al., 2023) is:

LDPO (πθ;πref) := −E(x,yw,yl)∼D

[
log σ

(
β log

πθ (yw | x)
πref (yw | x)

− β log
πθ (yl | x)
πref (yl | x)

)]
, (23)
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which can be seen that, as the baseline methods we investigate in this paper, no length normalization
is adopted, link function − log σ adopts the logistic function, home advantage can be seen as None
or 0, reference policy is the SFT policy to be aligned, no contextual scaling, the dataset is the hybrid
or offline dataset thus there is no rejection sampling. Also there is no SFT loss.

C.2 SEQUENCE LIKELIHOOD CALIBRATION FROM HUMAN FEEDBACK (SLIC-HF)

The loss of SliC-HF (Zhao et al., 2023) is (yref refers to answer generated by πref):

LSLiC(πθ;πref) = E(x,yw,yl) max (0, δ − log πθ(yw|x) + log πθ(yl|x))︸ ︷︷ ︸
rank calibration loss

−λ log πθ(yref|x)︸ ︷︷ ︸
SFT

, (24)

which can be seen that, no length normalization is adopted, link function max(0, δ − x) adopts the
hinge function, home advantage can be seen as None or 0, reference policy is the SFT policy to be
aligned (in the regularization term), no contextual scaling, the dataset is the hybrid or offline dataset
thus there is no rejection sampling. There is an SFT loss, which acts as the role of regularization.

C.3 IDENTITY PREFERENCE OPTIMIZATION (IPO)

The loss of IPO (Azar et al., 2024) is:

LIPO (πθ;πref) := E(x,yw,yl)∼D

(
β log

πθ (yw | x)
πref (yw | x)

− β log
πθ (yl | x)
πref (yl | x)

− 1

2

)2

, (25)

which can be seen that, no length normalization is adopted, link function (x − 1/2)2 adopts the
square function, home advantage can be seen as None or 0, reference policy is the SFT policy to be
aligned, no contextual scaling, the dataset is the hybrid or offline dataset thus there is no rejection
sampling. Also there is no SFT loss.

C.4 CPO

CPO (Xu et al., 2024) is motivated to improve the memory and speed efficiency of DPO by neglect-
ing the reference policy, further accompanied by a SFT loss term:

LCPO (πθ) := −E(x,yw,yl)∼D

[
log pθ(yw|x) + log σ

(
β log

πθ(yw|x)
πθ(yl|x)

)]
. (26)

which can be seen that, no length normalization is adopted, link function − log σ adopts the logistic
function, home advantage can be seen as None or 0, reference policy is None (or free), no contextual
scaling, the dataset is the hybrid or offline dataset thus there is no rejection sampling. Also there is
an SFT loss.

C.5 RSO

The loss of RSO (Rafailov et al., 2023) is:

LRSO (πθ;πref) := −E(x,yw,yl)∼DRS

[
log σ

(
β log

πθ (yw | x)
πref (yw | x)

− β log
πθ (yl | x)
πref (yl | x)

)]
, (27)

which can be seen that, it only differs from DPO in applying rejection sampling for formulating the
preference dataset.

C.6 ODPO

ODPO (Amini et al., 2024) proposed to add a margin to capture the significance of preference pairs;
they model this margin, or they call offset ∆r as a monotonically increasing function f(·) of the
difference between the scores associated with the responses:

∆r(x, yw, yl) = αf (score (x, yw)− score (x, yl)) , (28)
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where α is a hyper-parameter that controls the extent to which an offset should be enforced. The
resulting objective becomes:

LODPO (πθ;πref) :=

− E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

−∆r(x, yw, yl)

)]
. (29)

ODPO only differs from DPO in applying a contextual dependent margin/home advantage.

C.7 ORPO

Opposed to maximizing the likelihood ratios of winning and losing answers in the preference pair
in DPO, ORPO (Hong et al., 2024) propose that odds ratio can be a more sensible choice.

LORPO (πθ) :=

− E(x,yw,yl)∼D

[
log pθ(yw|x) + λ log σ

(
log

pθ(yw|x)
1− pθ(yw|x)

− log
pθ(yl|x)

1− pθ(yl|x)

)]
. (30)

where pθ(y|x) = exp
(

1
|y| log πθ(y|x)

)
. ORPO is similar to CPO in the sense that it is also refer-

ence model free and combined with a SFT loss; in addition, notably that ORPO also adopts a form
of length regularization by normalizing the likelihoods with respect to the length, as in the definition
of pθ(y|x); finally, they compute odds ratio instead of the original likelihood ratio.

ORPO differs from DPO in being reference-model free and also yields a SFT term for regularization.
Its contextual scaling is implicit, as shown in Theorem 1 for ORPO equivalent objective.

C.8 MALLOWS-DPO

Chen et al. (2024a) propose a contextual scaled objective derived from MLE under Mallows: com-
pared to DPO that puts equal weights on each prompt and preference pairs, the resulting Mallows-
DPO adds a contextual scaling factor ϕ(x) that represents this dispersion of the preferences of an-
swers to each prompt x:

LMallows−DPO (πθ;πref) :=

− E(x,yw,yl)∼D

[
log σ

(
ϕ(x)

[
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

])]
. (31)

To compute this dispersion, Mallows-DPO provided a direct approach by using a normalized pre-
dictive entropy of preference pairs {ywi , yli}i=1,...,N with N = max(|yw|, |yl|):

ϕ(x) = − log

(
1
2

∑N−1
i=1

[
Hπref(Yi+1 | Yi = ywi ) +Hπref(Yi+1 | Yi = yli)

]
log(n)

)
. (32)

Mallows-DPO differs from DPO in adding a contextual scaling factor; others are the same.

C.9 SIMPO

SimPO (Meng et al., 2024) proposes a simple yet effective objective that is claimed to match or even
outperform the performance of DPO:

LSimPO (πθ) := −E(x,yw,yl)∼D

[
log σ

(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− γ

)]
, (33)

where γ is introduced as a target reward margin to help separating the winning and losing responses.
SimPO is similar to CPO in the sense of being reference model free; it also adopted the length
normalization for the likelihoods as in ORPO; finally, it additionally introduced a constant margin
to be tuned that could help to further improve the performance by encouraging a larger difference
between the normalized likelihoods.

SimPO differs from DPO in adopting length normalization, a margin/home advantage term and it is
also reference-model free.
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D PROOFS AND DETAILS

D.1 PROOF OF ORPO UPPER BOUND IN EQUATION 4

Here we prove that the part of preference optimization in ORPO’s loss yields an upper bound which
has instinct connection to SimPO loss, specifically the idea of length normalization.
Theorem 1. Assume that the normalized implicit reward model difference for preference pairs:

∆θ(x, yw, yl) =
1

|yw|
log πθ(yw|x)−

1

|yl|
log πθ(yl|x) ≥ 0

almost surely. Then for the part of preference optimization in ORPO loss, i.e.

LORPO-PO (πθ) = −E(x,yw,yl)∼D

[
log σ

(
log

pθ(yw|x)
1− pθ(yw|x)

− log
pθ(yl|x)

1− pθ(yl|x)

)]
, (34)

has an upper bound such that

LORPO−PO ≤ −E log σ

(
1

1− pθ(yl|x)

(
1

|yw|
log πθ(yw|x)−

1

|yl|
log πθ(yl|x)

))
. (35)

Proof. Since − log σ(·) is a monotone decreasing function, when 1 > x > y > 0, it suffices to
prove that for any x,

log

(
x

1− x

)
− log

(
y

1− y

)
≥ 1

1− y
log

(
x

y

)
, (36)

in which x = pθ(yw|x), y = pθ(yl|x). The inequality is equivalent to:

f(x) := log

(
x

1− x

)
− 1

1− y
log

(
x

y

)
≥ log

(
y

1− y

)
. (37)

Taking gradient of f(x) with respect to x, we have:

f ′(x) =
1

x
+

1

1− x
− 1

1− y
· 1
x
=

1

x(1− x)
− 1

x(1− y)
≥ 0.

Moreover, we have f(y) = log( y
1−y ), which yields the desired result.
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E EXPERIMENTAL DETAILS

E.1 ALPACAEVAL AND ALPACAEVAL2 INTRODUCTION

We briefly introduce AlpacaEval (Li et al., 2023) and its evaluation pipeline and metric. This part is
mainly modified and summarized from descriptions in AlpacaEval official Github repository 6.

In practice, for either training a LLM or comparison between different LLMs, we need to evaluate an
instruction-following model (e.g., ChatGPT). However, evaluation of such models typically requires
human interactions, which is time-consuming, expensive, and hard to replicate.

AlpacaEval. AlpacaEval is an LLM-based automatic evaluation that is fast, cheap, replicable, and
validated against 20K human annotations. It operates on a fixed set of 805 instructions chosen to be
representative of user interactions on the Alpaca web demo,7 and has been widely adopted for model
development. Concretely, AlpacaEval adopts an automatic evaluator that has high agreement with
humans (validated on 20K annotations), and evaluates a model by measuring the fraction of times
a powerful LLM (e.g., GPT-4) prefers the outputs from that model over outputs from a reference
model. The evaluators of AlpacaEval enable caching and output randomization by default.

AlpacaEval2. AlpacaEval2 (Dubois et al., 2024), also called Length Controlled AlpacaEval, is
a length-debiased version of AlpacaEval. One of the major issues of AlpacaEval is that one can
increase the win-rate by increasing the length of outputs. The main idea of Length Controlled (LC)
WR is that for each model, AlpacaEval2 will fit a logistic regression to predict the preference of
the autoannotator given: (1) the instruction, (2) the model, and (3) the difference of length between
the baseline and model output. Given such a logistic regression AlpacaEval2 can then try to predict
the counterfactual “what would the preference be if the model’s output had the same length as the
baseline” by setting the length difference to 0. By averaging over this length-controlled preference,
AlpacaEval2 then obtains the LC win rates.

Length controlled win-rates increase the correlation between AlpacaEval’s leaderboard and Chat
Arena from 0.93 to 0.98 Spearman correlation, while significantly decreasing the length gameability
of the annotator. We refer the more concrete details of the datasets, comparison of models or evalu-
ators and leaderboards to AlpacaEval’s official website https://github.com/tatsu-lab/
stanford_alpaca.

Our paper. In this paper, we adopted two evaluators: GPT4 turbo and Llama3 70B to evaluate
our models’ generations against base/reference answers generated by GPT4 turbo. We adopt the
default template for evaluators provided by AlpacaEval and we adopt the following fixed generation
config for each model: max new tokens 4096, temperature 0.7 and top p 0.1.

E.2 TRAINING DETAILS

Here we report the best hyper-parameters we searched which corresponds to our final results. We
include the modified dpo trainer and training scripts in the supplementary materials.

E.3 ABLATIONS ON TRAINING EPOCHS

We also conduct ablation studies on the training epochs, under the other best hyper-parameters we
found under the 3 training epochs. The training loss can be found in Figure 2, and the AlpacaEval
results could be found in Table 13. The results indeed show that 3 training epochs yield the sweet
spot, further additional epochs could slightly degrade the performance.

6https://github.com/tatsu-lab/alpaca_eval
7https://github.com/tatsu-lab/stanford_alpaca

20

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/stanford_alpaca


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Models β α γ τ SFT λ lr WR

Base model 0.01 1 0 ∞ 0 3e−7 0.1
+ Length Norm. (LN) 10 1 0 ∞ 0 e−6 0.1
+ Ref. Policy Mixing (Mix) 0.01 0.25 0.1 ∞ 0 3e−7 0.1
+ Contextual Scaling (CS) 0.01 1 0 ∞ 0 3e−7 0.1
+ Link Function (LF) 0.001 1 0 ∞ 0 3e−7 0.1
+ Home Advantage (HA) 0.005 1 0.001 ∞ 0 3e−7 0.1
+ Rejection Sampling (RSO) 0.01 1 0 0.2 0 3e−7 0.1

Base model + LN 10 1 0 ∞ 0 e−6 0.1
+ LN + Mix 10 0.25 0.1 ∞ 0 e−6 0.1
+ LN + CS 10 1 0 ∞ 0 e−6 0.1
+ LN + HA 10 1 0.05 ∞ 0 e−6 0.1
+ LN + RS 10 1 0 0.2 0 e−6 0.1
+ LN + SFT Loss 10 1 0 ∞ 0.1 e−6 0.1

Table 10: Hyper-parameters for results reported in Table 2.

Models β α γ lr WR/WS

Base model 0.01 1 0 3e−7 0.1
+ Length Norm. (LN) 10 1 0 e−6 0.1
+ Ref. Policy Mixing (Mix) 10 0.25 0.1 e−6 0.1
+ Warm-up Adjustment 10 0.25 0.1 e−6 150
+ Contextual Scaling (CS) 10 0.25 0.1 e−6 150

Table 11: Hyper-parameters for results reported in Table 3.

Models β α γ lr WR/WS

DPO∗ (Rafailov et al., 2023) 0.01 1 0 3e−7 150
SimPO∗ (Meng et al., 2024) 10 0 0.1 e−6 150

RainbowPO∗ (3 epochs) 10 0.25 0.1 e−6 150

Table 12: Hyper-parameters for Table 6.

Models AlpacaEval2 (GPT4)
LC WR (%) σ WR (%) σ avg length (↓)

RainbowPO 51.66 0.78 47.92 1.49 1,878
1 Training Epoch 46.36 0.77 39.32 1.43 1,717
2 Training Epochs 50.88 0.77 47.34 1.47 1,912
4 Training Epochs 50.61 0.74 47.02 1.49 1874

Table 13: Ablation of training epochs for RAINBOWPO (3 training epochs) using the same other
hyper-parameters.
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Figure 2: Training loss with respect to training epochs
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